1
|
Nag R, Rouvière N, Trazo JG, Marcone J, Kutalia N, Goldmann C, Impéror-Clerc M, Alloyeau D, Constantin D, Hamon C. Depletion-Induced Tunable Assembly of Complementary Platonic Solids. NANO LETTERS 2024; 24:16368-16373. [PMID: 39668331 DOI: 10.1021/acs.nanolett.4c04923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Multicomponent self-assembly has been explored to create novel metamaterials from nanoparticles of different sizes and compositions, but the assembly of nanoparticles with complementary shapes remains rare. Recent binary assemblies were mediated by DNA base pairing or induced by solvent evaporation. Here, we introduce depletion-induced self-assembly (DISA) as a novel approach to constructing tunable binary lattices. In situ structural analysis in the real and reciprocal spaces demonstrates DISA of a binary mixture of octahedra and tetrahedra into extended supercrystals with Fm3̅m symmetry. The interparticle distance, adjustable by depletant concentration, offers a versatile method for assembling nanoparticles into ordered structures while they remain dispersed in a liquid phase. We show that DISA can control the packing fraction of such binary supercrystals between φ = 0.37 and φ = 0.66, much lower than dense packing in the dry state. These findings highlight DISA's potential for creating complex and highly ordered metamaterials with tailored properties.
Collapse
Affiliation(s)
- Rahul Nag
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Nina Rouvière
- Institut Charles Sadron, CNRS and Université de Strasbourg, 67034 Strasbourg, France
| | - Jaime Gabriel Trazo
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Jules Marcone
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Nika Kutalia
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Claire Goldmann
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
| | | | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Cité - CNRS, Paris 75006, France
| | - Doru Constantin
- Institut Charles Sadron, CNRS and Université de Strasbourg, 67034 Strasbourg, France
| | - Cyrille Hamon
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, Orsay 91405, France
| |
Collapse
|
2
|
Zhou W, Li Y, Partridge BE, Mirkin CA. Engineering Anisotropy into Organized Nanoscale Matter. Chem Rev 2024; 124:11063-11107. [PMID: 39315621 DOI: 10.1021/acs.chemrev.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D-3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.
Collapse
Affiliation(s)
- Wenjie Zhou
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanwei Li
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin E Partridge
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Wang T, Chen W, Liu Q, Wang W, Wang Y, Wu B, Shi W, Zhu Y, He P, Wang X. Self-Assembly of Polyoxometalate-Based Sub-1 nm Polyhedral Building Blocks into Rhombic Dodecahedral Superstructures. Angew Chem Int Ed Engl 2023:e202314045. [PMID: 37916968 DOI: 10.1002/anie.202314045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Self-assembly of subnanometer (sub-1 nm) scale polyhedral building blocks can yield some superstructures with novel and interesting morphology as well as potential functionalities. However, achieving the self-assembly of sub-1 nm polyhedral building blocks is still a great challenge. Herein, through encapsulating the titanium-substituted polyoxometalate (POM, K7 PTi2 W10 O40 ) with tetrabutylammonium cations (TBA+ ), we first synthesized a sub-1 nm rhombic dodecahedral building block by further tailoring the spatial distribution of TBA+ on the POM. Molecular dynamics (MD) simulations demonstrated the eight TBA+ cations interacted with the POM cluster and formed the sub-1 nm rhombic dodecahedron. As a result of anisotropy, the sub-1 nm building blocks have self-assembled into rhombic dodecahedral POM (RD-POM) assemblies at the microscale. Benefiting from the regular structure, Br- ions, and abundant active sites, the obtained RD-POM assemblies exhibit excellent catalytic performance in the cycloaddition of CO2 with epoxides without co-catalysts. This work provides a promising approach to tailor the symmetry and structure of sub-1 nm building blocks by tuning the spatial distribution of ligands, which may shed light on the fabrication of superstructures with novel properties by self-assembly.
Collapse
Affiliation(s)
- Tian Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Weichao Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qingda Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yinming Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Biao Wu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Peilei He
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Dwyer T, Moore TC, Anderson JA, Glotzer SC. Tunable assembly of host-guest colloidal crystals. SOFT MATTER 2023; 19:7011-7019. [PMID: 37671647 DOI: 10.1039/d3sm00891f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Entropy compartmentalization provides new self-assembly routes to colloidal host-guest (HG) structures. Leveraging host particle shape to drive the assembly of HG structures has only recently been proposed and demonstrated. However, the extent to which the guest particles can dictate the structure of the porous network of host particles has not been explored. In this work, by modifying only the guest shape, we show athermal, binary mixtures of star-shaped host particles and convex polygon-shaped guest particles assemble as many as five distinct crystal structures, including rotator and discrete rotator guest crystals, two homoporous host crystals, and one heteroporous host crystal. Edge-to-edge alignment of neighboring stars results in the formation of three distinct pore motifs, whose preferential formation is controlled by the size and shape of the guest particles. Finally, we confirm, via free volume calculations, that assembly is driven by entropy compartmentalization, where the hosts and guests contribute differently to the free energy of the system; free volume calculations also explain differences in assembly based on guest shape. These results provide guest design rules for assembling colloidal HG structures, especially on surfaces and interfaces.
Collapse
Affiliation(s)
- Tobias Dwyer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Timothy C Moore
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | | | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Marino E, Jiang Z, Kodger TE, Murray CB, Schall P. Controlled Assembly of CdSe Nanoplatelet Thin Films and Nanowires. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12533-12540. [PMID: 37561597 PMCID: PMC10501200 DOI: 10.1021/acs.langmuir.3c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/03/2023] [Indexed: 08/12/2023]
Abstract
We assemble semiconductor CdSe nanoplatelets (NPs) at the air/liquid interface into 2D monolayers several micrometers wide, distinctly displaying nematic order. We show that this configuration is the most favorable energetically and that the edge-to-edge distance between neighboring NPs can be tuned by ligand exchange without disrupting film topology and nanoparticle orientation. We explore the rich assembly phase space by using depletion interactions to direct the formation of 1D nanowires from stacks of NPs. The improved control and understanding of the assembly of semiconductor NPs offers opportunities for the development of cheaper optoelectronic devices that rely on 1D or 2D charge delocalization throughout the assembled monolayers and nanowires.
Collapse
Affiliation(s)
- Emanuele Marino
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Department
of Chemistry, University of Pennsylvania, 231 S. 34th St., 19104 Philadelphia, (Pennsylvania), United States
- Dipartimento
di Fisica e Chimica, Università degli
Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Zhiqiao Jiang
- Department
of Chemistry, University of Pennsylvania, 231 S. 34th St., 19104 Philadelphia, (Pennsylvania), United States
- Department
of Materials Science and Engineering, University
of Pennsylvania, 3231 Walnut Street, 19104 Philadelphia (Pennsylvania), United States
| | - Thomas E. Kodger
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Christopher B. Murray
- Department
of Chemistry, University of Pennsylvania, 231 S. 34th St., 19104 Philadelphia, (Pennsylvania), United States
- Department
of Materials Science and Engineering, University
of Pennsylvania, 3231 Walnut Street, 19104 Philadelphia (Pennsylvania), United States
| | - Peter Schall
- Van
der Waals−Zeeman Institute, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Rao A, Roy S, Jain V, Pillai PP. Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25248-25274. [PMID: 35715224 DOI: 10.1021/acsami.2c05378] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The creation of matter with varying degrees of complexities and desired functions is one of the ultimate targets of self-assembly. The ability to regulate the complex interactions between the individual components is essential in achieving this target. In this direction, the initial success of controlling the pathways and final thermodynamic states of a self-assembly process is promising. Despite the progress made in the field, there has been a growing interest in pushing the limits of self-assembly processes. The main inception of this interest is that the intended self-assembled state, with varying complexities, may not be "at equilibrium (or at global minimum)", rendering free energy minimization unsuitable to form the desired product. Thus, we believe that a thorough understanding of the design principles as well as the ability to predict the outcome of a self-assembly process is essential to form a collection of the next generation of complex matter. The present review highlights the potent role of finely tuned interparticle interactions in nanomaterials to achieve the preferred self-assembled structures with the desired properties. We believe that bringing the design and prediction to nanoparticle self-assembly processes will have a similar effect as retrosynthesis had on the logic of chemical synthesis. Along with the guiding principles, the review gives a summary of the different types of products created from nanoparticle assemblies and the functional properties emerging from them. Finally, we highlight the reasonable expectations from the field and the challenges lying ahead in the creation of complex and evolvable matter.
Collapse
Affiliation(s)
- Anish Rao
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Sumit Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Vanshika Jain
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Pramod P Pillai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| |
Collapse
|
7
|
Wan S, Xi X, Zhang H, Ning J, Zheng Z, Zhang Z, Long Y, Deng Y, Fan P, Yang D, Li T, Dong A. Shape-Mediated Oriented Assembly of Concave Nanoparticles under Cylindrical Confinement. ACS NANO 2022; 16:21315-21323. [PMID: 36468886 DOI: 10.1021/acsnano.2c09479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This contribution describes the self-assembly of colloidal nanodumbbells (NDs) with tunable shapes within cylindrical channels. We present that the intrinsic concave geometry of NDs endows them with peculiar packing and interlocking behaviors, which, in conjunction with the adjustable confinement constraint, leads to a variety of superstructures such as tilted-ladder chains and crossed-chain superlattices. A mechanistic investigation, corroborated by geometric calculations, reveals that the phase behavior of NDs under strong confinement can be rationalized by the entropy-driven maximization of the packing efficiency. Based on the experimental results, an empirical phase diagram is generated, which could provide general guidance in the design of intended superstructures from NDs. This study provides essential insight into how the interplay between the particle shape and confinement conditions can be exploited to direct the orientationally ordered assembly of concave nanoparticles into unusual superlattices.
Collapse
Affiliation(s)
- Siyu Wan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Heyang Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Jing Ning
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Ziyue Zheng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhebin Zhang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Ying Long
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Yuwei Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Pengshuo Fan
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Tongtao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| | - Angang Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
8
|
Cherniukh I, Sekh TV, Rainò G, Ashton OJ, Burian M, Travesset A, Athanasiou M, Manoli A, John RA, Svyrydenko M, Morad V, Shynkarenko Y, Montanarella F, Naumenko D, Amenitsch H, Itskos G, Mahrt RF, Stöferle T, Erni R, Kovalenko MV, Bodnarchuk MI. Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes. ACS NANO 2022; 16:7210-7232. [PMID: 35385663 PMCID: PMC9134504 DOI: 10.1021/acsnano.1c10702] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanocrystal (NC) self-assembly is a versatile platform for materials engineering at the mesoscale. The NC shape anisotropy leads to structures not observed with spherical NCs. This work presents a broad structural diversity in multicomponent, long-range ordered superlattices (SLs) comprising highly luminescent cubic CsPbBr3 NCs (and FAPbBr3 NCs) coassembled with the spherical, truncated cuboid, and disk-shaped NC building blocks. CsPbBr3 nanocubes combined with Fe3O4 or NaGdF4 spheres and truncated cuboid PbS NCs form binary SLs of six structure types with high packing density; namely, AB2, quasi-ternary ABO3, and ABO6 types as well as previously known NaCl, AlB2, and CuAu types. In these structures, nanocubes preserve orientational coherence. Combining nanocubes with large and thick NaGdF4 nanodisks results in the orthorhombic SL resembling CaC2 structure with pairs of CsPbBr3 NCs on one lattice site. Also, we implement two substrate-free methods of SL formation. Oil-in-oil templated assembly results in the formation of binary supraparticles. Self-assembly at the liquid-air interface from the drying solution cast over the glyceryl triacetate as subphase yields extended thin films of SLs. Collective electronic states arise at low temperatures from the dense, periodic packing of NCs, observed as sharp red-shifted bands at 6 K in the photoluminescence and absorption spectra and persisting up to 200 K.
Collapse
Affiliation(s)
- Ihor Cherniukh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Taras V. Sekh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Olivia J. Ashton
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Max Burian
- Swiss
Light
Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Alex Travesset
- Department
of Physics and Astronomy and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Modestos Athanasiou
- Experimental
Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
| | - Andreas Manoli
- Experimental
Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
| | - Rohit Abraham John
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Mariia Svyrydenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Viktoriia Morad
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Yevhen Shynkarenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Federico Montanarella
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Denys Naumenko
- Institute
of Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | - Heinz Amenitsch
- Institute
of Inorganic Chemistry, Graz University
of Technology, 8010 Graz, Austria
| | - Grigorios Itskos
- Experimental
Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
| | | | - Thilo Stöferle
- IBM
Research Europe−Zurich, CH-8803 Rüschlikon, Switzerland
| | - Rolf Erni
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa−Swiss Federal Laboratories
for Materials
Science and Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
9
|
Cherniukh I, Rainò G, Sekh TV, Zhu C, Shynkarenko Y, John RA, Kobiyama E, Mahrt RF, Stöferle T, Erni R, Kovalenko MV, Bodnarchuk MI. Shape-Directed Co-Assembly of Lead Halide Perovskite Nanocubes with Dielectric Nanodisks into Binary Nanocrystal Superlattices. ACS NANO 2021; 15:16488-16500. [PMID: 34549582 PMCID: PMC8552496 DOI: 10.1021/acsnano.1c06047] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 05/25/2023]
Abstract
Self-assembly of colloidal nanocrystals (NCs) holds great promise in the multiscale engineering of solid-state materials, whereby atomically engineered NC building blocks are arranged into long-range ordered structures-superlattices (SLs)-with synergistic physical and chemical properties. Thus far, the reports have by far focused on single-component and binary systems of spherical NCs, yielding SLs isostructural with the known atomic lattices. Far greater structural space, beyond the realm of known lattices, is anticipated from combining NCs of various shapes. Here, we report on the co-assembly of steric-stabilized CsPbBr3 nanocubes (5.3 nm) with disk-shaped LaF3 NCs (9.2-28.4 nm in diameter, 1.6 nm in thickness) into binary SLs, yielding six columnar structures with AB, AB2, AB4, and AB6 stoichiometry, not observed before and in our reference experiments with NC systems comprising spheres and disks. This striking effect of the cubic shape is rationalized herein using packing-density calculations. Furthermore, in the systems with comparable dimensions of nanocubes (8.6 nm) and nanodisks (6.5 nm, 9.0 nm, 12.5 nm), other, noncolumnar structures are observed, such as ReO3-type SL, featuring intimate intermixing and face-to-face alignment of disks and cubes, face-centered cubic or simple cubic sublattice of nanocubes, and two or three disks per one lattice site. Lamellar and ReO3-type SLs, employing large 8.6 nm CsPbBr3 NCs, exhibit characteristic features of the collective ultrafast light emission-superfluorescence-originating from the coherent coupling of emission dipoles in the excited state.
Collapse
Affiliation(s)
- Ihor Cherniukh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Taras V. Sekh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Chenglian Zhu
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Yevhen Shynkarenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Rohit Abraham John
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | | | | | - Thilo Stöferle
- IBM
Research Europe—Zurich, Rüschlikon CH-8803, Switzerland
| | - Rolf Erni
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- Laboratory for Thin Films and Photovoltaics and Electron Microscopy
Center, Empa—Swiss Federal Laboratories
for Materials
Science and Technology, Dübendorf CH-8600, Switzerland
| |
Collapse
|
10
|
Elbert KC, Zygmunt W, Vo T, Vara CM, Rosen DJ, Krook NM, Glotzer SC, Murray CB. Anisotropic nanocrystal shape and ligand design for co-assembly. SCIENCE ADVANCES 2021; 7:eabf9402. [PMID: 34088667 PMCID: PMC8177705 DOI: 10.1126/sciadv.abf9402] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/19/2021] [Indexed: 05/12/2023]
Abstract
The use of nanocrystal (NC) building blocks to create metamaterials is a powerful approach to access emergent materials. Given the immense library of materials choices, progress in this area for anisotropic NCs is limited by the lack of co-assembly design principles. Here, we use a rational design approach to guide the co-assembly of two such anisotropic systems. We modulate the removal of geometrical incompatibilities between NCs by tuning the ligand shell, taking advantage of the lock-and-key motifs between emergent shapes of the ligand coating to subvert phase separation. Using a combination of theory, simulation, and experiments, we use our strategy to achieve co-assembly of a binary system of cubes and triangular plates and a secondary system involving two two-dimensional (2D) nanoplates. This theory-guided approach to NC assembly has the potential to direct materials choices for targeted binary co-assembly.
Collapse
Affiliation(s)
- Katherine C Elbert
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Zygmunt
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thi Vo
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Corbin M Vara
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Rosen
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nadia M Krook
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharon C Glotzer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Liu J, Huang J, Niu W, Tan C, Zhang H. Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chem Rev 2021; 121:5830-5888. [PMID: 33797882 DOI: 10.1021/acs.chemrev.0c01047] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crystal phase, an intrinsic characteristic of crystalline materials, is one of the key parameters to determine their physicochemical properties. Recently, great progress has been made in the synthesis of nanomaterials with unconventional phases that are different from their thermodynamically stable bulk counterparts via various synthetic methods. A nanocrystalline material can also be viewed as an assembly of atoms with long-range order. When larger entities, such as nanoclusters, nanoparticles, and microparticles, are used as building blocks, supercrystalline materials with rich phases are obtained, some of which even have no analogues in the atomic and molecular crystals. The unconventional phases of nanocrystalline and supercrystalline materials endow them with distinctive properties as compared to their conventional counterparts. This Review highlights the state-of-the-art progress of nanocrystalline and supercrystalline materials with unconventional phases constructed from multiscale building blocks, including atoms, nanoclusters, spherical and anisotropic nanoparticles, and microparticles. Emerging strategies for engineering their crystal phases are introduced, with highlights on the governing parameters that are essential for the formation of unconventional phases. Phase-dependent properties and applications of nanocrystalline and supercrystalline materials are summarized. Finally, major challenges and opportunities in future research directions are proposed.
Collapse
Affiliation(s)
- Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy Sciences, Changchun, Jilin 130022, P.R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Li X, Liu X, Liu X. Self-assembly of colloidal inorganic nanocrystals: nanoscale forces, emergent properties and applications. Chem Soc Rev 2021; 50:2074-2101. [PMID: 33325927 DOI: 10.1039/d0cs00436g] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of colloidal nanoparticles has made it possible to bridge the nanoscopic and macroscopic worlds and to make complex nanostructures. The nanoparticle-mediated assembly enables many potential applications, from biodetection and nanomedicine to optoelectronic devices. Properties of assembled materials are determined not only by the nature of nanoparticle building blocks, but also by spatial positions of nanoparticles within the assemblies. A deep understanding of nanoscale interactions between nanoparticles is a prerequisite to controlling nanoparticle arrangement during assembly. In this review, we present an overview of interparticle interactions governing their assembly in a liquid phase. Considerable attention is devoted to examples that illustrate nanoparticle assembly into ordered superstructures using different types of building blocks, including plasmonic nanoparticles, magnetic nanoparticles, lanthanide-doped nanophosphors, and quantum dots. We also cover the physicochemical properties of nanoparticle ensembles, especially those arising from particle coupling effects. We further discuss future research directions and challenges in controlling self-assembly at a level of precision that is most crucial to technology development.
Collapse
Affiliation(s)
- Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300071, China.
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Institute of Flexible Electronics (SIFE), 8. Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.
| | - Xiaogang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, 117543, Singapore. and Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Fuzhou 350207, China and The N.1 Institute for Health, National University of Singapore, 117456, Singapore
| |
Collapse
|
13
|
Xuan S, Jiang X, Balsara NP, Zuckermann RN. Crystallization and self-assembly of shape-complementary sequence-defined peptoids. Polym Chem 2021. [DOI: 10.1039/d1py00426c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Shape complementarity between polymers is a hallmark of biological systems (e.g. DNA base pairing and protein binding interactions). Here we explore the role of shape complementarity between sequence-defined N-alkyl peptoids in crystal lattices.
Collapse
Affiliation(s)
- Sunting Xuan
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xi Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nitash P. Balsara
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- College of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ronald N. Zuckermann
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Arciniegas MP, Castelli A, Brescia R, Serantes D, Ruta S, Hovorka O, Satoh A, Chantrell R, Pellegrino T. Unveiling the Dynamical Assembly of Magnetic Nanocrystal Zig-Zag Chains via In Situ TEM Imaging in Liquid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907419. [PMID: 32459051 DOI: 10.1002/smll.201907419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/23/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
The controlled assembly of colloidal magnetic nanocrystals is key to many applications such as nanoelectronics, storage memory devices, and nanomedicine. Here, the motion and ordering of ferrimagnetic nanocubes in water via liquid-cell transmission electron microscopy is directly imaged in situ. Through the experimental analysis, combined with molecular dynamics simulations and theoretical considerations, it is shown that the presence of highly competitive interactions leads to the formation of stable monomers and dimers, acting as nuclei, followed by a dynamic growth of zig-zag chain-like assemblies. It is demonstrated that such arrays can be explained by first, a maximization of short-range electrostatic interactions, which at a later stage become surpassed by magnetic forces acting through the easy magnetic axes of the nanocubes, causing their tilted orientation within the arrays. Moreover, in the confined volume of liquid in the experiments, interactions of the nanocube surfaces with the cell membranes, when irradiated at relatively low electron dose, slow down the kinetics of their self-assembly, facilitating the identification of different stages in the process. The study provides crucial insights for the formation of unconventional linear arrays made of ferrimagnetic nanocubes that are essential for their further exploitation in, for example, magnetic hyperthermia, magneto-transport devices, and nanotheranostic tools.
Collapse
Affiliation(s)
| | - Andrea Castelli
- Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Rosaria Brescia
- Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - David Serantes
- Applied Physics Department and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Sergiu Ruta
- Department of Physics, University of York, York, YO10 5DD, UK
| | - Ondrej Hovorka
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO16 7QF, UK
| | - Akira Satoh
- Faculty of System Science and Technology, Akita Prefecture University, Yurihonjo, 015-0055, Japan
| | - Roy Chantrell
- Department of Physics, University of York, York, YO10 5DD, UK
| | - Teresa Pellegrino
- Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
15
|
De Caro L, Scattarella F, Altamura D, Arciniegas MP, Siliqi D, Manna L, Giannini C. X-ray ptychographic mode of self-assembled CdSe/CdS octapod-shaped nanocrystals in thick polymers. J Appl Crystallogr 2020; 53:741-747. [PMID: 32684889 PMCID: PMC7312151 DOI: 10.1107/s160057672000583x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/27/2020] [Indexed: 11/10/2022] Open
Abstract
This work describes the application of X-ray ptychography for the inspection of complex assemblies of highly anisotropic nanocrystals embedded in a thick polymer matrix. More specifically, this case deals with CdSe/CdS octapods, with pod length L = 39 ± 2 nm and pod diameter D = 12 ± 2 nm, dispersed in free-standing thick films (24 ± 4 µm) of polymethyl methacrylate and polystyrene, with different molecular weights. Ptychography is the only imaging method available to date that can be used to study architectures made by these types of nanocrystals in thick polymeric films, as any other alternative direct method, such as scanning/transmission electron microscopy, can be definitively ruled out as a result of the large thickness of the free-standing films. The electron density maps of the investigated samples are reconstructed by combining iterative difference map algorithms and a maximum likelihood optimization algorithm. In addition, post image processing techniques are applied to both reduce noise and provide a better visualization of the material morphological details. Through this process, at a final resolution of 27 nm, the reconstructed maps allow us to visualize the intricate network of octapods inside the polymeric matrices.
Collapse
Affiliation(s)
- Liberato De Caro
- Istituto di Cristallografia, CNR, via Amendola 122/O, Bari, Italy
| | | | - Davide Altamura
- Istituto di Cristallografia, CNR, via Amendola 122/O, Bari, Italy
| | - Milena P. Arciniegas
- Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, Genova, Italy
| | - Dritan Siliqi
- Istituto di Cristallografia, CNR, via Amendola 122/O, Bari, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, Genova, Italy
| | - Cinzia Giannini
- Istituto di Cristallografia, CNR, via Amendola 122/O, Bari, Italy
| |
Collapse
|
16
|
Liu Y, Deng K, Yang J, Wu X, Fan X, Tang M, Quan Z. Shape-directed self-assembly of nanodumbbells into superstructure polymorphs. Chem Sci 2020; 11:4065-4073. [PMID: 34122872 PMCID: PMC8152806 DOI: 10.1039/d0sc00592d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Self-assembly of colloidal nanoparticles into ordered superstructures provides a promising route to create novel/enhanced functional materials. Much progress has been made in self-assembly of anisotropic nanoparticles, but the complexity and tunability of superstructures remain restricted by their available geometries. Here we report the controlled packing of nanodumbbells (NDs) with two spherical lobes connected by one rod-like middle bar into varied superstructure polymorphs. When assembled into two-dimensional (2D) monolayer assemblies, such NDs with specific shape parameters could form orientationally ordered degenerate crystals with a 6-fold symmetry, in which these NDs possess no translational order but three allowed orientations with a rotational symmetry of 120 degrees. Detailed analyses identify the distinct roles of subunits in the ND assembly: the spherical lobes direct NDs to closely assemble together into a hexagonal pattern, and the rod-like connection between the lobes endows NDs with this specific orientational order. Such intralayer assembly features are well maintained in the two-layer superstructures of NDs; however, the interlayer stackings could be adjusted to produce stable bilayer superstructures and a series of metastable moiré patterns. Moreover, in addition to horizontal alignment, these NDs could gradually stand up to form tilted or even vertical packing based on the delicate control over the liquid-liquid interface and ND dimensions. This study provides novel insights into creating superstructures by controlling geometric features of nanoscale building blocks and may spur their novel applications.
Collapse
Affiliation(s)
- Yulian Liu
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
- School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Kerong Deng
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Jun Yang
- School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Xiaotong Wu
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Xiaokun Fan
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Min Tang
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| | - Zewei Quan
- Department of Chemistry, Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology (SUSTech) Shenzhen Guangdong 518055 China
| |
Collapse
|
17
|
Yun H, Paik T. Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures. NANOMATERIALS 2019; 9:nano9091243. [PMID: 31480547 PMCID: PMC6780213 DOI: 10.3390/nano9091243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 11/16/2022]
Abstract
The self-assembly of colloidal inorganic nanocrystals (NCs) offers tremendous potential for the design of solution-processed multi-functional inorganic thin-films or nanostructures. To date, the self-assembly of various inorganic NCs, such as plasmonic metal, metal oxide, quantum dots, magnetics, and dielectrics, are reported to form single, binary, and even ternary superlattices with long-range orientational and positional order over a large area. In addition, the controlled coupling between NC building blocks in the highly ordered superlattices gives rise to novel collective properties, providing unique optical, magnetic, electronic, and catalytic properties. In this review, we introduce the self-assembly of inorganic NCs and the experimental process to form single and multicomponent superlattices, and we also describe the fabrication of multiscale NC superlattices with anisotropic NC building blocks, thin-film patterning, and the supracrystal formation of superlattice structures.
Collapse
Affiliation(s)
- Hongseok Yun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Taejong Paik
- Department of Integrative Engineering, Chung-Ang University, Seoul 06973, Korea.
| |
Collapse
|
18
|
Parvez N, Rao DM, Zanjani MB. Investigation of Geometric Landscape and Structure-Property Relations for Colloidal Superstructures Using Genetic Algorithm. J Phys Chem B 2019; 123:7445-7454. [PMID: 31373820 DOI: 10.1021/acs.jpcb.9b05335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the past two decades, colloidal particles with a variety of shapes, sizes, and compositions have been synthesized and characterized successfully. One of the most important applications for colloidal building blocks is to engineer functional structures as mechanical, electrical, and optical metamaterials. However, complex interaction dynamics between the building blocks as well as sophisticated structure-property relationships make it challenging to design structures with predictable target properties. In this paper, we implement an inverse material design framework using Genetic Algorithm (GA)-based techniques to streamline the design of colloidal structures based on target properties. We investigate spherical particles as well as colloidal molecules of different sizes and shapes and evaluate a Geometric Landscape Accessibility parameter that identifies the size of feasible domains within the geometric phase space of each structure. Considering target photonic properties, our GA-assisted framework is further utilized to identify sets of building blocks and structures that lead to various target values for the size of the photonic band gaps. The proposed framework in this study will provide new insight for predictive computational material design approaches and help establish more efficient ways of understanding structure-property relations in sub-micrometer-scale materials.
Collapse
Affiliation(s)
- Nishan Parvez
- Department of Mechanical and Manufacturing Engineering , Miami University , Oxford , Ohio 45056 , United States
| | - Dhananjai M Rao
- Department of Computer Science and Software Engineering , Miami University , Oxford , Ohio 45056 , United States
| | - Mehdi B Zanjani
- Department of Mechanical and Manufacturing Engineering , Miami University , Oxford , Ohio 45056 , United States
| |
Collapse
|
19
|
Aryana K, Stahley JB, Parvez N, Kim K, Zanjani MB. Superstructures of Multielement Colloidal Molecules: Efficient Pathways to Construct Reconfigurable Photonic and Phononic Crystals. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800198] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kiumars Aryana
- Department of Mechanical and Manufacturing EngineeringMiami University Oxford OH 45056 USA
| | - James B. Stahley
- Department of Mechanical and Manufacturing EngineeringMiami University Oxford OH 45056 USA
| | - Nishan Parvez
- Department of Mechanical and Manufacturing EngineeringMiami University Oxford OH 45056 USA
| | - Kristin Kim
- Department of Mechanical and Manufacturing EngineeringMiami University Oxford OH 45056 USA
| | - Mehdi B. Zanjani
- Department of Mechanical and Manufacturing EngineeringMiami University Oxford OH 45056 USA
| |
Collapse
|
20
|
Simon AJ, Zhou Y, Ramasubramani V, Glaser J, Pothukuchy A, Gollihar J, Gerberich JC, Leggere JC, Morrow BR, Jung C, Glotzer SC, Taylor DW, Ellington AD. Supercharging enables organized assembly of synthetic biomolecules. Nat Chem 2019; 11:204-212. [DOI: 10.1038/s41557-018-0196-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/26/2018] [Indexed: 11/09/2022]
|
21
|
Imai H, Matsumoto R, Takasaki M, Tsukiyama K, Sawano K, Nakagawa Y. Evaporation-driven manipulation of nanoscale brickwork structures for the design of 1D, 2D, and 3D microarrays of rectangular building blocks. CrystEngComm 2019. [DOI: 10.1039/c9ce00960d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
As children play with wooden building blocks, we would like to construct elaborate architectures through the one-by-one accumulation of nanocrystals.
Collapse
Affiliation(s)
- Hiroaki Imai
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Riho Matsumoto
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Mihiro Takasaki
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Keishi Tsukiyama
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Keisuke Sawano
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Yoshitaka Nakagawa
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| |
Collapse
|
22
|
Abstract
Particle assembly and co-assembly have been research frontiers in chemistry and material science in the past few decades. To achieve a large variety of intricate structures and functional materials, remarkable progress has been made in particle assembly principles and strategies. Essentially, particle assembly is driven by intrinsic interparticle interactions or the external control. In this article, we focus on binary or ternary particle co-assembly and review the principles and feasible strategies. These advances have led to new disciplines of microfabrication technology and material engineering. Although significant achievement on particle-based structures has been made, it is still challenging to fully develop general and facile strategies to precisely control the one-dimensional (1D) co-assembly. This article reviews the recent development on multicomponent particle co-assembly, which significantly increases structural complexity and functional diversity. In particular, we highlight the advances in the particle co-assembly of well-ordered 1D binary superstructures by liquid soft confinement. Finally, prospective outlook for future trends in this field is proposed.
Collapse
Affiliation(s)
- Dan Guo
- Department Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Engineering Research Center of Nanomaterials for Green, Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China.,Department of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlin Song
- Department Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,Engineering Research Center of Nanomaterials for Green, Printing Technology, Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
23
|
Understanding and tailoring ligand interactions in the self-assembly of branched colloidal nanocrystals into planar superlattices. Nat Commun 2018; 9:1141. [PMID: 29559652 PMCID: PMC5861251 DOI: 10.1038/s41467-018-03550-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/22/2018] [Indexed: 01/26/2023] Open
Abstract
Colloidal nanocrystals can self-assemble into highly ordered superlattices. Recent studies have focused on changing their morphology by tuning the nanocrystal interactions via ligand-based surface modification for simple particle shapes. Here we demonstrate that this principle is transferable to and even enriched in the case of a class of branched nanocrystals made of a CdSe core and eight CdS pods, so-called octapods. Through careful experimental analysis, we show that the octapods have a heterogeneous ligand distribution, resembling a cone wrapping the individual pods. This induces location-specific interactions that, combined with variation of the pod aspect ratio and ligands, lead to a wide range of planar superlattices assembled at an air–liquid interface. We capture these findings using a simple simulation model, which reveals the necessity of including ligand-based interactions to achieve these superlattices. Our work evidences the sensitivity that ligands offer for the self-assembly of branched nanocrystals, thus opening new routes for metamaterial creation. The self-organization of nanocrystals into complex superlattices involves the interplay of different interactions. Here, the authors systematically reveal the effects of particle shape and ligand coverage on the assembly behavior of branched octapods into planar superlattices.
Collapse
|
24
|
Yan C, Wang T. A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity. Chem Soc Rev 2018; 46:1483-1509. [PMID: 28059420 DOI: 10.1039/c6cs00696e] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Studies on nanoparticle assemblies and their applications have been research frontiers in nanoscience in the past few decades and remarkable progress has been made in the synthetic strategies and techniques. Recently, the design and fabrication of the nanoparticle-based nanomaterials or nanodevices with integrated and enhanced properties compared to those of the individual components have gradually become the mainstream. However, a systematic solution to provide a big picture for future development and guide the investigation of different aspects of the study of nanoparticle assemblies remains a challenge. The binary cooperative complementary principle could be an answer. The binary cooperative complementary principle is a universal discipline and can describe the fundamental properties of matter from the subatomic particles to the universe. According to its definition, a variety of nanoparticle assemblies, which represent the cutting-edge work in the nanoparticle studies, are naturally binary cooperative complementary materials. Therefore, the introduction of the binary cooperative complementary principle in the studies of nanoparticle assemblies could provide a unique perspective for reviewing this field and help in the design and fabrication of novel functional nanoparticle assemblies.
Collapse
Affiliation(s)
- Cong Yan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
25
|
Zanjani MB, Crocker JC, Sinno T. Self-assembly with colloidal clusters: facile crystal design using connectivity landscape analysis. SOFT MATTER 2017; 13:7098-7105. [PMID: 28850137 DOI: 10.1039/c7sm01407d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent experimental and theoretical studies demonstrate that prefabricated micron-scale colloidal clusters functionalized with DNA oligomers offer a practical way for introducing anisotropic interactions, significantly extending the scope of DNA-mediated colloidal assembly, and enabling the formation of interesting crystalline superstructures that are otherwise inaccessible with short-ranged, spherically symmetric interactions. However, it is apparent that the high-dimensional parameter space that defines the geometric and interaction properties of such systems poses an obstacle to assembly design and optimization. Here, we present a geometrical analysis that generates connectivity landscapes for target superstructures, greatly reducing the space over which subsequent experimental trials must search. We focus on several superstructures that are assembled from binary systems comprised of 'merged' or 'sintered' tetrahedral clusters and single spheres. We also validate and extend the analytical constraint approach with direct MD simulations of superstructure nucleation and growth.
Collapse
Affiliation(s)
- Mehdi B Zanjani
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH 45056, USA.
| | | | | |
Collapse
|
26
|
Wang Q, Wang Z, Li Z, Xiao J, Shan H, Fang Z, Qi L. Controlled growth and shape-directed self-assembly of gold nanoarrows. SCIENCE ADVANCES 2017; 3:e1701183. [PMID: 29098180 PMCID: PMC5659655 DOI: 10.1126/sciadv.1701183] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/29/2017] [Indexed: 05/20/2023]
Abstract
Self-assembly of colloidal nanocrystals into complex superstructures offers notable opportunities to create functional devices and artificial materials with unusual properties. Anisotropic nanoparticles with nonspherical shapes, such as rods, plates, polyhedra, and multipods, enable the formation of a diverse range of ordered superlattices. However, the structural complexity and tunability of nanocrystal superlattices are restricted by the limited geometries of the anisotropic nanoparticles available for supercrystal self-assembly. We show that uniform gold nanoarrows (GNAs) consisting of two pyramidal heads connected by a four-wing shaft are readily synthesized through controlled overgrowth of gold nanorods. The distinct concave geometry endows the GNAs with unique packing and interlocking ability and allows for the shape-directed assembly of sophisticated two-dimensional (2D) and 3D supercrystals with unprecedented architectures. Net-like 2D supercrystals are assembled through the face-to-face contact of the GNAs lying on the pyramidal edges, whereas zipper-like and weave-like 2D supercrystals are constructed by the interlocked GNAs lying on the pyramidal {111} facets. Furthermore, multilayer packing of net-like and weave-like 2D assemblies of GNAs leads to non-close-packed 3D supercrystals with varied packing efficiencies and pore structures. Electromagnetic simulation of the diverse nanoarrow supercrystals exhibits exotic patterns of nanoscale electromagnetic field confinement. This study may open new avenues toward tunable self-assembly of nanoparticle superstructures with increased complexity and unusual functionality and may advance the design of novel plasmonic metamaterials for nanophotonics and reconfigurable architectured materials.
Collapse
Affiliation(s)
- Qian Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Zongpeng Wang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zhe Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Junyan Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, China
| | - Hangyong Shan
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zheyu Fang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry, Peking University, Beijing 100871, China
- Corresponding author.
| |
Collapse
|
27
|
Jones MR, Kohlstedt KL, O'Brien MN, Wu J, Schatz GC, Mirkin CA. Deterministic Symmetry Breaking of Plasmonic Nanostructures Enabled by DNA-Programmable Assembly. NANO LETTERS 2017; 17:5830-5835. [PMID: 28820597 DOI: 10.1021/acs.nanolett.7b03067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The physical properties of matter rely fundamentally on the symmetry of constituent building blocks. This is particularly true for structures that interact with light via the collective motion of their conduction electrons (i.e., plasmonic materials), where the observation of exotic optical effects, such as negative refraction and electromagnetically induced transparency, require the coupling of modes that are only present in systems with nontrivial broken symmetries. Lithography has been the predominant fabrication technique for constructing plasmonic metamaterials, as it can be used to form patterns of arbitrary complexity, including those with broken symmetry. Here, we show that low-symmetry, one-dimensional plasmonic structures that would be challenging to make using traditional lithographic techniques can be assembled using DNA as a programmable surface ligand. We investigate the optical properties that arise as a result of systematic symmetry breaking and demonstrate the appearance of π-type coupled modes formed from both dipole and quadrupole nanoparticle sources. These results demonstrate the power of DNA assembly for generating unusual structures that exhibit both fundamentally insightful and technologically important optical properties.
Collapse
Affiliation(s)
- Matthew R Jones
- Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, and §Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Kevin L Kohlstedt
- Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, and §Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Matthew N O'Brien
- Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, and §Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Jinsong Wu
- Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, and §Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - George C Schatz
- Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, and §Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Materials Science and Engineering, ‡International Institute for Nanotechnology, and §Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Packing, entropic patchiness, and self-assembly of non-convex colloidal particles: A simulation perspective. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Porter CL, Crocker JC. Directed assembly of particles using directional DNA interactions. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound Copper Chalcogenide Nanocrystals. Chem Rev 2017; 117:5865-6109. [PMID: 28394585 DOI: 10.1021/acs.chemrev.6b00376] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), energy storage (lithium-ion batteries, hydrogen generation), emissive materials (plasmonics, LEDs, biolabelling), sensors (electrochemical, biochemical), biomedical devices (magnetic resonance imaging, X-ray computer tomography), and medical therapies (photochemothermal therapies, immunotherapy, radiotherapy, and drug delivery). The confluence of advances in the synthesis, assembly, and application of these NCs in the past decade has the potential to significantly impact society, both economically and environmentally.
Collapse
Affiliation(s)
- Claudia Coughlan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| | - Maria Ibáñez
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain
| | - Oleksandr Dobrozhan
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,Department of Electronics and Computing, Sumy State University , 2 Rymskogo-Korsakova st., 40007 Sumy, Ukraine
| | - Ajay Singh
- Materials Physics & Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Andreu Cabot
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
31
|
Murali G, Kaur S, Chae YC, Ramesh M, Kim J, Suh YD, Lim DK, Lee SH. Monodisperse, shape-selective synthesis of YF3:Yb3+/Er3+ nano/microcrystals and strong upconversion luminescence of hollow microcrystals. RSC Adv 2017. [DOI: 10.1039/c7ra02188g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesizing upconversion materials with 3-dimensional structures is of fundamental importance in understanding the relationship between their optical properties and their structures.
Collapse
Affiliation(s)
- G. Murali
- Applied Materials Institute for BIN Convergence
- Department of BIN Convergence Technology
- Department of Polymer-Nano Science and Technology
- Chonbuk National University
- Jeonju
| | - Sandeep Kaur
- Applied Materials Institute for BIN Convergence
- Department of BIN Convergence Technology
- Department of Polymer-Nano Science and Technology
- Chonbuk National University
- Jeonju
| | - Young Cheol Chae
- Applied Materials Institute for BIN Convergence
- Department of BIN Convergence Technology
- Department of Polymer-Nano Science and Technology
- Chonbuk National University
- Jeonju
| | - Manda Ramesh
- Applied Materials Institute for BIN Convergence
- Department of BIN Convergence Technology
- Department of Polymer-Nano Science and Technology
- Chonbuk National University
- Jeonju
| | - Jongwoo Kim
- Laboratory for Advanced Molecular Probing (LAMP)
- Korea Research Institute of Chemical Technology
- Daejeon 305-600
- South Korea
| | - Yung Doug Suh
- Laboratory for Advanced Molecular Probing (LAMP)
- Korea Research Institute of Chemical Technology
- Daejeon 305-600
- South Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology
- Korea University
- Seoul 136-701
- Korea
| | - Seung Hee Lee
- Applied Materials Institute for BIN Convergence
- Department of BIN Convergence Technology
- Department of Polymer-Nano Science and Technology
- Chonbuk National University
- Jeonju
| |
Collapse
|
32
|
Tang Y, Su B, Liu M, Feng Y, Jiang X, Jiang L, Yu A. Superwettability Strategy: 1D Assembly of Binary Nanoparticles as Gas Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601087. [PMID: 27322357 DOI: 10.1002/smll.201601087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Binary 1D nanowires consisting of both SnO2 nanoparticles and Au nanorods are fabricated through a "substrate-particle solution template" assembling method, which shows highly enhanced gas sensitivity toward acetone under ambient conditions.
Collapse
Affiliation(s)
- Yue Tang
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, VIC, 3800, Australia
| | - Bin Su
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, VIC, 3800, Australia
| | - Minsu Liu
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, VIC, 3800, Australia
| | - Yuan Feng
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, VIC, 3800, Australia
| | - Xuchuan Jiang
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, VIC, 3800, Australia
| | - Lei Jiang
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Aibing Yu
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, VIC, 3800, Australia
| |
Collapse
|
33
|
Zanjani MB, Jenkins IC, Crocker JC, Sinno T. Colloidal Cluster Assembly into Ordered Superstructures via Engineered Directional Binding. ACS NANO 2016; 10:11280-11289. [PMID: 27936578 DOI: 10.1021/acsnano.6b06415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent experimental studies have demonstrated a facile route for fabricating large numbers of geometrically uniform colloidal clusters out of submicron DNA-functionalized spheres. These clusters are ideally suited for use as anisotropic building blocks for hierarchical assembly of superstructures with symmetries that are otherwise inaccessible with simple spherical particles. We study computationally the self-assembly of cubic, tetrahedral, and octahedral clusters mediated by "bond spheres" that dock with the clusters at specific preferential sites, providing robust and well-defined directional bonding. We analyze the assembly process with a combination of direct molecular dynamics simulations of superstructure growth and state-of-the-art umbrella sampling techniques to compute nucleation free energy profiles. The simulations confirm the versatility and robustness of hierarchical cluster assembly but also reveal potential obstacles in the form of energetically accessible defect states. We find and study solutions for bypassing these defects that rely on appropriate selection of particle size and interparticle interaction as a function of building block shape and, therefore, provide operational guidelines for future experimental demonstrations.
Collapse
Affiliation(s)
- Mehdi B Zanjani
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Ian C Jenkins
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - John C Crocker
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Talid Sinno
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
34
|
Giner-Casares JJ, Reguera J. Directed self-assembly of inorganic nanoparticles at air/liquid interfaces. NANOSCALE 2016; 8:16589-16595. [PMID: 27722594 DOI: 10.1039/c6nr05054a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Inorganic nanoparticles (NPs) appear as the forefront functional structure in nanotechnology. The preparation of functional materials based on inorganic NPs requires their assembly onto well-defined structures. Within this context, self-assembly at air-liquid interfaces is probably the best candidate for a universal procedure for active materials composed of assembled NPs. The detailed in situ mechanism of the lateral self-assembly and vertical organization of NPs at air-liquid interfaces is still unknown despite its extended use. The most common and promising methods for addressing this open issue are reviewed herein. The self-assembled films can be used in situ or further be transferred to solid substrates as the main constituents of novel functional materials. Plasmonic NPs at interfaces are highly interesting, given the broad range of applications of the plasmonic field, and will be discussed more in detail.
Collapse
Affiliation(s)
- Juan J Giner-Casares
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain.
| | - Javier Reguera
- CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain. and Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain and Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 50018 Aragon, Spain
| |
Collapse
|
35
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1107] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
36
|
Cormary B, Li T, Liakakos N, Peres L, Fazzini PF, Blon T, Respaud M, Kropf AJ, Chaudret B, Miller JT, Mader EA, Soulantica K. Concerted Growth and Ordering of Cobalt Nanorod Arrays as Revealed by Tandem in Situ SAXS-XAS Studies. J Am Chem Soc 2016; 138:8422-31. [DOI: 10.1021/jacs.6b01929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Benoit Cormary
- Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 avenue de Rangueil, 31077 Toulouse, France
| | | | - Nikos Liakakos
- Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Peres
- Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 avenue de Rangueil, 31077 Toulouse, France
| | - Pier-Francesco Fazzini
- Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 avenue de Rangueil, 31077 Toulouse, France
| | - Thomas Blon
- Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 avenue de Rangueil, 31077 Toulouse, France
| | - Marc Respaud
- Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 avenue de Rangueil, 31077 Toulouse, France
| | | | - Bruno Chaudret
- Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 avenue de Rangueil, 31077 Toulouse, France
| | - Jeffrey T. Miller
- School
of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47097, United States
| | | | - Katerina Soulantica
- Université de Toulouse, INSA, UPS, LPCNO, CNRS-UMR5215, 135 avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
37
|
Tian Y, Zhang Y, Wang T, Xin HL, Li H, Gang O. Lattice engineering through nanoparticle-DNA frameworks. NATURE MATERIALS 2016; 15:654-61. [PMID: 26901516 PMCID: PMC5282967 DOI: 10.1038/nmat4571] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/18/2016] [Indexed: 05/17/2023]
Abstract
Advances in self-assembly over the past decade have demonstrated that nano- and microscale particles can be organized into a large diversity of ordered three-dimensional (3D) lattices. However, the ability to generate different desired lattice types from the same set of particles remains challenging. Here, we show that nanoparticles can be assembled into crystalline and open 3D frameworks by connecting them through designed DNA-based polyhedral frames. The geometrical shapes of the frames, combined with the DNA-assisted binding properties of their vertices, facilitate the well-defined topological connections between particles in accordance with frame geometry. With this strategy, different crystallographic lattices using the same particles can be assembled by introduction of the corresponding DNA polyhedral frames. This approach should facilitate the rational assembly of nanoscale lattices through the design of the unit cell.
Collapse
Affiliation(s)
- Ye Tian
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Tong Wang
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Huolin L. Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
38
|
Tan R, Zhu H, Cao C, Chen O. Multi-component superstructures self-assembled from nanocrystal building blocks. NANOSCALE 2016; 8:9944-61. [PMID: 27136751 DOI: 10.1039/c6nr01662f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
More than three decades of intensive study to make high-quality nanocrystals have created a unique toolbox for building multi-component superstructures, which have been recognized as a new generation of metamaterials important to both fundamental sciences and applied technologies. This minireview summarizes recent advances in this exciting field. We will focus our discussion on the synthetic strategies and superstructures of this multi-component metamaterial, and highlight their novel properties and potential applications. Additionally, some perspectives on possible developments in this field are offered at the end of this review. We hope that this minireview will both inform and stimulate research interests for the design and fabrication of these nanocrystal-based multi-component metamaterials for diverse applications in the future.
Collapse
Affiliation(s)
- Rui Tan
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA.
| | | | | | | |
Collapse
|
39
|
Castelli A, de Graaf J, Prato M, Manna L, Arciniegas MP. Tic-Tac-Toe Binary Lattices from the Interfacial Self-Assembly of Branched and Spherical Nanocrystals. ACS NANO 2016; 10:4345-53. [PMID: 27027973 DOI: 10.1021/acsnano.5b08018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The self-organization of nanocrystals has proven to be a versatile route to achieve increasingly sophisticated structures of materials, where the shape and properties of individual particles impact the final functionalities. Recent works have addressed this topic by combining various shapes to achieve more complex arrangements of particles than are possible in single-component samples. However, the ability to create intricate architectures over large regions by exploiting the shape of multiply branched nanocrystals to host a second component remains unexplored. Here, we show how the concave shape of a branched nanocrystal, the so-called octapod, is able to anchor a sphere. The two components self-assemble into a locally ordered monolayer consisting of an intercalated square lattice of octapods and spheres, which is reminiscent of the "tic-tac-toe" game. These tic-tac-toe domains form through an interfacial self-assembly that occurs by the dewetting of a hexane layer containing both particle types. By varying the experimental conditions and performing molecular dynamics simulations, we show that the ligands coating the octapods are crucial to the formation of this structure. We find that the tendency of an octapod to form an interlocking-type structure with a second octapod strongly depends on the ligand shell of the pods. Breaking this tendency by ligand exchange allows the octapods to assemble into a more relaxed configuration, which is able to form a lock-and-key-type structure with a sphere, when they have a suitable size ratio. Our findings provide an example of a more versatile use of branched nanocrystals in self-assembled functional materials.
Collapse
Affiliation(s)
- Andrea Castelli
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| | - Joost de Graaf
- Institute for Computational Physics (ICP), University of Stuttgart , Allmandring 3, 70569 Stuttgart, Germany
| | - Mirko Prato
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| | - Liberato Manna
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| | - Milena P Arciniegas
- Istituto Italiano di Tecnologia (IIT) , via Morego 30, IT-16163 Genova, Italy
| |
Collapse
|
40
|
Burrows ND, Vartanian AM, Abadeer NS, Grzincic EM, Jacob LM, Lin W, Li J, Dennison JM, Hinman JG, Murphy CJ. Anisotropic Nanoparticles and Anisotropic Surface Chemistry. J Phys Chem Lett 2016; 7:632-41. [PMID: 26817922 DOI: 10.1021/acs.jpclett.5b02205] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Anisotropic nanoparticles are powerful building blocks for materials engineering. Unusual properties emerge with added anisotropy-often to an extraordinary degree-enabling countless new applications. For bottom-up assembly, anisotropy is crucial for programmability; isotropic particles lack directional interactions and can self-assemble only by basic packing rules. Anisotropic particles have long fascinated scientists, and their properties and assembly behavior have been the subjects of many theoretical studies over the years. However, only recently has experiment caught up with theory. We have begun to witness tremendous diversity in the synthesis of nanoparticles with controlled anisotropy. In this Perspective, we highlight the synthetic achievements that have galvanized the field, presenting a comprehensive discussion of the mechanisms and products of both seed-mediated and alternative growth methods. We also address recent breakthroughs and challenges in regiospecific functionalization, which is the next frontier in exploiting nanoparticle anisotropy.
Collapse
Affiliation(s)
- Nathan D Burrows
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Ariane M Vartanian
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Nardine S Abadeer
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Elissa M Grzincic
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Lisa M Jacob
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Wayne Lin
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Ji Li
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Jordan M Dennison
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Joshua G Hinman
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Matthews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
De Caro L, Altamura D, Arciniegas M, Siliqi D, Kim MR, Sibillano T, Manna L, Giannini C. Ptychographic Imaging of Branched Colloidal Nanocrystals Embedded in Free-Standing Thick Polystyrene Films. Sci Rep 2016; 6:19397. [PMID: 26775682 PMCID: PMC4726119 DOI: 10.1038/srep19397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 12/07/2015] [Indexed: 12/30/2022] Open
Abstract
Research on composite materials is facing, among others, the challenging task of incorporating nanocrystals, and their superstructures, in polymer matrices. Electron microscopy can typically image nanometre-scale structures embedded in thin polymer films, but not in films that are micron size thick. Here, X-ray Ptychography was used to visualize, with a resolution of a few tens of nanometers, how CdSe/CdS octapod-shaped nanocrystals self-assemble in polystyrene films of 24 ± 4 μm, providing a unique means for non-destructive investigation of nanoparticles distribution and organization in thick polymer films.
Collapse
Affiliation(s)
- Liberato De Caro
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, via Amendola 122/O, 70126 Bari, Italy
| | - Davide Altamura
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, via Amendola 122/O, 70126 Bari, Italy
| | - Milena Arciniegas
- Istituto Italiano di Tecnologia (IIT), via Morego 30, IT-16163 Genova, Italy
| | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, via Amendola 122/O, 70126 Bari, Italy
| | - Mee R Kim
- Istituto Italiano di Tecnologia (IIT), via Morego 30, IT-16163 Genova, Italy
| | - Teresa Sibillano
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, via Amendola 122/O, 70126 Bari, Italy
| | - Liberato Manna
- Istituto Italiano di Tecnologia (IIT), via Morego 30, IT-16163 Genova, Italy
| | - Cinzia Giannini
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
42
|
Breitwieser R, Auvray T, Volatron F, Salzemann C, Ngo AT, Albouy PA, Proust A, Petit C. Binary Superlattices from {Mo132} Polyoxometalates and Maghemite Nanocrystals: Long-Range Ordering and Fine-Tuning of Dipole Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:220-228. [PMID: 26578032 DOI: 10.1002/smll.201502127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/19/2015] [Indexed: 06/05/2023]
Abstract
In the present article, the successful coassembly of spherical 6.2 nm maghemite (γ-Fe2O3) nanocrystals and giant polyoxometalates (POMs) such as 2.9 nm {Mo132} is demonstrated. To do so, colloidal solutions of oleic acid-capped γ-Fe2O3 and long-chain alkylammonium-encapsulated {Mo132 } dispersed in chloroform are mixed together and supported self-organized binary superlattices are obtained upon the solvent evaporation on immersed substrates. Both electronic microscopy and small angles X-ray scattering data reveal an AB-type structure and an enhanced structuration of the magnetic nanocrystals (MNCs) assembly with POMs in octahedral interstices. Therefore, {Mo132} acts as an efficient binder constituent for improving the nanocrystals ordering in 3D films. Interestingly, in the case of didodecyldimethylammonium (C12)-encapsulated POMs, the long-range ordered binary assemblies are obtained while preserving the nanocrystals magnetic properties due to weak POMs-MNCs interactions. On the other hand, POMs of larger effective diameter can be employed as spacer blocks for MNCs as shown by using {Mo132} capped with dioctadecyldimethylammonium (C18) displaying longer chains. In that case, it is shown that POMs can also be used for fine-tuning the dipolar interactions in γ-Fe2O3 nanocrystal assemblies.
Collapse
Affiliation(s)
- Romain Breitwieser
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, Université Pierre et Marie Curie, 4 place Jussieu, case courrier 42, F-75005, Paris CEDEX 05, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8233, MONARIS, Case courrier, 52, Université Pierre et Marie Curie, 4 place Jussieu, F-75005, Paris, France
| | - Thomas Auvray
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, Université Pierre et Marie Curie, 4 place Jussieu, case courrier 42, F-75005, Paris CEDEX 05, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8233, MONARIS, Case courrier, 52, Université Pierre et Marie Curie, 4 place Jussieu, F-75005, Paris, France
| | - Florence Volatron
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, Université Pierre et Marie Curie, 4 place Jussieu, case courrier 42, F-75005, Paris CEDEX 05, France
| | - Caroline Salzemann
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8233, MONARIS, Case courrier, 52, Université Pierre et Marie Curie, 4 place Jussieu, F-75005, Paris, France
| | - Anh-Tu Ngo
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8233, MONARIS, Case courrier, 52, Université Pierre et Marie Curie, 4 place Jussieu, F-75005, Paris, France
| | - Pierre-Antoine Albouy
- Laboratoire de Physique des solides, UMR CNRS 8502, Université Paris Sud, Bât. 510, 91405, Orsay CEDEX, France
| | - Anna Proust
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8232, Institut Parisien de Chimie Moléculaire, Université Pierre et Marie Curie, 4 place Jussieu, case courrier 42, F-75005, Paris CEDEX 05, France
| | - Christophe Petit
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8233, MONARIS, Case courrier, 52, Université Pierre et Marie Curie, 4 place Jussieu, F-75005, Paris, France
| |
Collapse
|
43
|
Chen X, Song X, Qiao W, Zhang X, Sun Y, Xu X, Zhong W, Du Y. Solvent-directed and anion-modulated self-assemblies of nanoparticles: a case of ZnO. CrystEngComm 2016. [DOI: 10.1039/c6ce02056a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Matsumoto R, Nakagawa Y, Kageyama H, Oaki Y, Imai H. Evaporation-driven regularization of crystallographically ordered arrangements of truncated nanoblocks: from 1D chains to 2D rhombic superlattices. CrystEngComm 2016. [DOI: 10.1039/c6ce01512c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Luo D, Yan C, Wang T. Interparticle Forces Underlying Nanoparticle Self-Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5984-6008. [PMID: 26436692 DOI: 10.1002/smll.201501783] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/03/2015] [Indexed: 05/27/2023]
Abstract
Studies on the self-assembly of nanoparticles have been a hot topic in nanotechnology for decades and still remain relevant for the present and future due to their tunable collective properties as well as their remarkable applications to a wide range of fields. The novel properties of nanoparticle assemblies arise from their internal interactions and assemblies with the desired architecture key to constructing novel nanodevices. Therefore, a comprehensive understanding of the interparticle forces of nanoparticle self-assemblies is a pre-requisite to the design and control of the assembly processes, so as to fabricate the ideal nanomaterial and nanoproducts. Here, different categories of interparticle forces are classified and discussed according to their origins, behaviors and functions during the assembly processes, and the induced collective properties of the corresponding nanoparticle assemblies. Common interparticle forces, such as van der Waals forces, electrostatic interactions, electromagnetic dipole-dipole interactions, hydrogen bonds, solvophonic interactions, and depletion interactions are discussed in detail. In addition, new categories of assembly principles are summarized and introduced. These are termed template-mediated interactions and shape-complementary interactions. A deep understanding of the interactions inside self-assembled nanoparticles, and a broader perspective for the future synthesis and fabrication of these promising nanomaterials is provided.
Collapse
Affiliation(s)
- Dan Luo
- Institute of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Cong Yan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
46
|
Harper ES, Marson RL, Anderson JA, van Anders G, Glotzer SC. Shape allophiles improve entropic assembly. SOFT MATTER 2015; 11:7250-7256. [PMID: 26145147 DOI: 10.1039/c5sm01351h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigate a class of "shape allophiles" that fit together like puzzle pieces as a method to access and stabilize desired structures by controlling directional entropic forces. Squares are cut into rectangular halves, which are shaped in an allophilic manner with the goal of re-assembling the squares while self-assembling the square lattice. We examine the assembly characteristics of this system via the potential of mean force and torque, and the fraction of particles that entropically bind. We generalize our findings and apply them to self-assemble triangles into a square lattice via allophilic shaping. Through these studies we show how shape allophiles can be useful for assembling and stabilizing desired phases with appropriate allophilic design.
Collapse
Affiliation(s)
- Eric S Harper
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
47
|
Wang PP, Li HY, Liu H, He P, Xu B, Wang X. Zinc Sulfide Nanosheet-Based Hybrid Superlattices with Tunable Architectures Showing Enhanced Photoelectrochemical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:3909-3915. [PMID: 25939740 DOI: 10.1002/smll.201500610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Zinc sulfide nanosheet-based hybrid superlattices with tunable periodicities and rod-like or tubular morphologies are constructed by the spontaneous assembly of nanosheets as they grow in amine solution. The as-prepared architectures can be used as an enhanced electrode for photocurrent response and converted to other functional materials.
Collapse
Affiliation(s)
- Peng-peng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hao-yi Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huiling Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Peilei He
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Biao Xu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xun Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
48
|
O'Brien MN, Jones MR, Lee B, Mirkin CA. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. NATURE MATERIALS 2015; 14:833-839. [PMID: 26006002 DOI: 10.1038/nmat4293] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/15/2015] [Indexed: 06/04/2023]
Abstract
Whether two species will co-crystallize depends on the chemical, physical and structural complementarity of the interacting components. Here, by using DNA as a surface ligand, we selectively co-crystallize mixtures of two different anisotropic nanoparticles and systematically investigate the effects of nanoparticle size and shape complementarity on the resultant crystal symmetry, microstrain, and effective 'DNA bond' length and strength. We then use these results to understand a more complicated system where both size and shape complementarity change, and where one nanoparticle can participate in multiple types of directional interactions. Our findings offer improved control of non-spherical nanoparticles as building blocks for the assembly of sophisticated macroscopic materials, and provide a framework to understand complementarity and directional interactions in DNA-mediated nanoparticle crystallization.
Collapse
Affiliation(s)
- Matthew N O'Brien
- 1] Department of Chemistry, Northwestern University, 2145 Sheridan Rd Evanston, Illinois 60208, USA [2] International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Rd Evanston, Illinois 60208, USA
| | - Matthew R Jones
- 1] International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Rd Evanston, Illinois 60208, USA [2] Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr Evanston, Illinois 60208, USA
| | - Byeongdu Lee
- X-Ray Science Division, Argonne National Laboratory, 9700 S Cass Ave Argonne, Illinois 60439, USA
| | - Chad A Mirkin
- 1] Department of Chemistry, Northwestern University, 2145 Sheridan Rd Evanston, Illinois 60208, USA [2] International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Rd Evanston, Illinois 60208, USA [3] Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr Evanston, Illinois 60208, USA
| |
Collapse
|
49
|
Abstract
Small-angle scattering formulae for crystalline assemblies of arbitrary particles are derived from powder diffraction theory using the decoupling approximation. To do so, the pseudo-lattice factor is defined, and methods to overcome the limitations of the decoupling approximation are investigated. Further, approximated equations are suggested for the diffuse scattering from various defects of the first kind due to non-ideal particles, including size polydispersity, orientational disorder and positional fluctuation about their ideal positions. Calculated curves using the formalism developed herein are compared with numerical simulations computed without any approximation. For a finite-sized assembly, the scattering from the whole domain of the assembly must also be included, and this is derived using the correlation function approach.
Collapse
|
50
|
Giner-Casares JJ, Clemente-León M, Coronado E, Brezesinski G. Self-Assembly Mechanism of Nanoparticles of Ni-Based Prussian Blue Analogues at the Air/Liquid Interface: A Synchrotron X-ray Reflectivity Study. Chemphyschem 2015; 16:2549-55. [DOI: 10.1002/cphc.201500350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/13/2015] [Indexed: 11/08/2022]
|