1
|
Peterson RJ, Reed RC, Zamecnik CR, Sallam MA, Finbloom JA, Martinez FJ, Levy JM, Moonwiriyakit A, Desai TA, Koval M. Apical integrins as a switchable target to regulate the epithelial barrier. J Cell Sci 2024; 137:jcs263580. [PMID: 39552289 DOI: 10.1242/jcs.263580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
Tight junctions regulate epithelial barrier function and have been shown to be influenced by multiple classes of proteins. Apical integrins have been identified as potential regulators of epithelial barrier function; however, only indirect approaches have been used to measure integrin regulation of the epithelial barrier. Here, we used polymeric nanowires conjugated with anti-integrin β1 antibodies to specifically target apically localized integrins in either their closed or open conformation. Barrier regulation by apical integrins was found to be conformation specific. Nanowires targeting integrins in the closed conformation increased epithelial permeability and caused zonula occludens-1 (ZO-1, also known as TJP1) to change from a linear to a ruffled morphology. Claudin-2 and claudin-4 colocalized with ZO-1 and were also ruffled; however, claudin-1 and claudin-7 remained linear. Ruffling was dependent on myosin light chain kinases (MLCKs) and Rho kinases (ROCKs). Conversely, targeting integrins in the open conformation decreased epithelial permeability and made junctions more linearized. Anti-integrin β1 nanowires differentially affected actin and talin (analyzed using pan-talin antibodies), depending on whether they contained activating or inhibitory antibodies. Thus, apical integrins can act as a conformation-sensitive switch that regulates epithelial barrier function.
Collapse
Affiliation(s)
- Raven J Peterson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ryan C Reed
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Colin R Zamecnik
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Marwa A Sallam
- School of Engineering , Brown University, Providence, RI 02912, USA
| | - Joel A Finbloom
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Francisco J Martinez
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joshua M Levy
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA 30322, USA
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, 10540, Thailand
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- School of Engineering , Brown University, Providence, RI 02912, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
3
|
Rana S, Nasr L, Chang D, Axis J, Amsler K. Na-caprate-induced increase in MDCK II epithelial cell leak pathway permeability and opening number is associated with disruption of basal F-actin organization. Am J Physiol Cell Physiol 2024; 327:C913-C928. [PMID: 39159387 DOI: 10.1152/ajpcell.00534.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Confluent populations of the epithelial cell line, MDCK II, develop circumferential tight junctions joining adjacent cells to create a barrier to the paracellular movement of solutes and water. Treatment of MDCK II cell populations from the apical surface with 1 mM Na-caprate increased permeability to macromolecules (Leak Pathway) without increasing monolayer disruption or cell death. Graphical analysis of the apparent permeability versus solute Stokes radius for a size range of fluorescein-dextran species indicates apical 1 mM Na-caprate enhances Leak Pathway permeability by increasing the number of Leak Pathway openings without significantly affecting opening size. Na-caprate treatment did not alter the content of any tight junction protein examined. Treatment of MDCK II cell populations with apical 1 mM Na-caprate disrupted basal F-actin stress fibers and decreased the tortuosity of the tight junctions. Treatment of MDCK II cell populations with blebbistatin, a myosin ATPase inhibitor, alone had little effect on Leak Pathway permeability but synergistically increased Leak Pathway permeability when added with 1 mM Na-caprate. Na-caprate exhibited a similar ability to increase Leak Pathway permeability in wild-type MDCK II cell monolayers and ZO-1 knockdown MDCK II cell monolayers but an enhanced ability to increase Leak Pathway permeability in monolayers of TOCA-1 knockout MDCK II cells. These results demonstrate that Na-caprate increases MDCK II cell population Leak Pathway permeability by increasing the number of Leak Pathway openings. This action is likely mediated by alterations in F-actin organization, primarily involving disruption of basal F-actin stress fibers.NEW & NOTEWORTHY This study determines the underlying change in the openings in the epithelial tight junction permeability barrier structure that leads to a change in the paracellular permeability to macromolecules (the Leak Pathway) and connects this to disruption of specific F-actin structures within the cells. It provides important and novel insights into how tight junction permeability to macromolecules is modulated by specific changes to cellular and tight junction composition/organization.
Collapse
Affiliation(s)
- Shivani Rana
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Leyla Nasr
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Daniel Chang
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Josephine Axis
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Kurt Amsler
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| |
Collapse
|
4
|
Ramirez-Velez I, Namjoshi AA, Effiong UM, Peppas NA, Belardi B. Paracellular Delivery of Protein Drugs with Smart EnteroPatho Nanoparticles. ACS NANO 2024. [PMID: 39096293 DOI: 10.1021/acsnano.4c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
A general platform for the safe and effective oral delivery of biologics would revolutionize the administration of protein-based drugs, improving access for patients and lowering the financial burden on the health-care industry. Because of their dimensions and physiochemical properties, nanomaterials stand as promising vehicles for navigating the complex and challenging environment in the gastrointestinal (GI) tract. Recent developments have led to materials that protect protein drugs from degradation and enable controlled release in the small intestine, the site of absorption for most proteins. Yet, once present in the small intestine, the protein must transit through the secreted mucus and epithelial cells of the intestinal mucosa into systemic circulation, a process that remains a bottleneck for nanomaterial-based delivery. One attractive pathway through the intestinal mucosa is the paracellular route, which avoids cell trafficking and other degradative processes in the interior of cells. Direct flux between cells is regulated by epithelial tight junctions (TJs) that seal the paracellular space and prevent protein flux. Here, we describe a smart nanoparticle system that directly and transiently disrupts TJs for improved protein delivery, an unrealized goal to-date. We take inspiration from enteropathogenic bacteria that adhere to intestinal epithelia and secrete inhibitors that block TJ interactions in the local environment. To mimic these natural mechanisms, we engineer nanoparticles (EnteroPatho NPs) that attach to the epithelial glycocalyx and release TJ modulators in response to the intestinal pH. We show that EnteroPatho NPs lead to TJ disruption and paracellular protein delivery, giving rise to a general platform for oral delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Aditya A Namjoshi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Unyime M Effiong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Hansen ME, Ibrahim Y, Desai TA, Koval M. Nanostructure-Mediated Transport of Therapeutics through Epithelial Barriers. Int J Mol Sci 2024; 25:7098. [PMID: 39000205 PMCID: PMC11241453 DOI: 10.3390/ijms25137098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The ability to precisely treat human disease is facilitated by the sophisticated design of pharmacologic agents. Nanotechnology has emerged as a valuable approach to creating vehicles that can specifically target organ systems, effectively traverse epithelial barriers, and protect agents from premature degradation. In this review, we discuss the molecular basis for epithelial barrier function, focusing on tight junctions, and describe different pathways that drugs can use to cross barrier-forming tissue, including the paracellular route and transcytosis. Unique features of drug delivery applied to different organ systems are addressed: transdermal, ocular, pulmonary, and oral delivery. We also discuss how design elements of different nanoscale systems, such as composition and nanostructured architecture, can be used to specifically enhance transepithelial delivery. The ability to tailor nanoscale drug delivery vehicles to leverage epithelial barrier biology is an emerging theme in the pursuit of facilitating the efficacious delivery of pharmacologic agents.
Collapse
Affiliation(s)
- M. Eva Hansen
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yasmin Ibrahim
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Tejal A. Desai
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Ramirez-Velez I, Belardi B. Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery. Adv Drug Deliv Rev 2023; 199:114905. [PMID: 37271282 PMCID: PMC10999255 DOI: 10.1016/j.addr.2023.114905] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
As biologics used in the clinic outpace the number of new small molecule drugs, an important challenge for their efficacy and widespread use has emerged, namely tissue penetrance. Macromolecular drugs - bulky, high-molecular weight, hydrophilic agents - exhibit low permeability across biological barriers. Epithelial and endothelial layers, for example within the gastrointestinal tract or at the blood-brain barrier, present the most significant obstacle to drug transport. Within epithelium, two subcellular structures are responsible for limiting absorption: cell membranes and intercellular tight junctions. Previously considered impenetrable to macromolecular drugs, tight junctions control paracellular flux and dictate drug transport between cells. Recent work, however, has shown tight junctions to be dynamic, anisotropic structures that can be targeted for delivery. This review aims to summarize new approaches for targeting tight junctions, both directly and indirectly, and to highlight how manipulation of tight junction interactions may help usher in a new era of precision drug delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
7
|
Chi XK, Xu XL, Chen BY, Su J, Du YZ. Combining nanotechnology with monoclonal antibody drugs for rheumatoid arthritis treatments. J Nanobiotechnology 2023; 21:105. [PMID: 36964609 PMCID: PMC10039584 DOI: 10.1186/s12951-023-01857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease characterized by synovial inflammation. Patients with RA commonly experience significant damage to their hand and foot joints, which can lead to joint deformities and even disability. Traditional treatments have several clinical drawbacks, including unclear pharmacological mechanisms and serious side effects. However, the emergence of antibody drugs offers a promising approach to overcome these limitations by specifically targeting interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and other cytokines that are closely related to the onset of RA. This approach reduces the incidence of adverse effects and contributes to significant therapeutic outcomes. Furthermore, combining these antibody drugs with drug delivery nanosystems (DDSs) can improve their tissue accumulation and bioavailability.Herein, we provide a summary of the pathogenesis of RA, the available antibody drugs and DDSs that improve the efficacy of these drugs. However, several challenges need to be addressed in their clinical applications, including patient compliance, stability, immunogenicity, immunosupression, target and synergistic effects. We propose strategies to overcome these limitations. In summary, we are optimistic about the prospects of treating RA with antibody drugs, given their specific targeting mechanisms and the potential benefits of combining them with DDSs.
Collapse
Affiliation(s)
- Xiao-Kai Chi
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China.
| | - Bang-Yao Chen
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
| | - Jin Su
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Lin S, Wu F, Cao Z, Liu J. Advances in Nanomedicines for Interaction with the Intestinal Barrier. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Feng Wu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Zhenping Cao
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
9
|
Yu Y, Wu Z, Wu J, Shen X, Wu R, Zhou M, Li L, Huang Y. Investigation of FcRn‐Mediated Transepithelial Mechanisms for Oral Nanoparticle Delivery Systems. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yinglan Yu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Zhanghan Wu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Jiawei Wu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Xinran Shen
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ruinan Wu
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Minglu Zhou
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Lian Li
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Yuan Huang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision IndustrialTechnology West China School of Pharmacy Sichuan University Chengdu 610041 China
| |
Collapse
|
10
|
Peterson RJ, Koval M. Above the Matrix: Functional Roles for Apically Localized Integrins. Front Cell Dev Biol 2021; 9:699407. [PMID: 34485286 PMCID: PMC8414885 DOI: 10.3389/fcell.2021.699407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Integrins are transmembrane proteins that are most typically thought of as integrating adhesion to the extracellular matrix with intracellular signaling and cell regulation. Traditionally, integrins are found at basolateral and lateral cell surfaces where they facilitate binding to the ECM and intercellular adhesion through cytosolic binding partners that regulate organization of actin microfilaments. However, evidence is accumulating that integrins also are apically localized, either endogenously or due to an exogenous stimulus. Apically localized integrins have been shown to regulate several processes by interacting with proteins such as connexins, tight junction proteins, and polarity complex proteins. Integrins can also act as receptors to mediate endocytosis. Here we review these newly appreciated roles for integrins localized to the apical cell surface.
Collapse
Affiliation(s)
- Raven J Peterson
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Briones J, Espulgar W, Koyama S, Takamatsu H, Tamiya E, Saito M. The future of microfluidics in immune checkpoint blockade. Cancer Gene Ther 2021; 28:895-910. [PMID: 33110208 DOI: 10.1038/s41417-020-00248-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/30/2023]
Abstract
Recent advances in microfluidic techniques have enabled researchers to study sensitivities to immune checkpoint therapy, to determine patients' response to particular antibody treatment. Utilization of this technology is helpful in antibody discovery and in the design of personalized medicine. A variety of microfluidic approaches can provide several functions in processes such as immunologic, genomic, and/or transcriptomic analysis with the aim of improving the efficacy and coverage of immunotherapy, particularly immune checkpoint blockade (ICB). To achieve this requires researchers to overcome the challenges in the current state of the technology. This review looks into the advancements in microfluidic technologies applied to researches on immune checkpoint blockade treatment and its potential shift from proof-of-principle stage to clinical application.
Collapse
Affiliation(s)
- Jonathan Briones
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Wilfred Espulgar
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shohei Koyama
- Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hyota Takamatsu
- Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Eiichi Tamiya
- AIST PhotoBIO-OIL, Osaka University, Suita, Osaka, 565-0871, Japan.,The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Saito
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan. .,AIST PhotoBIO-OIL, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Luo Z, Paunović N, Leroux JC. Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv Drug Deliv Rev 2021; 175:113814. [PMID: 34052229 DOI: 10.1016/j.addr.2021.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
Overcoming the gastrointestinal (GI) barriers is a formidable challenge in the oral delivery of active macromolecules such as peptide- and protein- based drugs. In the past four decades, a plethora of formulation strategies ranging from permeation enhancers, nanosized carriers, and chemical modifications of the drug's structure has been investigated to increase the oral absorption of these macromolecular compounds. However, only limited successes have been achieved so far, with the bioavailability of marketed oral peptide drugs remaining generally very low. Recently, a few approaches that are based on physical interactions, such as magnetic, acoustic, and mechanical forces, have been explored in order to control and improve the drug permeability across the GI mucosa. Although in the early stages, some of these methods have shown great potential both in terms of improved bioavailability and spatiotemporal delivery of drugs. Here, we offer a concise, yet critical overview of these rather unconventional technologies with a particular focus on their potential and possible challenges for further clinical translation.
Collapse
|
13
|
Cao X, Khare S, DeLoid GM, Gokulan K, Demokritou P. Co-exposure to boscalid and TiO 2 (E171) or SiO 2 (E551) downregulates cell junction gene expression in small intestinal epithelium cellular model and increases pesticide translocation. NANOIMPACT 2021; 22:100306. [PMID: 33869896 PMCID: PMC8045770 DOI: 10.1016/j.impact.2021.100306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 05/13/2023]
Abstract
A recent published study showed that TiO2 (E171) and SiO2 (E551), two widely used nano-enabled food additives, increased the translocation of the commonly used pesticide boscalid by 20% and 30% respectively. Such increased absorption of pesticides due to the presence of engineered nanomaterials (ENMs) in food raises health concerns for these food additives. In this companion study, mRNA expression of genes related to cell junctions in a small intestinal epithelial cellular model after exposure to simulated digestas of fasting food model (phosphate buffer) containing boscalid (150 ppm) with or without either TiO2 or SiO2 (1% w/w) were analyzed. Specific changes in cell barrier function underlying or contributing to the increased translocation of boscalid observed in the previous study were assessed. Results showed that exposure to boscalid alone has no significant effect on cell junction genes, however, co-exposure to boscalid and TiO2 significantly regulated expression of cell-matrix junction focal adhesion-related genes, e.g., downregulating Cav1 (- 1.39-fold, p<0.05), upregulating Cav3 (+ 3.30-fold, p<0.01) and Itga4 (+ 3.30-fold, p<0.05). Similarly, co-exposure to boscalid and SiO2 significantly downregulated multiple cell-cell junction genes, including tight junction genes (Cldn1, Cldn11, Cldn16, Cldn18, and Jam3), adherens junction genes (Notch1, Notch3, Pvrl1) and gap junction genes (Gja3 and Gjb2), as well as cell-matrix junction focal adhesion genes (Itga4, Itga6, Itga7). Together, these findings suggest that co-ingestion of boscalid with TiO2 (E171) or SiO2 (E551) could cause weakening of cell junctions and intercellular adhesion, which could result in dysregulation of paracellular transport, and presumably contributed to the previously observed increased translocation of boscalid at the presence of these ENMs. This novel finding raises health safety concerns for such popular food additives.
Collapse
Affiliation(s)
- Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sangeeta Khare
- National Center for Toxicological Research, Division of Microbiology, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
| | - Glen M. DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kuppan Gokulan
- National Center for Toxicological Research, Division of Microbiology, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- corresponding author: Philip Demokritou,
| |
Collapse
|
14
|
Placha D, Jampilek J. Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems. Pharmaceutics 2021; 13:pharmaceutics13010064. [PMID: 33419176 PMCID: PMC7825503 DOI: 10.3390/pharmaceutics13010064] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory diseases, whether caused by excessive stress on certain tissues/parts of the body or arising from infections accompanying autoimmune or secondary diseases, have become a problem, especially in the Western world today. Whether these are inflammations of visceral organs, joints, bones, or the like, they are always a physiological reaction of the body, which always tries to eradicate noxious agents and restore tissue homeostasis. Unfortunately, this often results in damage, often irreversible, to the affected tissues. Nevertheless, these inflammatory reactions of the body are the results of excessive stress, strain, and the generally unhealthy environment, in which the people of Western civilization live. The pathophysiology and pathobiochemistry of inflammatory/autoimmune processes are being studied in deep detail, and pharmaceutical companies are constantly developing new drugs that modulate/suppress inflammatory responses and endogenous pro-inflammatory agents. In addition to new specifically targeted drugs for a variety of pro-inflammatory agents, a strategy can be found for the use of older drugs, which are formulated into special nanodrug delivery systems with targeted distribution and often modified release. This contribution summarizes the current state of research and development of nanoformulated anti-inflammatory agents from both conventional drug classes and experimental drugs or dietary supplements used to alleviate inflammatory reactions.
Collapse
Affiliation(s)
- Daniela Placha
- Nanotechnology Centre, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- Correspondence: (D.P.); (J.J.)
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
- Correspondence: (D.P.); (J.J.)
| |
Collapse
|
15
|
Permana AD, Nainu F, Moffatt K, Larrañeta E, Donnelly RF. Recent advances in combination of microneedles and nanomedicines for lymphatic targeted drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1690. [PMID: 33401339 DOI: 10.1002/wnan.1690] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Numerous diseases have been reported to affect the lymphatic system. As such, several strategies have been developed to deliver chemotherapeutics to this specific network of tissues and associated organs. Nanotechnology has been exploited as one of the main approaches to improve the lymphatic uptake of drugs. Different nanoparticle approaches utilized for both active and passive targeting of the lymphatic system are discussed here. Specifically, due to the rich abundance of lymphatic capillaries in the dermis, particular attention is given to this route of administration, as intradermal administration could potentially result in higher lymphatic uptake compared to other routes of administration. Recently, progress in microneedle research has attracted particular attention as an alternative for the use of conventional hypodermic injections. The benefits of microneedles, when compared to intradermal injection, are subsequently highlighted. Importantly, microneedles exhibit particular benefit in relation to therapeutic targeting of the lymphatic system, especially when combined with nanoparticles, which are further discussed. However, despite the apparent benefits provided by this combination approach, further comprehensive preclinical and clinical studies are now necessary to realize the potential extent of this dual-delivery platform, further taking into consideration eventual usability and acceptability in the intended patient end-users. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Kurtis Moffatt
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
16
|
Finbloom JA, Sousa F, Stevens MM, Desai TA. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv Drug Deliv Rev 2020; 167:89-108. [PMID: 32535139 PMCID: PMC10822675 DOI: 10.1016/j.addr.2020.06.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Micro and nanoscale drug carriers must navigate through a plethora of dynamic biological systems prior to reaching their tissue or disease targets. The biological obstacles to drug delivery come in many forms and include tissue barriers, mucus and bacterial biofilm hydrogels, the immune system, and cellular uptake and intracellular trafficking. The biointerface of drug carriers influences how these carriers navigate and overcome biological barriers for successful drug delivery. In this review, we examine how key material design parameters lead to dynamic biointerfaces and improved drug delivery across biological barriers. We provide a brief overview of approaches used to engineer key physicochemical properties of drug carriers, such as morphology, surface chemistry, and topography, as well as the development of dynamic responsive materials for barrier navigation. We then discuss essential biological barriers and how biointerface engineering can enable drug carriers to better navigate and overcome these barriers to drug delivery.
Collapse
Affiliation(s)
- Joel A Finbloom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Flávia Sousa
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
17
|
Huang X, Shi X, Hansen ME, Setiady I, Nemeth CL, Celli A, Huang B, Mauro T, Koval M, Desai TA. Nanotopography Enhances Dynamic Remodeling of Tight Junction Proteins through Cytosolic Liquid Complexes. ACS NANO 2020; 14:13192-13202. [PMID: 32940450 DOI: 10.1101/858118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nanotopographic materials provide special biophysical stimuli that can regulate epithelial tight junctions and their barrier function. Through the use of total internal reflection fluorescence microscopy of live cells, we demonstrated that contact of synthetic surfaces with defined nanotopography at the apical surface of epithelial monolayers increased paracellular permeability of macromolecules. To monitor changes in tight junction morphology in live cells, we fluorescently tagged the scaffold protein zonula occludens-1 (ZO-1) through CRISPR/Cas9-based gene editing to enable live cell tracking of ZO-1 expressed at physiologic levels. Contact between cells and nanostructured surfaces destabilized junction-associated ZO-1 and promoted its arrangement into highly dynamic liquid cytosolic complexes with a 1-5 μm diameter. Junction-associated ZO-1 rapidly remodeled, and we observed the direct transformation of cytosolic complexes into junction-like structures. Claudin-family tight junction transmembrane proteins and F-actin also were associated with these ZO-1 containing cytosolic complexes. These data suggest that these cytosolic structures are important intermediates formed in response to nanotopographic cues that facilitate rapid tight junction remodeling in order to regulate paracellular permeability.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, United States
| | - Mollie Eva Hansen
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| | - Initha Setiady
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Cameron L Nemeth
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| | - Anna Celli
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Theodora Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, and Critical Care Medicine and Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
18
|
Huang X, Shi X, Hansen ME, Setiady I, Nemeth CL, Celli A, Huang B, Mauro T, Koval M, Desai TA. Nanotopography Enhances Dynamic Remodeling of Tight Junction Proteins through Cytosolic Liquid Complexes. ACS NANO 2020; 14:13192-13202. [PMID: 32940450 PMCID: PMC7606830 DOI: 10.1021/acsnano.0c04866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanotopographic materials provide special biophysical stimuli that can regulate epithelial tight junctions and their barrier function. Through the use of total internal reflection fluorescence microscopy of live cells, we demonstrated that contact of synthetic surfaces with defined nanotopography at the apical surface of epithelial monolayers increased paracellular permeability of macromolecules. To monitor changes in tight junction morphology in live cells, we fluorescently tagged the scaffold protein zonula occludens-1 (ZO-1) through CRISPR/Cas9-based gene editing to enable live cell tracking of ZO-1 expressed at physiologic levels. Contact between cells and nanostructured surfaces destabilized junction-associated ZO-1 and promoted its arrangement into highly dynamic liquid cytosolic complexes with a 1-5 μm diameter. Junction-associated ZO-1 rapidly remodeled, and we observed the direct transformation of cytosolic complexes into junction-like structures. Claudin-family tight junction transmembrane proteins and F-actin also were associated with these ZO-1 containing cytosolic complexes. These data suggest that these cytosolic structures are important intermediates formed in response to nanotopographic cues that facilitate rapid tight junction remodeling in order to regulate paracellular permeability.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, United States
| | - Mollie Eva Hansen
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| | - Initha Setiady
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Cameron L Nemeth
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| | - Anna Celli
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Theodora Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Michael Koval
- Division of Pulmonary, Allergy, and Critical Care Medicine and Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
19
|
Lynn KS, Peterson RJ, Koval M. Ruffles and spikes: Control of tight junction morphology and permeability by claudins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183339. [PMID: 32389670 DOI: 10.1016/j.bbamem.2020.183339] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023]
Abstract
Epithelial barrier function is regulated by a family of transmembrane proteins known as claudins. Functional tight junctions are formed when claudins interact with other transmembrane proteins, cytosolic scaffold proteins and the actin cytoskeleton. The predominant scaffold protein, zonula occludens-1 (ZO-1), directly binds to most claudin C-terminal domains, crosslinking them to the actin cytoskeleton. When imaged by immunofluorescence microscopy, tight junctions most frequently are linear structures that form between tricellular junctions. However, tight junctions also adapt non-linear architectures exhibiting either a ruffled or spiked morphology, which both are responses to changes in claudin engagement of actin filaments. Other terms for ruffled tight junctions include wavy, tortuous, undulating, serpentine or zig-zag junctions. Ruffling is under the control of hypoxia induced factor (HIF) and integrin-mediated signaling, as well as direct mechanical stimulation. Tight junction ruffling is specifically enhanced by claudin-2, antagonized by claudin-1 and requires claudin binding to ZO-1. Tight junction spikes are sites of active vesicle budding and fusion that appear as perpendicular projections oriented towards the nucleus. Spikes share molecular features with focal adherens junctions and tubulobulbar complexes found in Sertoli cells. Lung epithelial cells under stress form spikes due to an increase in claudin-5 expression that directly disrupts claudin-18/ZO-1 interactions. Together this suggests that claudins are not simply passive cargoes controlled by scaffold proteins. We propose a model where claudins specifically influence tight junction scaffold proteins to control interactions with the cytoskeleton as a mechanism that regulates tight junction assembly and function.
Collapse
Affiliation(s)
- K Sabrina Lynn
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Raven J Peterson
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Koval
- Division of Pulmonary, Allergy Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Lamson NG, Berger A, Fein KC, Whitehead KA. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat Biomed Eng 2020; 4:84-96. [PMID: 31686002 PMCID: PMC7461704 DOI: 10.1038/s41551-019-0465-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
The oral delivery of bioactive peptides and proteins is prevented by the intestinal epithelial barrier, in which intercellular tight junction complexes block the uptake of macromolecules. Here we show that anionic nanoparticles induce tight junction relaxation, increasing intestinal permeability and enabling the oral delivery of proteins. This permeation-enhancing effect is a function of nanoparticle size and charge, with smaller (≤ 200 nm) and more negative particles (such as silica) conferring enhanced permeability. In healthy mice, silica nanoparticles enabled the oral delivery of insulin and exenatide, with 10 U kg-1 orally delivered insulin sustaining hypoglycaemia for a few hours longer than a 1 U kg-1 dose of subcutaneously injected insulin. In healthy, hyperglycaemic and diabetic mice, the oral delivery of 10 U kg-1 insulin led to a dose-adjusted bioactivity of, respectively, 35%, 29% and 23% that of the subcutaneous injection of 1 U kg-1 insulin. The permeation-enhancing effect of the nanoparticles was reversible, non-toxic, and attributable to the binding to integrins on the surface of epithelial cells.
Collapse
Affiliation(s)
- Nicholas G Lamson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Adrian Berger
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Pires LR, Vinayakumar KB, Turos M, Miguel V, Gaspar J. A Perspective on Microneedle-Based Drug Delivery and Diagnostics in Paediatrics. J Pers Med 2019; 9:jpm9040049. [PMID: 31731656 PMCID: PMC6963643 DOI: 10.3390/jpm9040049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Microneedles (MNs) have been extensively explored in the literature as a means to deliver drugs in the skin, surpassing the stratum corneum permeability barrier. MNs are potentially easy to produce and may allow the self-administration of drugs without causing pain or bleeding. More recently, MNs have been investigated to collect/assess the interstitial fluid in order to monitor or detect specific biomarkers. The integration of these two concepts in closed-loop devices holds the promise of automated and minimally invasive disease detection/monitoring and therapy. These assure low invasiveness and, importantly, open a window of opportunity for the application of population-specific and personalised therapies.
Collapse
Affiliation(s)
- Liliana R Pires
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (L.R.P.); (J.G.)
| | - KB Vinayakumar
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (L.R.P.); (J.G.)
- Correspondence: or
| | - Maria Turos
- University of Oviedo, 33006 Asturias, Spain;
| | - Verónica Miguel
- Department of Cell Biology and Immunology, Centro de Biología Molecular “Severo Ochoa”, 28049 Madrid, Spain;
| | - João Gaspar
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (L.R.P.); (J.G.)
| |
Collapse
|
22
|
Han X, Zhang E, Shi Y, Song B, Du H, Cao Z. Biomaterial-tight junction interaction and potential impacts. J Mater Chem B 2019; 7:6310-6320. [PMID: 31364678 PMCID: PMC6812605 DOI: 10.1039/c9tb01081e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The active pharmaceutical ingredients (APIs) have to cross the natural barriers and get into the blood to impart the pharmacological effects. The tight junctions (TJs) between the epithelial cells serve as the major selectively permeable barriers and control the paracellular transport of the majority of hydrophilic drugs, in particular, peptides and proteins. TJs perfectly balance the targeted transport and the exclusion of other unexpected pathogens under the normal conditions. Many biomaterials have shown the capability to open the TJs and improve the oral bioavailability and targeting efficacy of the APIs. Nevertheless, there is limited understanding of the biomaterial-TJ interactions. The opening of the TJs further poses the risk of autoimmune diseases and infections. This review article summarizes the most updated literature and presents insights into the TJ structure, the biomaterial-TJ interaction mechanism, the benefits and drawbacks of TJ disruption, and methods for evaluating such interactions.
Collapse
Affiliation(s)
- Xiangfei Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Hong Du
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
23
|
Kwon S, Velasquez FC, Rasmussen JC, Greives MR, Turner KD, Morrow JR, Hwu WJ, Ross RF, Zhang S, Sevick-Muraca EM. Nanotopography-based lymphatic delivery for improved anti-tumor responses to checkpoint blockade immunotherapy. Am J Cancer Res 2019; 9:8332-8343. [PMID: 31754400 PMCID: PMC6857054 DOI: 10.7150/thno.35280] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) is a co-inhibitory checkpoint receptor that is expressed by naïve T-cells in lymph nodes (LNs) to inhibit activation against “self” antigens (Ags). In cancer, anti-CTLA-4 blocks inhibitory action, enabling robust activation of T-cells against tumor Ags presented in tumor draining LNs (TDLNs). However, anti-CTLA-4 is administered intravenously with limited exposure within TDLNs and immune related adverse events (irAEs) are associated with over-stimulation of the immune system. Methods: Herein, we first deliver anti-CTLA-4 in an orthotopic mammary carcinoma murine model using a nanotopographical microneedle-array device to compare its anti-tumor response to that from systemic administration. Additionally, to demonstrate the feasibility of lymphatic delivery in humans using the device, we use near-infrared fluorescence imaging to image delivery of ICG to LNs. Results: Our data show that lymphatic infusion results in more effective tumor growth inhibition, arrest of metastases, increased tumor infiltrating lymphocytes and complete responses when compared to conventional systemic administration. In clinical studies, we demonstrate for the first time that nanotopographic infusion can deliver ICG through the lymphatics directly to the axilla and inguinal LNs of healthy human volunteers. Conclusion: Taken together, these results suggest that regional delivery using a nanotopography-based microneedle array could revolutionize checkpoint blockade immunotherapy by reducing systemic drug exposure and maximizing drug delivery to TDLNs where tumor Ags present. Future work is needed to determine whether lymphatic delivery of anti-CTLA-4 can alleviate irAEs that occur with systemic dosing.
Collapse
|
24
|
Ye Y, Wang J, Sun W, Bomba HN, Gu Z. Topical and Transdermal Nanomedicines for Cancer Therapy. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Progress in topographically defined scaffolds for drug delivery system. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-017-0379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Jung D, Rejinold NS, Kwak JE, Park SH, Kim YC. Nano-patterning of a stainless steel microneedle surface to improve the dip-coating efficiency of a DNA vaccine and its immune response. Colloids Surf B Biointerfaces 2017; 159:54-61. [PMID: 28780461 DOI: 10.1016/j.colsurfb.2017.07.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Abstract
DNA vaccination with microneedles (MNs) into the skin represents a potential therapeutic approach for the clinical treatment of viral diseases as well as for intradermal genetic immunization. In this study, we investigated a DNA vaccination against the severe fever with thrombocytopenia syndrome virus (SFTSV) delivered by nano-patterned microneedles (nMNs) to improve the efficiency compared to a conventional MN vaccination. Because DNA vaccinations delivered by coated MNs have major disadvantages such as a poor coating efficiency and immunogenicity, additional excipients are necessary. Therefore, we developed nMNs to improve the affinity of stainless steel for plasmid DNA vaccinations. The results show that the nMNs have an improved DNA vaccine loading capacity because their surfaces have an increased hydrophilicity from the high surface/volume ratio. The cytocompatibility analysis also showed a higher cell proliferation when using the nMNs. Finally, the in vivo experiments with balb/c mice vaccinated with the SFTSV DNA vaccine-coated nMNs generated a higher level of cellular immune responses than that of the unmodified MNs.
Collapse
Affiliation(s)
- Daeyoon Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - N Sanoj Rejinold
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Jeong-Eun Kwak
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
27
|
Aldrich MB, Velasquez FC, Kwon S, Azhdarinia A, Pinkston K, Harvey BR, Chan W, Rasmussen JC, Ross RF, Fife CE, Sevick-Muraca EM. Lymphatic delivery of etanercept via nanotopography improves response to collagen-induced arthritis. Arthritis Res Ther 2017; 19:116. [PMID: 28566090 PMCID: PMC5452411 DOI: 10.1186/s13075-017-1323-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Background Evidence suggests lymphatic function mediates local rheumatoid arthritis (RA) flares. Yet biologics that target the immune system are dosed systemically via the subcutaneous (SC) administration route, thereby inefficiently reaching local lymphatic compartments. Nanotopography has previously been shown to disrupt tight cellular junctions, potentially enhancing local lymphatic delivery and potentially improving overall therapeutic efficacy. Method We first characterized nanotopography (SOFUSA™) delivery of an anti-TNF drug, etanercept, by comparing pharmacokinetic profiles to those obtained by conventional SC, intravenous (IV), and intradermal (ID) routes of administration, and assessed uptake of radiolabeled etanercept in draining lymph nodes (LNs) in single dosing studies. We then compared etanercept efficacy in a progressive rat model of collagen-induced arthritis (CIA), administered systemically via SC route of administration; via the regional lymphatics through ID delivery; or through a nanotopography (SOFUSA™) device at 10, 12, and 14 days post CIA induction. Measurements of hind limb swelling and near-infrared fluorescence (NIRF) imaging of afferent lymph pumping function and reflux were conducted on days 11, 13, and 18 post CIA induction and compared to untreated CIA animals. Univariate and multivariate analysis of variance were used to compare the group differences for percentage swelling and lymphatic contractile activity. Results Even though all three modes of administration delivered an equal amount of etanercept, SOFUSA™ delivery resulted in increased lymphatic pumping and significantly reduced swelling as compared to untreated, ID, and SC groups. Pharmacokinetic profiles in serum and LN uptake studies showed that using the nanotopography device resulted in the greatest uptake and retention in draining LNs. Conclusions Locoregional lymphatic delivery of biologics that target the immune system may have more favorable pharmacodynamics than SC or IV administration. Nanotopography may provide a more efficient method for delivery of anti-TNF drugs to reverse impairment of lymphatic function and reduce swelling associated with RA flares. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1323-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melissa B Aldrich
- The Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Fred C Velasquez
- The Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Sunkuk Kwon
- The Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Ali Azhdarinia
- The Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Kenneth Pinkston
- The Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Barrett R Harvey
- The Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Wenyaw Chan
- Department of Biostatistics, The School of Public Health, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - John C Rasmussen
- The Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, 77030, USA
| | | | - Caroline E Fife
- The Wound Care Clinic, CHI St. Luke's Health, The Woodlands Hospital, The Woodlands, TX, 77382, USA
| | - E M Sevick-Muraca
- The Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Stewart T, Koval WT, Molina SA, Bock SM, Lillard JW, Ross RF, Desai TA, Koval M. Calibrated flux measurements reveal a nanostructure-stimulated transcytotic pathway. Exp Cell Res 2017; 355:153-161. [PMID: 28390677 DOI: 10.1016/j.yexcr.2017.03.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 01/08/2023]
Abstract
Transport of therapeutic agents across epithelial barriers is an important element in drug delivery. Transepithelial flux is widely used as a measure of transit across an epithelium, however it is most typically employed as a relative as opposed to absolute measure of molecular movement. Here, we have used the calcium switch approach to measure the maximum rate of paracellular flux through unencumbered intercellular junctions as a method to calibrate the flux rates for a series of tracers ranging in 0.6-900kDa in size across barriers composed of human colon epithelial (Caco-2) cells. We then examined the effects of nanostructured films (NSFs) on transepithelial transport. Two different NSF patterns were used, Defined Nanostructure (DN) 2 imprinted on polypropylene (PP) and DN3 imprinted on polyether ether ketone (PEEK). NSFs made direct contact with cells and decreased their barrier function, as measured by transepithelial resistance (TER), however cell viability was not affected. When NSF-induced transepithelial transport of Fab fragment (55kDa) and IgG (160kDa) was measured, it was unexpectedly found to be significantly greater than the maximum paracellular rate as predicted using cells cultured in low calcium. These data suggested that NSFs stimulate an active transport pathway, most likely transcytosis, in addition to increasing paracellular flux. Transport of IgG via transcytosis was confirmed by immunofluorescence confocal microscopy, since NSFs induced a significant level of IgG endocytosis by Caco-2 cells. Thus, NSF-induced IgG flux was attributable to both transcytosis and the paracellular route. These data provide the first demonstration that transcytosis can be stimulated by NSFs and that this was concurrent with increased paracellular permeability. Moreover, NSFs with distinct architecture paired with specific substrates have the potential to provide an effective means to regulate transepithelial transport in order to optimize drug delivery.
Collapse
Affiliation(s)
- Tarianna Stewart
- Morehouse School of Medicine, Atlanta, GA, United States; Division of Pulmonary Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, United States
| | - William T Koval
- Division of Pulmonary Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, United States
| | - Samuel A Molina
- Division of Pulmonary Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, United States
| | | | | | | | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
| | - Michael Koval
- Division of Pulmonary Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
29
|
Nanostructured materials for ocular delivery: nanodesign for enhanced bioadhesion, transepithelial permeability and sustained delivery. Ther Deliv 2016; 6:1365-76. [PMID: 26652282 DOI: 10.4155/tde.15.75] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Effective drug delivery to the eye is an ongoing challenge due to poor patient compliance coupled with numerous physiological barriers. Eye drops for the front of the eye and ocular injections for the back of the eye are the most prevalent delivery methods, both of which require relatively frequent administration and are burdensome to the patient. Novel drug delivery techniques stand to drastically improve safety, efficacy and patient compliance for ocular therapeutics. Remarkable advances in nanofabrication technologies make the application of nanostructured materials to ocular drug delivery possible. This article focuses on the use of nanostructured materials with nanoporosity or nanotopography for ocular delivery. Specifically, we discuss nanotopography for enhanced bioadhesion and permeation and nanoporous materials for controlled release drug delivery. As examples, application of polymeric nanostructures for greater transepithelial permeability, nanostructured microparticles for enhanced preocular retention time and nanoporous membranes for tuning drug release profile are covered.
Collapse
|
30
|
Ita K. Perspectives on Transdermal Electroporation. Pharmaceutics 2016; 8:E9. [PMID: 26999191 PMCID: PMC4810085 DOI: 10.3390/pharmaceutics8010009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/01/2016] [Accepted: 03/10/2016] [Indexed: 01/17/2023] Open
Abstract
Transdermal drug delivery offers several advantages, including avoidance of erratic absorption, absence of gastric irritation, painlessness, noninvasiveness, as well as improvement in patient compliance. With this mode of drug administration, there is no pre-systemic metabolism and it is possible to increase drug bioavailability and half-life. However, only a few molecules can be delivered across the skin in therapeutic quantities. This is because of the hindrance provided by the stratum corneum. Several techniques have been developed and used over the last few decades for transdermal drug delivery enhancement. These include sonophoresis, iontophoresis, microneedles, and electroporation. Electroporation, which refers to the temporary perturbation of the skin following the application of high voltage electric pulses, has been used to increase transcutaneous flux values by several research groups. In this review, transdermal electroporation is discussed and the use of the technique for percutaneous transport of low and high molecular weight compounds described. This review also examines our current knowledge regarding the mechanisms of electroporation and safety concerns arising from the use of this transdermal drug delivery technique. Safety considerations are especially important because electroporation utilizes high voltage pulses which may have deleterious effects in some cases.
Collapse
Affiliation(s)
- Kevin Ita
- College of Pharmacy, Touro University, Mare Island-Vallejo, CA 94592, USA.
| |
Collapse
|
31
|
Abstract
Refinement of micro- and nanofabrication in the semiconductor field has led to innovations in biomedical technologies. Nanotopography, in particular, shows great potential in facilitating drug delivery. The flexibility of fabrication techniques has created a diverse array of topographies that have been developed for drug delivery applications. Nanowires and nanostraws deliver drug cytosolically for in vitro and ex vivo applications. In vivo drug delivery is limited by the barrier function of the epithelium. Nanowires on microspheres increase adhesion and residence time for oral drug delivery, while also increasing permeability of the epithelium. Low aspect ratio nanocolumns increase paracellular permeability, and in conjunction with microneedles increase transdermal drug delivery of biologics in vivo. In summary, nanotopography is a versatile tool for drug delivery. It can deliver directly to cells or be used for in vivo delivery across epithelial barriers. This editorial highlights the application of nanotopography in the field of drug delivery.
Collapse
Affiliation(s)
- Laura A Walsh
- a UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus , San Francisco , CA 94158 , USA
| | - Jessica L Allen
- b Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , CA 94158 , USA
| | - Tejal A Desai
- b Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , CA 94158 , USA
| |
Collapse
|
32
|
Lee K, Lingampalli N, Pisano AP, Murthy N, So H. Physical Delivery of Macromolecules using High-Aspect Ratio Nanostructured Materials. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23387-97. [PMID: 26479334 PMCID: PMC6070377 DOI: 10.1021/acsami.5b05520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
There is great need for the development of an efficient delivery method of macromolecules, including nucleic acids, proteins, and peptides, to cell cytoplasm without eliciting toxicity or changing cell behavior. High-aspect ratio nanomaterials have addressed many challenges present in conventional methods, such as cell membrane passage and endosomal degradation, and have shown the feasibility of efficient high-throughput macromolecule delivery with minimal perturbation of cells. This review describes the recent advances of in vitro and in vivo physical macromolecule delivery with high-aspect ratio nanostructured materials and summarizes the synthesis methods, material properties, relevant applications, and various potential directions.
Collapse
Affiliation(s)
- Kunwoo Lee
- Department of Bioengineering, Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720, United States
| | - Nithya Lingampalli
- Department of Bioengineering, Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720, United States
| | - Albert P. Pisano
- Department of Mechanical Engineering, Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720, United States
- Jacobs School of Engineering, University of California, San Diego, California 92093, United States
| | - Niren Murthy
- Department of Bioengineering, Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720, United States
| | - Hongyun So
- Department of Mechanical Engineering, Berkeley Sensor & Actuator Center, University of California, Berkeley, California 94720, United States
- Corresponding Author:
| |
Collapse
|
33
|
Fox CB, Kim J, Le LV, Nemeth CL, Chirra HD, Desai TA. Micro/nanofabricated platforms for oral drug delivery. J Control Release 2015; 219:431-444. [PMID: 26244713 DOI: 10.1016/j.jconrel.2015.07.033] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 12/18/2022]
Abstract
The oral route of drug administration is most preferred due to its ease of use, low cost, and high patient compliance. However, the oral uptake of many small molecule drugs and biotherapeutics is limited by various physiological barriers, and, as a result, drugs suffer from issues with low solubility, low permeability, and degradation following oral administration. The flexibility of micro- and nanofabrication techniques has been used to create drug delivery platforms designed to address these barriers to oral drug uptake. Specifically, micro/nanofabricated devices have been designed with planar, asymmetric geometries to promote device adhesion and unidirectional drug release toward epithelial tissue, thereby prolonging drug exposure and increasing drug permeation. Furthermore, surface functionalization, nanotopography, responsive drug release, motion-based responses, and permeation enhancers have been incorporated into such platforms to further enhance drug uptake. This review will outline the application of micro/nanotechnology to specifically address the physiological barriers to oral drug delivery and highlight technologies that may be incorporated into these oral drug delivery systems to further enhance drug uptake.
Collapse
Affiliation(s)
- Cade B Fox
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Jean Kim
- UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158, USA
| | - Long V Le
- UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158, USA
| | - Cameron L Nemeth
- UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158, USA
| | - Hariharasudhan D Chirra
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA; UC Berkeley & UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA 94158, USA.
| |
Collapse
|