1
|
Magdy G, Elattar RH, Abdel Salam RA, Hadad GM, El-Deen AK. Unlocking the power of nanohybrids: A critical review on carbon nanomaterial-functionalized silver nanoparticles for advanced antimicrobial applications. Colloids Surf B Biointerfaces 2025; 252:114678. [PMID: 40209605 DOI: 10.1016/j.colsurfb.2025.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Over the last decades, nanotechnology has enabled the development of several inorganic nanoparticles with significant biocidal properties against diverse microorganisms. Silver nanoparticles (AgNPs) are among the most promising antimicrobial nanomaterials that have attracted substantial attention in various fields due to their low cost, low toxicity, biocompatibility, photo and chemical stability, easy preparation, high fluorescence, and tunability. Carbon nanomaterials (CNMs) are another appealing nanomaterial with antimicrobial qualities. While the antimicrobial efficacy of both AgNPs and CNMs is well-established, there is significant interest in the creation of CNMs/AgNPs hybrid materials for several applications due to their potential to exhibit synergistic bactericidal properties that surpass the yields of their components. This review represents a general overview of the different kinds, characterization techniques, synthesis processes, and antimicrobial activity of CNMs/AgNPs, along with an analysis of their benefits, drawbacks, and antimicrobial applications. Researchers and scientists interested in learning more about the potential of CNMs/AgNPs for advanced antimicrobial applications are likely to find this review to be a valuable resource.
Collapse
Affiliation(s)
- Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33511, Egypt; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa 7731168, Egypt.
| | - Rehab H Elattar
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Randa A Abdel Salam
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Ghada M Hadad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Asmaa Kamal El-Deen
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Chen J, Gu Z. Molecular landscape of robust membrane disruption by Janus MoSSe nanosheet. Colloids Surf B Biointerfaces 2025; 254:114840. [PMID: 40449335 DOI: 10.1016/j.colsurfb.2025.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 05/10/2025] [Accepted: 05/29/2025] [Indexed: 06/03/2025]
Abstract
Drug-resistant bacteria have become a severe threat to global health, endangering human life. Traditional antibiotics exhibit antibacterial activity by targeting specific structures or proteins, yet repeated bacterial exposure to antibiotics often leads to resistance. Thanks to their unique antibacterial mechanisms, distinct from traditional antibiotics, nanomaterials have shown significant promise as antibacterial agents. Specifically, transition metal dichalcogenide (TMD) nanomaterials exhibit excellent antibacterial performance. However, the potential antibacterial properties of Janus TMD nanomaterials, such as MoSSe, a critical subcategory of TMDs, and their underlying molecular mechanisms remain unexplored. In this study, we employ molecular dynamics (MD) simulations to investigate the interactions between Janus MoSSe nanosheets and bacterial membranes, aiming to explore the potential antibacterial activity of Janus MoSSe. Our simulations reveal that both triangular and rectangular MoSSe nanosheets can insert into and extract lipids from the membrane. Structural analyses demonstrate that the bacterial membrane undergoes significant deformation upon MoSSe insertion, severely affecting its order, fluidity, and integrity. Dynamic analyses show that van der Waals interaction mediates the spontaneous insertion of Janus MoSSe into the membrane. Free energy calculations further confirm that the spontaneous insertion of MoSSe is energetically favorable. Additionally, we find that triangular MoSSe penetrates the bacterial membrane more readily than rectangular MoSSe due to its sharper corners, which may propose an important principle into the design of antibacterial nanomaterials. Our findings not only provide the first evidence of the antibacterial activity of Janus nanomaterial monolayers, but also propose a possible design principle for antibacterial nanomaterial, which is useful for future application of antibacterial nanomaterial agents.
Collapse
Affiliation(s)
- Jiao Chen
- Department of Medical Genetics and Prenatal Diagnosis, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu 225300, China.
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China
| |
Collapse
|
3
|
Zhang J, Jiang S, Liu H, Wang Z, Cai X, Tan S. Fabrication of a ZnO/Polydopamine/ε-Polylysine Coating with Good Corrosion Resistance and a Joint Antibacterial Pathway on the Surface of Medical Stainless Steel. ACS Biomater Sci Eng 2025. [PMID: 40418020 DOI: 10.1021/acsbiomaterials.5c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Medical stainless steel (SS) is a widely used alloy in orthopedic and dental implant applications. However, SS can cause local corrosion in the body, which may affect cell proliferation and differentiation, and is prone to related bacterial infection. Therefore, surface modification is required to improve the corrosion resistance and antibacterial performance of SS to extend its service life. To achieve this goal, a new type of composite coating was established on the surface of SS. First, zinc oxide (ZnO) nanoparticles were deposited on the surface of SS by electrochemical deposition. Then, polydopamine (PDA) was formed through the self-polymerization of dopamine. Finally, the Michael addition reaction between ε-polylysine (ε-PL) and PDA was used to chemically graft a cationic antimicrobial peptide (AMP), namely, ε-PL, constructing a corrosion-resistant and antibacterial ZnO/PDA/ε-PL coating on the surface of the SS (SZP/ε-PL). The results indicated that the obtained composite coating could significantly improve the corrosion resistance of SS because of the introduction of ZnO. After being irradiated with near-infrared (NIR) light (wavelength: 1064 nm, power: 1 W/cm2) for 8 min, the temperature of SZP/ε-PL increased from 22.4 to 57.8 °C. Moreover, there was no significant temperature decay after four cycles, which indicated the good photothermal performance and stability of SZP/ε-PL owing to the function of PDA. Combining photothermal sterilization and AMP contact sterilization, the antibacterial rates of SZP/ε-PL against Escherichia coli and Staphylococcus aureus both reached nearly 100%. In addition, SZP/ε-PL has excellent blood compatibility. With the above advantages, SZP/ε-PL was expected to become a safe and efficient implant material.
Collapse
Affiliation(s)
- Jinglin Zhang
- School of Light Industry and Materials, Guangdong Polytechnic, Foshan 528041, P. R. China
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Shuoyan Jiang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Huidi Liu
- Department of Science and Technology, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Zengxi Wang
- School of Light Industry and Materials, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Xiang Cai
- School of Light Industry and Materials, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
4
|
Chintakindi J, Lahane GP, Dhar A, Mir A. Engineered Ti 3C 2(O,Cl) MXenes with dual functionalization: a new Frontier in targeted head and neck squamous cell carcinoma and breast adenocarcinoma. J Mater Chem B 2025. [PMID: 40375828 DOI: 10.1039/d5tb00302d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Ti3C2Tx MXenes have attracted significant attention in the realm of anticancer therapeutics owing to their remarkable properties, including cyto-compatibility and targeted drug delivery capabilities. In this study, Ti3C2 was intentionally modified with both chlorine and oxygen surface groups, as each of these functional groups have individually demonstrated promising anticancer properties. Our aim was to combine them in a single compound to explore how this dual-functionalized material might perform in a therapeutic context. This study synthesizes Ti3C2(O,Cl) MXenes using a novel electrochemical etching technique that allows for precise tailoring of the surface terminations with O and Cl groups. The synthesised Ti3C2(O,Cl) has biological activity in two cancerous (FaDu and MCF-7) and two normal (H9C2 and HEK-293) cell lines. The results of cytotoxicity data showed that the observed toxic effects were higher against cancerous cells (∼91%) than normal cells (∼40%). The mechanisms of potential toxicity were also elucidated. The synthesized Ti3C2(O,Cl) MXene has an effect on oxidative stress, resulting in an increase of more than 91.44% in reactive oxygen species (ROS) production in malignant cells. The results of this study provide major insights to date into the biological activity of Ti3C2(O,Cl) MXenes and develop their application in anticancer treatments.
Collapse
Affiliation(s)
- Jhansi Chintakindi
- Department of Chemical Engineering, BITS Pilani, Hyderabad Campus, Telangana, India.
| | | | - Arti Dhar
- Department of Pharmacy, BITS Pilani, Hyderabad Campus, Telangana, India.
| | - Afkham Mir
- Department of Chemical Engineering, BITS Pilani, Hyderabad Campus, Telangana, India.
| |
Collapse
|
5
|
Sen Gupta R, Islam SS, Pradeep D, Jose T, Govind Rajan A, Bose S. Sequential Interpenetrating Polymer Network Confines Shear-Aligned Graphene Oxide Liquid Crystals Enabling Precise Molecular Sieving. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503746. [PMID: 40376980 DOI: 10.1002/smll.202503746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/22/2025] [Indexed: 05/18/2025]
Abstract
Graphene oxide (GO)-based membranes hold great promise for revolutionizing nanofiltration, thanks to their seamless water transport and efficient ion and molecular sieving capabilities. Yet, their practical application remains limited due to structural instability under high pressure and swelling of nanochannels caused by water intercalation. This work overcomes these issues by aligning GO-based liquid crystals via shear forces and stabilizing them with a sequential interpenetrating polymeric network (IPN) using electrostatic anchoring. The process preserves long-range order through nanoconfinement. Using dopamine and GO liquid crystals, a nematic phase is achieved at very low concentrations, unlike conventional approaches. Characterization via microscopy and spectroscopy confirms pore sizes of ∼7 nm due to nanomaterial inclusion. These highly ordered and structurally stable membranes demonstrate exceptional water flux (145 LMH) and >97% separation efficiency for monovalent/divalent salts, dyes, and antibiotics. Molecular dynamics (MD) simulations reveal reduced water flux upon confining rGO-I sheets in the IPN, scaling with rGO-I concentration, and show fewer ions within the membrane, supporting feed-side retention. These findings match experimental results. The membranes also display antifouling, chlorine resistance, antibacterial activity, and cytocompatibility. They remain stable over multiple uses and under harsh conditions, without swelling-demonstrating strong potential for large-scale, sustainable water treatment.
Collapse
Affiliation(s)
- Ria Sen Gupta
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Sk Safikul Islam
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
- Innovation and Translational Research Hub (iTRH) & Department of Chemistry, School of Engineering, Presidency University, Bangalore, 560064, India
| | - Dhondi Pradeep
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Theres Jose
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Ananth Govind Rajan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| |
Collapse
|
6
|
Yadav A, Fang Z, Wang Y, Qiu K, Tan A, Tang Z, Zhang X, Ji B, Li D, Diao J. Clustered Carbon Nanotubes Damage Endoplasmic Reticulum. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25128-25138. [PMID: 40253626 DOI: 10.1021/acsami.5c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Carbon nanotubes (CNTs) have garnered significant attention in recent years due to their unique properties and their wide-range applicability. However, alongside these promising applications, concerns regarding the potential toxicity of CNTs have emerged. In this context, through this work, we have attempted to explore the nanotoxic effect of CNTs over endoplasmic reticular (ER). Using structure illumination and transmission electron microscopies, we unveiled that during endocytosis processes, CNTs form clusters, which lead to fragmentation of the ER structure by puncturing them, thereby inducing potential nanotoxicity. In addition, RNA sequencing data showed that after incubation with CNTs, activating transcription factor 4 (ATF4), a gene responsible for ER stress, was found to be up-regulated. To explore the molecular mechanism, we employed molecular dynamics and coarse-grained simulations and found that clustering of CNTs can significantly increase the speed of lipid extraction, resulting in severe damage.
Collapse
Affiliation(s)
- Aditya Yadav
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati 45267, Ohio, United States
| | - Zhou Fang
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yuxin Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati 45267, Ohio, United States
- The Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati 45221, Ohio, United States
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati 45267, Ohio, United States
| | - Adrian Tan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati 45267, Ohio, United States
| | - Zihan Tang
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati 45267, Ohio, United States
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Dechang Li
- Institute of Biomechanics and Applications, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati 45267, Ohio, United States
| |
Collapse
|
7
|
Wang MF, Yan T, Gao MC, Han CW, Yan ZQ, Gao YZ, Zhang W, Yi Z. A review of the advances in implant technology: accomplishments and challenges for the design of functionalized surface structures. Biomed Mater 2025; 20:032003. [PMID: 40199334 DOI: 10.1088/1748-605x/adca7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
Biomedical implants are extensively utilized to replace hard-tissue defects owing to their biocompatibility and remarkable tissue-affinity. The materials and functional design are selected based on the resultant osseointegration level and resistance to infection, and these considerations constitute the dominant research topic in this field. However, high rates of implantation failure and peri-implantitis have been reported. Current research on biomedical-implant design encompasses enhancement of the implant surface properties, such as the roughness, nano/micro topography, and hydrophilicity, along with the realization of advanced features including antibacterial properties and cell and immunomodulation regulation. This review considers the two achievements of contemporary implant manufacturing; namely, osseointegration and the realization of antibacterial properties. Present mainstream surface modifications and coatings are discussed, along with functional design technologies and achievements. The impacts of direct surface-treatment techniques and osteogenic functional coatings on osseointegration performance and antibacterial surface structures are elucidated, considering inorganic and organic coatings with antibacterial properties as well as antibiotic-releasing coatings. Furthermore, this review highlights recent advancements in physically driven antimicrobial strategies. Expanding upon existing research, future directions for implant studies are proposed, including the realization of comprehensive functionality that integrates osseointegration and antibacterial properties, as well as patient-specific design. Our study presents a comprehensive review and offers a novel perspective on the design of biomedical implants for enhanced versatility. An in-depth exploration of future research directions will also stimulate subsequent investigations.
Collapse
Affiliation(s)
- Ming-Feng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Tao Yan
- Joint Orthopedics, Xiangyang Hospital Affiliated to Hubei University of Chinese Medicine, Xiangyang, Hubei 441000, People's Republic of China
| | - Ming-Cen Gao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Cheng-Wei Han
- Liaoning Upcera Co., Ltd, Benxi, Liaoning 117004, People's Republic of China
| | - Zhuo-Qun Yan
- Liaoning Upcera Co., Ltd, Benxi, Liaoning 117004, People's Republic of China
| | - Yu-Zhong Gao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Wei Zhang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
8
|
Sarac B, Yücer S, Ciftci F. MXenes in microbiology and virology: from pathogen detection to antimicrobial applications. NANOSCALE 2025; 17:9619-9651. [PMID: 40135595 DOI: 10.1039/d5nr00477b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
MXenes, a rapidly emerging class of two-dimensional materials, have demonstrated exceptional versatility and functionality across various domains, including microbiology and virology. Recent advancements in MXene synthesis techniques, encompassing both top-down and bottom-up approaches, have expanded their potential applications in pathogen detection, antimicrobial treatments, and biomedical platforms. This review highlights the unique physicochemical properties of MXenes, including their large surface area, tunable surface chemistry, and high biocompatibility, which contribute to their antimicrobial efficacy against bacteria, fungi, and viruses, such as SARS-CoV-2. The antibacterial mechanisms of MXenes, including membrane disruption, reactive oxygen species (ROS) generation, and photothermal inactivation, are discussed alongside hybridization strategies that enhance their bioactivity. Additionally, the challenges and future prospects of MXenes in developing advanced antimicrobial coatings, diagnostic tools, and therapeutic systems are outlined. By addressing current limitations and exploring innovative solutions, this study underscores the transformative potential of MXenes in microbiology, virology, and biomedical applications.
Collapse
Affiliation(s)
- Begüm Sarac
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
| | - Seydanur Yücer
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
| | - Fatih Ciftci
- Faculty of Engineering, Department of Biomedical Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey.
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul, Turkey
| |
Collapse
|
9
|
Wang J, Li D, Zhao P, Zhang Z, Wang J, Shan S, Li S, Xu D, Yu H, Ma Q. Deciphering the treatment performance, microbial community responses, and behavior of antibiotic resistance genes in anaerobic sequencing batch reactors under graphene exposure. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1157-1168. [PMID: 40160148 DOI: 10.1039/d4em00562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Graphene has garnered significant attention due to its unique and remarkable properties. The widespread application of graphene materials in numerous fields inevitably leads to their release into the environment. This study examines the long-term impacts of graphene on anaerobic sequencing batch reactors. The low-concentration graphene (5 mg L-1) exhibited a significant inhibitory effect on the removal of chemical oxygen demand, while the high-concentration group (100 mg L-1) was less affected. The transmission electron microscopy and Raman spectroscopy results demonstrated that the anaerobic sludge could attack graphene materials, and cell viability tests showed that high concentrations of graphene were more conducive to microbial attachment. High-throughput sequencing revealed significant alterations in the microbial community structure under graphene pressure. Methanobacterium and Actinomyces gradually became the dominant genera in the high-concentration group. Network analysis showed that graphene increased the complexity and interaction of microbial communities. Additionally, high-throughput qPCR analysis demonstrated that graphene influenced the dynamics of antibiotic resistance genes, with most exhibiting increased abundance over time, especially in the low-concentration group. Consequently, when considering the application of graphene in wastewater treatment, it is crucial to evaluate potential risks, including its effects on system performance and the likelihood of antibiotic resistance gene enrichment.
Collapse
Affiliation(s)
- Jingwei Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Da Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Pan Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Zi Zhang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Jiaxin Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Shuang Shan
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuzhen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Dan Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Hang Yu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Qiao Ma
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
10
|
Jashrapuria K, Singh SP. Biofilm Inhibition by Laser-Induced Graphene: Impact of Surface Texture on Rod-Shaped E. coli and Coccus-Shaped Staphylococcus. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21819-21829. [PMID: 40143406 DOI: 10.1021/acsami.5c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Biofilm formation poses persistent challenges across various industrial sectors, such as food, marine, and membrane industries, often leading to reduced system performance. An antibiofilm strategy using nanotextured surfaces, such as laser-induced graphene (LIG), has emerged as a potent antibiofilm surface, particularly against rod-shaped bacteria. However, biofilms in nature consist of diverse bacterial species, necessitating a thorough evaluation of LIG efficacy against various bacterial species. Therefore, this study comprehensively analyzed the antibiofilm potential of LIG nanofibers fabricated on polyether sulfone (PES) film. The study focused on two bacterial species with distinct morphologies: rod-shaped Escherichia coli and coccus-shaped Staphylococcus epidermidis. The antibiofilm potential of LIG was studied under extended biofilm-promoting conditions for 10 days. The surface with crushed LIG nanofibers (C-LIG) showed substantial biofilm accumulation, with live biomass of ∼7 μm3 μm-2 for E. coli and ∼6 μm3 μm-2 for S. epidermidis. In contrast, LIG nanofibers prevented biofilm formation for both species. We also observed LIG-induced cell size alteration for rod- and coccus-shaped bacterial cells. Notably, there was an ∼39% reduction in E. coli cell size compared to the control PES, resulting in a morphological shift to an ovoid shape, likely due to activation of the General Stress Response (GSR). However, S. epidermidis did not exhibit any morphological changes. We also provided the first evidence that E. coli cells exposed to LIG-induced stress regained their original size when cultured in a stress-free environment, indicating these morphological changes were reversible. Further, whole-genome sequencing supported this observation by showing no single nucleotide polymorphism, indicating no permanent genetic alterations in stressed E. coli cells. Overall results showed that LIG nanofibers disrupted biofilm formation in both bacterial species. Thus, our findings highlight the potential of LIG as a robust antibiofilm surface that offers broader applicability in biofilm-prone environments.
Collapse
Affiliation(s)
- Kritika Jashrapuria
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre for Climate Studies, Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre of Excellence on Membrane Technologies for Desalination, Brine Management, and Water Recycling (DeSaltM), Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
11
|
Guo ZW, Mo YF, Tang XN, Xie YH, Feng D, Wu F, Mei Y, Xie D. Synchronous enhancement of antimicrobial and mechanical properties of natural rubber by MXene functionalized with SiO 2. Int J Biol Macromol 2025; 299:140074. [PMID: 39855522 DOI: 10.1016/j.ijbiomac.2025.140074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
The development of natural rubber (NR) gloves with superior antibacterial and enhanced mechanical properties is critical for safeguarding healthcare personnel. In this study, Ti-based MXene (Ti3C2Tx) nanosheets were employed for the first time as an antibacterial agent to improve the antimicrobial performance of NR. Through SiO₂ intercalation via electronic assembly, the antibacterial efficacy of MXene was significantly boosted, achieving 100 % lethality against E. coli and 90.95 % against S. aureus. Mechanistic studies revealed that silica nanoparticles primarily enhanced MXene's ability to induce physical damage and generate reactive oxygen species (ROS). The positively charged MXene-SiO₂ nanosheets were then incorporated into negatively charged natural latex to form NR nanocomposites with a hierarchical MXene structure. Compared to pristine NR, the nanocomposites exhibited 100 % lethality against E. coli and 74.72 % against S. aureus with the addition of just 0.5 phr MXene-SiO₂. Furthermore, the mechanical properties of NR were enhanced, with the modulus at 50 % and 100 % strain increasing by 22 % and 15 %, respectively, while elongation at break improved to 790 %. This work not only presents a novel approach for enhancing the antibacterial and mechanical properties of NR, but also deepens the understanding of MXene's antibacterial mechanism and its potential applications in healthcare materials.
Collapse
Affiliation(s)
- Zhen-Wei Guo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Yunnan Technological Innovation Center of Phosphorus Resources, Yunnan International Joint Laboratory of Sustainable Polymers, Yunnan 650500, China
| | - Yan-Fen Mo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Yunnan Technological Innovation Center of Phosphorus Resources, Yunnan International Joint Laboratory of Sustainable Polymers, Yunnan 650500, China
| | - Xiao-Ning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China
| | - Yu-Hui Xie
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Yunnan Technological Innovation Center of Phosphorus Resources, Yunnan International Joint Laboratory of Sustainable Polymers, Yunnan 650500, China
| | - Dong Feng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Yunnan Technological Innovation Center of Phosphorus Resources, Yunnan International Joint Laboratory of Sustainable Polymers, Yunnan 650500, China
| | - Feng Wu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Yunnan Technological Innovation Center of Phosphorus Resources, Yunnan International Joint Laboratory of Sustainable Polymers, Yunnan 650500, China; Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province, Kunming, Yunnan 650500, China.
| | - Yi Mei
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Yunnan Technological Innovation Center of Phosphorus Resources, Yunnan International Joint Laboratory of Sustainable Polymers, Yunnan 650500, China
| | - Delong Xie
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Yunnan Technological Innovation Center of Phosphorus Resources, Yunnan International Joint Laboratory of Sustainable Polymers, Yunnan 650500, China; Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province, Kunming, Yunnan 650500, China.
| |
Collapse
|
12
|
Sedghamiz MA, Mehrvar M, Tavakkoli MA, Sharif M, Sahami M. The efficient chitosan-polythiophene-graphene oxide bionanocomposite with enhanced antibacterial activity, dye adsorption ability, mechanical and thermal properties. Sci Rep 2025; 15:10485. [PMID: 40140690 PMCID: PMC11947090 DOI: 10.1038/s41598-025-95090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Water pollution is the most serious environmental issues due to toxic impurity such as dye and pathogenic microorganisms. The main goal of the present study is to produce a novel ternary chitosan-polythiophene-graphene oxide (CS-PTh-GO) bionanocomposites using the intercalation of GO into CS through solution mixing process followed by the in-situ polymerization of thiophene for removal of dye and killing microorganisms from an aqueous solution. The fabricated CS-PTh-GOs were characteristically examined via FTIR, XRD, SEM, TEM, TGA, tensile analysis and subsequently applied for adsorption of cationic dyes such as methylene blue (MB) in the dark or under light and killing the growth of Gram-positive and Gram-negative microorganisms. The data revealed that presence of PTh-GO enhanced the surface roughness, tensile strength, thermal stability, adsorption characteristics and antibacterial activity. The CS-PTh-GO showed 97% dye removal of MB in 50 min. Ultimately, the CS-PTh-GO bionanocomposites analysis against the growth of Staphylococcus aureus, and Escherichia coli manifesting a minimum inhibitory concentration (MIC) of 5 µg/mL, respectively. Thus, the CS-PTh-GO bionanocomposite has the potential to use as an efficient adaptable antimicrobial and dye absorbent of organic dyes in industrial wastewater.
Collapse
Affiliation(s)
- Mohammad Amin Sedghamiz
- Department of Chemical, Petroleum and Gas Engineering, Lamerd Higher Education Center, Shiraz University of Technology, Lamerd, Iran.
| | - Mohammadhadi Mehrvar
- Department of Polymer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | | | - Mehdi Sharif
- Department of Polymer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Mehdi Sahami
- Department of Mechanical Engineering, The University of Akron, 244 Sumner Street, Akron, OH, 44325-3903, USA
| |
Collapse
|
13
|
Amiri-Zirtol L, Emtiazi H, Abootalebi SN, Gholami A. Dual acid-base catalysis with biologically modified graphene oxide: a sustainable route to polyhydroquinolines with antimicrobial properties. Sci Rep 2025; 15:10194. [PMID: 40133472 PMCID: PMC11937246 DOI: 10.1038/s41598-025-94389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/13/2025] [Indexed: 03/27/2025] Open
Abstract
This article conducts an in-depth examination of graphene oxide-aspartic acid (GO-As) as a novel bifunctional nano-organocatalyst distinguished by both catalytic and antibacterial properties. The research elucidates the synthesis of GO through Hummer's method, followed by the covalent attachment of aspartic acid to the surface of GO nanosheets. This innovative approach is particularly notable as it circumvents the use of hazardous chemicals, thereby promoting environmental sustainability. The newly developed catalyst underwent rigorous analysis employing a variety of spectroscopic techniques, including Fourier Transform Infrared (FT-IR) spectroscopy, Energy-Dispersive X-ray Spectroscopy (EDX), mapping, Field Emission Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Raman spectroscopy. The findings indicate that the catalyst effectively synthesizes polyhydroquinoline derivatives while demonstrating significant stability over multiple reuse cycles, underscoring its potential applicability in organic synthesis. Furthermore, the antibacterial properties of the GO-modified aspartic acid were evaluated against six pathogenic bacterial species. The results reveal substantial antibacterial activity against both Gram-positive and Gram-negative strains, including two antibiotic-resistant bacteria: Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococcus (VRE), thermogravimetric analysis (TGA), and Raman. In conclusion, the investigation of GO-As as a bifunctional heterogeneous nano-organocatalyst represents a promising advancement in the development of environmentally friendly and effective catalysts with noteworthy antibacterial characteristics.
Collapse
Affiliation(s)
- Leila Amiri-Zirtol
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamideh Emtiazi
- Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Narjes Abootalebi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Division of Intensive Care Unit, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Qin Y, Hua S, Zhu L, Nie P, Yang C, Xu F, Wu D, Dong W. Application of graphene oxide in Agrobacterium-mediated genetic transformation and construction of a novel DNA delivery system for watermelon. Sci Rep 2025; 15:5465. [PMID: 39952982 PMCID: PMC11828852 DOI: 10.1038/s41598-025-89361-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Graphene oxide (GO) is widely used in biotechnology. The purpose of this study was to improve the efficiency of genetic transformation by constructing a delivery system based on GO. First, GO was applied in the traditional genetic transformation scheme for watermelons. We used hydroponics and tissue culture methods to determine the optimal concentration of GO for watermelon plant growth, we then used this concentration of GO for watermelon genetic transformation and found that GO can inhibit the growth of Agrobacterium tumefaciens and promote the growth of explants. This discovery can simplify the replacement of various culture media after explant infection, improve the regeneration rate of transgenic plants, and reduce experimental costs. To improve the efficiency of genetic transformation, a polymer-functionalized graphene oxide nanoparticle (GO-PEG-PEI) nanodelivery system was constructed, and the results showed that GO-PEG-PEI can transfer pCAMBIA1300-GFP plasmids into intact plant cells. We found that sheet-like GO-PEG-PEI can effectively load GFP and form small GO-PEG-PEI-GFP complexes, which can deliver pCAMBIA1300-GFP plasmids into plant cells. This research provides a new technique for molecular breeding.
Collapse
Affiliation(s)
- Yuanyuan Qin
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Shengqi Hua
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Lili Zhu
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Pinpin Nie
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Caizhu Yang
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Fangzhou Xu
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Defeng Wu
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Wei Dong
- School of Life Science, Henan University, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
15
|
Bal M, Tontuş Mİ, Tümer M. Hybrid Materials Based on Reduced Graphene Oxide; Synthesis and Characterization of V and Ru Metal Complexes. J Fluoresc 2025:10.1007/s10895-025-04184-3. [PMID: 39939500 DOI: 10.1007/s10895-025-04184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
The unique material graphene, which can find its place in many areas such as pharmaceutical industry, medical field, aviation and space industry, and elimination of environmental pollution; was obtained from graphite using strong oxidants within the scope of this study. rGO was obtained by thermal reduction of oxygen-containing groups in the GO material layer. Hybrid materials were synthesized by binding 4-aminobenzoic acid (C) and 3-aminobenzoic acid (D) to the rGO material. Ru metal complexes, which stand out with their superior photophysical properties, and V metal complexes, which are harmful to the environment and human health, were formed with the hybrid materials. The synthesized hybrid and complex materials were characterized by methods such as FTIR, UV-vis, XRD, SEM and EDX and TEM. In addition, the photoluminescence properties of the materials were analyzed. The potential of Ru and V complexes of the obtained hybrid materials for use in the environment and human health was evaluated.
Collapse
Affiliation(s)
- Mustafa Bal
- Department of Machinery and Metal Technologies, Airbus-TUSAŞ Aviation Vocational School, Istiklal University, Kahramanmaraş, Turkey.
| | - Mehmet İsa Tontuş
- Chemistry Department, K.Maras Sütcü Imam University, Kahramanmaraş, 46100, Turkey
| | - Mehmet Tümer
- Chemistry Department, K.Maras Sütcü Imam University, Kahramanmaraş, 46100, Turkey
| |
Collapse
|
16
|
Zhang H, Li D, Ren H, Ma Z, Meng S, Qiao Y, Yang J, Wang Y, Zhou Q, Xie L. A Bioinspired Virus-Like Mechano-Bactericidal Nanomotor for Ocular Multidrug-Resistant Bacterial Infection Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408221. [PMID: 39806835 DOI: 10.1002/adma.202408221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/28/2024] [Indexed: 01/16/2025]
Abstract
Multidrug-resistant (MDR) bacteria and their associated biofilms are major causative factors in eye infections, often resulting in blindness and presenting considerable global health challenges. Presently, mechano-bactericidal systems, which combine distinct topological geometries with mechanical forces to physically induce bacterial apoptosis, show promising potential. However, the physical interaction process between current mechano-bactericidal systems and bacteria is generally based on passive diffusion or Brownian motion and lacks the force required for biofilm penetration; thus, featuring low antibacterial efficacy. Here, a biomimetic mechano-bactericidal nanomotor (VMSNT) is synthesized by functionalizing COOH-PEG-phenylboronic acid (PBA) on virus-like mesoporous silica, with subsequent partial coating of Au caps. Enhanced by self-thermophoresis capabilities and virus-like topological shapes, VMSNT significantly improves mechanical antibacterial effects and biofilm penetration. In addition, scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) analyses demonstrate that VMSNT can precisely target bacteria within the infection microenvironment, facilitated by PBA's ability to recognize and bind to the peptidoglycan on bacterial surfaces. Remarkably, VMSNT is also effective in eliminating MDR bacteria and reducing inflammation in mice models of methicillin-resistant Staphylococcus aureus (MRSA)-infected keratitis and endophthalmitis, with minimal adverse effects. Overall, such a nanomotor presents a promising approach for addressing the challenges of ocular MDR bacterial infections.
Collapse
Affiliation(s)
- Hengrui Zhang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China
| | - Dewei Li
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China
| | - Huifang Ren
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China
| | - Zhenrui Ma
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China
| | - Shuqin Meng
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China
| | - Yujie Qiao
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China
| | - Jiabao Yang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China
| | - Yao Wang
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, P. R. China
| |
Collapse
|
17
|
Singh RK, Verma K, Kumar GCM, Jalageri MB. Potential of Graphene-Functionalized Polymer Surfaces for Dental Applications: A Systematic review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:191-211. [PMID: 39190630 DOI: 10.1080/09205063.2024.2396224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Graphene, a two-dimensional carbon nanomaterial, has garnered widespread attention across various fields due to its outstanding properties. In dental implantology, researchers are exploring the use of graphene-functionalized polymer surfaces to enhance both the osseointegration process and the long-term success of dental implants. This review consolidates evidence from in-vivo and in-vitro studies, highlighting graphene's capacity to improve bone-to-implant contact, exhibit antibacterial properties, and enhance mechanical strength. This research investigates the effects of incorporating graphene derivatives into polymer materials on tissue response and compatibility. Among 123 search results, 14 articles meeting the predefined criteria were analyzed. The study primarily focuses on assessing the impact of GO and rGO on cellular function and stability in implants. Results indicate promising improvements in cellular function and stability with the use of GO-coated or composited implants. However, it is noted that interactions between Graphene derivatives and polymers may alter the inherent properties of the materials. Therefore, further rigorous research is deemed imperative to fully elucidate their potential in human applications. Such comprehensive understanding is essential for unlocking the extensive benefits associated with the utilization of Graphene derivatives in biomedical contexts.
Collapse
Affiliation(s)
- Rohit Kumar Singh
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Khyati Verma
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - G C Mohan Kumar
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| | - Mallikarjun B Jalageri
- Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India
| |
Collapse
|
18
|
Venkatesh Y, Wadepalli S, Bangal PR, Naidu PVS, Rao PA. Facile One-Pot Microwave-Assisted Synthesis and Ultrafast Spectroscopic Characterization of Nitrogen-Sulfur-Codoped Carbon Quantum Dots. LUMINESCENCE 2025; 40:e70108. [PMID: 39905668 DOI: 10.1002/bio.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/23/2024] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
We report an eco-friendly, cost-effective, one-pot microwave-assisted synthesis of nitrogen and sulfur co-doped carbon quantum dots (N,S-CQDs) using citric acid and thiourea in formamide without surface passivation. The N,S-CQDs were characterized by HRTEM, FE-SEM, XRD, EDX, FTIR, Raman, and XPS, confirming monodispersed spherical particles of 4.8 nm with an amorphous carbon phase containing oxygen, nitrogen, and sulfur. The comprehensive photophysical studies of N,S-CQD employed by steady state and different time-resolved spectroscopic techniques (TCSPC, Ultrafast Time-Resolved Fluorescence Up-Conversion and Femtosecond Transient Absorption techniques). These N,S-CQDs show broad UV-visible to near-infrared absorption with peaks near 300 and 400 nm and emit strong blue photoluminescence at 360 nm excitation, with a quantum yield of ~8.4%. Time-resolved spectroscopy (TCSPC, fluorescence up-conversion, transient absorption) reveals multiexponential carrier relaxation with time constants from 0.5 ps to > 500 ps, including a 360 ps rise component and three distinct decay components, indicating complex fluorescence driven by surface defects. Ultrafast decay components correspond to thermal cooling of hot excitons, while later decays relate to carrier trapping at surface states. The tunable optical properties and carrier dynamics make N,S-CQDs promising for optoelectronic applications such as LEDs, sensors, and photodetectors, with further enhancement possible through surface engineering and defect control.
Collapse
Affiliation(s)
- Yeduru Venkatesh
- Department of Chemistry, School of Science, GITAM Deemed to Be University, Visakhapatnam, India
- Department of Chemistry, Dr. V. S. Krishna Government Degree College (A), Visakhapatnam, India
| | - Sadashiv Wadepalli
- Polymers and Functional Materials, Indian Institute of Chemical Technology, Hyderabad, India
| | - Prakriti Ranjan Bangal
- Department of Analytical and Structural Chemistry, Indian Institute of Chemical Technology, Hyderabad, India
| | | | - Podilapu Atchutha Rao
- Department of Chemistry, School of Science, GITAM Deemed to Be University, Visakhapatnam, India
| |
Collapse
|
19
|
Kaur N, De M. Shape and Size Dependent Antimicrobial and Anti-biofilm Properties of Functionalized MoS 2. ACS Infect Dis 2025; 11:249-261. [PMID: 39703182 DOI: 10.1021/acsinfecdis.4c00860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Bacterial resistance, accelerated by the misuse of antibiotics, remains a critical concern for public health, promoting an ongoing exploration for cost-effective and safe antibacterial agents. Recently, there has been significant focus on various nanomaterials for the development of alternative antibiotics. Among these, molybdenum disulfide (MoS2) has gained attention due to its unique chemical, physical, and electronic properties, as well as its semiconducting nature, biocompatibility, and colloidal stability, positioning it as a promising candidate for biomedical research. The impact of the shape and size of MoS2 nanomaterials on the antibacterial activity remains largely unexplored. In this study, we investigated the effect of the shape and size of MoS2 nanomaterials, such as quantum dots, nanoflowers, and nanosheets, on antimicrobial and anti-biofilm activity. As we had established earlier, functionalization with positively charged thiol ligands can enhance colloidal stability, biocompatibility, and antibacterial efficacy; we functionalized all targeted nanomaterials. Our results revealed that functionalized MoS2 quantum dots (F-MQDs) exhibited superior activity compared to functionalized MoS2 nanoflowers (F-MNFs) and functionalized MoS2 nanosheets (F-MNSs) against Staphylococcus aureus (SA), both drug-resistant (methicillin) and nonresistant strains. We observed very low minimum inhibitory concentration (MIC, 30 ng/mL) for F-MQDs. The observed trend in antibacterial efficacy was as follows: F-MQDs > F-MNFs ≥ F-MNSs. We explored the relevant mechanism related to the antibacterial activity where the balance between membrane depolarization and internalization plays the determining role. Furthermore, F-MQDs show enhanced anti-biofilm activity compared to F-MNFs and F-MNSs against mature MRSA biofilms. Due to the superior antibacterial and anti-biofilm activity of F-MQDs, we extended their application to wound healing. This study will help us to develop other appropriate surface modified nanomaterials for antibacterial and anti-biofilm activity for further applications such as antibacterial coatings, water disinfection, and wound healing.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
20
|
Zhang H, Niu W, Liu X, Han J, Zhao Y, Wei Z, Wu Z, Shi Z, Wang B, Dong Y. 3D printing of antimicrobial adsorbents using Mercapto-graphene oxide / chitosan / ε-Polylysine: Elucidating adsorption mechanisms and antimicrobial performance. Int J Biol Macromol 2024; 283:137797. [PMID: 39566765 DOI: 10.1016/j.ijbiomac.2024.137797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Cu2+ in wastewater is hazardous to human health, and adsorption technology can effectively remove heavy metal ions. In this study, sulfhydryl graphene oxide/chitosan/ε-polylysine (SGCS-E) polymeric antimicrobial materials were prepared using 3D printing technology. These materials were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and XPS. The effects of temperature and other influencing factors on the adsorption performance were systematically investigated. The adsorption process followed pseudo-second-order kinetics and the Langmuir model. The maximum adsorption capacity of the adsorbent was 313 mg/g at an initial Cu2+ concentration of 20 mg/L, pH 5, and a temperature of 303.15 K. The study on the adsorption mechanism showed that the adsorption of Cu2+ by SGCS-E was mainly controlled by chemical interactions. Antibacterial experiments showed that SGCS-E has a good growth inhibition effect on E. coli and S. aureus. The antibacterial process of SGCS-E is mainly achieved by interfering with the synthesis of proteins and DNA in bacterial cells. Therefore, SGCS-E can not only adsorb and remove Cu2+ from wastewater but also inhibit the overgrowth of microorganisms in the porous adsorbent and improve its reusability, making it a dual-functional adsorbent-antibacterial material with high stability.
Collapse
Affiliation(s)
- Huining Zhang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China; Baiyin Branch of Gansu Academy of Sciences, Lanzhou 730030, China.
| | - Wenhui Niu
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xingmao Liu
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jianping Han
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yi Zhao
- Gansu Academy of Sciences, Lanzhou 730030, China
| | - Zhiqiang Wei
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zhiguo Wu
- Baiyin Branch of Gansu Academy of Sciences, Lanzhou 730030, China
| | - Zhongyu Shi
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China; Gansu Hailiang New Energy Materials Co., Ltd, Lanzhou 730000, China
| | - Baixiang Wang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yakun Dong
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
21
|
Nowotnick AG, Xi Z, Jin Z, Khalatbarizamanpoor S, Brauer DS, Löffler B, Jandt KD. Antimicrobial Biomaterials Based on Physical and Physicochemical Action. Adv Healthc Mater 2024; 13:e2402001. [PMID: 39301968 DOI: 10.1002/adhm.202402001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Indexed: 09/22/2024]
Abstract
Developing effective antimicrobial biomaterials is a relevant and fast-growing field in advanced healthcare materials. Several well-known (e.g., traditional antibiotics, silver, copper etc.) and newer (e.g., nanostructured, chemical, biomimetic etc.) approaches have been researched and developed in recent years and valuable knowledge has been gained. However, biomaterials associated infections (BAIs) remain a largely unsolved problem and breakthroughs in this area are sparse. Hence, novel high risk and potential high gain approaches are needed to address the important challenge of BAIs. Antibiotic free antimicrobial biomaterials that are largely based on physical action are promising, since they reduce the risk of antibiotic resistance and tolerance. Here, selected examples are reviewed such antimicrobial biomaterials, namely switchable, protein-based, carbon-based and bioactive glass, considering microbiological aspects of BAIs. The review shows that antimicrobial biomaterials mainly based on physical action are powerful tools to control microbial growth at biomaterials interfaces. These biomaterials have major clinical and application potential for future antimicrobial healthcare materials without promoting microbial tolerance. It also shows that the antimicrobial action of these materials is based on different complex processes and mechanisms, often on the nanoscale. The review concludes with an outlook and highlights current important research questions in antimicrobial biomaterials.
Collapse
Affiliation(s)
- Adrian G Nowotnick
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhongqian Xi
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| | - Zhaorui Jin
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Sadaf Khalatbarizamanpoor
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Delia S Brauer
- Bioactive Glasses Group, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Lessingstraße 12, 07743, Jena, Germany
| | - Bettina Löffler
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
- Institute of Medical Microbiology, Jena University Hospital, 07747, Am Klinikum 1, Jena, Germany
| | - Klaus D Jandt
- Chair of Materials Science (CMS), Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743, Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743, Neugasse 23, Jena, Germany
| |
Collapse
|
22
|
Jin S, Yu Y, Zhang T, Xie D, Zheng Y, Wang C, Liu Y, Xia D. Surface modification strategies to reinforce the soft tissue seal at transmucosal region of dental implants. Bioact Mater 2024; 42:404-432. [PMID: 39308548 PMCID: PMC11415887 DOI: 10.1016/j.bioactmat.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Soft tissue seal around the transmucosal region of dental implants is crucial for shielding oral bacterial invasion and guaranteeing the long-term functioning of implants. Compared with the robust periodontal tissue barrier around a natural tooth, the peri-implant mucosa presents a lower bonding efficiency to the transmucosal region of dental implants, due to physiological structural differences. As such, the weaker soft tissue seal around the transmucosal region can be easily broken by oral pathogens, which may stimulate serious inflammatory responses and lead to the development of peri-implant mucositis. Without timely treatment, the curable peri-implant mucositis would evolve into irreversible peri-implantitis, finally causing the failure of implantation. Herein, this review has summarized current surface modification strategies for the transmucosal region of dental implants with improved soft tissue bonding capacities (e.g., improving surface wettability, fabricating micro/nano topographies, altering the surface chemical composition and constructing bioactive coatings). Furthermore, the surfaces with advanced soft tissue bonding abilities can be incorporated with antibacterial properties to prevent infections, and/or with immunomodulatory designs to facilitate the establishment of soft tissue seal. Finally, we proposed future research orientations for developing multifunctional surfaces, thus establishing a firm soft tissue seal at the transmucosal region and achieving the long-term predictability of dental implants.
Collapse
Affiliation(s)
- Siqi Jin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Daping Xie
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-2 Kumamoto, 860-8555, Japan
| | - Chunming Wang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
23
|
Al-Noaman A, Rawlinson SCF. A bioactive and anti-bacterial nano-sized zirconium phosphate/GO (nZrP/GO) composite: Potential use as a coating for dental implants? Dent Mater 2024; 40:e72-e81. [PMID: 39117499 DOI: 10.1016/j.dental.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Dental implants fabricated from titanium have several limitations and therefore, alternative materials that fulfil the criteria of successful dental implant (bioactivity and anti-bacterial activity) need to be considered. Polyether ether ketone (PEEK) has been suggested to replace titanium implants. However, this material needs surface modification to meet the appropriate criteria. A nano-sized zirconium phosphate/GO (nZrP/GO) composite coating was prepared to improve PEEK's biological qualities. METHODS Polished and cleaned PEEK discs were coated with the composite of nZrP doped with 1.25 wt% GO by the soft-template method. To analyze the composite coating, X-ray, atomic force microscopy, and field emission scanning electron microscopy-energy dispersive spectroscopy were used. The adhesion of the coating to PEEK was measured by adhesive tape test. By measuring the optical contact angle, the coated and non-coated samples' differences in wettability were evaluated. Antimicrobial activity was evaluated against S. aureus and E. coli and cytotoxicity tested employing gingival fibroblasts and osteoblast-like cells. RESULTS The nZrP/GO composite coating was 23.45 µm thick, was irregular and attached strongly to the PEEK surface. Following coating, the water contact angle dropped to 34° and surface roughness to 13 nm. The coating reduced the count of bacteria two-fold and was non-cytotoxic to mammalian osteoblast-like cells and fibroblasts. A precipitation of nano-calcium-deficient apatite was observed on the surface of the nZrP/GO coating following a 28-day immersion in SBF. SIGNIFICANCE PEEK-coated with nZr/GO coating is a good candidate as dental implant.
Collapse
Affiliation(s)
- Ahmed Al-Noaman
- University of Babylon, College of Dentistry, Department of Oral Surgery, Babylon City, Iraq.
| | | |
Collapse
|
24
|
Ju YQ, Yu XH, Wu J, Hu YH, Han XY, Fang D. Efficacy of graphene nanocomposites for air disinfection in dental clinics: A randomized controlled study. World J Clin Cases 2024; 12:6173-6179. [PMID: 39371570 PMCID: PMC11362895 DOI: 10.12998/wjcc.v12.i28.6173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Aerosols containing disease-causing microorganisms are produced during oral diagnosis and treatment can cause secondary contamination. AIM To investigate the use of graphene material for air disinfection in dental clinics by leveraging its adsorption and antibacterial properties. METHODS Patients who received ultrasonic cleaning at our hospital from April 2023 to April 2024. They were randomly assigned to three groups (n = 20 each): Graphene nanocomposite material suction group (Group A), ordinary filter suction group (Group B), and no air suction device group (Group C). The air quality and air colony count in the clinic rooms were assessed before, during, and after the procedure. Additionally, bacterial colony counts were obtained from the air outlets of the suction devices and the filter screens in Groups A and B. RESULTS Before ultrasonic cleaning, no significant differences in air quality PM2.5 and colony counts were observed among the three groups. However, significant differences in air quality PM2.5 and colony counts were noted among the three groups during ultrasonic cleaning and after ultrasonic treatment. Additionally, the number of colonies on the exhaust port of the suction device and the surface of the filter were significantly lower in Group A than in Group B (P = 0.000 and P = 0.000, respectively). CONCLUSION Graphene nanocomposites can effectively sterilize the air in dental clinics by exerting their antimicrobial effects and may be used to reduce secondary pollution.
Collapse
Affiliation(s)
- Ya-Qiong Ju
- Department of Nursing, Minhang District Dental Clinic, Shanghai 201107, China
| | - Xiang-Hua Yu
- Department of Nursing, Minhang District Dental Clinic, Shanghai 201107, China
- Department of Medical Sciences, Minhang District Dental Clinic, Shanghai 201107, China
| | - Jing Wu
- Department of Medical Sciences, Minhang District Dental Clinic, Shanghai 201107, China
| | - Ying-Hui Hu
- Department of Nursing, Minhang District Dental Clinic, Shanghai 201107, China
| | - Xiang-Yong Han
- Department of Medical Sciences, Minhang District Dental Clinic, Shanghai 201107, China
| | - Dan Fang
- Department of Orthopedics, Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 201107, China
| |
Collapse
|
25
|
Lu C, Zhang YY, Peng SM, Gu M, Wong HM. Effects of graphene oxide and graphene quantum dots on enhancing CPP-ACP anti-caries ability of enamel lesion in a biofilm-challenged environment. J Dent 2024; 149:105319. [PMID: 39181432 DOI: 10.1016/j.jdent.2024.105319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE To investigate the anticaries effects of graphene oxide (GO) and graphene quantum dots (GQDs) combined with casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on enamel in a biofilm-challenged environment. MATERIAL AND METHODS GO and GQDs were synthesised using citric acid. The antibiofilm and biofilm inhibition effects for Streptococcus mutans were evaluated by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and colony-forming units (CFU). Remineralisation ability was determined by assessing mineral loss, calcium-to-phosphorus ratio, and surface morphology. To create a biofilm-challenged environment, enamel blocks were immersed in S. mutans to create the lesion and then subjected to artificial saliva/biofilm cycling for 7 days. Anticaries effects of GO, GQDs, GQDs@CPP-ACP, GO@CPP-ACP, and CPP-ACP were determined by broth pH and mineral changes after 7-day pH cycling. Biocompatibility was tested using a Cell Counting Kit-8 (CCK8) assay for human gingival fibroblasts (HGF-1). RESULTS GQDs and GO presented significant antibiofilm and biofilm inhibition effects compared to the CPP-ACP and control groups (P < 0.05). The enamel covered by GQDs and GO showed better crystal structure formation and less mineral loss (P < 0.05) than that covered by CPP-ACP alone. After 7 days in the biofilm-challenged environment, the GO@CPP-ACP group showed less lesion depth than the CPP-ACP and control groups (P < 0.05). GO and GQDs showed good biocompatibility compared to the control group by CCK8 (P > 0.05) within 3 days. CONCLUSION GO and GQDs could improve the anti-caries effects of CPP-ACP, and CPP-ACP agents with GO or GQDs could be a potential option for enamel lesion management. CLINICAL SIGNIFICANCE GO and GQDs have demonstrated the potential to significantly enhance the anticaries effects of CPP-ACP. Incorporating these nanomaterials into CPP-ACP formulations could provide innovative and effective options for the management of enamel lesions, offering improved preventive and therapeutic strategies in dental care.
Collapse
Affiliation(s)
- Cheng Lu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Yuan Zhang
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Si-Min Peng
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Min Gu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Hai Ming Wong
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
26
|
Li J, Jin X, Jiao Z, Gao L, Dai X, Cheng L, Wang Y, Yan LT. Designing antibacterial materials through simulation and theory. J Mater Chem B 2024; 12:9155-9172. [PMID: 39189825 DOI: 10.1039/d4tb01277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Antibacterial materials have a wide range of potential applications in bio-antimicrobial, environmental antimicrobial, and food antimicrobial fields due to their intrinsic antimicrobial properties, which can circumvent the development of drug resistance in bacteria. Understanding the intricate mechanisms and intrinsic nature of diverse antibacterial materials is significant for the formulation of guidelines for the design of materials with rapid and efficacious antimicrobial action and a high degree of biomedical material safety. Herein, this review highlights the recent advances in investigating antimicrobial mechanisms of different antibacterial materials with a particular focus on tailored computer simulations and theoretical analysis. From the view of structure and function, we summarize the characteristics and mechanisms of different antibacterial materials, introduce the latest advances of new antibacterial materials, and discuss the design concept and development direction of new materials. In addition, we underscore the significance of employing simulation and theoretical methodologies to elucidate the intrinsic antimicrobial mechanisms, which is crucial for a comprehensive comprehension of the control strategies, safer biomedical applications, and the management of health and environmental concerns associated with antibacterial materials. This review could potentially stimulate further endeavors in fundamental research and facilitate the extensive utilization of computational and theoretical approaches in the design of novel functional nanomaterials.
Collapse
Affiliation(s)
- Jiaqi Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xueqing Jin
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Zheng Jiao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Gautam A, Dabral H, Singh A, Tyagi S, Tyagi N, Srivastava D, Kushwaha HR, Singh A. Graphene-based metal/metal oxide nanocomposites as potential antibacterial agents: a mini-review. Biomater Sci 2024; 12:4630-4649. [PMID: 39140167 DOI: 10.1039/d4bm00796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Antimicrobial resistance (AMR) is a rising issue worldwide, which is increasing prolonged illness and mortality rates in the population. Similarly, bacteria have generated multidrug resistance (MDR) by developing various mechanisms to cope with existing antibiotics and therefore, there is a need to develop new antibacterial and antimicrobial agents. Biocompatible nanomaterials like graphene and its derivatives, graphene oxide (GO), and reduced graphene oxide (rGO) loaded with metal/metal oxide nanoparticles have been explored as potential antibacterial agents. It is observed that nanocomposites of GO/rGO and metal/metal oxide nanoparticles can result in the synthesis of less toxic, more stable, controlled size, uniformly distributed, and cost-effective nanomaterials compared to pure metal nanoparticles. Antibacterial studies of these nanocomposites show their considerable potential as antibacterial and antimicrobial agents, however, issues like the mechanism of antimicrobial action and their cytotoxicity need to be explored in detail. This review highlights a comparative analysis of graphene-based metal and metal oxide nanoparticles as potential antibacterial agents against AMR and MDR.
Collapse
Affiliation(s)
- Akanksha Gautam
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Himanki Dabral
- School of Agriculture Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand-248001, India
| | - Awantika Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sourabh Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Diksha Srivastava
- School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Hemant R Kushwaha
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
- School of Agriculture Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand-248001, India
| | - Anu Singh
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
28
|
Moreira E Moraes RU, Abreu MAP, Frazão MCA, Ferreira PVC, Bauer J, Carvalho CN, Carvalho EM. Effect of Graphene Oxide Nanoparticles Incorporation on the Mechanical Properties of a Resin-Modified Glass Ionomer Cement. Polymers (Basel) 2024; 16:2401. [PMID: 39274034 PMCID: PMC11396858 DOI: 10.3390/polym16172401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
The objective of this study was to evaluate the effect of incorporating different concentrations of graphene oxide (GO) nanoparticles on the mechanical properties of a resin-modified glass ionomer cement (RMGIC). A commercial RMGIC (Resiglass R, Biodinâmica) was modified by incorporating 0.1% and 0.5% (by weight) of GO into the powder's material. An unmodified RMGIC was used as a control group. Powder samples were characterized using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Specimens were fabricated and subjected to flexural strength (n = 15), modulus of elasticity (n = 15), Vicker's microhardness (n = 10), and surface roughness tests (n = 10). Data were analyzed using one-way ANOVA and Tukey's post hoc test (α = 5%). Experimental groups' powder demonstrated a homogeneous dispersion of GO. No statistically significant difference was observed in flexural strength (p = 0.067) and modulus of elasticity (p = 0.143) tests. The groups containing 0.1% and 0.5% GO showed significantly higher microhardness and lower surface roughness values (p < 0.001) compared to the control group. The incorporation of GO nanoparticles at concentrations of 0.1% and 0.5% improved the microhardness and surface roughness without negatively affecting the flexural strength and modulus of elasticity of an RMGIC.
Collapse
Affiliation(s)
| | | | - Mayara Cristina Abas Frazão
- Dentistry Postgraduate Program, University Ceuma, R. Josué Montello, 1, Renascença II, São Luís 65075-120, Brazil
| | - Paulo Vitor Campos Ferreira
- Dentistry Biomaterials Laboratory (Biomma), School of Dentistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil
| | - José Bauer
- Dentistry Biomaterials Laboratory (Biomma), School of Dentistry, Federal University of Maranhão (UFMA), São Luís 65080-805, Brazil
| | - Ceci Nunes Carvalho
- Dentistry Postgraduate Program, University Ceuma, R. Josué Montello, 1, Renascença II, São Luís 65075-120, Brazil
| | - Edilausson Moreno Carvalho
- Dentistry Postgraduate Program, University Ceuma, R. Josué Montello, 1, Renascença II, São Luís 65075-120, Brazil
| |
Collapse
|
29
|
Gopalakrishnan V, Saxena P, Thakur P, Lipatov A, Sani RK. Impact of Graphene Layers on Genetic Expression and Regulation within Sulfate-Reducing Biofilms. Microorganisms 2024; 12:1759. [PMID: 39338434 PMCID: PMC11433944 DOI: 10.3390/microorganisms12091759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial adhesion and biofilm maturation is significantly influenced by surface properties, encompassing both bare surfaces and single or multi-layered coatings. Hence, there is an utmost interest in exploring the intricacies of gene regulation in sulfate-reducing bacteria (SRB) on copper and graphene-coated copper surfaces. In this study, Oleidesulfovibrio alaskensis G20 was used as the model SRB to elucidate the pathways that govern pivotal roles during biofilm formation on the graphene layers. Employing a potent reporter green fluorescent protein (GFP) tagged to O. alaskensis G20, the spatial structure of O. alaskensis G20 biofilm on copper foil (CuF), single-layer graphene-coated copper (Cu-GrI), and double-layer graphene-coated copper (Cu-GrII) surfaces was investigated. Biofilm formation on CuF, Cu-GrI, and Cu-GrII surfaces was quantified using CLSM z-stack images within COMSTAT v2 software. The results revealed that CuF, Cu-GrI, and Cu-GrII did not affect the formation of the GFP-tagged O. alaskensis G20 biofilm architecture. qPCR expression showed insignificant fold changes for outer membrane components regulating the quorum-sensing system, and global regulatory proteins between the uncoated and coated surfaces. Notably, a significant expression was observed within the sulfate reduction pathway confined to dissimilatory sulfite reductases on the Cu-GrII surface compared to the CuF and Cu-GrI surfaces.
Collapse
Affiliation(s)
- Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Alexey Lipatov
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| |
Collapse
|
30
|
Zhou H, Zhong Z, Wei S, Yu P, Jiang J, Mao L. Transmembrane Graphene as an Electron Tunnel to Regulate the Intracellular Redox State. NANO LETTERS 2024; 24:10396-10401. [PMID: 39116269 DOI: 10.1021/acs.nanolett.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cellular redox homeostasis is essential for maintaining cellular activities, such as DNA synthesis and gene expression. Inspired by this, new therapeutic interventions have been rapidly developed to modulate the intracellular redox state using artificial transmembrane electron transport. However, current approaches that rely on external electric field polarization can disrupt cellular functions, limiting their in vivo application. Therefore, it is crucial to develop novel electric-field-free modulation methods. In this work, we for the first time found that graphene could spontaneously insert into living cell membranes and serve as an electron tunnel to regulate intracellular reactive oxygen species and NADH based on the spontaneous bipolar electrochemical reaction mechanism. This work provides a wireless and electric-field-free approach to regulating cellular redox states directly and offers possibilities for biological applications such as cell process intervention and treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- Haoyang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixuan Zhong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyi Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Jiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
31
|
Liu B, Cao J, Hong B, You H, Li T, Yu Z, Li D, Liang B, Gan N. A microfluidic chip platform based on Pt nanozyme and magnetized phage composite probes for dual-mode detecting and imaging pathogenic bacteria viability. Talanta 2024; 275:126067. [PMID: 38640522 DOI: 10.1016/j.talanta.2024.126067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/21/2024]
Abstract
The detection of pathogen viability is critically important to evaluate its infectivity. In the study, an integrated microfluidic chip based on dual-mode analytical strategy was developed to rapidly realize detection of bacteria activity (with Salmonella typhimurium, S.T, as a model analyte). Firstly, the composite probes, including deactivated phage modified magnetic beads and nano Pt-antimicrobial peptide (AMP) which can specifically recognize Gram-negative bacteria as nanozyme were prepared. When the composite probes are introduced into the chip together with target bacteria, after enrichment, oscillating and magnetic separation, they will conjugate with S.T and produce a magnetic sandwich complex. The complex can catalyze tetramethylbenzidine (TMB)-H2O2 to produce visible colorimetric signals which is correspondent to the total S.T content. Simultaneously, PtNPs in the complex can produce hydroxyl radical oxidation (∙OH) by decomposing H2O2. Under the synergistic action of ∙OH and AMP, the captured live S.T can be lysed to release ATP and emit bioluminescence signals which corresponds to the live S.T concentration. Therefore, the chip can simultaneously detect and image S.T at different viability in one test. The dual-mode assay demonstrated high sensitivity (≤33 CFU/mL), high specificity (identifying strain), signal amplification (5 folds) and short time (≤40min). The chip array can detect four samples in one test and exhibited advantages of high-integration, -sensitivity, -specificity and miniaturization, which are suitable to rapidly detect and image pathogen's viability in trace level. The replacement of phage probes can detect other bacteria. It has a wide prospect in pathogens screening.
Collapse
Affiliation(s)
- Bailu Liu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Jingya Cao
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Binxin Hong
- School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Hang You
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Tianhua Li
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Zhenzhong Yu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China
| | - Dengfeng Li
- School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Baihui Liang
- Healthy & Intelligent Kitchen Engineering Research Center of Zhejiang Province, Ningbo, 315336, China; Ningbo Fotile Kitchenware Co., Ltd., Ningbo, Zhejiang 315336, China.
| | - Ning Gan
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China.
| |
Collapse
|
32
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
33
|
Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater 2024; 38:225-257. [PMID: 38745587 PMCID: PMC11090881 DOI: 10.1016/j.bioactmat.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The number of multi-drug-resistant bacteria has increased over the last few decades, which has caused a detrimental impact on public health worldwide. In resolving antibiotic resistance development among different bacterial communities, new antimicrobial agents and nanoparticle-based strategies need to be designed foreseeing the slow discovery of new functioning antibiotics. Advanced research studies have revealed the significant disinfection potential of two-dimensional nanomaterials (2D NMs) to be severed as effective antibacterial agents due to their unique physicochemical properties. This review covers the current research progress of 2D NMs-based antibacterial strategies based on an inclusive explanation of 2D NMs' impact as antibacterial agents, including a detailed introduction to each possible well-known antibacterial mechanism. The impact of the physicochemical properties of 2D NMs on their antibacterial activities has been deliberated while explaining the toxic effects of 2D NMs and discussing their biomedical significance, dysbiosis, and cellular nanotoxicity. Adding to the challenges, we also discussed the major issues regarding the current quality and availability of nanotoxicity data. However, smart advancements are required to fabricate biocompatible 2D antibacterial NMs and exploit their potential to combat bacterial resistance clinically.
Collapse
Affiliation(s)
- Saima Hameed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ovais
- BGI Genomics, BGI Shenzhen, Shenzhen, 518083, Guangdong, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
34
|
Hou D, Zhou S, Tan X, Yuan D, Yan J, Zeng Q, Chen Y. 2D Materials Kill Bacteria from Within. NANO LETTERS 2024; 24:6506-6512. [PMID: 38789389 DOI: 10.1021/acs.nanolett.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Early work demonstrated that some two-dimensional (2D) materials could kill bacteria by using their sharp edges to physically rupture the bacteria envelope, which presents distinct advantages over traditional antibiotics, as bacteria are not able to evolve resistance to the former. This mechano-bactericidal mode of action, however, suffers from low antibacterial efficiency, fundamentally because of random orientation of 2D materials outside the bacteria, where the desirable "edge-to-envelope" contacts occur with low probability. Here, we demonstrate a proof-of-concept approach to significantly enhance the potency of the mechano-bactericidal activity of 2D materials. This approach is in marked contrast with previous work, as the 2D materials are designed to be in situ generated inside the bacteria from a molecularly engineered monomer in a self-assembled manner, profoundly promoting the probability of the "edge-to-envelope" contacts. The rationale in this study sheds light on a mechanically new nanostructure-enabled antibacterial strategy to combat antibiotic resistance.
Collapse
Affiliation(s)
- Delong Hou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shuai Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xueling Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Dongzhi Yuan
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Yan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Qi Zeng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
35
|
Song S, Liu X, Ding L, Liu Z, Abubaker MA, Xu Y, Zhang J. A bacterial cellulose/polyvinyl alcohol/nitro graphene oxide double layer network hydrogel efficiency antibacterial and promotes wound healing. Int J Biol Macromol 2024; 269:131957. [PMID: 38692544 DOI: 10.1016/j.ijbiomac.2024.131957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
In this study, graphene oxide (GO) was chemically modified utilizing concentrated nitric acid to produce a nitrated graphene oxide derivative (NGO) with enhanced oxidation level, improved dispersibility, and increased antibacterial activity. A double-layer composite hydrogel material (BC/PVA/NGO) with a core-shell structure was fabricated by utilizing bacterial cellulose (BC) and polyvinyl alcohol (PVA) binary composite hydrogel scaffold as the inner network template, and hydrophilic polymer (PVA) loaded with antibacterial material (NGO) as the outer network. The fabrication process involved physical crosslinking based on repeated freezing and thawing. The resulting BC/PVA/NGO hydrogel exhibited a porous structure, favorable mechanical properties, antibacterial efficacy, and biocompatibility. Subsequently, the performance of BC/PVA/NGO hydrogel in promoting wound healing was evaluated using a mouse skin injury model. The findings demonstrated that the BC/PVA/NGO hydrogel treatment group facilitated improved wound healing in the mouse skin injury model compared to the control group and the BC/PVA group. This enhanced wound healing capability was attributed primarily to the excellent antibacterial and tissue repair properties of the BC/PVA/NGO hydrogel.
Collapse
Affiliation(s)
- Shen Song
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China.
| | - Xiaoyuan Liu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, China
| | - Ling Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| | - Zhao Liu
- National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Mohamed Aamer Abubaker
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Department of Biology, Faculty of Education, University of Khartoum, Khartoum 11111, Sudan
| | - Yaqiang Xu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
36
|
Kavitha K, Navaneethan D, Balagurunathan R, Subramaniam RT, Shaik MR, Guru A. Exploring the biocompatibility and healing activity of actinobacterial-enhanced reduced nano-graphene oxide in in vitro and in vivo model and induce bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways. Mol Biol Rep 2024; 51:702. [PMID: 38822942 DOI: 10.1007/s11033-024-09600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The development of cost-effective, simple, environment-friendly biographene is an area of interest. To accomplish environmentally safe, benign culturing that has advantages over other methods to reduce the graphene oxide (GO), extracellular metabolites from actinobacteria associated with mushrooms were used for the first time. METHODS Bactericidal effect of GO against methicillin-resistant Staphylococcus aureus, antioxidant activity, and hydroxyapatite-like bone layer formation, gene expression analysis and appropriate biodegradation of the microbe-mediated synthesis of graphene was studied. RESULTS Isolated extracellular contents Streptomyces achromogenes sub sp rubradiris reduced nano-GO to graphene (rGO), which was further examined by spectrometry and suggested an efficient conversion and significant reduction in the intensity of all oxygen-containing moieties and shifted crystalline peaks. Electron microscopic results also suggested the reduction of GO layer. In addition, absence of significant toxicity in MG-63 cell line, intentional free radical scavenging prowess, liver and kidney histopathology, and Wistar rat bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways show the feasibility of the prepared nano GO. CONCLUSIONS The study demonstrates the successful synthesis of biographene from actinobacterial extracellular metabolites, its potential biomedical applications, and its promising role in addressing health and environmental concerns.
Collapse
Affiliation(s)
- K Kavitha
- Department of Biotechnology Paavai Engineering College, Pachal, Namakkal, Tamil Nadu, 637018, India.
- Center for Research and Development, K.S.Rangasamy College of Technology, Tiruchengode, Namakkal, 637215, India.
| | - D Navaneethan
- Department of Chemistry, J.K.K. Nataraja College of Arts and Science, Komarapalayam, Namakkal, Tamil Nadu, 638183, India
| | - R Balagurunathan
- Research and Development, Vivekanandha Educational Institutions, Elayampalayam, Tiruchengode, Namakkal, Tamil Nadu, 637 205, India.
| | - Ramesh T Subramaniam
- Department of Physics, Faculty of Science, Center for Ionics University of Malaya, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600 077, India
| |
Collapse
|
37
|
Thambiliyagodage C, Liyanaarachchi H, Jayanetti M, Ekanayake G, Mendis A, Samarakoon U, Vigneswaran S. Persulfate assisted photocatalytic and antibacterial activity of TiO 2-CuO coupled with graphene oxide and reduced graphene oxide. Sci Rep 2024; 14:12505. [PMID: 38822052 PMCID: PMC11143361 DOI: 10.1038/s41598-024-63452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Photocatalysts of TiO2-CuO coupled with 30% graphene oxide (GO) were hydrothermally fabricated, which varied the TiO2 to CuO weight ratios to 1:4, 1:2, 1:1, 2:1 and 4:1 and reduced to form TiO2-CuO/reduced graphene oxide (rGO) photocatalysts. They were characterized using XRD, TEM, SEM, XPS, Raman, and DRS technologies. TiO2-CuO composites and TiO2-CuO/GO degrade methylene blue when persulfate ions are present. Persulfate concentration ranged from 1, 2, 4 to 8 mmol/dm-3 in which the highest activity of 4.4 × 10-2 and 7.35 × 10-2 min-1 was obtained with 4 mmol/dm-3 for TiO2-CuO (1:4) and TiO2-CuO/GO (1:1), respectively. The presence of EDTA and isopropyl alcohol reduced the photodegradation. TiO2-CuO coupled with rGO coagulates methylene blue in the presence of persulfate ions and such coagulation is independent of light. The catalyst dosage and the concentration of the dye were varied for the best-performing samples. The antibacterial activity of the synthesized samples was evaluated against the growth of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Klebsiella pneumonia. Ti:Cu (1:2)-GO and Ti:Cu (1:4)-GO had the highest antibacterial activity against K. pneumoniae (16.08 ± 0.14 mm), P. aeruginosa (22.33 ± 0.58 mm), E. coli (16.17 ± 0.29 mm) and S. aureus (16.08 ± 0.88).
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka.
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
| | - Upeka Samarakoon
- Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
- Faculty of Sciences and Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 1432, Ås, Norway
| |
Collapse
|
38
|
Akmal MH, Kalashgrani MY, Mousavi SM, Rahmanian V, Sharma N, Gholami A, Althomali RH, Rahman MM, Chiang WH. Recent advances in synergistic use of GQD-based hydrogels for bioimaging and drug delivery in cancer treatment. J Mater Chem B 2024; 12:5039-5060. [PMID: 38716622 DOI: 10.1039/d4tb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Graphene quantum dot (GQD) integration into hydrogel matrices has become a viable approach for improving drug delivery and bioimaging in cancer treatment in recent years. Due to their distinct physicochemical characteristics, graphene quantum dots (GQDs) have attracted interest as adaptable nanomaterials for use in biomedicine. When incorporated into hydrogel frameworks, these nanomaterials exhibit enhanced stability, biocompatibility, and responsiveness to external stimuli. The synergistic pairing of hydrogels with GQDs has created new opportunities to tackle the problems related to drug delivery and bioimaging in cancer treatment. Bioimaging plays a pivotal role in the early detection and monitoring of cancer. GQD-based hydrogels, with their excellent photoluminescence properties, offer a superior platform for high-resolution imaging. The tunable fluorescence characteristics of GQDs enable real-time visualization of biological processes, facilitating the precise diagnosis and monitoring of cancer progression. Moreover, the drug delivery landscape has been significantly transformed by GQD-based hydrogels. Because hydrogels are porous, therapeutic compounds may be placed into them and released in a controlled environment. The large surface area and distinct interactions of graphene quantum dots (GQDs) with medicinal molecules boost loading capacity and release dynamics, ultimately improving therapeutic efficacy. Moreover, GQD-based hydrogels' stimulus-responsiveness allows for on-demand medication release, which minimizes adverse effects and improves therapeutic outcomes. The ability of GQD-based hydrogels to specifically target certain cancer cells makes them notable. Functionalizing GQDs with targeting ligands minimizes off-target effects and delivers therapeutic payloads to cancer cells selectively. Combined with imaging capabilities, this tailored drug delivery creates a theranostic platform for customized cancer treatment. In this study, the most recent advancements in the synergistic use of GQD-based hydrogels are reviewed, with particular attention to the potential revolution these materials might bring to the area of cancer theranostics.
Collapse
Affiliation(s)
- Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | | | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, QC, Canada
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| |
Collapse
|
39
|
Ma X, Neek-Amal M, Sun C. Advances in Two-Dimensional Ion-Selective Membranes: Bridging Nanoscale Insights to Industrial-Scale Salinity Gradient Energy Harvesting. ACS NANO 2024; 18:12610-12638. [PMID: 38733357 DOI: 10.1021/acsnano.3c11646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Salinity gradient energy, often referred to as the Gibbs free energy difference between saltwater and freshwater, is recognized as "blue energy" due to its inherent cleanliness, renewability, and continuous availability. Reverse electrodialysis (RED), relying on ion-selective membranes, stands as one of the most prevalent and promising methods for harnessing salinity gradient energy to generate electricity. Nevertheless, conventional RED membranes face challenges such as insufficient ion selectivity and transport rates and the difficulty of achieving the minimum commercial energy density threshold of 5 W/m2. In contrast, two-dimensional nanostructured materials, featuring nanoscale channels and abundant functional groups, offer a breakthrough by facilitating rapid ion transport and heightened selectivity. This comprehensive review delves into the mechanisms of osmotic power generation within a single nanopore and nanochannel, exploring optimal nanopore dimensions and nanochannel lengths. We subsequently examine the current landscape of power generation using two-dimensional nanostructured materials in laboratory-scale settings across various test areas. Furthermore, we address the notable decline in power density observed as test areas expand and propose essential criteria for the industrialization of two-dimensional ion-selective membranes. The review concludes with a forward-looking perspective, outlining future research directions, including scalable membrane fabrication, enhanced environmental adaptability, and integration into multiple industries. This review aims to bridge the gap between previous laboratory-scale investigations of two-dimensional ion-selective membranes in salinity gradient energy conversion and their potential large-scale industrial applications.
Collapse
Affiliation(s)
- Xinyi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mehdi Neek-Amal
- Department of Physics, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
- Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Chengzhen Sun
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
40
|
Evseev ZI, Tarasova LA, Vasilieva FD, Egorova MN, Dmitriev PS, Akhremenko YA, Smagulova SA. Comparison of Antimicrobial Properties of Graphene Oxide-Based Materials, Carbon Dots, and Their Combinations Deposited on Cotton Fabrics. Int J Mol Sci 2024; 25:5328. [PMID: 38791366 PMCID: PMC11121348 DOI: 10.3390/ijms25105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The rise in the antibiotic resistance of bacteria has increased scientific interest in the study of materials with unique mechanisms of antimicrobial action. This paper presents the results of studies on the antimicrobial activity of carbon materials and textiles decorated with them. A comparative analysis of the bactericidal and fungicidal activities of graphene oxide, electrochemically exfoliated multigraphene, carbon dots, and their combinations was performed. Microbiological studies on reference strains of E. coli, S. aureus, and C. albicans showed that graphene oxide inhibited growth with up to 98% efficiency. Electrochemically exfoliated multigraphene was less effective (up to 40%). This study found no significant antimicrobial activity of carbon dots and the combination of carbon dots with graphene oxide significantly weakened their effectiveness. However, the combination of electrochemically exfoliated multigraphene and carbon dots exhibits a synergistic effect (up to 76%). A study on the antimicrobial activity of decorated cotton textiles demonstrated the effectiveness of antimicrobial textiles with graphene oxide, electrochemically exfoliated multigraphene, and a combination of carbon dots with electrochemically exfoliated multigraphene.
Collapse
Affiliation(s)
- Zakhar Ivanovich Evseev
- Institute of Physics and Technologies, North-Eastern Federal University, 677000 Yakutsk, Russia; (Z.I.E.); (M.N.E.); (S.A.S.)
| | | | - Fedora Dmitrievna Vasilieva
- Institute of Physics and Technologies, North-Eastern Federal University, 677000 Yakutsk, Russia; (Z.I.E.); (M.N.E.); (S.A.S.)
| | - Marfa Nikitichna Egorova
- Institute of Physics and Technologies, North-Eastern Federal University, 677000 Yakutsk, Russia; (Z.I.E.); (M.N.E.); (S.A.S.)
| | - Petr Stanislavovich Dmitriev
- Institute of Physics and Technologies, North-Eastern Federal University, 677000 Yakutsk, Russia; (Z.I.E.); (M.N.E.); (S.A.S.)
| | | | - Svetlana Afanasyevna Smagulova
- Institute of Physics and Technologies, North-Eastern Federal University, 677000 Yakutsk, Russia; (Z.I.E.); (M.N.E.); (S.A.S.)
| |
Collapse
|
41
|
Yu YM, Lu YP, Zhang T, Zheng YF, Liu YS, Xia DD. Biomaterials science and surface engineering strategies for dental peri-implantitis management. Mil Med Res 2024; 11:29. [PMID: 38741175 DOI: 10.1186/s40779-024-00532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Peri-implantitis is a bacterial infection that causes soft tissue inflammatory lesions and alveolar bone resorption, ultimately resulting in implant failure. Dental implants for clinical use barely have antibacterial properties, and bacterial colonization and biofilm formation on the dental implants are major causes of peri-implantitis. Treatment strategies such as mechanical debridement and antibiotic therapy have been used to remove dental plaque. However, it is particularly important to prevent the occurrence of peri-implantitis rather than treatment. Therefore, the current research spot has focused on improving the antibacterial properties of dental implants, such as the construction of specific micro-nano surface texture, the introduction of diverse functional coatings, or the application of materials with intrinsic antibacterial properties. The aforementioned antibacterial surfaces can be incorporated with bioactive molecules, metallic nanoparticles, or other functional components to further enhance the osteogenic properties and accelerate the healing process. In this review, we summarize the recent developments in biomaterial science and the modification strategies applied to dental implants to inhibit biofilm formation and facilitate bone-implant integration. Furthermore, we summarized the obstacles existing in the process of laboratory research to reach the clinic products, and propose corresponding directions for future developments and research perspectives, so that to provide insights into the rational design and construction of dental implants with the aim to balance antibacterial efficacy, biological safety, and osteogenic property.
Collapse
Affiliation(s)
- Ya-Meng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yu-Pu Lu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu-Feng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Yun-Song Liu
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Dan-Dan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China.
| |
Collapse
|
42
|
Hussein AH, Yassir YA. Graphene as a promising material in orthodontics: A review. J Orthod Sci 2024; 13:24. [PMID: 38784078 PMCID: PMC11114461 DOI: 10.4103/jos.jos_3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 05/25/2024] Open
Abstract
Graphene is an extraordinary material with unique mechanical, chemical, and thermal properties. Additionally, it boasts high surface area and antimicrobial properties, making it an attractive option for researchers exploring innovative materials for biomedical applications. Although there have been various studies on graphene applications in different biomedical fields, limited reviews have been conducted on its use in dentistry, and no reviews have focused on its application in the orthodontic field. This review aims to present a comprehensive overview of graphene-based materials, with an emphasis on their antibacterial mechanisms and the factors that influence these properties. Additionally, the review summarizes the dental applications of graphene, spotlighting the studies of its orthodontic application as they can be used to enhance the antibacterial and mechanical properties of orthodontic materials such as adhesives, archwires, and splints. Also, they can be utilized to enhance bone remodeling during orthodontic tooth movement. An electronic search was carried out in Scopus, PubMed, Science Direct, and Wiley Online Library digital database platforms using graphene and orthodontics as keywords. The search was restricted to English language publications without a time limit. This review highlights the need for further laboratory and clinical research using graphene-based materials to improve the properties of orthodontic materials to make them available for clinical use.
Collapse
Affiliation(s)
- Afaf H. Hussein
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Yassir A. Yassir
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
- Department of Orthodontics, School of Dentistry, University of Dundee, UK
| |
Collapse
|
43
|
Lan X, Yang H, Xiong Y, Zeng G, Dong F. Polyvinyl alcohol/chitosan quaternary ammonium salt composite hydrogel with directional macroporous structure for photothermal synergistic antibacterial and wound healing promotion. Int J Biol Macromol 2024; 267:131549. [PMID: 38626838 DOI: 10.1016/j.ijbiomac.2024.131549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
After skin tissue trauma, wound infections caused by bacteria posed a great threat to skin repair. However, resistance to antibiotics, the current treatment of choice for bacterial infections, greatly affected the efficiency of anti-infection and wound healing. Therefore, there has been a critical need for the development of novel antimicrobial materials and advanced therapeutic methods to aid in skin repair. In this paper, rGO-PDA@ZIF-8 nanofillers were prepared by coating graphene oxide (GO) with dopamine (DA), followed by in situ growth of zeolite imidazolate framework-8 (ZIF-8). Using polyvinyl alcohol (PVA) and chitosan quaternary ammonium salt (CS) as matrix materials, along with polyethylene glycol (PEG) as a pore-forming agent, and rGO-PDA@ZIF-8 as an antimicrobial nano-filler, we successfully prepared rGO-PDA@ZIF-8/PVA/CS composite hydrogels with a directional macroporous structure using bidirectional freezing method and phase separation technique. This hydrogel exhibited excellent mechanical properties, good solubility and water retention capabilities. In addition, the hydrogel demonstrated excellent biocompatibility. Most notably, it not only exhibited excellent bactericidal effect against E. coli and S. aureus (99.1 % and 99.0 %, respectively) under the synergistic effect of intrinsic antibacterial activity and photothermal antibacterial, but also exhibited the ability to promote wound healing, making it a promising candidate for wound healing applications.
Collapse
Affiliation(s)
- Xianyu Lan
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Hang Yang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Guanyue Zeng
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| |
Collapse
|
44
|
Karaky N, Tang S, Ramalingam P, Kirby A, McBain AJ, Banks CE, Whitehead KA. Multidrug-Resistant Escherichia coli Remains Susceptible to Metal Ions and Graphene-Based Compounds. Antibiotics (Basel) 2024; 13:381. [PMID: 38786110 PMCID: PMC11117355 DOI: 10.3390/antibiotics13050381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Escherichia coli is listed as a priority 1 pathogen on the World Health Organization (WHO) priority pathogen list. For this list of pathogens, new antibiotics are urgently needed to control the emergence and spread of multidrug-resistant strains. This study assessed eighteen metal ions, graphene, and graphene oxide for their antimicrobial efficacy against E. coli in both planktonic and biofilm growth states and the potential synergy between metal ions and graphene-based compounds. Molybdenum and tin ions exhibited the greatest antimicrobial activity against the planktonic states of the isolates with minimal inhibitory concentrations (MIC) ranging between 13 mg/L and 15.6 mg/L. Graphene oxide had no antimicrobial effect against any of the isolates, while graphene showed a moderate effect against E. coli (MIC, 62.5 mg/L). Combinations of metal ions and graphene-based compounds including tin-graphene, tin-graphene oxide, gold-graphene, platinum-graphene, and platinum-graphene oxide exhibited a synergistic antimicrobial effect (FIC ≤ 0.5), inhibiting the planktonic and biofilm formation of the isolates regardless of their antibiotic-resistant profiles. The bactericidal effect of the metal ions and the synergistic effects when combined with graphene/graphene oxide against medically relevant pathogens demonstrated that the antimicrobial efficacy was increased. Hence, such agents may potentially be used in the production of novel antimicrobial/antiseptic agents.
Collapse
Affiliation(s)
- Nathalie Karaky
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
| | - Shiying Tang
- Microbiology at Interfaces Group, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| | - Parameshwari Ramalingam
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (P.R.); (C.E.B.)
- Department of Physics, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirappalli Campus, Tiruchirappalli 620024, India
| | - Andrew Kirby
- Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, UK;
| | - Andrew J. McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK;
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK; (P.R.); (C.E.B.)
| | - Kathryn A. Whitehead
- Microbiology at Interfaces Group, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| |
Collapse
|
45
|
Zou F, Gu Z, Perez-Aguilar JM, Luo Y. Molecular dynamics simulations suggest the potential toxicity of fluorinated graphene to HP35 protein via unfolding the α-helix structure. Sci Rep 2024; 14:9168. [PMID: 38649777 PMCID: PMC11035638 DOI: 10.1038/s41598-024-59780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Fluorinated graphene, a two-dimensional nanomaterial composed of three atomic layers, a central carbon layer sandwiched between two layers of fluorine atoms, has attracted considerable attention across various fields, particularly for its potential use in biomedical applications. Nonetheless, scant effort has been devoted to assessing the potential toxicological implications of this nanomaterial. In this study, we scrutinize the potential impact of fluorinated graphene on a protein model, HP35 by utilizing extensive molecular dynamics (MD) simulation methods. Our MD results elucidate that upon adsorption to the nanomaterial, HP35 undergoes a denaturation process initiated by the unraveling of the second helix of the protein and the loss of the proteins hydrophobic core. In detail, substantial alterations in various structural features of HP35 ensue, including alterations in hydrogen bonding, Q value, and RMSD. Subsequent analyses underscore that hydrophobic and van der Waals interactions (predominant), alongside electrostatic energy (subordinate), exert influence over the adsorption of HP35 on the fluorinated graphene surface. Mechanistic scrutiny attests that the unrestrained lateral mobility of HP35 on the fluorinated graphene nanomaterial primarily causes the exposure of HP35's hydrophobic core, resulting in the eventual structural denaturation of HP35. A trend in the features of 2D nanostructures is proposed that may facilitate the denaturation process. Our findings not only substantiate the potential toxicity of fluorinated graphene but also unveil the underlying molecular mechanism, which thereby holds significance for the prospective utilization of such nanomaterials in the field of biomedicine.
Collapse
Affiliation(s)
- Fangrong Zou
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China
| | - Zonglin Gu
- College of Physical Science and Technology, Yangzhou University, Jiangsu, 225009, China
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), 72570, University City, Puebla, Mexico
| | - Yuqi Luo
- Department of Gastrointestinal and Hepatobiliary Surgery, Shenzhen Longhua District Central Hospital, No. 187, Guanlan Road, Longhua District, Shenzhen, 518110, Guangdong Province, China.
| |
Collapse
|
46
|
Cao H, Zhang X, Wang H, Ding B, Ge S, Zhao J. Effects of Graphene-Based Nanomaterials on Microorganisms and Soil Microbial Communities. Microorganisms 2024; 12:814. [PMID: 38674758 PMCID: PMC11051958 DOI: 10.3390/microorganisms12040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The past decades have witnessed intensive research on the biological effects of graphene-based nanomaterials (GBNs) and the application of GBNs in different fields. The published literature shows that GBNs exhibit inhibitory effects on almost all microorganisms under pure culture conditions, and that this inhibitory effect is influenced by the microbial species, the GBN's physicochemical properties, the GBN's concentration, treatment time, and experimental surroundings. In addition, microorganisms exist in the soil in the form of microbial communities. Considering the complex interactions between different soil components, different microbial communities, and GBNs in the soil environment, the effects of GBNs on soil microbial communities are undoubtedly intertwined. Since bacteria and fungi are major players in terrestrial biogeochemistry, this review focuses on the antibacterial and antifungal performance of GBNs, their antimicrobial mechanisms and influencing factors, as well as the impact of this effect on soil microbial communities. This review will provide a better understanding of the effects of GBNs on microorganisms at both the individual and population scales, thus providing an ecologically safe reference for the release of GBNs to different soil environments.
Collapse
Affiliation(s)
- Huifen Cao
- College of Agriculture and Life Science, Shanxi Datong University, Datong 037009, China;
| | - Xiao Zhang
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
| | - Baopeng Ding
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| | - Sai Ge
- Center of Academic Journal, Shanxi Datong University, Datong 037009, China;
| | - Jianguo Zhao
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China; (B.D.); (J.Z.)
| |
Collapse
|
47
|
Lyra KM, Tournis I, Subrati M, Spyrou K, Papavasiliou A, Athanasekou C, Papageorgiou S, Sakellis E, Karakassides MA, Sideratou Z. Carbon Nanodisks Decorated with Guanidinylated Hyperbranched Polyethyleneimine Derivatives as Efficient Antibacterial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:677. [PMID: 38668171 PMCID: PMC11054016 DOI: 10.3390/nano14080677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Non-toxic carbon-based hybrid nanomaterials based on carbon nanodisks were synthesized and assessed as novel antibacterial agents. Specifically, acid-treated carbon nanodisks (oxCNDs), as a safe alternative material to graphene oxide, interacted through covalent and non-covalent bonding with guanidinylated hyperbranched polyethyleneimine derivatives (GPEI5K and GPEI25K), affording the oxCNDs@GPEI5K and oxCNDs@GPEI25K hybrids. Their physico-chemical characterization confirmed the successful and homogenous attachment of GPEIs on the surface of oxCNDs, which, due to the presence of guanidinium groups, offered them improved aqueous stability. Moreover, the antibacterial activity of oxCNDs@GPEIs was evaluated against Gram-negative E. coli and Gram-positive S. aureus bacteria. It was found that both hybrids exhibited enhanced antibacterial activity, with oxCNDs@GPEI5K being more active than oxCNDs@GPEI25K. Their MIC and MBC values were found to be much lower than those of oxCNDs, revealing that the GPEI attachment endowed the hybrids with enhanced antibacterial properties. These improved properties were attributed to the polycationic character of the oxCNDs@GPEIs, which enables effective interaction with the bacterial cytoplasmic membrane and cell walls, leading to cell envelope damage, and eventually cell lysis. Finally, oxCNDs@GPEIs showed minimal cytotoxicity on mammalian cells, indicating that these hybrid nanomaterials have great potential to be used as safe and efficient antibacterial agents.
Collapse
Affiliation(s)
- Kyriaki-Marina Lyra
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Ioannis Tournis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Mohammed Subrati
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Konstantinos Spyrou
- Department of Material Science & Engineering, University of Ioannina, 45110 Ioannina, Greece; (K.S.); (M.A.K.)
| | - Aggeliki Papavasiliou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Chrysoula Athanasekou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Sergios Papageorgiou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
- Physics Department, Condensed Matter Physics Section, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, 15784 Athens, Greece
| | - Michael A. Karakassides
- Department of Material Science & Engineering, University of Ioannina, 45110 Ioannina, Greece; (K.S.); (M.A.K.)
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Reasearch “Demokritos”, Aghia Paraskevi, 15310 Athens, Greece; (K.-M.L.); (I.T.); (M.S.); (A.P.); (C.A.); (S.P.); or (E.S.)
| |
Collapse
|
48
|
D’Avenio G, Daniele C, Grigioni M. Nanostructured Medical Devices: Regulatory Perspective and Current Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1787. [PMID: 38673144 PMCID: PMC11051465 DOI: 10.3390/ma17081787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Nanomaterials (NMs) are having a huge impact in several domains, including the fabrication of medical devices (MDs). Hence, nanostructured MDs are becoming quite common; nevertheless, the associated risks must be carefully considered in order to demonstrate safety prior to their immission on the market. The biological effect of NMs requires the consideration of methodological issues since already established methods for, e.g., cytotoxicity can be subject to a loss of accuracy in the presence of certain NMs. The need for oversight of MDs containing NMs is reflected by the European Regulation 2017/745 on MDs, which states that MDs incorporating or consisting of NMs are in class III, at highest risk, unless the NM is encapsulated or bound in such a manner that the potential for its internal exposure is low or negligible (Rule 19). This study addresses the role of NMs in medical devices, highlighting the current applications and considering the regulatory requirements of such products.
Collapse
Affiliation(s)
- Giuseppe D’Avenio
- National Centre for Innovative Technologies in Public Health, Italian National Institute of Health (ISS), 00161 Rome, Italy; (C.D.); (M.G.)
| | | | | |
Collapse
|
49
|
Sardaru MC, Rosca I, Ursu C, Dascalu IA, Ursu EL, Morariu S, Rotaru A. Photothermal Hydrogel Composites Featuring G4-Carbon Nanomaterial Networks for Staphylococcus aureus Inhibition. ACS OMEGA 2024; 9:15833-15844. [PMID: 38617624 PMCID: PMC11007816 DOI: 10.1021/acsomega.3c07724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Microbial infections represent a significant health risk, often leading to severe complications and, in some cases, even fatalities. As a result, there is an urgent need to explore innovative drug delivery systems and alternative therapeutic techniques. The photothermal therapy has emerged as a promising antibacterial approach and is the focus of this study. Herein, we report the successful synthesis of two distinct supramolecular composite hydrogels by incorporating graphene oxide (GO) and single-walled carbon nanotubes (SWNTs) into guanosine quadruplex (G4) based hydrogels containing covalently bound β-cyclodextrin (β-CD). The G4 matrix was synthesized through a two-step process, establishing a robust network between G4 and β-CDs, followed by the encapsulation of either GO or SWNTs. Comprehensive characterization of these composite hydrogels were conducted using analytical techniques, including circular dichroism, Raman spectroscopy, rheological investigations, X-ray diffraction, and scanning electron microscopy. A notable discovery from the conducted research is the differential photothermal responses exhibited by the hydrogels when exposed to near-infrared laser irradiation. Specifically, SWNT-based hydrogels demonstrated superior photothermal performance, achieving a remarkable temperature increase of up to 52 °C, in contrast to GO-based hydrogels, which reached a maximum of 34 °C. These composite hydrogels showed good cytotoxicity evaluation results and displayed synergistic antibacterial activity against Staphylococcus aureus, positioning them as promising candidates for antibacterial photothermic platforms, particularly in the context of wound treatment. This study offers a valuable contribution to the development of advanced and combined therapeutic strategies for combating microbial infections and highlights the potential of carbon nanomaterial-enhanced supramolecular hydrogels in photothermal therapy applications.
Collapse
Affiliation(s)
- Monica-Cornelia Sardaru
- The
Research Institute of the University of Bucharest (ICUB), 90 Sos. Panduri, 050663 Bucharest, Romania
- “Petru
Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and
Biopolymers, Grigore
Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Irina Rosca
- “Petru
Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and
Biopolymers, Grigore
Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Cristian Ursu
- “Petru
Poni” Institute of Macromolecular Chemistry, Romanian Academy, Physics of Polymers and Polymeric Materials Laboratory, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Ioan-Andrei Dascalu
- “Petru
Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and
Biopolymers, Grigore
Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Elena-Laura Ursu
- “Petru
Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and
Biopolymers, Grigore
Ghica Voda Alley 41 A, 700487 Iasi, Romania
| | - Simona Morariu
- Natural
Polymers, Bioactive and Biocompatible Materials, “Petru Poni” Institute of Macromolecular Chemistry,
Romanian Academy, Grigore
Ghica Voda Alley 41 A, Iasi 700487, Romania
| | - Alexandru Rotaru
- “Petru
Poni” Institute of Macromolecular Chemistry, Romanian Academy, Centre of Advanced Research in Bionanoconjugates and
Biopolymers, Grigore
Ghica Voda Alley 41 A, 700487 Iasi, Romania
| |
Collapse
|
50
|
Mukhopadhyay T, Ghosh A, Datta A. Screening 2D Materials for Their Nanotoxicity toward Nucleic Acids and Proteins: An In Silico Outlook. ACS PHYSICAL CHEMISTRY AU 2024; 4:97-121. [PMID: 38560753 PMCID: PMC10979489 DOI: 10.1021/acsphyschemau.3c00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 04/04/2024]
Abstract
Since the discovery of graphene, two-dimensional (2D) materials have been anticipated to demonstrate enormous potential in bionanomedicine. Unfortunately, the majority of 2D materials induce nanotoxicity via disruption of the structure of biomolecules. Consequently, there has been an urge to synthesize and identify biocompatible 2D materials. Before the cytotoxicity of 2D nanomaterials is experimentally tested, computational studies can rapidly screen them. Additionally, computational analyses can provide invaluable insights into molecular-level interactions. Recently, various "in silico" techniques have identified these interactions and helped to develop a comprehensive understanding of nanotoxicity of 2D materials. In this article, we discuss the key recent advances in the application of computational methods for the screening of 2D materials for their nanotoxicity toward two important categories of abundant biomolecules, namely, nucleic acids and proteins. We believe the present article would help to develop newer computational protocols for the identification of novel biocompatible materials, thereby paving the way for next-generation biomedical and therapeutic applications based on 2D materials.
Collapse
Affiliation(s)
- Titas
Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road,
Jadavpur, Kolkata 700032, West Bengal, India
| | - Anupam Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road,
Jadavpur, Kolkata 700032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road,
Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|