1
|
Drewniak Ł, Drewniak S, Sajdak M, Muzyka R. Statistical Analysis of the Influence of Various Types of Graphite Precursors and Oxidation Methods on the Gas Sensor Properties of Reduced Graphene Oxide. SENSORS (BASEL, SWITZERLAND) 2024; 24:6346. [PMID: 39409385 PMCID: PMC11479184 DOI: 10.3390/s24196346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
The fabrication process of reduced graphene oxide depends on many factors (e.g., graphite precursor, methods of oxidation, reduction, and exfoliation) which have a significant influence on the properties of this material. Therefore, their selection is not easy due to the large number of possible combinations of these factors. To overcome this problem, we proposed to use a multivariate analysis of variance method of finding associations between the qualitative type of independent variables and the quantitative type of dependent variable. Using ANOVA, we showed that the combination (interaction) of these variables is more important than the individual influence of the variables on the fabricated rGO. Knowing how the particular variables and their combinations affect the properties of rGO, it is easier to plan the fabrication process of this material. In this paper, we analyzed the number of oxide layers and designated the most promising oxides in terms of sensor gas application. Independently, we fabricated chemiresistor sensors and studied their response to NO2 in the analyzed atmosphere. We were able to combine the experimental results with statistical analysis indicating which oxidation methods and which graphite precursors will provide the best sensitivity.
Collapse
Affiliation(s)
- Łukasz Drewniak
- Department of Optoelectronics, Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Sabina Drewniak
- Department of Optoelectronics, Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Marcin Sajdak
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Roksana Muzyka
- Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
2
|
Del Rosso T, Shtepliuk I, Zaman Q, Baldeón Huanqui LG, Tahir, Freire FL, Nascimento Barbosa A, Maia da Costa MEH, Aucélio RQ, Miranda Andrades JR, Mendoza CD, Khan R, Margheri G. On the Strong Binding Affinity of Gold-Graphene Heterostructures with Heavy Metal Ions in Water: A Theoretical and Experimental Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39269254 PMCID: PMC11448048 DOI: 10.1021/acs.langmuir.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Minimum energy configurations in 2D material-based heterostructures can enable interactions with external chemical species that are not observable for their monolithic counterparts. Density functional theory (DFT) calculations reveal that the binding energy of divalent toxic metal ions of Cd, Pb, and Hg on graphene-gold heterointerfaces is negative, in contrast to the positive value associated with free-standing graphene. The theoretical predictions are confirmed experimentally by Surface Plasmon Resonance (SPR) spectroscopy, where a strong binding affinity is measured for all the heavy metal ions in water. The results indicate the formation of a film of heavy metal ions on the graphene-gold (Gr/Au) heterointerfaces, where the adsorption of the ions follows a Langmuir isotherm model. The highest thermodynamic affinity constant K = 3.1 × 107 L mol-1 is observed for Hg2+@Gr/Au heterostructures, compared to 1.1 × 107 L mol-1 and 8.5 × 106 L mol-1 for Pb2+@Gr/Au and Cd2+@Gr/Au, respectively. In the case of Hg2+ ions, it was observed a sensitivity of about 0.01°/ppb and a detection limit of 0.7 ppb (∼3 nmol L-1). The combined X-ray photoelectron spectroscopy (XPS) and SPR analysis suggests a permanent interaction of all of the HMIs with the Gr/Au heterointerfaces. The correlation between the theoretical and experimental results indicates that the electron transfer from the graphene-gold heterostructures to the heavy metal ions is the key for correct interpretation of the enhanced sensitivity of the SPR sensors in water.
Collapse
Affiliation(s)
- Tommaso Del Rosso
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Ivan Shtepliuk
- Semiconductor Materials Division, Department of Physics, Chemistry and Biology - IFM, Linköping University, S-58183 Linköping, Sweden
| | - Quaid Zaman
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
- Department of Physics, Main Sowari Bazzar, University of Buner, 17290 Buner, Pakistan
| | - Luis Gonzalo Baldeón Huanqui
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Tahir
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Fernando Lazaro Freire
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Andre Nascimento Barbosa
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | | | - Ricardo Q Aucélio
- Department of Chemistry, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900 Rio de Janeiro, Brazil
| | - Jarol Ramon Miranda Andrades
- Department of Chemistry, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900 Rio de Janeiro, Brazil
| | - Cesar D Mendoza
- Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
- Departamento de Engenharia Elétrica, Universidade do Estado do Rio de Janeiro, UERJ, Rua São Francisco Xavier 524, Maracanã, Rio de Janeiro 20550-900, RJ Brazil
| | - Rajwali Khan
- National Water and Energy Center, United Arab Emirates University, P.O Box 17551, Sheik Khalifa Bin Zayed Street 1, Al-Ain, United Arab Emirates
| | - Giancarlo Margheri
- Istituto dei Sistemi Complessi Sezione di Sesto Fiorentino (I.S.C - CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Saya L, Ratandeep, Arya B, Rastogi K, Verma M, Rani S, Sahu PK, Singh MR, Singh WR, Hooda S. Recent advances in sensing toxic nerve agents through DMMP model simulant using diverse nanomaterials-based chemical sensors. Talanta 2024; 272:125785. [PMID: 38394750 DOI: 10.1016/j.talanta.2024.125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Recent terrorist assaults have demonstrated the need for the exploration and design of sustainable and stable chemical sensors with quick reaction times combined with great sensitivity. Among several classes of chemical warfare agents, nerve agents have been proven to be the most hazardous. Even short-term exposure to them can result in severe toxic effects. Human beings inadvertently face the after-effects of these chemicals even several years after these chemicals were used. Due to the extreme toxicity and difficulty in handling, dimethyl methylphosphonate (DMMP), a simulant of nerve agents with much lesser toxicity, is frequently used in laboratories as a substitute. Having a chemical structure almost identical to those of nerve agents, DMMP can mimic the properties of nerve agents. Through this paper, authors have attempted to introduce the evolution of several chemical sensors used to detect DMMP in recent years, including field-effect transistors, chemicapacitors, chemiresistors, and mass-sensitive sensors. A detailed discussion of the role of nanomaterials as chemical sensors in the detection of DMMP has been the main focus of the work through a comprehensive overview of the research on gas sensors that have been reported making use of the properties of a wide range of nanomaterials.
Collapse
Affiliation(s)
- Laishram Saya
- Department of Chemistry, Sri Venkateswara College (University of Delhi), Dhaula Kuan, New Delhi 110021, India; Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India; Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India.
| | - Ratandeep
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Bipasa Arya
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Kanjika Rastogi
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Manisha Verma
- Department of Physics, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Sanjeeta Rani
- Department of Physics, Acharya Narendra Dev College, (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India
| | - Prasanta Kumar Sahu
- Department of Chemistry, Shivaji College, (University of Delhi), Raja Garden, New Delhi, 110027, India
| | - M Ramananda Singh
- Department of Chemistry, Kirorimal College, (University of Delhi), Delhi, 110007, India
| | - W Rameshwor Singh
- Department of Chemistry, Manipur University, Canchipur, Imphal 795003, Manipur, India.
| | - Sunita Hooda
- Polymer Research Laboratory, Department of Chemistry, Acharya Narendra Dev College (University of Delhi), Govindpuri, Kalkaji, New Delhi, 110019, India.
| |
Collapse
|
4
|
Narayan J, Bezborah K. Recent advances in the functionalization, substitutional doping and applications of graphene/graphene composite nanomaterials. RSC Adv 2024; 14:13413-13444. [PMID: 38660531 PMCID: PMC11041312 DOI: 10.1039/d3ra07072g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
Recently, graphene and graphene-based nanomaterials have emerged as advanced carbon functional materials with specialized unique electronic, optical, mechanical, and chemical properties. These properties have made graphene an exceptional material for a wide range of promising applications in biological and non-biological fields. The present review illustrates the structural modifications of pristine graphene resulting in a wide variety of derivatives. The significance of substitutional doping with alkali-metals, alkaline earth metals, and III-VII group elements apart from the transition metals of the periodic table is discussed. The paper reviews various chemical and physical preparation routes of graphene, its derivatives and graphene-based nanocomposites at room and elevated temperatures in various solvents. The difficulty in dispersing it in water and organic solvents make it essential to functionalize graphene and its derivatives. Recent trends and advances are discussed at length. Controlled reduction reactions in the presence of various dopants leading to nanocomposites along with suitable surfactants essential to enhance its potential applications in the semiconductor industry and biological fields are discussed in detail.
Collapse
Affiliation(s)
- Jyoti Narayan
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| | - Kangkana Bezborah
- Synthetic Nanochemistry Laboratory, Department of Basic Sciences & Social Sciences, (Chemistry Division) School of Technology, North Eastern Hill University Shillong 793022 Meghalaya India
| |
Collapse
|
5
|
Otsuka H, Urita K, Honma N, Kimuro T, Amako Y, Kukobat R, Bandosz TJ, Ukai J, Moriguchi I, Kaneko K. Transient chemical and structural changes in graphene oxide during ripening. Nat Commun 2024; 15:1708. [PMID: 38402244 PMCID: PMC10894275 DOI: 10.1038/s41467-024-46083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
Graphene oxide (GO)-the oxidized form of graphene-is actively studied in various fields, such as energy, electronic devices, separation of water, materials engineering, and medical technologies, owing to its fascinating physicochemical properties. One major drawback of GO is its instability, which leads to the difficulties in product management. A physicochemical understanding of the ever-changing nature of GO can remove the barrier for its growing applications. Here, we evidencde the presence of intrinsic, metastable and transient GO states upon ripening. The three GO states are identified using a [Formula: see text] transition peak of ultraviolet-visible absorption spectra and exhibit inherent magnetic and electrical properties. The presence of three states of GO is supported by the compositional changes of oxygen functional groups detected via X-ray photoelectron spectroscopy and structural information from X-ray diffraction analysis and transmission electron microscopy. Although intrinsic GO having a [Formula: see text] transition at 230.5 ± 0.5 nm is stable only for 5 days at 298 K, the intrinsic state can be stabilized by either storing GO dispersions below 255 K or by adding ammonium peroxydisulfate.
Collapse
Affiliation(s)
- Hayato Otsuka
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano, 380-8553, Japan
| | - Koki Urita
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki, 852-8521, Japan
| | - Nobutaka Honma
- New Material & Value Creation Gr., Project Material Creation Dept., Mobility Material Engineering Div., Toyota Motor Corporation, 1, Toyota-cho, Toyota, Aichi, 471-8572, Japan
| | - Takashi Kimuro
- Development Gr.2, Development Section, Engineering Dept., Sanwayuka Industry Corporation, Fukada 15, Ichiriyamacho, Kariya, Aichi, 448-0002, Japan
| | - Yasushi Amako
- Department of Physics, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Radovan Kukobat
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano, 380-8553, Japan
- Department of Chemical Engineering and Technology, Faculty of Technology, University of Banja Luka, B.V. Stepe Stepanovica 73, 78 000, Banja Luka, Bosnia and Herzegovina
| | - Teresa J Bandosz
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Junzo Ukai
- New Material & Value Creation Gr., Project Material Creation Dept., Mobility Material Engineering Div., Toyota Motor Corporation, 1, Toyota-cho, Toyota, Aichi, 471-8572, Japan
| | - Isamu Moriguchi
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki, 852-8521, Japan
| | - Katsumi Kaneko
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano, 380-8553, Japan.
| |
Collapse
|
6
|
Janulewicz KA, Fok T, Bartosewicz B, Bartnik A, Fiedorowicz H, Wachulak P. Structural Stability and Disorder Level of Moderately Reduced Paper-like Graphene Oxide Investigated with Micro-Raman Analysis. MATERIALS (BASEL, SWITZERLAND) 2024; 17:877. [PMID: 38399127 PMCID: PMC10890625 DOI: 10.3390/ma17040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
This paper discusses the results of the micro-Raman analysis performed on paper-like graphene oxide (GO) samples consisting of many functionalised graphene layers and annealed at moderate temperatures (≤500 °C) under vacuum conditions (p ≃ 10-4 mbar). The analysis of the standalone samples revealed that the obtained material is characterised by a noticeable disorder level but still stays below the commonly accepted threshold of high or total disorder. GO formed in a simple way showed two spectral bands above 1650 cm-1 recorded very rarely or not at all and their origin has been discussed in detail. The results also confirmed the metastable character of multilayer GO after the annealing process at moderate temperatures as the C/O ratio was kept between 2 and 3 and the spectral features were stable within the annealing temperature range.
Collapse
Affiliation(s)
| | | | | | | | | | - Przemysław Wachulak
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland; (K.A.J.); (T.F.); (B.B.); (A.B.); (H.F.)
| |
Collapse
|
7
|
Yao X, Huang L, Halpren E, Chen L, Chen Z, Singh CV. Structural Self-Regulation-Promoted NO Electroreduction on Single Atoms. J Am Chem Soc 2023; 145:26249-26256. [PMID: 37983260 DOI: 10.1021/jacs.3c08936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Simultaneously elevating loading and activity of single atoms (SAs) is desirable for SA-containing catalysts, including single-atom catalysts (SACs). However, the fast self-nucleation of SAs limits the loading, and the activity is confined by the adsorption-energy scaling relationships on monotonous SAs. Here, we theoretically design a novel type of SA-containing catalyst generated by two-step structural self-regulation. In the thermodynamic self-regulation step, divacancies in graphene spontaneously pull up SAs from transition metal supports (dv-g/TM; TM = fcc Co, hcp Co, Ni, Cu), leading to the expectably high loading of SAs. The subsequent kinetic self-regulation step involving an adsorbate-assisted and reversible vacancy migration dynamically alters coordination environments of SAs, helping circumvent the scaling relationships, and consequently, the as-designed dv-g/Ni can catalyze NO-to-NH3 conversion at a low limiting potential of -0.25 V vs RHE.
Collapse
Affiliation(s)
- Xue Yao
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Linke Huang
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Ethan Halpren
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Lixin Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Zhiwen Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
8
|
Sadeghi MS, Sangrizeh FH, Jahani N, Abedin MS, Chaleshgari S, Ardakan AK, Baeelashaki R, Ranjbarpazuki G, Rahmanian P, Zandieh MA, Nabavi N, Aref AR, Salimimoghadam S, Rashidi M, Rezaee A, Hushmandi K. Graphene oxide nanoarchitectures in cancer therapy: Drug and gene delivery, phototherapy, immunotherapy, and vaccine development. ENVIRONMENTAL RESEARCH 2023; 237:117027. [PMID: 37659647 DOI: 10.1016/j.envres.2023.117027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The latest advancements in oncology involves the creation of multifunctional nanostructures. The integration of nanoparticles into the realm of cancer therapy has brought about a transformative shift, revolutionizing the approach to addressing existing challenges and limitations in tumor elimination. This is particularly crucial in combating the emergence of resistance, which has significantly undermined the effectiveness of treatments like chemotherapy and radiotherapy. GO stands as a carbon-derived nanoparticle that is increasingly finding utility across diverse domains, notably in the realm of biomedicine. The utilization of GO nanostructures holds promise in the arena of oncology, enabling precise transportation of drugs and genetic material to targeted sites. GO nanomaterials offer the opportunity to enhance the pharmacokinetic behavior and bioavailability of drugs, with documented instances of these nanocarriers elevating drug accumulation at the tumor location. The GO nanostructures encapsulate genes, shielding them from degradation and facilitating their uptake within cancer cells, thereby promoting efficient gene silencing. The capability of GO to facilitate phototherapy has led to notable advancements in reducing tumor progression. By PDT and PTT combination, GO nanomaterials hold the capacity to diminish tumorigenesis. GO nanomaterials have the potential to trigger both cellular and innate immunity, making them promising contenders for vaccine development. Additionally, types of GO nanoparticles that respond to specific stimuli have been applied in cancer eradication, as well as for the purpose of cancer detection and biomarker diagnosis. Endocytosis serves as the mechanism through which GO nanomaterials are internalized. Given these advantages, the utilization of GO nanomaterials for tumor elimination comes highly recommended.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Negar Jahani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahdi Sadegh Abedin
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Chaleshgari
- Department of Avian Diseases, Faculty of Veterinary Medicine, Chamran University, Ahvaz, Iran
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Reza Baeelashaki
- Department of Food Hygiene and Quality Control, Division of Animal Feed Hygiene, Faculty of Veterinary Medicine, Islamic Azad University, Shabestar Branch, Shabestar, Iran
| | - Golnaz Ranjbarpazuki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Wasfi A, Sulieman M, Sefelnasr Z, Alteneiji A, Shafiqurrahman A, Alharairi A, Awwad F. Detection of butane and propane gases via C 2N sensors: first principles modeling. Sci Rep 2023; 13:19314. [PMID: 37935831 PMCID: PMC10630447 DOI: 10.1038/s41598-023-46870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
Gas sensing is a critical research area in aerospace, military, medical, and industrial environments, as it helps prevent risks to human health and the environment caused by toxic gases. Propane and butane, commonly used as fuels in household and industrial settings, are toxic and flammable gases that need to be effectively detected to avoid leakage or explosion accidents. To address this, nanomaterial-based gas sensors are being developed with low power consumption and operating temperatures. In this study, two-dimensional nitrogenated holey graphene (C2N) based sensors are used for the first time for the identification of butane and propane gases. The sensor consists of two C2N electrodes connected via a C2N channel. The C2N sensor design was enhanced by replacing the C2N electrodes with gold electrodes and adding a gate terminal under the channel. The resistive method is employed to detect butane and propane gases by measuring the variation in the electrical conductivity of the sensor due to exposure to these target molecules. To investigate the electronic transport properties, such as transmission spectra, density of states and current, first principles simulations of the C2N-based sensors is conducted using Quantumwise Atomistix Toolkit (ATK). The detection method relies on the alteration of the FET's electrical current at specific gate voltages due to the presence of these gases. This proposed sensor offers the potential for small size and low-cost gas sensing applications. The designed sensor aims to effectively detect propane and butane gases. By leveraging the unique properties of C2N and utilizing advanced simulation tools, this sensor could provide high sensitivity and accuracy in detecting propane and butane gases. Such an advancement in gas sensing technology holds significant promise for ensuring safety in various environments.
Collapse
Affiliation(s)
- Asma Wasfi
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Mawahib Sulieman
- College of Engineering, Al Ain University, Al Ain, United Arab Emirates
| | - Ziad Sefelnasr
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Abdulla Alteneiji
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Atawulrahman Shafiqurrahman
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Ammar Alharairi
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Falah Awwad
- Department of Electrical and Communication Engineering, College of Engineering, United Arab Emirates University, P. O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
10
|
Bhat N, Ukkund SJ, Ashraf M, Acharya K, J. Ramegouda N, Puthiyillam P, Hasan MA, Islam S, Koradoor VB, Praveen AD, Khan MA. GO/CuO Nanohybrid-Based Carbon Dioxide Gas Sensors with an Arduino Detection Unit. ACS OMEGA 2023; 8:32512-32519. [PMID: 37720789 PMCID: PMC10500660 DOI: 10.1021/acsomega.3c02598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
A gas sensor is a device that detects the presence of gases in a specific area. This research work demonstrates the effectiveness of gas sensors based on graphene oxide (GO) and copper oxide (CuO) semiconductor nanomaterials for the detection of carbon dioxide. GO and CuO were prepared by the modified Hummer's method and precipitation method using CuCl2 as a precursor, respectively. These materials are made into a hybrid using poly(vinyl alcohol) (PVA)/poly(vinylpyrrolidone) (PVP) polymer solutions of low concentrations and are spin coated onto the pattern-etched copper-clad substrate. The sensor is tested using a source measurement unit (SMU) to obtain the change in the resistance of the sensor in open air and in a carbon dioxide environment. The fabricated sensor with an Arduino microcontroller detection unit showed a good sensing response of 60%.
Collapse
Affiliation(s)
- Nagesh Bhat
- Department
of Nano Technology, Srinivas Institute of
Technology, Mangaluru 574143, Karnataka, India
| | - Shareefraza J. Ukkund
- Department
of Biotechnology, PA College of Engineering, Mangalore 574153, Karnataka, India
| | - Momin Ashraf
- Department
of Nano Technology, Srinivas Institute of
Technology, Mangaluru 574143, Karnataka, India
| | - Krishnaraja Acharya
- Department
of Nano Technology, Srinivas Institute of
Technology, Mangaluru 574143, Karnataka, India
| | - Naveenkumar J. Ramegouda
- Department
of Nano Technology, Srinivas Institute of
Technology, Mangaluru 574143, Karnataka, India
- College
of Engineering and Technology, Srinivas
University, Mangaluru 574146, Karnataka, India
| | - Prasad Puthiyillam
- Department
of Nano Technology, Srinivas Institute of
Technology, Mangaluru 574143, Karnataka, India
- College
of Engineering and Technology, Srinivas
University, Mangaluru 574146, Karnataka, India
| | - Mohd Abul Hasan
- Civil
Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Saiful Islam
- Civil
Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Vinaya B. Koradoor
- Department
of EEE, Channabasaveshwara Institute of
Technology, Tumkur 572216, Karnataka, India
| | | | - Mohammad Amir Khan
- Department
of Civil Engineering, Galgotia College of
Engineering, Greater
Noida 201310, India
| |
Collapse
|
11
|
Raj R, Dixit AR. Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:828-854. [PMID: 37609584 PMCID: PMC10440670 DOI: 10.1089/3dp.2021.0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Direct Ink Writing (DIW) opens new possibilities in three-dimensional (3D) printing of carbon-based polymeric ink. This is due to its ability in design flexibility, structural complexity, and environmental sustainability. This area requires exhaustive study because of its wide application in different manufacturing sectors. The present article is related to the variant emerging 3D printing techniques and DIW of carbonaceous materials. Carbon-based materials, extensively used for various applications in 3D printing, possess impressive chemical stability, strength, and flexible nanostructure. Fine printable inks consist predominantly of uniform solutions of carbon materials, such as graphene, graphene oxide (GO), carbon fibers (CFs), carbon nanotubes (CNTs), and solvents. It also contains compatible polymers and suitable additives. This review article elaborately discusses the fundamental requirements of DIW in structuring carbon-doped polymeric inks viz. ink formulation, required ink rheology, extrusion parameters, print fidelity prediction, layer bonding examination, substrate selection, and curing method to achieve fine functional composites. A detailed description of its application in the fields of electronics, medical, and mechanical segments have also been focused in this study.
Collapse
Affiliation(s)
- Ratnesh Raj
- Department of Mechanical Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Amit Rai Dixit
- Department of Mechanical Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|
12
|
Obayomi KS, Lau SY, Danquah MK, Zhang J, Chiong T, Takeo M, Jeevanandam J. Novel Concepts for Graphene-Based Nanomaterials Synthesis for Phenol Removal from Palm Oil Mill Effluent (POME). MATERIALS (BASEL, SWITZERLAND) 2023; 16:4379. [PMID: 37374562 DOI: 10.3390/ma16124379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
In recent years, the global population has increased significantly, resulting in elevated levels of pollution in waterways. Organic pollutants are a major source of water pollution in various parts of the world, with phenolic compounds being the most common hazardous pollutant. These compounds are released from industrial effluents, such as palm oil milling effluent (POME), and cause several environmental issues. Adsorption is known to be an efficient method for mitigating water contaminants, with the ability to eliminate phenolic contaminants even at low concentrations. Carbon-based materials have been reported to be effective composite adsorbents for phenol removal due to their excellent surface features and impressive sorption capability. However, the development of novel sorbents with higher specific sorption capabilities and faster contaminant removal rates is necessary. Graphene possesses exceptionally attractive chemical, thermal, mechanical, and optical properties, including higher chemical stability, thermal conductivity, current density, optical transmittance, and surface area. The unique features of graphene and its derivatives have gained significant attention in the application of sorbents for water decontamination. Recently, the emergence of graphene-based adsorbents with large surface areas and active surfaces has been proposed as a potential alternative to conventional sorbents. The aim of this article is to discuss novel synthesis approaches for producing graphene-based nanomaterials for the adsorptive uptake of organic pollutants from water, with a special focus on phenols associated with POME. Furthermore, this article explores adsorptive properties, experimental parameters for nanomaterial synthesis, isotherms and kinetic models, mechanisms of nanomaterial formation, and the ability of graphene-based materials as adsorbents of specific contaminants.
Collapse
Affiliation(s)
- Kehinde Shola Obayomi
- Department of Chemical Engineering, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga 615 McCallie Ave, Chattanooga, TN 37403, USA
| | - Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC 3030, Australia
| | - Tung Chiong
- Department of Chemical Engineering, Curtin University, CDT 250, Miri 98009, Sarawak, Malaysia
| | - Masahiro Takeo
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan
| | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
13
|
Tonel MZ, Abal JPK, Fagan SB, Barbosa MC. Ab initio study of water anchored in graphene pristine and vacancy-type defects. J Mol Model 2023; 29:198. [PMID: 37268861 DOI: 10.1007/s00894-023-05611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
CONTEXT In this paper, we have addressed two issues that are relevant to the interaction of water in pristine and vacant graphene through first-principles calculations based on the Density Functional Theory (DFT). The results showed that for the interaction of pristine graphene with water, the DOWN configuration (with the hydrogen atoms facing downwards) was the most stable, presenting binding energies in the order of -13.62 kJ/mol at a distance of 2.375 Å in the TOP position. We also evaluated the interaction of water with two vacancy models, removing one carbon atom (Vac-1C) and four atoms (Vac-4C). In the Vac-1C system, the most favourable system was the DOWN configuration, with binding energies ranging from -20.60 kJ/mol to -18.41 kJ/mol in the TOP and UP positions, respectively. A different behaviour was observed for the interaction of water with Vac-4C; regardless of the configuration of the water, it is always more favourable for the interaction to occur through the vacancy centre, with binding energies between -13.28 kJ/mol and -20.49 kJ/mol. Thus, the results presented open perspectives for the technological development of nanomembranes as well as providing a better understanding of the wettability effects of graphene sheets, whether pristine or with defects. METHOD We evaluated the interaction of pristine and vacant graphene with the water molecule, through calculations based on Density Functional Theory (DFT); implemented by the SIESTA program. The electronic, energetic, and structural properties were analyzed by solving self-consistent Kohn-Sham equations. In all calculations, a double ζ plus a polarized function (DZP) was used for the numerical baise set. Local Density Approximation (LDA) with the Perdew and Zunger (PZ) parameterisation along with a basis set superposition error (BSSE) correction were used to describe the exchange and correlation potential (Vxc). The water and isolated graphene structures were relaxed until the residual forces were less than 0.05 eV/Å-1 in all atomic coordinates.
Collapse
Affiliation(s)
- Mariana Zancan Tonel
- Universidade Franciscana-UFN, PPGNANO - Postgraduate Program in Nanoscience, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil.
| | - João Pedro Kleinubing Abal
- Universidade Federal do Rio Grande do Sul- UFRGS, Institute of Physics, Av. Bento Gonçalves, 9500 - Agronomia, ZIP, Porto Alegre, RS, 91501-970, Brazil
| | - Solange Binotto Fagan
- Universidade Franciscana-UFN, PPGNANO - Postgraduate Program in Nanoscience, Rua dos Andradas, 1614, ZIP, Santa Maria, RS, 97010-032, Brazil
| | - Marcia Cristina Barbosa
- Universidade Federal do Rio Grande do Sul- UFRGS, Institute of Physics, Av. Bento Gonçalves, 9500 - Agronomia, ZIP, Porto Alegre, RS, 91501-970, Brazil
| |
Collapse
|
14
|
Olorunkosebi AA, Olumurewa KO, Fasakin O, Adedeji AV, Taleatu B, Olofinjana B, Eleruja MA. Comparative investigation of gas sensing performance of liquefied petroleum gas using green reduced graphene oxide-based sensors. RSC Adv 2023; 13:16630-16642. [PMID: 37274401 PMCID: PMC10235929 DOI: 10.1039/d3ra01684f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023] Open
Abstract
Herein, we report the comparative gas sensing performance (at room temperature) of reduced graphene oxide sensors obtained by reducing graphene oxide using extracts of pumpkin leaf, neem leaf and methionine. An interdigitated pattern was designed on soda-lime glass using a stamp method and the dispersed solution of rGO was spin coated on the pattern. The electrical response of the sensors was investigated (using a simple in-house measurement set up) by measuring change in resistance of graphene with varying gas concentration on exposure to liquefied petroleum gas (LPG). From the characterization results using FTIR, SEM, EDX and UV-Visible, methionine reduced graphene oxide (MRGO 12H) indicated a greater degree of reduction compared to pumpkin reduced graphene oxide (PRGO 12H) and neem reduced graphene oxide (NRGO 12H). The LPG sensing results showed an increase in the resistance of the sensor materials upon the introduction of the gas and, an increased sensitivity as the concentration of the test gas increased from 100 ppm to 200 ppm while the MRGO 12H sensor was more selective towards LPG sensing. Furthermore, it was observed that the sensor response for the fabricated sensors is strongly dependent on the concentration of gas exposed to the sensors and the degree of removal of oxygen functional groups in the graphene-based materials. Hence, the MRGO 12H sensor had a sensor response of 23.58% at 200 ppm. PRGO 12H at 100 ppm illustrates the least sensor response while NRGO 12H showed very poor sensor response that ranged between 5.10% and 7.56%. The sensor response of the materials demonstrates an improvement in results obtained for pure rGO based sensors. We obtained a response time as low as 5.3 seconds for MRGO 12H while the recovery time of the sensors ranged between 6.46 seconds and 41.50 seconds. The MRGO 12H sensor typified the best recovery time and thus outperformed results from most of the reported literature. Considering different performance metrics such as sensor response, response time, recovery time and sensing period, MRGO 12H is more selective towards detecting LPG. Our results showed that a greater restoration of the sp2 carbon chain brought about by increased reduction of graphene oxide is largely responsible for the sensing behavior of rGO towards LPG.
Collapse
Affiliation(s)
| | | | - Oladepo Fasakin
- Department of Physics and Engineering Physics, Obafemi Awolowo University Ile-Ife 220282 Nigeria
| | | | - Bidini Taleatu
- Department of Physics and Engineering Physics, Obafemi Awolowo University Ile-Ife 220282 Nigeria
| | - Bolutife Olofinjana
- Department of Physics and Engineering Physics, Obafemi Awolowo University Ile-Ife 220282 Nigeria
| | - Marcus Adebola Eleruja
- Department of Physics and Engineering Physics, Obafemi Awolowo University Ile-Ife 220282 Nigeria
| |
Collapse
|
15
|
Esmaeilpour M, Bügel P, Fink K, Studt F, Wenzel W, Kozlowska M. Multiscale Model of CVD Growth of Graphene on Cu(111) Surface. Int J Mol Sci 2023; 24:ijms24108563. [PMID: 37239915 DOI: 10.3390/ijms24108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Due to its outstanding properties, graphene has emerged as one of the most promising 2D materials in a large variety of research fields. Among the available fabrication protocols, chemical vapor deposition (CVD) enables the production of high quality single-layered large area graphene. To better understand the kinetics of CVD graphene growth, multiscale modeling approaches are sought after. Although a variety of models have been developed to study the growth mechanism, prior studies are either limited to very small systems, are forced to simplify the model to eliminate the fast process, or they simplify reactions. While it is possible to rationalize these approximations, it is important to note that they have non-trivial consequences on the overall growth of graphene. Therefore, a comprehensive understanding of the kinetics of graphene growth in CVD remains a challenge. Here, we introduce a kinetic Monte Carlo protocol that permits, for the first time, the representation of relevant reactions on the atomic scale, without additional approximations, while still reaching very long time and length scales of the simulation of graphene growth. The quantum-mechanics-based multiscale model, which links kinetic Monte Carlo growth processes with the rates of occurring chemical reactions, calculated from first principles makes it possible to investigate the contributions of the most important species in graphene growth. It permits the proper investigation of the role of carbon and its dimer in the growth process, thus indicating the carbon dimer to be the dominant species. The consideration of hydrogenation and dehydrogenation reactions enables us to correlate the quality of the material grown within the CVD control parameters and to demonstrate an important role of these reactions in the quality of the grown graphene in terms of its surface roughness, hydrogenation sites, and vacancy defects. The model developed is capable of providing additional insights to control the graphene growth mechanism on Cu(111), which may guide further experimental and theoretical developments.
Collapse
Affiliation(s)
- Meysam Esmaeilpour
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Bügel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Karin Fink
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Witkiewicz Z, Jasek K, Grabka M. Semiconductor Gas Sensors for Detecting Chemical Warfare Agents and Their Simulants. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23063272. [PMID: 36991985 PMCID: PMC10058525 DOI: 10.3390/s23063272] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 05/27/2023]
Abstract
On-site detection of chemical warfare agents (CWAs) can be performed by various analytical techniques. Devices using well-established techniques such as ion mobility spectrometry, flame photometry, infrared and Raman spectroscopy or mass spectrometry (usually combined with gas chromatography) are quite complex and expensive to purchase and operate. For this reason, other solutions based on analytical techniques well suited to portable devices are still being sought. Analyzers based on simple semiconductor sensors may be a potential alternative to the currently used CWA field detectors. In sensors of this type, the conductivity of the semiconductor layer changes upon interaction with the analyte. Metal oxides (both in the form of polycrystalline powders and various nanostructures), organic semiconductors, carbon nanostructures, silicon and various composites that are a combination of these materials are used as a semiconductor material. The selectivity of a single oxide sensor can be adjusted to specific analytes within certain limits by using the appropriate semiconductor material and sensitizers. This review presents the current state of knowledge and achievements in the field of semiconductor sensors for CWA detection. The article describes the principles of operation of semiconductor sensors, discusses individual solutions used for CWA detection present in the scientific literature and makes a critical comparison of them. The prospects for the development and practical application of this analytical technique in CWA field analysis are also discussed.
Collapse
|
17
|
Comparative study on the structural and electrochemical properties of nitrogen-doped and nitrogen and sulfur co-doped reduced graphene oxide electrode prepared by hydrothermal technique. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
18
|
Martínez-Iniesta AD, Muñoz-Sandoval E, Morán-Lázaro JP, Morelos-Gómez A, López-Urías F. Nitrogen-phosphorus codoped carbon nanotube sponges for detecting volatile organic compounds: experimental and DFT calculations. Phys Chem Chem Phys 2023; 25:2546-2565. [PMID: 36602190 DOI: 10.1039/d2cp04983j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The sensing of harmful gases and vapors is of fundamental interest to control the industrial emissions and environmental contamination. Nitrogen/phosphorus codoped carbon nanotube sponges (NP-CNTSs) were used to detect ethanol, acetone, cyclohexane, isopropanol, and methanol. The NP-CNTSs were produced through the aerosol-assisted chemical vapor deposition (AACVD) method using acetonitrile and triphenylphosphine as precursors at 1020 °C. The sensors based on NP-CNTSs were tested with varying operating temperatures (25-100 °C) and gas vapor concentrations (5-50 ppm). For instance, for a gas vapor concentration of 30 ppm and an operating temperature of 65 °C, the sensors showed changes in the electrical resistance of 1.12%, 1.21%, 1.09%, 2.4%, and 1.34% for ethanol, acetone, cyclohexane, isopropanol, and methanol, respectively. We found that the response and recovery times for isopropanol gas vapor are up to 43.7 s and 95 s, respectively. The current sensor outperformed the sensors reported in the literature by at least two times in the response measurement. Additionally, we performed van der Waals density functional theory calculations to elucidate the role of nitrogen and phosphorous codoped single-walled carbon nanotubes (SWCNTs) and their interaction with the considered gas molecule. We analyzed the molecular adsorption energy, optimized structures, and the density of states and calculated the electrostatic potential surface for N-doped, P-doped, NP-codoped, and OH-functionalized NP-codoped metallic SWCNTs-(6,6) and semiconducting SWCNTs-(10,0). Adsorption energy calculations revealed that in most cases the molecules are adsorbed to carbon nanotubes via physisorption. The codoping in SWCNTs-(6,6) promoted structural changes in the surface nanotube and marked chemisorption for acetone molecules.
Collapse
Affiliation(s)
- Armando D Martínez-Iniesta
- División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Lomas 4a sección, San Luis Potosí, S.L.P., 78216, Mexico.
| | - Emilio Muñoz-Sandoval
- División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Lomas 4a sección, San Luis Potosí, S.L.P., 78216, Mexico.
| | - Juan P Morán-Lázaro
- Department of Computer Science and Engineering, CUValles, University of Guadalajara, Ameca, Jalisco 46600, Mexico
| | - Aarón Morelos-Gómez
- Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Florentino López-Urías
- División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Lomas 4a sección, San Luis Potosí, S.L.P., 78216, Mexico.
| |
Collapse
|
19
|
Tian YP, Wang CB, Gong WJ. Arsenene as a promising sensor for the detection of H 2S: a first-principles study. RSC Adv 2023; 13:2234-2247. [PMID: 36741134 PMCID: PMC9835076 DOI: 10.1039/d2ra06588f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
To explore the feasibility of arsenene in detecting H2S gas, we employ the density-functional theory to investigate the geometry, electronic structure and magnetic properties of defected and doped arsenene. Point defects do not appreciably improve the sensing performance of arsenene due to small adsorption energies and charge transfer. The doping of transition metals (Ti, V, Cr, Mn, Co and Ni) introduces magnetic moments and narrows the band gap of arsenene. Transition metal (TM) dopants can enhance the interaction between H2S and a modified arsenene substrate. Adsorption energies and charge transfers increase significantly, and the adsorption converts to chemisorption. After adsorption, the Ti and Cr-doped system's band gap change is twice that of the pristine and defective arsenene. The adsorption of H2S changes the system properties of two TM-doped arsenenes: Ti-doped arsenene transforms from semiconductor to half-metal, and Ni-doped arsenene transforms from half-metal to conductor. Electrical signals can be observed in this process to detect H2S molecules. Our calculations show that doping improves the detecting performance of arsenene to H2S molecules more efficiently than defects. Our results indicate that arsenene has a promising future in developing H2S gas sensors.
Collapse
Affiliation(s)
- Yu-Ping Tian
- College of Sciences, Northeastern UniversityShenyang 110819China
| | - Chao-Bo Wang
- College of Sciences, Northeastern UniversityShenyang 110819China
| | - Wei-Jiang Gong
- College of Sciences, Northeastern UniversityShenyang 110819China
| |
Collapse
|
20
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
21
|
Jain S, Vedavyas V, Prajwal RV, Shaji M, Nath VG, Angappane S, Achutharao G. Silk and its composites for humidity and gas sensing applications. Front Chem 2023; 11:1141259. [PMID: 37021147 PMCID: PMC10067913 DOI: 10.3389/fchem.2023.1141259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Silk fibroin (SF) is a natural protein largely used in the textile industry with applications in bio-medicine, catalysis as well as in sensing materials. SF is a fiber material which is bio-compatible, biodegradable, and possesses high tensile strength. The incorporation of nanosized particles into SF allows the development of a variety of composites with tailored properties and functions. Silk and its composites are being explored for a wide range of sensing applications like strain, proximity, humidity, glucose, pH and hazardous/toxic gases. Most studies aim at improving the mechanical strength of SF by preparing hybrids with metal-based nanoparticles, polymers and 2D materials. Studies have been conducted by introducing semiconducting metal oxides into SF to tailor its properties like conductivity for use as a gas sensing material, where SF acts as a conductive path as well as a substrate for the incorporated nanoparticles. We have reviewed gas and humidity sensing properties of silk, silk with 0D (i.e., metal oxide), 2D (e.g., graphene, MXenes) composites. The nanostructured metal oxides are generally used in sensing applications, which use its semiconducting properties to show variation in the measured properties (e.g., resistivity, impedance) due to analyte gas adsorption on its surface. For example, vanadium oxides (i.e., V2O5) have been shown as candidates for sensing nitrogen containing gases and doped vanadium oxides for sensing CO gas. In this review article we provide latest and important results in the gas and humidity sensing of SF and its composites.
Collapse
Affiliation(s)
- Shubhanth Jain
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, India
| | - V. Vedavyas
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, India
| | - R. V. Prajwal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Malavika Shaji
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, India
| | - Vishnu G Nath
- Centre for Nano and Soft Matter Sciences, Bengaluru, India
| | - S. Angappane
- Centre for Nano and Soft Matter Sciences, Bengaluru, India
| | - Govindaraj Achutharao
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, India
- *Correspondence: Govindaraj Achutharao,
| |
Collapse
|
22
|
Utility of hexagonal boron carbide nanosheets for removing harmful dyes: electronic study via DFT. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Zhang H, Cao D, Cheng X, Guan R, Zhou C. Amide salt pyrolysis fabrication of graphene nanosheets with multi-excitation single color emission. J Colloid Interface Sci 2022; 627:671-680. [PMID: 35878459 DOI: 10.1016/j.jcis.2022.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 01/31/2023]
Abstract
A novel and simple approach of using amide salt pyrolysis to produce photoluminescent (multi-excitation and single color emission) graphene nanosheets (GNs) with a thickness of <1 nm and a diameter of about 100-200 nm is described herein. It has characteristics of high water solubility, low toxicity, easy manufacturing, etc., and has potential application prospects in analytical chemistry and biomedicine.
Collapse
Affiliation(s)
- Hao Zhang
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiao Cheng
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
| | - Ruifang Guan
- School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Chuanjian Zhou
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China.
| |
Collapse
|
24
|
Jiang Z, Intan NN, Yang Q. Ab initio insight into the electrolysis of water on basal and edge (fullerene C 20) surfaces of 4 Å single-walled carbon nanotubes. RSC Adv 2022; 12:33552-33558. [PMID: 36505700 PMCID: PMC9680824 DOI: 10.1039/d2ra06123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
The extreme surface reactivity of 4 Å single-walled carbon nanotubes (SWCNTs) makes for a very promising catalytic material, however, controlling it experimentally has been found to be challenging. Here, we employ ab initio calculations to investigate the extent of surface reactivity and functionalization of 4 Å SWCNTs. We study the kinetics of water dissociation and adsorption on the surface of 4 Å SWCNTs with three different configurations: armchair (3,3), chiral (4,2) and zigzag (5,0). We reveal that out of three different configurations of 4 Å SWCNTs, the surface of tube (5,0) is the most reactive due to its small HOMO-LUMO gap. The dissociation of 1 H2O molecule into an OH/H pair on the surface of tube (5,0) has an adsorption energy of -0.43 eV and an activation energy barrier of 0.66 eV at 298.15 K in pure aqueous solution, which is less than 10% of the activation energy barrier of the same reaction without the catalyst present. The four steps of H+/e- transfer in the oxygen evolution reaction have also been studied on the surface of tube (5,0). The low overpotential of 0.38 V indicates that tube (5,0) has the highest potential efficiency among all studied carbon-based catalysts. We also reveal that the armchair edge of tube (5,0) is reconstructed into fullerene C20. The dangling bonds on the surface of fullerene C20 result in a more reactive surface than the basal surface of tube (5,0), however the catalytic ability was also inhibited in the later oxygen reduction processes.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Nadia N Intan
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Qiong Yang
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
25
|
Chhana L, Lalroliana B, Tiwari RC, Chettri B, Pachuau L, Gurung S, Vanchhawng L, Rai DP, Zuala L, Madaka R. Theoretical Study of ZnS Monolayer Adsorption Behavior for CO and HF Gas Molecules. ACS OMEGA 2022; 7:40176-40183. [PMID: 36385877 PMCID: PMC9648164 DOI: 10.1021/acsomega.2c05064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Adsorption of carbon monoxide (CO) and hydrogen fluoride (HF) gas molecules on a ZnS monolayer with weak van der Waals interactions is studied using the DFT + U method. From our calculation, the ZnS monolayer shows chemisorption with CO (E ads = -0.96 eV) and HF (E ads = -0.86 eV) gas molecules. Bader charge analysis shows that charge transfer is independent of the binding environment. A higher energy barrier for CO when migrating from one optimal site to another suggests that clustering may be avoided by the introduction of multiple CO molecules upon ZnS, while the diffusion energy barrier (DEB) for HF suggests that binding may occur more easily for HF gas upon the ZnS ML. Adsorption of the considered diatomic molecule also results in a significant variation in effective mass and therefore can be used to enhance the carrier mobility of the ZnS ML. Additionally, the calculation of recovery time shows that desirable sensing and desorption performance for CO and HF gas molecules can be achieved at room temperature (300 K).
Collapse
Affiliation(s)
- Lalmuan Chhana
- Department
of Physics, School of Physical Sciences, Mizoram University, Aizawl796004, Mizoram, India
- Physical
Sciences Research Centre (PSRC), Pachhunga
University College, Mizoram University, Aizawl796001, Mizoram, India
| | - Bernard Lalroliana
- Department
of Physics, School of Physical Sciences, Mizoram University, Aizawl796004, Mizoram, India
- Physical
Sciences Research Centre (PSRC), Pachhunga
University College, Mizoram University, Aizawl796001, Mizoram, India
| | - Ramesh Chandra Tiwari
- Department
of Physics, School of Physical Sciences, Mizoram University, Aizawl796004, Mizoram, India
| | - Bhanu Chettri
- North
Eastern Hill University, Shillong793022, Meghalaya, India
- Physical
Sciences Research Centre (PSRC), Pachhunga
University College, Mizoram University, Aizawl796001, Mizoram, India
| | - Lalrinthara Pachuau
- Physical
Sciences Research Centre (PSRC), Pachhunga
University College, Mizoram University, Aizawl796001, Mizoram, India
| | - Shivraj Gurung
- Physical
Sciences Research Centre (PSRC), Pachhunga
University College, Mizoram University, Aizawl796001, Mizoram, India
| | - Lalmuanpuia Vanchhawng
- Physical
Sciences Research Centre (PSRC), Pachhunga
University College, Mizoram University, Aizawl796001, Mizoram, India
| | - Dibya Prakash Rai
- Physical
Sciences Research Centre (PSRC), Pachhunga
University College, Mizoram University, Aizawl796001, Mizoram, India
| | - Lalhriat Zuala
- Physical
Sciences Research Centre (PSRC), Pachhunga
University College, Mizoram University, Aizawl796001, Mizoram, India
| | - Ramakrishna Madaka
- Department
of Physics, Indian Institute of Technology
Madras, Chennai600036, Tamil Nadu, India
| |
Collapse
|
26
|
Label-free detection of endotoxin and gram-negative bacteria from water using copper (I) oxide anchored reduced graphene oxide. Anal Chim Acta 2022; 1237:340597. [DOI: 10.1016/j.aca.2022.340597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/15/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
27
|
Devi P, Verma R, Singh JP. Advancement in electrochemical, photocatalytic, and photoelectrochemical CO2 reduction: Recent progress in the role of oxygen vacancies in catalyst design. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Filipovic L, Selberherr S. Application of Two-Dimensional Materials towards CMOS-Integrated Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203651. [PMID: 36296844 PMCID: PMC9611560 DOI: 10.3390/nano12203651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
During the last few decades, the microelectronics industry has actively been investigating the potential for the functional integration of semiconductor-based devices beyond digital logic and memory, which includes RF and analog circuits, biochips, and sensors, on the same chip. In the case of gas sensor integration, it is necessary that future devices can be manufactured using a fabrication technology which is also compatible with the processes applied to digital logic transistors. This will likely involve adopting the mature complementary metal oxide semiconductor (CMOS) fabrication technique or a technique which is compatible with CMOS due to the inherent low costs, scalability, and potential for mass production that this technology provides. While chemiresistive semiconductor metal oxide (SMO) gas sensors have been the principal semiconductor-based gas sensor technology investigated in the past, resulting in their eventual commercialization, they need high-temperature operation to provide sufficient energies for the surface chemical reactions essential for the molecular detection of gases in the ambient. Therefore, the integration of a microheater in a MEMS structure is a requirement, which can be quite complex. This is, therefore, undesirable and room temperature, or at least near-room temperature, solutions are readily being investigated and sought after. Room-temperature SMO operation has been achieved using UV illumination, but this further complicates CMOS integration. Recent studies suggest that two-dimensional (2D) materials may offer a solution to this problem since they have a high likelihood for integration with sophisticated CMOS fabrication while also providing a high sensitivity towards a plethora of gases of interest, even at room temperature. This review discusses many types of promising 2D materials which show high potential for integration as channel materials for digital logic field effect transistors (FETs) as well as chemiresistive and FET-based sensing films, due to the presence of a sufficiently wide band gap. This excludes graphene from this review, while recent achievements in gas sensing with graphene oxide, reduced graphene oxide, transition metal dichalcogenides (TMDs), phosphorene, and MXenes are examined.
Collapse
|
29
|
Fan J, Wei X, Dong H, Zhang Y, Zhou Y, Xu M, Xiao G. Advancement in Analytical Techniques for Determining the Activity of β-Site Amyloid Precursor Protein Cleaving Enzyme 1. Crit Rev Anal Chem 2022; 54:1797-1809. [PMID: 36227582 DOI: 10.1080/10408347.2022.2132812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis is still not fully clear. One of the main histopathological manifestations is senile plaques formed by β-amyloid (Aβ) accumulation. Aβ is generated from the sequential proteolysis of amyloid precursor protein (APP) by β-secretase [i.e. β-site APP cleaving enzyme 1 (BACE1)] and γ-secretase, with a rate-limiting step controlled by BACE1 activity. Therefore, inhibiting BACE1 activity has become a potential therapeutic strategy for AD. The development of reliable detection methods for BACE1 activity plays an important role in early diagnosis of AD and evaluation of the therapeutic effect of new drugs for AD. This article has reviewed the recent advances in BACE1 activity detection techniques. The challenges of applying these analysis techniques to early clinical diagnosis of AD and development trends of the detection techniques have been prospected.
Collapse
Affiliation(s)
- Jie Fan
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xiuhua Wei
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Guoqing Xiao
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
30
|
Mendes Hacke AC, Lima D, Kuss S. Green synthesis of electroactive nanomaterials by using plant-derived natural products. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Wang C, Zhao P, Zhang L, Wang Y, Fu Q, Li R, Li J, Li C, Xie Y, Fei J. Switched electrochemical sensor for hydroquinone based on rGO@Au, monoclinic BiVO4 and temperature-sensitive polymer composite material. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Xu Z, Ma Y, Dai H, Tan S, Han B. Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials. Polymers (Basel) 2022; 14:polym14153110. [PMID: 35956625 PMCID: PMC9370577 DOI: 10.3390/polym14153110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Silk fibroin and three kinds of graphene-based materials (graphene, graphene oxide, and reduced graphene oxide) have been widely investigated in biomedical fields. Recently, the hybrid composites of silk fibroin and graphene-based materials have attracted much attention owing to their combined advantages, i.e., presenting outstanding biocompatibility, mechanical properties, and excellent electrical conductivity. However, maintaining bio-toxicity and biodegradability at a proper level remains a challenge for other applications. This report describes the first attempt to summarize the hybrid composites’ preparation methods, properties, and applications to the best of our knowledge. We strongly believe that this review will open new doors for coming researchers.
Collapse
|
33
|
Urbanos FJ, Gullace S, Samorì P. MoS 2 Defect Healing for High-Performance Chemical Sensing of Polycyclic Aromatic Hydrocarbons. ACS NANO 2022; 16:11234-11243. [PMID: 35796589 DOI: 10.1021/acsnano.2c04503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The increasing population and industrial development are responsible for environmental pollution. Among toxic chemicals, polycyclic aromatic hydrocarbons (PAHs) are highly carcinogenic contaminants resulting from the incomplete combustion of organic materials. Two-dimensional materials, such as transition metal dichalcogenides (TMDCs), are ideal sensory scaffolds, combining high surface-to-volume ratio with physical and chemical properties that are strongly susceptible to environmental changes. TMDCs can be integrated in field-effect transistors (FETs), which can operate as high-performance chemical detectors of (non)covalent interaction with small molecules. Here, we have developed MoS2-based FETs as platforms for PAHs sensing, relying on the affinity of the planar polyaromatic molecules for the basal plane of MoS2 and the structural defects in its lattice. X-ray photoelectron spectroscopy analysis, photoluminescence measurements, and transfer characteristics showed a notable reduction in the defectiveness of MoS2 and a p-type doping upon exposure to PAHs solutions, with a magnitude determined by the correlation between the ionization energies (EI) of the PAH and that of MoS2. Naphthalene, endowed with the higher EI among the studied PAHs, exhibited the highest output. We observed a log-log correlation between MoS2 doping and naphthalene concentration in water in a wide range (10-9-10-6 M), as well as a reversible response to the analyte. Naphthalene concentrations as low as 0.128 ppb were detected, being below the limits imposed by health regulations for drinking water. Furthermore, our MoS2 devices can reversibly detect vapors of naphthalene with both an electrical and optical readout, confirming that our architecture could operate as a dual sensing platform.
Collapse
Affiliation(s)
- Fernando J Urbanos
- University of Strasbourg, CNRS, ISIS, UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| | - Sara Gullace
- University of Strasbourg, CNRS, ISIS, UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS, UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| |
Collapse
|
34
|
Cortés-Arriagada D, Barria N, Ortega DE, Araya-Durán I, Belén Camarada M. A first-principles study on the adsorption properties of phosphorene oxide for pollutant removal from water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Muratore C, Muratore MK, Austin DR, Miesle P, Benton AK, Beagle LK, Motala MJ, Moore DC, Slocik JM, Brothers MC, Kim SS, Krupa K, Back TA, Grant JT, Glavin NR. Laser-Fabricated 2D Molybdenum Disulfide Electronic Sensor Arrays for Rapid, Low-Cost, Ultrasensitive Detection of Influenza A and SARS-Cov-2. ADVANCED MATERIALS INTERFACES 2022; 9:2102209. [PMID: 35538926 PMCID: PMC9073982 DOI: 10.1002/admi.202102209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Multiplex electronic antigen sensors for detection of SARS-Cov-2 spike glycoproteins and hemagglutinin from influenza A are fabricated using scalable processes for straightforward transition to economical mass-production. The sensors utilize the sensitivity and surface chemistry of a 2D MoS2 transducer for attachment of antibody fragments in a conformation favorable for antigen binding with no need for additional linker molecules. To make the devices, ultra-thin layers (3 nm) of amorphous MoS2 are sputtered over pre-patterned metal electrical contacts on a glass chip at room temperature. The amorphous MoS2 is then laser annealed to create an array of semiconducting 2H-MoS2 transducer regions between metal contacts. The semiconducting crystalline MoS2 region is functionalized with monoclonal antibody fragments complementary to either SARS-CoV-2 S1 spike protein or influenza A hemagglutinin. Quartz crystal microbalance experiments indicate strong binding and maintenance of antigen avidity for antibody fragments bound to MoS2. Electrical resistance measurements of sensors exposed to antigen concentrations ranging from 2-20 000 pg mL-1 reveal selective responses. Sensor architecture is adjusted to produce an array of sensors on a single chip suited for detection of analyte concentrations spanning six orders of magnitude from pg mL-1 to µg mL-1.
Collapse
Affiliation(s)
- Christopher Muratore
- Department of Chemical and Materials EngineeringUniversity of DaytonDaytonOH45469USA
- m‐nanotech Ltd.DaytonOH45409USA
| | - Melani K. Muratore
- m‐nanotech Ltd.DaytonOH45409USA
- Department of BiologyUniversity of DaytonDaytonOH45469USA
| | - Drake R. Austin
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Paige Miesle
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
- Department of Mechanical EngineeringDaytonOH45469USA
| | - Anna K. Benton
- Department of Chemical and Materials EngineeringUniversity of DaytonDaytonOH45469USA
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Lucas K. Beagle
- Department of Chemical and Materials EngineeringUniversity of DaytonDaytonOH45469USA
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Michael J. Motala
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - David C. Moore
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Joseph M. Slocik
- UES Inc.DaytonOH45432USA
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Michael C. Brothers
- UES Inc.DaytonOH45432USA
- 711
Human Performance WingAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Steve S. Kim
- 711
Human Performance WingAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Kristen Krupa
- Department of Chemical and Materials EngineeringUniversity of DaytonDaytonOH45469USA
| | - Tyson A. Back
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | | | - Nicholas R. Glavin
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| |
Collapse
|
36
|
Noise Spectrum as a Source of Information in Gas Sensors Based on Liquid-Phase Exfoliated Graphene. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surfaces of adsorption-based gas sensors are often heterogeneous, with adsorption sites that differ in their affinities for gas particle binding. Knowing adsorption/desorption energies, surface densities and the relative abundance of sites of different types is important, because these parameters impact sensor sensitivity and selectivity, and are relevant for revealing the response-generating mechanisms. We show that the analysis of the noise of adsorption-based sensors can be used to study gas adsorption on heterogeneous sensing surfaces, which is applicable to industrially important liquid-phase exfoliated (LPE) graphene. Our results for CO2 adsorption on an LPE graphene surface, with different types of adsorption sites on graphene flake edges and basal planes, show that the noise spectrum data can be used to characterize such surfaces in terms of parameters that determine the sensing properties of the adsorbing material. Notably, the spectrum characteristic frequencies are an unambiguous indicator of the relative abundance of different types of adsorption sites on the sensing surface and their surface densities. We also demonstrate that spectrum features indicate the fraction of the binding sites that are already occupied by another gas species. The presented study can be applied to the design and production of graphene and other sensing surfaces with an optimal sensing performance.
Collapse
|
37
|
Murphy BB, Apollo NV, Unegbu P, Posey T, Rodriguez-Perez N, Hendricks Q, Cimino F, Richardson AG, Vitale F. Vitamin C-reduced graphene oxide improves the performance and stability of multimodal neural microelectrodes. iScience 2022; 25:104652. [PMID: 35811842 PMCID: PMC9263525 DOI: 10.1016/j.isci.2022.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/28/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022] Open
Abstract
Nanocarbons are often employed as coatings for neural electrodes to enhance surface area. However, processing and integrating them into microfabrication flows requires complex and harmful chemical and heating conditions. This article presents a safe, scalable, cost-effective method to produce reduced graphene oxide (rGO) coatings using vitamin C (VC) as the reducing agent. We spray coat GO + VC mixtures onto target substrates, and then heat samples for 15 min at 150°C. The resulting rGO films have conductivities of ∼44 S cm−1, and are easily integrated into an ad hoc microfabrication flow. The rGO/Au microelectrodes show ∼8x lower impedance and ∼400x higher capacitance than bare Au, resulting in significantly enhanced charge storage and injection capacity. We subsequently use rGO/Au arrays to detect dopamine in vitro, and to map cortical activity intraoperatively over rat whisker barrel cortex, demonstrating that conductive VC-rGO coatings improve the performance and stability of multimodal microelectrodes for different applications. Easy, scalable, and safe reduction method to create rGO films with vitamin C VC-rGO coatings improve the performance of bare gold microelectrodes in vitro VC-rGO coatings enable the voltammetric detection of dopamine on the microscale rGO/Au electrode arrays enable high-resolution microscale recording in vivo
Collapse
Affiliation(s)
- Brendan B. Murphy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Nicholas V. Apollo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Placid Unegbu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Tessa Posey
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29206, USA
| | - Nancy Rodriguez-Perez
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Quincy Hendricks
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesca Cimino
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew G. Richardson
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, PA 19146, USA
- Corresponding author
| |
Collapse
|
38
|
Akkanen STM, Fernandez HA, Sun Z. Optical Modification of 2D Materials: Methods and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110152. [PMID: 35139583 DOI: 10.1002/adma.202110152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
2D materials are under extensive research due to their remarkable properties suitable for various optoelectronic, photonic, and biological applications, yet their conventional fabrication methods are typically harsh and cost-ineffective. Optical modification is demonstrated as an effective and scalable method for accurate and local in situ engineering and patterning of 2D materials in ambient conditions. This review focuses on the state of the art of optical modification of 2D materials and their applications. Perspectives for future developments in this field are also discussed, including novel laser tools, new optical modification strategies, and their emerging applications in quantum technologies and biotechnologies.
Collapse
Affiliation(s)
| | - Henry Alexander Fernandez
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| |
Collapse
|
39
|
Ponzoni A. Metal Oxide Chemiresistors: A Structural and Functional Comparison between Nanowires and Nanoparticles. SENSORS 2022; 22:s22093351. [PMID: 35591040 PMCID: PMC9099833 DOI: 10.3390/s22093351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023]
Abstract
Metal oxide nanowires have become popular materials in gas sensing, and more generally in the field of electronic and optoelectronic devices. This is thanks to their unique structural and morphological features, namely their single-crystalline structure, their nano-sized diameter and their highly anisotropic shape, i.e., a large length-to-diameter aspect ratio. About twenty years have passed since the first publication proposing their suitability for gas sensors, and a rapidly increasing number of papers addressing the understanding and the exploitation of these materials in chemosensing have been published. Considering the remarkable progress achieved so far, the present paper aims at reviewing these results, emphasizing the comparison with state-of-the-art nanoparticle-based materials. The goal is to highlight, wherever possible, how results may be related to the particular features of one or the other morphology, what is effectively unique to nanowires and what can be obtained by both. Transduction, receptor and utility-factor functions, doping, and the addition of inorganic and organic coatings will be discussed on the basis of the structural and morphological features that have stimulated this field of research since its early stage.
Collapse
Affiliation(s)
- Andrea Ponzoni
- National Institute of Optics (INO) Unit of Brescia, National Research Council (CNR), 25123 Brescia, Italy; ; Tel.: +39-030-3711440
- National Institute of Optics (INO) Unit of Lecco, National Research Council (CNR), 23900 Lecco, Italy
| |
Collapse
|
40
|
Abdulradha SK, Hussein MT, Abdulsattar MA. Study of the interaction between reduced graphene oxide and NO 2 gas molecules via density functional theory (DFT). INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22500090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Freddi S, Gonzalez MCR, Carro P, Sangaletti L, De Feyter S. Chemical Defect-Driven Response on Graphene-Based Chemiresistors for Sub-ppm Ammonia Detection. Angew Chem Int Ed Engl 2022; 61:e202200115. [PMID: 35156288 DOI: 10.1002/anie.202200115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Gas sensors are essential in several fields and, in general, features such as high sensitivity, quick response, and fast recovery are required, along with low power consumption and low cost. Graphene is considered a promising material for gas sensing applications, its functionalization often being a requisite. In the present study, we developed competitive and promising gas sensors for ammonia detection. Interestingly, we present an easy and efficient method to functionalize graphene by using diazonium chemistry with different functional groups. Moreover, we prove the superior sensing capability of our covalently modified graphene layers. These experimental data have been consistently interpreted by theoretical calculations, which reveal a defect-driven sensor's response to ammonia. These results open the possibility of a comprehensive design and use of these graphene-based sensors in real applications.
Collapse
Affiliation(s)
- Sonia Freddi
- Surface Science and Spectroscopy lab @ I-Lamp, Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta 48, 25123, Brescia, Italy.,Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Miriam C Rodriguez Gonzalez
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Pilar Carro
- Área de Química Física, Departamento de Química, Facultad de Ciencias, Instituto de Materiales y Nanotecnología (IMN), Universidad de La Laguna, Avda. Francisco Sánchez, s/n 38200, La Laguna, Tenerife, Spain
| | - Luigi Sangaletti
- Surface Science and Spectroscopy lab @ I-Lamp, Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Via della Garzetta 48, 25123, Brescia, Italy
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
42
|
Rational Synthesis of Rare-Earth Lanthanum Molybdate Covered Reduced Graphene Oxide Nanocomposites for the Voltammetric Detection of Moxifloxacin hydrochloride. Bioelectrochemistry 2022; 146:108145. [DOI: 10.1016/j.bioelechem.2022.108145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/23/2023]
|
43
|
Chen X, Shi J, Wang T, Zheng S, Lv W, Chen X, Yang J, Zeng M, Hu N, Su Y, Wei H, Zhou Z, Yang Z. High-Performance Wearable Sensor Inspired by the Neuron Conduction Mechanism through Gold-Induced Sulfur Vacancies. ACS Sens 2022; 7:816-826. [PMID: 35188381 DOI: 10.1021/acssensors.1c02452] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Practical application of wearable gas-sensing devices has been greatly inhibited by the poorly sensitive and specific recognition of target gases. Rapid charge transfer caused by rich sensory neurons in the biological olfactory system has inspired the construction of a highly sensitive sensor network with abundant defect sites for adsorption. Herein, for the first time, we demonstrate an in situ formed neuron-mimic gas sensor in a single gas-sensing channel, which is derived from lattice deviation of S atoms in Bi2S3 nanosheets induced by gold quantum dots. Due to the favorable gas adsorption and charge transfer properties arising from S vacancies, the fabricated sensor exhibits a significantly enhanced response value of 5.6-5 ppm NO2, ultrafast response/recovery performance (18 and 338 s), and excellent selectivity. Furthermore, real-time visual detection of target gases has been accomplished by integrating the flexible sensor into a wearable device.
Collapse
Affiliation(s)
- Xinwei Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jia Shi
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Tao Wang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shuyue Zheng
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Wen Lv
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiyu Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hao Wei
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhihua Zhou
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Institute of Marine Equipment, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
44
|
Dey J, Roberts A, Mahari S, Gandhi S, Tripathi PP. Electrochemical Detection of Alzheimer’s Disease Biomarker, β-Secretase Enzyme (BACE1), With One-Step Synthesized Reduced Graphene Oxide. Front Bioeng Biotechnol 2022; 10:873811. [PMID: 35402415 PMCID: PMC8987718 DOI: 10.3389/fbioe.2022.873811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/14/2023] Open
Abstract
β-Secretase1 (BACE1) catalyzes the rate-limiting step in the generation of amyloid-β peptides, that is, the principal component involved in the pathology of Alzheimer’s disease (AD). Recent research studies show correlation between blood and cerebrospinal fluid (CSF) levels of BACE1 with the pathophysiology of AD. In this study, we report one-step synthesized reduced graphene oxide (rGO), activated via carbodiimide chemistry, conjugated with BACE1 antibody (Ab), and immobilized on fluorine-doped tin oxide (FTO) electrodes for rapid detection of BACE1 antigen (Ag) for AD diagnosis. The synthesis and fabrication steps were characterized using different types of spectroscopic, X-ray analytic, microscopic, and voltametric techniques. Various parameters including nanomaterial/Ab concentration, response time, pH, temperature, and rate of scan were standardized for maximum current output using the modified electrode. Final validation was performed via detection of BACE1 Ag ranging from 1 fM to 1 µM, with a detection limit of 0.64 fM in buffer samples and 1 fM in spiked serum samples, as well as negligible cross-reactivity with neurofilament Ag in buffer, spiked serum, and spiked artificial CSF. The proposed immunosensor gave a quick result in 30 s, and good repeatability and storage stability for a month, making it a promising candidate for sensitive, specific, and early diagnosis of AD. Thus, the fabricated electrochemical biosensor for BACE-1 detection improves detection performance compared to existing sensors as well as reduces detection time and cost, signifying its potential in early diagnosis of AD in clinical samples.
Collapse
Affiliation(s)
- Jhilik Dey
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Cell Biology and Physiology Division, IICB-Translational Research Unit of Excellence, Kolkata, India
| | - Akanksha Roberts
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Subhasis Mahari
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
- *Correspondence: Sonu Gandhi, , ; Prem Prakash Tripathi,
| | - Prem Prakash Tripathi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Cell Biology and Physiology Division, IICB-Translational Research Unit of Excellence, Kolkata, India
- *Correspondence: Sonu Gandhi, , ; Prem Prakash Tripathi,
| |
Collapse
|
45
|
Lopez RM, White JR, Truong L, Tanguay RL. Size- and Oxidation-Dependent Toxicity of Graphene Oxide Nanomaterials in Embryonic Zebrafish. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1050. [PMID: 35407167 PMCID: PMC9000472 DOI: 10.3390/nano12071050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/13/2022] [Accepted: 03/19/2022] [Indexed: 11/29/2022]
Abstract
Graphene oxides (GOs) are a popular graphene alternative. The goal of this study was to compare the biocompatibility of a diversity of well-characterized GOs. Our previous work advanced developmental zebrafish as a model to interrogate the interactions and biological responses following exposures to engineered nanomaterials (ENMs). Here, we investigated GO 250 nm × 250 nm (sGO), 400 nm × 400 nm (mGO), and 1 μm × 1 μm (lGO), partially reduced GO (prGO) 400 nm × 400 nm, and reduced GO (rGO) 400 nm × 400 nm and 2 μm × 2 μm, which first underwent extensive characterization under the support of the Nanomaterials Health Implications Research (NHIR) Consortium. GOs were stabilized in water (GOs), while prGO and rGOs were dispersed in sodium cholate. Zebrafish were statically exposed to up to 50 μg/mL of each material from 6 h post-fertilization (hpf) until 120 hpf. Toxicity was dependent on GO properties. mGO was the most toxic material; its effects manifested in the yolk syncytial layer (YSL). Additionally, sodium cholate stabilization significantly increased GO toxicity. The observed effects were size- and oxidation-state-dependent, revealing the importance of identifying the structure-specific toxicity of GOs.
Collapse
Affiliation(s)
| | | | | | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, USA; (R.M.L.); (J.R.W.); (L.T.)
| |
Collapse
|
46
|
Freddi S, Gonzalez MCR, Carro P, Sangaletti L, De Feyter S. Chemical Defect‐Driven Response on Graphene‐Based Chemiresistors for Sub‐ppm Ammonia Detection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sonia Freddi
- Surface Science and Spectroscopy lab @ I-Lamp Department of Mathematics and Physics Università Cattolica del Sacro Cuore Via della Garzetta 48 25123 Brescia Italy
- Department of Chemistry Division of Molecular Imaging and Photonics KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Miriam C. Rodriguez Gonzalez
- Department of Chemistry Division of Molecular Imaging and Photonics KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Pilar Carro
- Área de Química Física, Departamento de Química Facultad de Ciencias Instituto de Materiales y Nanotecnología (IMN) Universidad de La Laguna Avda. Francisco Sánchez, s/n 38200, La Laguna Tenerife Spain
| | - Luigi Sangaletti
- Surface Science and Spectroscopy lab @ I-Lamp Department of Mathematics and Physics Università Cattolica del Sacro Cuore Via della Garzetta 48 25123 Brescia Italy
| | - Steven De Feyter
- Department of Chemistry Division of Molecular Imaging and Photonics KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
47
|
Leve ZD, Iwuoha EI, Ross N. The Synergistic Properties and Gas Sensing Performance of Functionalized Graphene-Based Sensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1326. [PMID: 35207867 PMCID: PMC8877958 DOI: 10.3390/ma15041326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022]
Abstract
The detection of toxic gases has long been a priority in industrial manufacturing, environmental monitoring, medical diagnosis, and national defense. The importance of gas sensing is not only of high benefit to such industries but also to the daily lives of people. Graphene-based gas sensors have elicited a lot of interest recently, due to the excellent physical properties of graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO). Graphene oxide and rGO have been shown to offer large surface areas that extend their active sites for adsorbing gas molecules, thereby improving the sensitivity of the sensor. There are several literature reports on the promising functionalization of GO and rGO surfaces with metal oxide, for enhanced performance with regard to selectivity and sensitivity in gas sensing. These synthetic and functionalization methods provide the ideal combination/s required for enhanced gas sensors. In this review, the functionalization of graphene, synthesis of heterostructured nanohybrids, and the assessment of their collaborative performance towards gas-sensing applications are discussed.
Collapse
Affiliation(s)
| | | | - Natasha Ross
- SensorLab, Chemistry Department, University of the Western Cape, Cape Town 7535, South Africa; (Z.D.L.); (E.I.I.)
| |
Collapse
|
48
|
Akram Keramat AX, Kadkhoda J, Farahzadi R, Fathi E, Davaran S. The potential of Graphene Oxide and reduced Graphene Oxide in diagnosis and treatment of Cancer. Curr Med Chem 2022; 29:4529-4546. [PMID: 35135444 DOI: 10.2174/0929867329666220208092157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Nanotechnology is a pioneer field of study; for engineering smart nanosystems in targeted diagnosis and treatment in cancer therapy. The potent therapy for different kinds of solid tumors should ideally target individually the cancerous cells and tissue with no impact on healthy cells in the body. Nano-sized graphene oxide (GO) and reduced graphene oxide (rGO) have phenomenal chemical versatility, high surface area ratio, and supernatural physical properties. The synergistic effects caused by the well-defined assembly of GO and rGO surface generate not only essential optical, mechanical, but also electronic behaviors. Developing novel multifunctional hybrid nanoparticles with great potential is highly considered in multimodal cancer treatment. GO, and rGO are engineered as a programmable targeting delivery system and combed with photonic energy they utilize in photothermal therapy. Its remarkable properties indicated its applications as a biosensor, bio-imaging for cancer diagnosis. In this current review, we show a remarkable highlight about GO, rGO, and discuss the notable applications for cancer diagnosis and treatment, and an overview of possible cellular signaling pathways that are affected by GO, rGO in cancer treatment.
Collapse
Affiliation(s)
- Akram X Akram Keramat
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamileh Kadkhoda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz-Iran
| | - Soodabeh Davaran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Synthesis and Applications of Graphene Oxide. MATERIALS 2022; 15:ma15030920. [PMID: 35160865 PMCID: PMC8839209 DOI: 10.3390/ma15030920] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 01/27/2023]
Abstract
Thanks to the unique properties of graphite oxides and graphene oxide (GO), this material has become one of the most promising materials that are widely studied. Graphene oxide is not only a precursor for the synthesis of thermally or chemically reduced graphene: researchers revealed a huge amount of unique optical, electronic, and chemical properties of graphene oxide for many different applications. In this review, we focus on the structure and characterization of GO, graphene derivatives prepared from GO and GO applications. We describe GO utilization in environmental applications, medical and biological applications, freestanding membranes, and various composite systems.
Collapse
|
50
|
Ma X, Song Y, Wang Y, Yao S, Vafai K. Amelioration of pool boiling thermal performance utilizing graphene-silver hybrid nanofluids. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|