1
|
Saerens G, Ellrott G, Pashina O, Deriy I, Krstić V, Petrov M, Chekhova M, Grange R. Second-Order Nonlinear Circular Dichroism in Square Lattice Array of Germanium Nanohelices. ACS PHOTONICS 2024; 11:3630-3635. [PMID: 39310292 PMCID: PMC11413925 DOI: 10.1021/acsphotonics.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/25/2024]
Abstract
Second-harmonic generation (SHG) is prohibited in centrosymmetric crystals such as silicon or germanium due to the presence of inversion symmetry. However, the structuring of such materials makes it possible to break the inversion symmetry, thus achieving generation of second-harmonic. Moreover, various symmetry properties of the resulting structure, such as chirality, also influence the SHG. In this work, we investigate second-harmonic generation from an array of nanohelices made of germanium. The intensity of the second-harmonic displayed a remarkable enhancement of over 100 times compared to a nonstructured Ge thin film, revealing the influence of interaction between nanohelices. In particular, nonlinear circular dichroism, characterized through the SHG anisotropy factor g SHG-CD, changed its sign not only with the helix handedness but also with its density as well. We believe that our discoveries will open up new paths for the development of nonlinear photonics based on metamaterials and metasurfaces made of centrosymmetric materials.
Collapse
Affiliation(s)
- Grégoire Saerens
- ETH
Zurich, Department of Physics, Institute
for Quantum Electronics, Optical Nanomaterial Group, 8093 Zurich, Switzerland
| | - Günter Ellrott
- Department
of Physics, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Olesia Pashina
- School
of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russia
- University
of Brescia, Department of Information Engineering, Via Branze 38, 25123, Brescia, Italy
| | - Ilya Deriy
- School
of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russia
- Qingdao
Innovation and Development Center, Harbin
Engineering University, Sansha road 1777, Qingdao, 266000, Shandong China
| | - Vojislav Krstić
- Department
of Physics, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Mihail Petrov
- School
of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russia
| | - Maria Chekhova
- Department
of Physics, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
- Max-Planck
Institute for the Science of Light, 91058 Erlangen, Germany
| | - Rachel Grange
- ETH
Zurich, Department of Physics, Institute
for Quantum Electronics, Optical Nanomaterial Group, 8093 Zurich, Switzerland
| |
Collapse
|
2
|
Oddi V, Zhu C, Becker MA, Sahin Y, Dirin DN, Kim T, Mahrt RF, Even J, Rainò G, Kovalenko MV, Stöferle T. Circularly Polarized Luminescence Without External Magnetic Fields from Individual CsPbBr 3 Perovskite Quantum Dots. ACS NANO 2024; 18:17218-17227. [PMID: 38904261 PMCID: PMC11223489 DOI: 10.1021/acsnano.4c04392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Lead halide perovskite quantum dots (QDs), the latest generation of the colloidal QD family, exhibit outstanding optical properties, which are now exploited as both classical and quantum light sources. Most of their rather exceptional properties are related to the peculiar exciton fine-structure of band-edge states, which can support unique bright triplet excitons. The degeneracy of the bright triplet excitons is lifted with energetic splitting in the order of millielectronvolts, which can be resolved by the photoluminescence (PL) measurements of single QDs at cryogenic temperatures. Each bright exciton fine-structure-state (FSS) exhibits a dominantly linear polarization, in line with several theoretical models based on the sole crystal field, exchange interaction, and shape anisotropy. Here, we show that in addition to a high degree of linear polarization, the individual exciton FSS can exhibit a non-negligible degree of circular polarization even without external magnetic fields by investigating the four Stokes parameters of the exciton fine-structure in individual CsPbBr3 QDs through Stokes polarimetric measurements. We observe a degree of circular polarization up to ∼38%, which could not be detected by using the conventional polarimetric technique. In addition, we found a consistent transition from left- to right-hand circular polarization within the fine-structure triplet manifold, which was observed in magnetic-field-dependent experiments. Our optical investigation provides deeper insights into the nature of the exciton fine structures and thereby drives the yet-incomplete understanding of the unique photophysical properties of this class of QDs for the benefit of future applications in chiral quantum optics.
Collapse
Affiliation(s)
- Virginia Oddi
- IBM
Research Europe—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Chenglian Zhu
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Michael A. Becker
- IBM
Research Europe—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Yesim Sahin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Dmitry N. Dirin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Taehee Kim
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Rainer F. Mahrt
- IBM
Research Europe—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Jacky Even
- Université
de Rennes, INSA Rennes, CNRS, Institut FOTON - UMR6082, 35000 Rennes, France
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa,
Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Thilo Stöferle
- IBM
Research Europe—Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
3
|
Zhang CC, Zhang JY, Feng JR, Liu ST, Ding SJ, Ma L, Wang QQ. Plasmon-enhanced second harmonic generation of metal nanostructures. NANOSCALE 2024; 16:5960-5975. [PMID: 38446099 DOI: 10.1039/d3nr06675d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
As the most common nonlinear optical process, second harmonic generation (SHG) has important application value in the field of nanophotonics. With the rapid development of metal nanomaterial processing and chemical preparation technology, various structures based on metal nanoparticles have been used to achieve the enhancement and modulation of SHG. In the field of nonlinear optics, plasmonic metal nanostructures have become potential candidates for nonlinear optoelectronic devices because of their highly adjustable physical characteristics. In this article, first, the basic optical principles of SHG and the source of surface symmetry breaking in metal nanoparticles are briefly introduced. Next, the related reports on SHG in metal nanostructures are reviewed from three aspects: the enhancement of SHG efficiency by double resonance structures, the SHG effect based on magnetic resonance and the harmonic energy transfer. Then, the applications of SHG in the sensing, imaging and in situ monitoring of metal nanostructures are summarized. Future opportunities for SHG in composite systems composed of metal nanostructures and two-dimensional materials are also proposed.
Collapse
Affiliation(s)
- Cong-Cong Zhang
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Jia-Yi Zhang
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Jing-Ru Feng
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Si-Ting Liu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, P. R. China.
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Qu-Quan Wang
- School of Science, Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| |
Collapse
|
4
|
Pranav, Bajpai A, Dwivedi PK, Sivakumar S. Chiral nanomaterial-based approaches for diagnosis and treatment of protein-aggregated neurodiseases: current status and future opportunities. J Mater Chem B 2024; 12:1991-2005. [PMID: 38333942 DOI: 10.1039/d3tb02381h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Protein misfolding and its aggregation, known as amyloid aggregates (Aβ), are some of the major causes of more than 20 diseases such as Parkinson's disease, Alzheimer's disease, and type 2 diabetes. The process of Aβ formation involves an energy-driven oligomerization of Aβ monomers, leading to polymerization and eventual aggregation into fibrils. Aβ fibrils exhibit multilevel chirality arising from its amino acid residues and the arrangement of folded polypeptide chains; thus, a chirality-driven approach can be utilized for the detection and inhibition of Aβ fibrils. In this regard, chiral nanomaterials have recently opened new possibilities for various biomedical applications owing to their stereoselective interaction with biological systems. Leveraging this chirality-driven approach with chiral nanomaterials against protein-aggregated diseases could yield promising results, particularly in the early detection of Aβ forms and the inhibition of Aβ aggregate formation via specific and strong "chiral-chiral interaction." Despite the advantages, the development of advanced theranostic systems using chiral nanomaterials against protein-aggregated diseases has received limited attention so far because of considerably limited formulations for chiral nanomaterials and lack of information of their chiroptical behavior. This review aims to present the current status of chiral nanomaterials explored for detecting and inhibiting Aβ forms. This review covers the origin of chirality in amyloid fibrils and nanomaterials and different chiral detection methods; furthermore, different chiral nanosystems such as chiral plasmonic nanomaterials, chiral carbon-based nanomaterials, and chiral nanosurfaces, which have been used so far for different therapeutic applications against protein-aggregated diseases, are discussed in detail. The findings from this review may pave the way for the development of novel approaches using chiral nanomaterials to combat diseases resulting from protein misfolding and can further be extended to other disease forms.
Collapse
Affiliation(s)
- Pranav
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Abhishek Bajpai
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Prabhat K Dwivedi
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
| | - Sri Sivakumar
- Centre for Nanosciences, Indian Institute of Technology, Kanpur 208016, India.
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
- Materials Science Program, Indian Institute of Technology, Kanpur 208016, India
- Centre for Environmental Science and Engineering, India
| |
Collapse
|
5
|
Endo K, Hashiyada S, Narushima T, Togawa Y, Okamoto H. Circular dichroism of pseudo-two-dimensional metal nanostructures: Rotational symmetry and reciprocity. J Chem Phys 2023; 159:234706. [PMID: 38112510 DOI: 10.1063/5.0178943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
Circular dichroism (CD) spectra for pseudo-two-dimensional chiral nanomaterials were systematically investigated and analyzed in relation to the rotational symmetry of the nanomaterials. Theoretically, an ideal two-dimensional chiral matter is CD inactive for light incident normal to the plane if it possesses threefold or higher rotational symmetry. If the matter has two- or onefold rotational symmetry, it should exhibit CD activity, and the CD signal measured from the back side of the matter is expected to be inverted from that measured from the front side. For pseudo-two-dimensional chiral gold nanostructures fabricated on glass substrates using electron beam lithography, matter with fourfold rotational symmetry is found to be CD active, even when special care is taken to ensure that the optical environments for the front and back sides of the sample are equivalent. In this case, the CD signal measured from the back side is found to be almost exactly the same as that measured from the front side. It is revealed that the observed chiro-optical behavior arises from three-dimensional chiral characteristics due to differences in the surface shape between the front and back sides of the structures. For matter that is two- or onefold rotationally symmetric, the CD signal measured from the back side is not coincident with that from the front side. For certain wavelength regions, the CD signals measured from the front side and back side are observed to be similar, while at other wavelengths, the inverted component of the CD signals is found to dominate. The observed CD spectral behavior for reciprocal optical measurement configurations is considered to be determined by a balance between the in-plane isotropic and anisotropic components of the chiral permittivity.
Collapse
Affiliation(s)
- Kensaku Endo
- Department of Physics and Electronics, School of Engineering, Osaka Metropolitan University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Shun Hashiyada
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Graduate University of Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsuya Narushima
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Graduate University of Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yoshihiko Togawa
- Department of Physics and Electronics, School of Engineering, Osaka Metropolitan University, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiromi Okamoto
- Institute for Molecular Science, National Institutes of Natural Sciences, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Graduate University of Advanced Studies (Sokendai), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
6
|
Gryb D, Wendisch FJ, Aigner A, Gölz T, Tittl A, de S. Menezes L, Maier SA. Two-Dimensional Chiral Metasurfaces Obtained by Geometrically Simple Meta-atom Rotations. NANO LETTERS 2023; 23:8891-8897. [PMID: 37726256 PMCID: PMC10571149 DOI: 10.1021/acs.nanolett.3c02168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Indexed: 09/21/2023]
Abstract
Two-dimensional chiral metasurfaces seem to contradict Lord Kelvin's geometric definition of chirality since they can be made to coincide by performing rotational operations. Nevertheless, most planar chiral metasurface designs often use complex meta-atom shapes to create flat versions of three-dimensional helices, although the visual appearance does not improve their chiroptical response but complicates their optimization and fabrication due to the resulting large parameter space. Here we present one of the geometrically simplest two-dimensional chiral metasurface platforms consisting of achiral dielectric rods arranged in a square lattice. Chirality is created by rotating the individual meta-atoms, making their arrangement chiral and leading to chiroptical responses that are stronger or comparable to more complex designs. We show that resonances depending on the arrangement are robust against geometric variations and behave similarly in experiments and simulations. Finally, we explain the origin of chirality and behavior of our platform by simple considerations of the geometric asymmetry and gap size.
Collapse
Affiliation(s)
- Dmytro Gryb
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Andreas Aigner
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Thorsten Gölz
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, PE, Brazil
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Physics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
7
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
8
|
Jones RR, Miksch C, Kwon H, Pothoven C, Rusimova KR, Kamp M, Gong K, Zhang L, Batten T, Smith B, Silhanek AV, Fischer P, Wolverson D, Valev VK. Dense Arrays of Nanohelices: Raman Scattering from Achiral Molecules Reveals the Near-Field Enhancements at Chiral Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209282. [PMID: 36631958 DOI: 10.1002/adma.202209282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Against the background of the current healthcare and climate emergencies, surface enhanced Raman scattering (SERS) is becoming a highly topical technique for identifying and fingerprinting molecules, e.g., within viruses, bacteria, drugs, and atmospheric aerosols. Crucial for SERS is the need for substrates with strong and reproducible enhancements of the Raman signal over large areas and with a low fabrication cost. Here, dense arrays of plasmonic nanohelices (≈100 nm in length), which are of interest for many advanced nanophotonics applications, are investigated, and they are shown to present excellent SERS properties. As an illustration, two new ways to probe near-field enhancement generated with circular polarization at chiral metasurfaces are presented, first using the Raman spectra of achiral molecules (crystal violet) and second using a single, element-specific, achiral molecular vibrational mode (i.e., a single Raman peak). The nanohelices can be fabricated over large areas at a low cost and they provide strong, robust and uniform Raman enhancement. It is anticipated that these advanced materials will find broad applications in surface enhanced Raman spectroscopies and material science.
Collapse
Affiliation(s)
- Robin R Jones
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
| | - Cornelia Miksch
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Hyunah Kwon
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
| | - Coosje Pothoven
- VSPARTICLE, Molengraaffsingel 10, JD Delft, 2629, The Netherlands
| | - Kristina R Rusimova
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
| | - Maarten Kamp
- VSPARTICLE, Molengraaffsingel 10, JD Delft, 2629, The Netherlands
| | - Kedong Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Tim Batten
- Renishaw plc, New Mills, Kingswood, Wotton-under-Edge, GL12 8JR, UK
| | - Brian Smith
- Renishaw plc, New Mills, Kingswood, Wotton-under-Edge, GL12 8JR, UK
| | - Alejandro V Silhanek
- Experimental Physics of Nanostructured Materials, Q-MAT, CESAM, University of Liége, Sart Tilman, B-4000, Belgium
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Daniel Wolverson
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
| | - Ventsislav K Valev
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Claverton Down, BA2 7AY, UK
- Centre for Therapeutic Innovation, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
9
|
Gu L, Shu R, Liu X, Hu H, Zhan Q. Enhanced Diffractive Circular Dichroism from Stereoscopic Plasmonic Molecule Array. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1175. [PMID: 37049269 PMCID: PMC10096713 DOI: 10.3390/nano13071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Artificial nanostructures with large optical chiral responses have been intensively investigated recently. In this work, we propose a diffractive circular dichroism enhancement technique using stereoscopic plasmonic molecule structures. According to the multipole expansion analysis, the z-component of the electric dipole becomes the dominant chiral scattering mechanism during the interaction between an individual plasmonic molecule and the plane wave at a grazing angle. For a periodical structure with the designed plasmonic molecule, large diffractive circular dichroism can be obtained, which can be associated with the Wood-Rayleigh anomaly. Such a diffractive circular dichroism enhancement is verified by the good agreement between numerical simulations and experimental results. The proposed approach can be potentially used to develop enhanced spectroscopy techniques to measure chiral information, which is very important for fundamental physical and chemical research and bio-sensing applications.
Collapse
Affiliation(s)
- Liangliang Gu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Zhangjiang Laboratory, Shanghai 201204, China
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rong Shu
- Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Xiangfeng Liu
- Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Haifeng Hu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Zhangjiang Laboratory, Shanghai 201204, China
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiwen Zhan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Zhangjiang Laboratory, Shanghai 201204, China
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
10
|
Zhao Q, Zhang H, Zhou ZK, Wang XH. Enhancing chiroptical responses in the nanoparticle system by manipulating the far-field and near-field couplings. OPTICS EXPRESS 2023; 31:9376-9386. [PMID: 37157509 DOI: 10.1364/oe.484851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Employing nanostructure to generate large chiroptical response has been cultivated as an emerging field, for its great potentials in integrated optics, biochemistry detections, etc. However, the lack of intuitive approaches for analytically describing the chiroptical nanoparticles has discouraged researchers from effectively designing advanced chiroptical structures. In this work, we take the twisted nanorod dimer system as a basic example to provide an analytical approach from the perspective of mode coupling, including far-field coupling and near-field coupling of nanoparticles. Using this approach, we can calculate the expression of circular dichroism (CD) in the twisted nanorod dimer system, which can establish the analytical relationship between the chiroptical response and the basic parameters of this system. Our results show that the CD response can be engineered by modulating the structure parameters, and a high CD response of ∼ 0.78 under the guidance of this approach has been achieved.
Collapse
|
11
|
Chen Y, Yang Z, Wang L, Dong W, Chen Z. Chiral hybrid waveguide-plasmon resonances. OPTICS EXPRESS 2023; 31:5927-5939. [PMID: 36823862 DOI: 10.1364/oe.482211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
We investigate the chiroptical responses of the hybrid systems consisting of metal-insulator-metal (MIM) gammadion arrays on top of a dielectric slab waveguide. We demonstrate that both the transverse magnetic (TM) and transverse electric (TE) waveguide modes could be coupled to the antisymmetric localized surface plasmon resonances (LSPRs) of the individual MIM-gammadions, leading to the formation of narrow hybrid waveguide-plasmon resonances (WPRs), of which the TM-WPR is less dependent while the TE-WPR is highly dependent on the handedness of the incident light. Associated with the excitation of the TE-WPRs, strong negative and positive circular dichroism (CD) peaks with high quality factors could be obtained on the short-wavelength and long-wavelength side of the LSPRs of the MIM-gammadion, respectively. Moreover, we show that the variation on either the lattice period or slab waveguide thickness allows for easily tuning the TE-WPRs based CD peaks over a relative wide spectral range. Our proposed hybrid system provides tunable and strong CD responses with narrow linewidth, which may have applications in chiral selective imaging, chiral plasmonic bio-sensing and spectroscopy.
Collapse
|
12
|
Yang X, Huang S, Chikkaraddy R, Goerlitzer ESA, Chen F, Du J, Vogel N, Weiss T, Baumberg JJ, Hou Y. Chiral Plasmonic Shells: High-Performance Metamaterials for Sensitive Chiral Biomolecule Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53183-53192. [PMID: 36379040 DOI: 10.1021/acsami.2c16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Low-cost and large-area chiral metamaterials (CMs) are highly desirable for practical applications in chiral biosensors, nanophotonic chiral emitters, and beyond. A promising fabrication method takes advantage of self-assembled colloidal particles, onto which metal patches with defined orientation are created using glancing angle deposition (GLAD). However, using this method to make uniform and well-defined CMs over macroscopic areas is challenging. Here, we fabricate a uniform large-area colloidal particle array by interface-mediated self-assembly and precisely control the structural handedness of chiral plasmonic shells (CPSs) using GLAD. Strong chiroptical signals arise from twisted currents at the main, corner, and edge of CPSs, allowing a balance between strong chiroptical and high transmittance properties. Our shell-like chiral geometry shows excellent sensor performance in detecting chiral molecules due to the formation of uniform superchiral fields. Systematic investigations optimize the interplay between peak and null point resonances in different CPSs and result in a record consistency chiral sensor parameter U, i.e., 3.77 for null points and 0.0867 for peaks, which are about 54 and 1.257 times larger than the highest value (0.068) of previously reported CMs. The geometrical chirality, surface plasmonic resonance, chiral surface lattice resonance, and chiral sensor performance evidence the chiroptical effect and the excellent chiral sensor performance.
Collapse
Affiliation(s)
- Xiu Yang
- College of Physics, Sichuan University, Chengdu610065, China
| | - Shanshan Huang
- College of Physics, Sichuan University, Chengdu610065, China
| | - Rohit Chikkaraddy
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Eric S A Goerlitzer
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, ErlangenD-91058, Germany
| | - Feiliang Chen
- School of Electronics Science Engineering, University of Electronic Science and Technology of China, Chengdu610056, China
| | - Jinglei Du
- College of Physics, Sichuan University, Chengdu610065, China
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, ErlangenD-91058, Germany
| | - Thomas Weiss
- Physics Institute and Research Center SCoPE, University of Stuttgart, Stuttgart70569, Germany
- Institute of Physics, University of Graz, and NAWI Graz, Graz8010, Austria
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Yidong Hou
- College of Physics, Sichuan University, Chengdu610065, China
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| |
Collapse
|
13
|
Wang Y, Ai B, Wang Z, Guan Y, Chen X, Zhang G. Chiral nanohelmet array films with Three-Dimensional (3D) resonance cavities. J Colloid Interface Sci 2022; 626:334-344. [DOI: 10.1016/j.jcis.2022.06.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
|
14
|
Matthia T, Fix B, Soun L, Dupuis C, Bardou N, Bouchon P. High-efficiency second-harmonic generation in coupled nano Fabry-Perot thin resonators. OPTICS LETTERS 2022; 47:4415-4418. [PMID: 36048667 DOI: 10.1364/ol.465602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
In this paper we experimentally demonstrate second-harmonic generation (SHG) enhancement in thin 1D periodic plasmonic nanostructures on GaAs in the infrared spectral range. Due to the properly designed coupling of horizontal Fabry-Perot nanoresonators that occurs inside these structures, the obtained conversion efficiencies go up to the 10-7 W-1 range. Moreover, we demonstrate that the engineering of the plasmonic nanoantenna dimensions on the same GaAs layer can lead to SHG enhancement for pump wavelengths ranging from 2.8 µm to 3.3 µm.
Collapse
|
15
|
Lin WH, Wu PC, Akbari H, Rossman GR, Yeh NC, Atwater HA. Electrically Tunable and Dramatically Enhanced Valley-Polarized Emission of Monolayer WS 2 at Room Temperature with Plasmonic Archimedes Spiral Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104863. [PMID: 34725874 DOI: 10.1002/adma.202104863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/03/2021] [Indexed: 05/27/2023]
Abstract
Monolayer transition metal dichalcogenides (TMDs) have intrinsic valley degrees of freedom, making them appealing for exploiting valleytronic applications in information storage and processing. WS2 monolayer possesses two inequivalent valleys in the Brillouin zone, each valley coupling selectively with a circular polarization of light. The degree of valley polarization (DVP) under the excitation of circularly polarized light (CPL) is a parameter that determines the purity of valley polarized photoluminescence (PL) of monolayer WS2 . Here efficient tailoring of valley-polarized PL from monolayer WS2 at room temperature (RT) through surface plasmon-exciton interactions with plasmonic Archimedes spiral (PAS) nanostructures is reported. The DVP of WS2 at RT can be enhanced from <5% to 40% and 50% by using 2 turns (2T) and 4 turns (4T) of PAS, respectively. Further enhancement and control of excitonic valley polarization is demonstrated by electrostatically doping monolayer WS2 . For CPL on WS2 -2TPAS heterostructures, the 40% valley polarization is enhanced to 70% by modulating the carrier doping via a backgate, which may be attributed to the screening of momentum-dependent long-range electron-hole exchange interactions. The manifestation of electrically tunable valley-polarized emission from WS2 -PAS heterostructures presents a new strategy toward harnessing valley excitons for application in ultrathin valleytronic devices.
Collapse
Affiliation(s)
- Wei-Hsiang Lin
- Department of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hamidreza Akbari
- Department of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - George R Rossman
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Nai-Chang Yeh
- Department of Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Harry A Atwater
- Department of Applied Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
16
|
Zhou T, Ding SJ, Wu ZY, Yang DJ, Zhou LN, Zhao ZR, Ma L, Wang W, Ma S, Wang SM, Zou JN, Zhou L, Wang QQ. Synthesis of AuAg/Ag/Au open nanoshells with optimized magnetic plasmon resonance and broken symmetry for enhancing second-harmonic generation. NANOSCALE 2021; 13:19527-19536. [PMID: 34806104 DOI: 10.1039/d1nr04814g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cooperation of magnetic and electric plasmon resonances in cup-shaped metallic nanostructures exhibits significant capability for second-harmonic generation (SHG) enhancement. Herein, we report an approach for synthesizing Au open nanoshells with tunable numbers and sizes of openings on a template of six-pointed PbS nanostars. The morphology of Au nanoshells is controlled by adjusting the amount of HAuCl4, and the characteristic shapes of pointed nanocaps, open nanoshells, and hollow nanostars are obtained. Owing to the collaboration of electric and magnetic plasmon resonance modes, the Au nanoshells exhibit significantly broadened and highly tunable optical responses. Furthermore, the morphology-dependent SHG of the Au nanoshells shows two maximal SHG intensities, corresponding to four-opening and one-opening Au nanoshells with appropriate opening sizes. Ag/Au and AuAg/Ag/Au open nanoshells were further investigated to achieve enhanced SHG. By adjusting the thickness of the Ag shell, the SHG intensity of Ag/Au open nanoshells reaches a maximum due to the gradient field at the AuAg bimetallic interface. After replacing the Ag shells with Au shells, the SHG intensity of AuAg/Ag/Au open nanoshells reaches a maximum due to further symmetry breaking. These findings provide a strategy to prepare colloidal metal nanocrystals with prospective applications ranging from nonlinear photonic nanodevices to biospectroscopy and photocatalysis.
Collapse
Affiliation(s)
- Tao Zhou
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Zhi-Yong Wu
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Da-Jie Yang
- Mathematics and Physics Department, North China Electric Power, University, Beijing 102206, China
| | - Li-Na Zhou
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Zhi-Rui Zhao
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Wei Wang
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Song Ma
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Si-Man Wang
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Jia-Nan Zou
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Li Zhou
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Qu-Quan Wang
- Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
17
|
Li Y, Bai Y, Zhang Z, Abudukelimu A, Ren Y, Muhammad I, Li Q, Zhang Z. Enhanced circular dichroism of plasmonic chiral system due to indirect coupling of two unaligned nanorods with metal film. APPLIED OPTICS 2021; 60:6742-6747. [PMID: 34613151 DOI: 10.1364/ao.432156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Circular dichroism (CD) demonstrates broad application prospects in enantioselective catalysis, chiral separation, and ultrasensitive detection. Increasing the CD intensity of easily fabricated plasmonic nanostructures will promote the application of these artificial nanostructures. A chiral plasmonic system that consists of two unaligned nanorods and a metal film is proposed in this study to achieve a large CD effect. Indirect coupling of a nanorod-film-nanorod in the proposed chiral plasmonic system generates a larger CD intensity compared to the direct coupling of a nanorod-nanorod. In addition, the effects of structural parameters on the CD effect of the proposed system are numerically investigated. Results showed that the indirect coupling is strongly dependent on the separation between the nanorod and the metal film. The results of this study can provide an effective strategy to enhance the CD effect of plasmonic chiral systems.
Collapse
|
18
|
Frizyuk K, Melik-Gaykazyan E, Choi JH, Petrov MI, Park HG, Kivshar Y. Nonlinear Circular Dichroism in Mie-Resonant Nanoparticle Dimers. NANO LETTERS 2021; 21:4381-4387. [PMID: 33983751 DOI: 10.1021/acs.nanolett.1c01025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We studied the nonlinear response of a dimer composed of two identical Mie-resonant dielectric nanoparticles illuminated normally by a circularly polarized light. We developed a general theory describing hybridization of multipolar modes of the coupled nanoparticles and reveal nonvanishing nonlinear circular dichroism (CD) in the second-harmonic generation (SHG) signal enhanced by the multipolar resonances in the dimer, provided its axis is oriented under an angle to the crystalline lattice of the dielectric material. We supported our multipolar hybridization theory by experimental results obtained for the AlGaAs dimers placed on an engineered substrate.
Collapse
Affiliation(s)
- Kristina Frizyuk
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Elizaveta Melik-Gaykazyan
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jae-Hyuck Choi
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Mihail I Petrov
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yuri Kivshar
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
19
|
Soun L, Fix B, El Ouazzani H, Héron S, Bardou N, Dupuis C, Derelle S, Jaeck J, Haïdar R, Bouchon P. Experimental demonstration of second-harmonic generation in high χ 2 metasurfaces. OPTICS LETTERS 2021; 46:1466-1469. [PMID: 33720213 DOI: 10.1364/ol.415257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Metasurfaces able to concentrate light at various wavelengths are promising for enhancing nonlinear interactions. In this Letter, we experimentally demonstrate infrared second-harmonic generation (SHG) by a multi-resonant nanostructure. A 100 GaAs layer embedded in a metal-insulator-metal waveguide is shown to support various localized resonances. One resonance enhances the nonlinear polarization due to the transverse magnetic (TM)-polarized pump wavelength near 3.2µm, while another is set near the TE-polarized generated wavelength (1.6µm). The measured SHG efficiency is higher than 10-9W-1 for pump wavelengths ranging from 2.9 to 3.3µm, which agrees with theoretical computations. This is typically 4 orders of magnitude higher than the equivalent GaAs membrane.
Collapse
|
20
|
Soun L, Héron S, El Ouazzani H, Fix B, Haïdar R, Bouchon P. 4000-enhancement of difference frequency generation in a mode-matching metamaterial. OPTICS EXPRESS 2020; 28:27210-27222. [PMID: 32988018 DOI: 10.1364/oe.398733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
In the wake of the control of light at the sub-wavelength scale by nanoresonators, metasurfaces allowing strong field exaltations are an attractive platform to enhance nonlinear processes. Recently, high efficiency second harmonic and difference frequency generations were demonstrated in metasurfaces that generate a nonlinear polarization normal to the surface. Here, we introduce a mode matched resonator that is able to produce this particular nonlinear polarization in a layer of gallium arsenide associated with a gold metasurface. The nonlinear conversion mechanism is described as a two-step process in which efficiency is shown to yield a good colocalization and a strong enhancement of the pump fields, as well as a high extraction efficiency of the generated field. This mode-matched metasurface is able to reach a difference frequency generation (DFG) efficiency of 10-2W/W2. This opens a new paradigm where alternative nonlinear materials could be reintroduced in metasurfaces and yields even higher efficiency than high effective χ(2) structures.
Collapse
|
21
|
Tang C, Chen F, Du J, Hou Y. Large-area cavity-enhanced 3D chiral metamaterials based on the angle-dependent deposition technique. NANOSCALE 2020; 12:9162-9170. [PMID: 32297606 DOI: 10.1039/d0nr01928c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Large-area and high-performance chiral metamaterials are highly desired for practical applications, such as controlling the polarization state of an electromagnetic wave and enhancing the sensor sensitivity of chiral molecules. In this work, cavity-enhanced chiral metamaterials (CECMs) with a large area (1 cm2) have been fabricated by the convenient angle-dependent material deposition technique. The optimal chiral signal (g factor) resonance in the visible waveband can reach about 0.94 with a figure of merit (FOM) of about 5.2, which is about ten times larger than that of chiral metamaterials (CMs) without a cavity (i.e., a g factor of 0.094 with the FOM of about 1.12). Both the theoretical and experimental results demonstrate that the circular conversion components from the anisotropic geometry of CMs play a crucial role in the final chiroptical effect of CECM, which together with the cavity effect enhance both the chiroptical resonance intensity and FOM. Choosing the appropriate deposition parameters can effectively modify the geometric anisotropy of CM and thus the chiroptical effect of CECM. The geometric nanoscale morphology, electromagnetic properties and sensor performance were investigated carefully in this work. The fabricated CECM working in the visible waveband together with the cavity-enhanced scheme provides a competitive candidate for enhancing the performance and the practical applications of CMs.
Collapse
Affiliation(s)
- Chaodong Tang
- College of Physics, Sichuan University, Chengdu, Sichuan 610065, China.
| | | | | | | |
Collapse
|
22
|
Qiu YH, Ding SJ, Lin YJ, Chen K, Yang DJ, Ma S, Li X, Lin HQ, Wang J, Wang QQ. Growth of Au Hollow Stars and Harmonic Excitation Energy Transfer. ACS NANO 2020; 14:736-745. [PMID: 31841297 DOI: 10.1021/acsnano.9b07686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Optical excitation, subsequent energy transfer, and emission are fundamental to many physical problems. Optical antennas are ideal candidates for manipulating these processes. We extend energy transfer to second- and third-harmonic (SH and TH) fields through the collaborative susceptibility χ(n) (n = 1, 2, 3) resonances of nonlinear optical antennas. Hollow gold stars, with a broadband response covering the fundamental, SH, and TH frequencies, are synthesized as nonlinear antennas. Harmonic resonance energy transfer through a χ(3) → χ(1) collaboration is revealed. A χ(3) → χ(2) collaboration is uncovered, with largely enhanced SH radiation demonstrated by exciting the three resonances at the fundamental, SH, and TH frequencies. A theoretical model of the effective nonlinear susceptibilities is proposed to calculate the efficiencies of the two nonlinear energy transfer processes.
Collapse
Affiliation(s)
- Yun-Hang Qiu
- Department of Physics , Wuhan University , Wuhan 430072 , China
| | - Si-Jing Ding
- School of Mathematics and Physics , China University of Geosciences (Wuhan) , Wuhan 430074 , China
- Department of Physics , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| | - Yong-Jie Lin
- Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China
| | - Kai Chen
- Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China
| | - Da-Jie Yang
- Beijing Computational Science Research Center , Beijing 100193 , China
| | - Song Ma
- Department of Physics , Wuhan University , Wuhan 430072 , China
| | - Xiaoguang Li
- Institute for Advanced Study , Shenzhen University , Shenzhen 518060 , China
| | - Hai-Qing Lin
- Beijing Computational Science Research Center , Beijing 100193 , China
| | - Jianfang Wang
- Department of Physics , The Chinese University of Hong Kong , Shatin , Hong Kong SAR , China
| | - Qu-Quan Wang
- Department of Physics , Wuhan University , Wuhan 430072 , China
- Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
23
|
Abstract
Chiral nanohole array (CNA) films are fabricated by a simple and efficient shadow sphere lithography (SSL) method and achieve label-free enantiodiscrimination of biomolecules and drug molecules at the picogram level. The intrinsic mirror symmetry of the structure is broken by three subsequent depositions onto non-close packed nanosphere monolayers with different polar and azimuthal angles. Giant chiro-optical responses with a transmission as high as 45%, a chirality of 21°μm-1, and a g-factor of 0.17, respectively, are generated, which are among the largest values that have been reported in the literature. Such properties are due to the local rotating current density generated by a surface plasmon polariton as well as a strong local rotating field produced by localized surface plasmon resonance, which leads to the excitation of substantial local superchiral fields. The 70 nm-thick CNAs can achieve label-free enantiodiscrimination of biomolecules and drug molecules at the picogram level as demonstrated experimentally. All these advantages make the CNAs ready for low-cost, high-performance, and ultracompact polarization converters and label-free chiral sensors.
Collapse
Affiliation(s)
- Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, P.R. China 400044. and Chongqing Key Laboratory of Bio perception & Intelligent Information Processing, Chongqing, P.R. China 400044
| | - Hoang M Luong
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
24
|
Zhang L, Lu F, Zhang W, Gao K, Xue T, Liu M, Mao D, Huang L, Gao F, Mei T. Plasmon-enhanced linear and second-order surface nonlinear optical response of silver nanoparticles fabricated using a femtosecond pulse. NANOTECHNOLOGY 2020; 31:035305. [PMID: 31569084 DOI: 10.1088/1361-6528/ab4947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present the plasmon-enhanced linear and second-order surface nonlinear optical response of silver nanoparticles (Ag NPs) fabricated using a femtosecond pulse. Theoretical analysis indicates Ag NPs with a diameter of ∼100 nm have excellent linear response within the visible band, and the electric field intensity enhancement factor reaches ∼105 under excitation of continuous light of 632.8 nm. Meanwhile, the simulation result of second-order surface nonlinear optical response shows that the second harmonic conversion efficiency of the Ag NPs dimer is two orders of magnitude higher than that of a single Ag NP, under excitation of a femtosecond pulse. In experiment, the linear response of Ag NPs is examined using surface-enhanced Raman spectroscopy (SERS) with a Raman enhancement factor of ∼1.7 × 1010, revealing the excellent linear optical response of Ag NPs. Moreover, the spectra of the second harmonic can be measured clearly under conditions of an average pump power of 40 μW, revealing the excellent second-order surface nonlinear optical response of Ag NPs.
Collapse
Affiliation(s)
- Lu Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Taghinejad M, Xu Z, Lee KT, Lian T, Cai W. Transient Second-Order Nonlinear Media: Breaking the Spatial Symmetry in the Time Domain via Hot-Electron Transfer. PHYSICAL REVIEW LETTERS 2020; 124:013901. [PMID: 31976680 DOI: 10.1103/physrevlett.124.013901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Second-order optical effects are essential to the active control of light and the generation of new spectral components. The inversion symmetry, however, prevents achieving a bulk χ^{(2)} response, limiting the portfolio of the second-order nonlinear materials. Here, we demonstrate subpicosecond conversion of a statically passive dielectric to a transient second-order nonlinear medium upon the ultrafast transfer of hot electrons. Induced by an optical switching signal, the amorphous dielectric with vanishing intrinsic χ^{(2)} develops dynamically tunable second-order nonlinear responses. By taking the second-harmonic generation as an example, we show that breaking the inversion symmetry through hot-electron dynamics can be leveraged to address the critical need for all-optical control of second-order nonlinearities in nanophotonics. Our approach can be generically adopted in a variety of material and device platforms, offering a new class of complex nonlinear media with promising potentials for all-optical information processing.
Collapse
Affiliation(s)
- Mohammad Taghinejad
- School1 of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250, USA
| | - Zihao Xu
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, USA
| | - Kyu-Tae Lee
- School1 of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250, USA
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, USA
| | - Wenshan Cai
- School1 of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, Georgia 30332-0295, USA
| |
Collapse
|
26
|
Wang J, Butet J, Bernasconi GD, Baudrion AL, Lévêque G, Horrer A, Horneber A, Martin OJF, Meixner AJ, Fleischer M, Adam PM, Zhang D. Strong second-harmonic generation from Au-Al heterodimers. NANOSCALE 2019; 11:23475-23481. [PMID: 31799534 DOI: 10.1039/c9nr07644a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Second-harmonic generation (SHG) is investigated from three kinds of lithographically fabricated plasmonic systems: Al monomers, Au monomers and Au-Al heterodimers with nanogaps of 20 nm. Spectrally integrated SHG intensities and the linear optical responses are recorded and compared. The results show that for the monomer nanoantennas, the SHG signal depends sensitively on the linear excitation of the plasmon resonance by the fundamental wavelength. For Au-Al heterodimer nanoantennas, apart from fundamental resonant excitation, nonlinear optical factors such as SH driving fields and phase interferences need to be taken into account, which play significant roles at the excitation and scattering stages of SHG radiation. It is interesting to note that a possible energy transfer process could take place between the two constituting nanoparticles (NPs) in the Au-Al heterodimers. Excited at the linear plasmon resonance, the Au NP transfers the absorbed energy from the fundamental field to the nearby Al NP, which efficiently scatters SHG to the far-field, giving rise to an enhanced SHG intensity. The mechanisms reported here provide new approaches to boost the far-field SHG radiation by taking full advantage of strongly coupled plasmonic oscillations and the synergism from materials of different compositions.
Collapse
Affiliation(s)
- Jiyong Wang
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany. and Light, Nanomaterials and Nanotechnology, University of Technology of Troyes, 12 Rue Marie Curie, CS42060, 10004 Troyes Cedex, France. and Center for Light-Matter-Interaction, Sensors and Analytics (LISA+), Eberhard Karls University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany and Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang Province, China and Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024 Hangzhou, Zhejiang Province, China
| | - Jérémy Butet
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology, Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gabriel David Bernasconi
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology, Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anne-Laure Baudrion
- Light, Nanomaterials and Nanotechnology, University of Technology of Troyes, 12 Rue Marie Curie, CS42060, 10004 Troyes Cedex, France.
| | - Gaëtan Lévêque
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN, CNRS-8520), Cité Scientifique, Avenue Poincaré, 59652 Villeneuve d'Ascq, France
| | - Andreas Horrer
- Light, Nanomaterials and Nanotechnology, University of Technology of Troyes, 12 Rue Marie Curie, CS42060, 10004 Troyes Cedex, France. and Institute for Applied Physics, Eberhard Karls University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Anke Horneber
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany. and Center for Light-Matter-Interaction, Sensors and Analytics (LISA+), Eberhard Karls University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Olivier J F Martin
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology, Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany. and Center for Light-Matter-Interaction, Sensors and Analytics (LISA+), Eberhard Karls University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Monika Fleischer
- Center for Light-Matter-Interaction, Sensors and Analytics (LISA+), Eberhard Karls University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany and Institute for Applied Physics, Eberhard Karls University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Pierre-Michel Adam
- Light, Nanomaterials and Nanotechnology, University of Technology of Troyes, 12 Rue Marie Curie, CS42060, 10004 Troyes Cedex, France.
| | - Dai Zhang
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany. and Center for Light-Matter-Interaction, Sensors and Analytics (LISA+), Eberhard Karls University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
27
|
Cao L, Qi J, Wu Q, Li Z, Wang R, Chen J, Lu Y, Zhao W, Yao J, Yu X, Sun Q, Xu J. Giant Tunable Circular Dichroism of Large-Area Extrinsic Chiral Metal Nanocrescent Arrays. NANOSCALE RESEARCH LETTERS 2019; 14:388. [PMID: 31865496 PMCID: PMC6925607 DOI: 10.1186/s11671-019-3220-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/27/2019] [Indexed: 05/22/2023]
Abstract
Circular dichroism (CD) is an interesting phenomenon originating from the interaction of light with chiral molecules or other nanostructures lacking mirror symmetries in three-dimensional (3D) or two-dimensional (2D) space. While the observable effects of optical chirality are very weak in most of the natural materials, they can be designed and significantly enhanced in synthetic chiral structures, where the spatial symmetry of their component are broken on a nanoscale. Therefore, fabrication of composites capable of cheap, time-saving, and giant CD is desirable for the advanced optical technologies. Here, the giant CD of large-area metal nanocrescent array structures was investigated theoretically and experimentally. The largest value of the CD spectrum measured was larger than 0.5, and the CD spectrum was tuned effectively and extensively while maintaining a large peak intensity, which can be attributed to the selective excitation of the lattice surface modes (LSMs) by circularly polarized light. The analysis of the extrinsic chiral structure shows potential applications in chiral molecule sensing and polarizing imaging.
Collapse
Affiliation(s)
- Liyuan Cao
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Jiwei Qi
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Qiang Wu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Zhixuan Li
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Ride Wang
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Junan Chen
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Yao Lu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Wenjuan Zhao
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Jianghong Yao
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Xuanyi Yu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Qian Sun
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi China
| | - Jingjun Xu
- The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, 300457 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006 Shanxi China
| |
Collapse
|
28
|
Kolmychek IA, Mamonov EA, Bochenkov VE, Murzina TV. Second-harmonic generation in gold crescent- and comma-like nanostructures. OPTICS LETTERS 2019; 44:5473-5476. [PMID: 31730086 DOI: 10.1364/ol.44.005473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Anisotropic metal nanostructures reveal unique optical properties providing new optical effects. Here we study experimentally the nonlinear-optical response of planar arrays of gold comma-like and crescent-like nanostructures made by colloidal lithography. We show that anisotropy of the nonlinear-optical response is defined not only by the shape of the particles, but also by the relative phase of second-order susceptibility components, which are found to be spectrally sensitive. High values of circular dichroism in the second-harmonic generation response up to 70% are observed in comma-like nanostructures.
Collapse
|
29
|
Chen S, Reineke B, Li G, Zentgraf T, Zhang S. Strong Nonlinear Optical Activity Induced by Lattice Surface Modes on Plasmonic Metasurface. NANO LETTERS 2019; 19:6278-6283. [PMID: 31419138 DOI: 10.1021/acs.nanolett.9b02417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Optical metasurfaces, consisting of spatially variant meta-atoms, represent a new kind of optical platform for controlling the wavefront of light, with which many interesting applications, such as metalens and optical holography, have been successfully demonstrated. Further extension of the optical functionalities of metasurfaces into the nonlinear optical regime has led to unprecedented control over the local optical nonlinear generation processes. It has been shown that the nonlinear optical metasurface with achiral geometries could exhibit intrinsic optical activity in second- and third- harmonic generations. In this work, we propose an alternative approach for achieving strong nonlinear optical activity in achiral plasmonic metasurfaces by exploiting the lattice surface modes of plasmonic metasurfaces. Specifically, we theoretically and experimentally demonstrate the strong circular dichroism for second harmonic generation (SHG) on plasmonic metasurfaces consisting of split-ring resonator meta-atoms. The strong nonlinear circular dichroism is attributed to the contribution from lattice surface modes at fundamental wavelengths. Our findings may open new routes to design novel nonlinear optical devices with strong optical activity.
Collapse
Affiliation(s)
- Shumei Chen
- School of Science , Harbin Institute of Technology , Shenzhen 518055 , China
- Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information Technology , Harbin Institute of Technology , Shenzhen 518055 , China
- School of Physics & Astronomy , University of Birmingham , Birmingham B15 2TT , U.K
| | - Bernhard Reineke
- Department of Physics , Paderborn University , Warburger Straße 100 , D-33098 Paderborn , Germany
| | - Guixin Li
- Department of Materials Science and Engineering, Shenzhen Institute for Quantum Science and Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Thomas Zentgraf
- Department of Physics , Paderborn University , Warburger Straße 100 , D-33098 Paderborn , Germany
| | - Shuang Zhang
- School of Physics & Astronomy , University of Birmingham , Birmingham B15 2TT , U.K
| |
Collapse
|
30
|
Miao R, Hu Y, Ouyang H, Tang Y, Zhang C, You J, Zheng X, Xu Z, Cheng X, Jiang T. A polarized nonlinear optical response in a topological insulator Bi 2Se 3-Au nanoantenna hybrid-structure for all-optical switching. NANOSCALE 2019; 11:14598-14606. [PMID: 31305823 DOI: 10.1039/c9nr02616a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nonlinear plasmons are becoming an appealing and intriguing research area due to their remarkable light concentration and manipulation abilities. In this work, the nonlinear absorption (NLA) phenomena of polarized nanoantenna arrays coupled with the low dimensional topological insulator Bi2Se3 are studied at different excitation wavelengths. Our experimental results indicate that a significant enhancement in the linear absorption coefficient is achieved by localized surface plasmon (LSP) resonance, with enhancement factors that are 10- and 8-fold in magnitude for the cases of 800 nm (y polarization) and 970 nm (x polarization), respectively. Moreover, by polarization sensitive studies under 800 nm laser excitation, this new Bi2Se3-Au nanoantenna hybrid-structure exhibits adverse absorption responses of enhancement and suppression compared to pure Bi2Se3 film, providing excellent potential for applications in information converters. In particular, under 800 nm pump light (10 GW cm-2), the transmittance intensity of 450 nm or 1064 nm continuous wave (CW) probe light alters back and forth when the polarization direction changes by 90°. Thus, "ON" and "OFF" modes of this Bi2Se3-Au nanoantenna hybrid structure-based switch are achieved by using 450 nm and 1064 nm light, respectively, with a corresponding modulation depth of 3.4% and 21.9%, which can be applied in versatile photonic devices.
Collapse
Affiliation(s)
- Runlin Miao
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Aba T, Qu Y, Abudukelimu A, Ullah H, Zhang Z. Chiral response of a metasurface composed of nanoholes and tilted nanorods. APPLIED OPTICS 2019; 58:5936-5941. [PMID: 31503909 DOI: 10.1364/ao.58.005936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Circular dichroism (CD) of metasurfaces has been used in biological monitoring, analytical chemistry, and perfect polarization converters. In this work, a metasurface consisting of nanoholes and tilted nanorods is proposed to achieve the CD effect. Numerical calculations show that electrical current forms between the film and the tilted nanorods under circularly polarized light illumination, and CD effects originate from the coupling between the current oscillations at the film and those on the tilted nanorods. This electrical oscillation mode provides unique coupling mechanisms for the CD effect. In addition, CD is strongly dependent on the structural parameters, and the resonant modes can be tuned by modulating the currents on the film. These results are helpful for designing novel chiral optical structures and provide unique methods for circular polarizers.
Collapse
|
32
|
Demonstration of extrinsic chirality of photoluminescence with semiconductor-metal hybrid nanowires. Sci Rep 2019; 9:5040. [PMID: 30911080 PMCID: PMC6434037 DOI: 10.1038/s41598-019-41615-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/08/2019] [Indexed: 11/24/2022] Open
Abstract
Chiral optical response is an inherent property of molecules and nanostructures, which cannot be superimposed on their mirror images. In specific cases, optical chirality can be observed also for symmetric structures. This so-called extrinsic chirality requires that the mirror symmetry is broken by the geometry of the structure together with the incident or emission angle of light. From the fabrication point of view, the benefit of extrinsic chirality is that there is no need to induce structural chirality at nanoscale. This paper reports demonstration extrinsic chirality of photoluminescence emission from asymmetrically Au-coated GaAs-AlGaAs-GaAs core-shell nanowires fabricated on silicon by a completely lithography-free self-assembled method. In particular, the extrinsic chirality of PL emission is shown to originate from a strong symmetry breaking of fundamental HE11 waveguide modes due to the presence of the asymmetric Au coating, causing preferential emission of left and right-handed emissions in different directions in the far field.
Collapse
|
33
|
Ding SJ, Zhang H, Yang DJ, Qiu YH, Nan F, Yang ZJ, Wang J, Wang QQ, Lin HQ. Magnetic Plasmon-Enhanced Second-Harmonic Generation on Colloidal Gold Nanocups. NANO LETTERS 2019; 19:2005-2011. [PMID: 30721073 DOI: 10.1021/acs.nanolett.9b00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The magnetic plasmons of three-dimensional nanostructures have unique optical responses and special significance for optical nanoresonators and nanoantennas. In this study, we have successfully synthesized colloidal Au and AuAg nanocups with a well-controlled asymmetric geometry, tunable opening sizes, and normalized depths ( h/ b, where h is depth and b is the height of the templating PbS nanooctahedrons), variable magnetic plasmon resonance, and largely enhanced second-harmonic generation (SHG). The most-efficient SHG of the bare Au nanocups is experimentally observed when the normalized depth h/ b is adjusted to ∼0.78-0.79. We find that the average magnetic field enhancement is maximized at h/ b = ∼0.65 and reveal that the maximal SHG can be attributed to the joint action of the optimized magnetic plasmon resonance and the "lightning-rod effect" of the Au nanocups. Furthermore, we demonstrate for the first time that the AuAg heteronanocups prepared by overgrowth of Ag on the Au nanocups can synergize the magnetic and electric plasmon resonances for nonlinear enhancement. By the tailoring of the dual resonances at the fundamental excitation and second-harmonic wavelengths, the far-field SHG intensity of the AuAg nanocups is enhanced 21.8-fold compared to that of the bare Au nanocups. These findings provide a strategy for the design of nonlinear optical nanoantennas based on magnetic plasmon resonances and can lead to diverse applications ranging from nanophotonics to biological spectroscopy.
Collapse
Affiliation(s)
- Si-Jing Ding
- School of Mathematics and Physics , China University of Geosciences (Wuhan) , Wuhan 430074 , Hubei , China
- Department of Physics , The Chinese University of Hong Kong , Shatin, Hong Kong SAR , China
| | - Han Zhang
- Department of Physics , The Chinese University of Hong Kong , Shatin, Hong Kong SAR , China
| | - Da-Jie Yang
- Department of Physics, The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , Hubei , China
- Beijing Computational Science Research Center , Beijing 100193 , China
| | - Yun-Hang Qiu
- Department of Physics, The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , Hubei , China
| | - Fan Nan
- Department of Physics, The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , Hubei , China
| | - Zhong-Jian Yang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics , Central South University , Changsha 410083 , Hunan , China
| | - Jianfang Wang
- Department of Physics , The Chinese University of Hong Kong , Shatin, Hong Kong SAR , China
| | - Qu-Quan Wang
- Department of Physics, The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , Hubei , China
| | - Hai-Qing Lin
- Beijing Computational Science Research Center , Beijing 100193 , China
| |
Collapse
|
34
|
Yang X, Li M, Hou Y, Du J, Gao F. Active perfect absorber based on planar anisotropic chiral metamaterials. OPTICS EXPRESS 2019; 27:6801-6814. [PMID: 30876258 DOI: 10.1364/oe.27.006801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Active chiral plasmonics have attracted a considerable amount of research interest for their power to switch the handedness of chiral metamaterials and the potential applications in highly integrated polarization sensitive devices, stereo display fields, and so on. In this work, we propose a kind of active chiral metamaterial absorber (ACMA) composed by planar anisotropic chiral metamaterials (PACMs) and a metal layer. Our in-depth theoretical analysis indicates that the circular conversion dichroism (CCD) from PACMs plays a crucial role to achieve the active chiroptical effect. The CCD effect can enable a differentiated microcavity-interference effect between the left and right circular incident lights and results in a chiroptical effect related to the equivalent optical length between the PACMs and the metal layer. In simulations, a high-performance ACMA, which are composed by the 'Z'-shaped PACMs, is designed, and the maximum reflection CDR from ACMA can reach 0.882. Meanwhile, the minimum reflection CDR can reach to 0, resulting a very large adjustable range of from 0 to 0.882. The maximum modulation sensitivity, which is defined as Mn=∂CDR/∂n and Md=∂CDR/∂d, can reach to about 1368.252 for d=100um and 0.06157 nm-1 for n=4.5,respectively. In addition to the active chiroptical effect, the designed ACMA also shows excellent performance as a sensor, such as when it is being used as a highly-sensitive temperature sensor. In that case, the minimum detected precision can reach approximately 3.067 * 10-8 °C, if VO2 is used to fill the FP cavity.
Collapse
|
35
|
Hooper DC, Kuppe C, Wang D, Wang W, Guan J, Odom TW, Valev VK. Second Harmonic Spectroscopy of Surface Lattice Resonances. NANO LETTERS 2019; 19:165-172. [PMID: 30525669 DOI: 10.1021/acs.nanolett.8b03574] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Because of their large figures of merit, surface lattice resonances (SLRs) in metal nanoparticle arrays are very promising for chemical and biomolecular sensing in both liquid and gas media. SLRs are sensitive to refractive index changes both near the surface of the nanoparticles (surface sensitivity) and in the volume between them (bulk sensitivity). Because of its intrinsic surface-sensitivity and a power law dependence on electric fields, second harmonic generation (SHG) spectroscopy can improve upon both the surface and volume sensitivities of SLRs. In this report on SHG spectroscopy of plasmonic nanoparticles, we show that the SHG signal is greatly increased (up to 450 times) by the SLRs. We also demonstrate very narrow resonances in SHG intensity (∼5 nm fwhm). We illustrate how the SHG resonances are highly sensitive to SLRs by varying the fundamental wavelength, angle of incidence, nanoparticle material, and lattice constant of the arrays. Finally, we identify an SHG resonance (10 nm fwhm) that is electric dipole forbidden and can be attributed to higher-order multipoles, enhanced by the strong near-fields of SLRs. Our results open up new and very promising avenues for chemical and biomolecular sensing based on SHG spectroscopy of SLRs.
Collapse
Affiliation(s)
- David C Hooper
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics , University of Bath , Claverton Down , Bath BA2 4JY , U.K
| | - Christian Kuppe
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics , University of Bath , Claverton Down , Bath BA2 4JY , U.K
| | | | | | | | | | - Ventsislav K Valev
- Centre for Photonics and Photonic Materials and Centre for Nanoscience and Nanotechnology, Department of Physics , University of Bath , Claverton Down , Bath BA2 4JY , U.K
| |
Collapse
|
36
|
Feng X, Bai Y, Jing Z, Qu Y, Wang T, Ullah H, Zhang Z. Enhanced circular dichroism of tilted zigzag-shaped nanohole arrays. APPLIED OPTICS 2019; 58:177-181. [PMID: 30645527 DOI: 10.1364/ao.58.000177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Circular dichroism (CD) of nanostructures is in great demand for applications in biological molecules, photocurrent devices, and photocatalysis. Planar nanostructures can be prepared in a concise manner, and their CD effects have gained much research interest. In this study, tilted zigzag-shaped nanohole (TZSN) arrays are proposed, and the CD effect is studied by the finite element method. A strong resonance occurs in the gap by tuning the charge distributions between adjacent nanoholes. Meanwhile, the CD effect of TZSN arrays is strongly dependent on the structural parameters of TZSN. Results provide a novel method for tuning the CD effects of nanohole arrays on a film.
Collapse
|
37
|
Bochenkov VE, Shabatina TI. Chiral Plasmonic Biosensors. BIOSENSORS 2018; 8:E120. [PMID: 30513775 PMCID: PMC6316110 DOI: 10.3390/bios8040120] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022]
Abstract
Biosensing requires fast, selective, and highly sensitive real-time detection of biomolecules using efficient simple-to-use techniques. Due to a unique capability to focus light at nanoscale, plasmonic nanostructures provide an excellent platform for label-free detection of molecular adsorption by sensing tiny changes in the local refractive index or by enhancing the light-induced processes in adjacent biomolecules. This review discusses the opportunities provided by surface plasmon resonance in probing the chirality of biomolecules as well as their conformations and orientations. Various types of chiral plasmonic nanostructures and the most recent developments in the field of chiral plasmonics related to biosensing are considered.
Collapse
Affiliation(s)
- Vladimir E Bochenkov
- Chemistry Department of Lomonosov, Moscow State University, 119991 Moskva, Russia.
| | - Tatyana I Shabatina
- Chemistry Department of Lomonosov, Moscow State University, 119991 Moskva, Russia.
| |
Collapse
|
38
|
Hazra B, Dey J, Chandra M. Structure-specific chiroptical responses of hollow gold nanoprisms. Phys Chem Chem Phys 2018; 20:27675-27683. [PMID: 30375600 DOI: 10.1039/c8cp05298k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiroptical responses of plasmonic chiral nanostructures can be controllably tuned by judicious tailoring of their structural parameters. In this article, the chiroptical properties of a newly designed plasmon-supporting nanostructure, chiral hollow gold nanoprisms (HGNs), has been numerically investigated in detail. The most compelling observation is that the CD response and the dissymmetry factor (g, which is a measure of the strength of chiroptical responses) of the chiral HGNs are large and at the same time, highly structure-specific. Also, we observed finite CD activity not only in absorption and scattering but also in the extinction spectra, which is a signature of a typical 3D chiral structure. We show that the chiroptical responses of HGNs can be exponentially enhanced simply by controlling the cavity-position or cavity size. Our results reveal that the structure-specific chiroptical response is a result of structure-dependent interplay between the non-radiative (Ohmic) and radiative losses. We also show that the CD intensity of a suitably designed chiral HGN is higher than other nanoscale metasurfaces of comparable volume. The insights obtained from this comprehensive study assert that this unique chiral nanostructure has great potential for being used in numerous applications.
Collapse
Affiliation(s)
- Bidhan Hazra
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh, India.
| | | | | |
Collapse
|
39
|
Bao ZY, Dai J, Zhang Q, Ho KH, Li S, Chan CH, Zhang W, Lei DY. Geometric modulation of induced plasmonic circular dichroism in nanoparticle assemblies based on backaction and field enhancement. NANOSCALE 2018; 10:19684-19691. [PMID: 30328878 DOI: 10.1039/c8nr07300g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chiral cysteine-directed assemblies of Au@Ag core-shell nanocrystals (CSNCs) and Au/Ag nanorods with end-to-end (ETE) and side-by-side (SBS) configurations are fabricated and used to explore the definitive factors affecting the chiral response. The interaction between cysteine and metallic nanoparticles leads to intense and widely tunable plasmonic circular dichroism (PCD) ranging from a near-infrared (NIR) to ultraviolet (UV) regime. More importantly, it was observed that, in Ag nanorod and CSNC samples with varied aspect ratios, the ETE assembled patterns exhibit much larger PCD enhancement than SBS assemblies in an l/d-cysteine solvent environment. Very surprisingly, such a giant PCD response in these assemblies is completely different from that of the Au nanorod assembly case as reported earlier. Experimental and theoretical studies reveal that the interplay between the local field enhancement and backaction, triggered by the geometric configuration differentia of covered achiral CTAB molecules on Ag and Au surfaces, plays a crucial role in chiral response variances and leads to geometry-dependent optical activities. This work not only sheds light on understanding the relationship between the configuration of plasmonic nanostructure assemblies and geometry-manipulated circular dichroism, but also paves the way for predictive design of plasmonic biosensors or other nanodevices with controllable optical activities from the UV to the NIR light range.
Collapse
Affiliation(s)
- Zhi Yong Bao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Xiao TH, Cheng Z, Goda K. Giant Optical Activity in an All-Dielectric Spiral Nanoflower. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800485. [PMID: 29968281 DOI: 10.1002/smll.201800485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/25/2018] [Indexed: 06/08/2023]
Abstract
Optical activity is an effect of prominent importance in stereochemistry, analytical chemistry, metamaterials, spin photonics, and astrobiology, but is naturally minuscule. Metallic nanostructures are commonly exploited as basic elements for artificially producing large optical activity by virtue of surface plasmon resonance (SPR) on the nanostructures. However, their intrinsic high ohmic loss amplified by the SPR results in low energy efficiency and large photothermal heat generation, severely limiting their performance and practical utility. Giant optical activity by inducing magnetic resonance in an all-dielectric spiral nanoflower (spiral-flower-shaped nanostructure) is demonstrated here. Specifically, a large circular-intensity difference of ≈35% is theoretically predicted and experimentally demonstrated by optimizing the magnetic quadrupole contribution of the nanoflower to scattered light. The nanoflower overcomes the bottleneck of the traditional metallic platforms and enables the development of diverse chiroptical devices and applications.
Collapse
Affiliation(s)
- Ting-Hui Xiao
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan
| | - Zhenzhou Cheng
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo, 113-0033, Japan
- Department of Electrical Engineering, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
41
|
Lin HT, Chang CY, Cheng PJ, Li MY, Cheng CC, Chang SW, Li LLJ, Chu CW, Wei PK, Shih MH. Circular Dichroism Control of Tungsten Diselenide (WSe 2) Atomic Layers with Plasmonic Metamolecules. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15996-16004. [PMID: 29658267 DOI: 10.1021/acsami.8b01472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Controlling circularly polarized (CP) states of light is critical to the development of functional devices for key and emerging applications such as display technology and quantum communication, and the compact circular polarization-tunable photon source is one critical element to realize the applications in the chip-scale integrated system. The atomic layers of transition metal dichalcogenides (TMDCs) exhibit intrinsic CP emissions and are potential chiroptical materials for ultrathin CP photon sources. In this work, we demonstrated CP photon sources of TMDCs with device thicknesses approximately 50 nm. CP photoluminescence from the atomic layers of tungsten diselenide (WSe2) was precisely controlled with chiral metamolecules (MMs), and the optical chirality of WSe2 was enhanced more than 4 times by integrating with the MMs. Both the enhanced and reversed circular dichroisms had been achieved. Through integrations of the novel gain material and plasmonic structure which are both low-dimensional, a compact device capable of efficiently manipulating emissions of CP photon was realized. These ultrathin devices are suitable for important applications such as the optical information technology and chip-scale biosensing.
Collapse
Affiliation(s)
- Hsiang-Ting Lin
- Research Center for Applied Sciences (RCAS) , Academia Sinica , Taipei 11529 , Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering , National Chiao Tung University (NCTU) , Hsinchu 30010 , Taiwan
| | - Chiao-Yun Chang
- Research Center for Applied Sciences (RCAS) , Academia Sinica , Taipei 11529 , Taiwan
| | - Pi-Ju Cheng
- Research Center for Applied Sciences (RCAS) , Academia Sinica , Taipei 11529 , Taiwan
| | - Ming-Yang Li
- Research Center for Applied Sciences (RCAS) , Academia Sinica , Taipei 11529 , Taiwan
- Physical Science and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Chia-Chin Cheng
- Physical Science and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Shu-Wei Chang
- Research Center for Applied Sciences (RCAS) , Academia Sinica , Taipei 11529 , Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering , National Chiao Tung University (NCTU) , Hsinchu 30010 , Taiwan
| | - Lance L J Li
- Physical Science and Engineering Division , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Chih-Wei Chu
- Research Center for Applied Sciences (RCAS) , Academia Sinica , Taipei 11529 , Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences (RCAS) , Academia Sinica , Taipei 11529 , Taiwan
| | - Min-Hsiung Shih
- Research Center for Applied Sciences (RCAS) , Academia Sinica , Taipei 11529 , Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering , National Chiao Tung University (NCTU) , Hsinchu 30010 , Taiwan
- Department of Photonics , National Sun Yat-sen University (NSYSU) , Kaohsiung 80424 , Taiwan
| |
Collapse
|
42
|
Ahmed SR, Neethirajan S. Chiral MoS 2 Quantum Dots: Dual-Mode Detection Approaches for Avian Influenza Viruses. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1700071. [PMID: 31565328 PMCID: PMC6607333 DOI: 10.1002/gch2.201700071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/04/2018] [Indexed: 05/05/2023]
Abstract
Molybdenum disulfide (MoS2), a type of transition metal dichalcogenide material, has emerged as an important class among 2D systems. When 2D MoS2 materials are reduced to 0D quantum dots (QDs), they introduce new optical properties that point to several potential technological advantages in electronic, magnetic, optical, and catalytic properties. In this study, a simple way to produce chiral MoS2 QDs from MoS2 nanopowder is presented using l(+)-ascorbic acid as a reducing agent. The calculated quantum yield of QDs is 11.06%. Experimental results reveal that the size of QDs is uniformly monodispersed (2-3 nm) and have a blue emissive fluorescence peak and circular dichroism (CD) peak located at 420 and 330 nm, respectively. Furthermore, a dual-mode detection system based on fluorescence and chirality is performed using as-synthesized MoS2 QDs, where QDs are conjugated with anti-hemagglutinin antibodies of avian influenza virus and made into an immunobridge in the presence of target virus and anti-neuraminidase antibodies conjugated magnetic nanoparticles (MNPs). The photoluminescence and CD spectra of unconjugated QDs after separated magnetochirofluorescent (MNPs-QDs) nanohybrids by external magnets enables influenza virus A (H5N1) detection with the limit of detection value of 7.35 and 80.92 pg mL-1, respectively.
Collapse
Affiliation(s)
- Syed Rahin Ahmed
- BioNano LaboratorySchool of EngineeringUniversity of GuelphGuelphOntarioN1G 2W1Canada
| | - Suresh Neethirajan
- BioNano LaboratorySchool of EngineeringUniversity of GuelphGuelphOntarioN1G 2W1Canada
| |
Collapse
|
43
|
Chen Y, Gao J, Yang X. Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking. NANO LETTERS 2018; 18:520-527. [PMID: 29206469 DOI: 10.1021/acs.nanolett.7b04515] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We propose a universal design scheme for a new type of chiral metamaterials based on plasmonic slanted nanoapertures simply milled in a single metal layer. Strong optical chirality is introduced by tilting nanoapertures with almost arbitrary shape along a certain direction to break all the mirror symmetries. As a typical example, chiral metamaterial based on slanted split-ring apertures is demonstrated with giant circular dichroism in transmission (CDT) over 78% at 760 nm. We reveal that the high CDT originates from the circularly dichroic mode coupling process in the slanted nanoapertures induced by spin-dependent field overlap conditions. Furthermore, tunable CDT is presented through the in-plane rotation of nanoapertures to form chiral images with controllable image contrast. Besides, chiral metamaterials with slanted nanoapertures of two other shapes including L-shaped aperture and rectangular aperture are also presented with large circular dichroism. We envision that our demonstrated chiral metamaterials enable promising platforms for a variety of applications in nonlinear optics, chiral imaging and sensing, spectroscopy, and polarization manipulation.
Collapse
Affiliation(s)
- Yang Chen
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology , Rolla, Missouri 65409, United States
| | - Jie Gao
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology , Rolla, Missouri 65409, United States
| | - Xiaodong Yang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology , Rolla, Missouri 65409, United States
| |
Collapse
|
44
|
Smith KW, Link S, Chang WS. Optical characterization of chiral plasmonic nanostructures. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Wolf O, Campione S, Yang Y, Brener I. Multipolar second harmonic generation in a symmetric nonlinear metamaterial. Sci Rep 2017; 7:8101. [PMID: 28808305 PMCID: PMC5556125 DOI: 10.1038/s41598-017-08039-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/05/2017] [Indexed: 11/27/2022] Open
Abstract
Optical nonlinearities are intimately related to the spatial symmetry of the nonlinear media. For example, the second order susceptibility vanishes for centrosymmetric materials under the dipole approximation. The latter concept has been naturally extended to the metamaterials’ realm, sometimes leading to the (erroneous) hypothesis that second harmonic (SH) generation is negligible in highly symmetric meta-atoms. In this work we aim to show that such symmetric meta-atoms can radiate SH light efficiently. In particular, we investigate in-plane centrosymmetric meta-atom designs where the approximation for meta-atoms breaks down. In a periodic array this building block allows us to control the directionality of the SH radiation. We conclude by showing that the use of symmetry considerations alone allows for the manipulation of the nonlinear multipolar response of a meta-atom, resulting in e.g. dipolar, quadrupolar, or multipolar emission on demand. This is because the size of the meta-atom is comparable with the free-space wavelength, thus invalidating the dipolar approximation for meta-atoms.
Collapse
Affiliation(s)
- Omri Wolf
- Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA.,Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA
| | | | - Yuanmu Yang
- Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA.,Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA
| | - Igal Brener
- Center for Integrated Nanotechnologies (CINT), Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA. .,Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA.
| |
Collapse
|
46
|
Tang DF, Wang C, Pan WK, Li MH, Dong JF. Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band. OPTICS EXPRESS 2017; 25:11329-11339. [PMID: 28788815 DOI: 10.1364/oe.25.011329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, a three-layered chiral metamaterial is proposed to achieve broad dual-band and high magnitude asymmetric transmission (AT) in near-infrared communication band for circularly polarized waves. The asymmetric parameter reaches to 0.9/0.86 at 174/235 THz, over 0.6 in broad dual bands from 160 to 183 THz and from 220 to 245 THz. Remarkably, the AT effect of circularly and linearly polarized waves can be modulated to appear or vanish with variants of the G shapes that has not been found in previous reports. The proposed structure shows great potential applications in high performance multi-band circular and linear polarizers.
Collapse
|
47
|
Yan C, Wang X, Raziman TV, Martin OJF. Twisting Fluorescence through Extrinsic Chiral Antennas. NANO LETTERS 2017; 17:2265-2272. [PMID: 28306262 DOI: 10.1021/acs.nanolett.6b04906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plasmonic antennas and planar structures have been undergoing intensive developments in order to control the scattering and absorption of light. One specific class, extrinsic chiral surfaces, that does not possess 2-fold rotational symmetry exhibits strong asymmetric transmission for different circular polarizations under obliquely incident illumination. In this work, we show that the design of those surfaces can be optimized with complex multipolar resonances in order to twist the fluorescence emission from nearby molecules. While this emission is usually dipolar and linearly polarized, the interaction with these resonances twists it into a multipolar radiation pattern with opposite helicity in different directions. The proposed structure maximizes this effect and provides control over the polarization of light. Splitting of left- and right-handed circularly polarized light is experimentally obtained in the backward direction. These results highlight the intricate interplay between the near-field absorption and the far-field scattering of a plasmonic nanostructure and are further used for modifying the emission of incoherent quantum sources. Our finding can potentially lead to the development of polarization- and angle-resolved ultracompact optical devices.
Collapse
Affiliation(s)
- Chen Yan
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology (EPFL) , CH-1015 Lausanne, Switzerland
| | - Xiaolong Wang
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology (EPFL) , CH-1015 Lausanne, Switzerland
| | - T V Raziman
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology (EPFL) , CH-1015 Lausanne, Switzerland
| | - Olivier J F Martin
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology (EPFL) , CH-1015 Lausanne, Switzerland
| |
Collapse
|
48
|
Kramer C, Schäferling M, Weiss T, Giessen H, Brixner T. Analytic Optimization of Near-Field Optical Chirality Enhancement. ACS PHOTONICS 2017; 4:396-406. [PMID: 28239617 PMCID: PMC5319396 DOI: 10.1021/acsphotonics.6b00887] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Indexed: 05/10/2023]
Abstract
We present an analytic derivation for the enhancement of local optical chirality in the near field of plasmonic nanostructures by tuning the far-field polarization of external light. We illustrate the results by means of simulations with an achiral and a chiral nanostructure assembly and demonstrate that local optical chirality is significantly enhanced with respect to circular polarization in free space. The optimal external far-field polarizations are different from both circular and linear. Symmetry properties of the nanostructure can be exploited to determine whether the optimal far-field polarization is circular. Furthermore, the optimal far-field polarization depends on the frequency, which results in complex-shaped laser pulses for broadband optimization.
Collapse
Affiliation(s)
- Christian Kramer
- Institut
für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Schäferling
- 4th
Physics Institute, Research Center SCoPE, and Research Center SimTech, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - Thomas Weiss
- 4th
Physics Institute, Research Center SCoPE, and Research Center SimTech, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - Harald Giessen
- 4th
Physics Institute, Research Center SCoPE, and Research Center SimTech, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - Tobias Brixner
- Institut
für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- E-mail:
| |
Collapse
|
49
|
Wang PP, Yu SJ, Govorov AO, Ouyang M. Cooperative expression of atomic chirality in inorganic nanostructures. Nat Commun 2017; 8:14312. [PMID: 28148957 PMCID: PMC5296657 DOI: 10.1038/ncomms14312] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.
Collapse
Affiliation(s)
- Peng-peng Wang
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
| | - Shang-Jie Yu
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Alexander O Govorov
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Ouyang
- Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
50
|
|