1
|
Roy J, Roy K. Exploring the relationships between physiochemical properties of nanoparticles and cell damage to combat cancer growth using simple periodic table-based descriptors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:297-309. [PMID: 38505811 PMCID: PMC10949013 DOI: 10.3762/bjnano.15.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
A comprehensive knowledge of the physical and chemical properties of nanomaterials (NMs) is necessary to design them effectively for regulated use. Although NMs are utilized in therapeutics, their cytotoxicity has attracted great attention. Nanoscale quantitative structure-property relationship (nano-QSPR) models can help in understanding the relationship between NMs and the biological environment and provide new ways for modeling the structural properties and bio-toxic effects of NMs. The goal of the study is to construct fully validated property-based models to extract relevant features for estimating and influencing the zeta potential and obtaining the toxicity profile regarding cell damage in the treatment of cancer cells. To achieve this, QSPR modeling was first performed with 18 metal oxide (MeOx) NMs to measure their materials properties using periodic table-based descriptors. The features obtained were later applied for zeta potential calculation (imputation for sparse data) for MeOx NMs that lack such information. To further clarify the influence of the zeta potential on cell damage, a QSPR model was developed with 132 MeOx NMs to understand the possible mechanisms of cell damage. The results showed that zeta potential, along with seven other descriptors, had the potential to influence oxidative damage through free radical accumulation, which could lead to changes in the survival rate of cancerous cells. The developed QSPR and quantitative structure-activity relationship models also give hints regarding safer design and toxicity assessment of MeOx NMs.
Collapse
Affiliation(s)
- Joyita Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
2
|
Ahmed T, Liu FCF, Wu XY. An update on strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery: exploiting transformability and bioactivity of PLN and harnessing intracellular lipid transport mechanism. Expert Opin Drug Deliv 2024; 21:245-278. [PMID: 38344771 DOI: 10.1080/17425247.2024.2318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Polymer-lipid hybrid nanoparticle (PLN) is an emerging nanoplatform with distinct properties and functionalities from other nanocarrier systems. PLN can be optimized to overcome various levels of drug delivery barriers to achieve desired therapeutic outcomes via rational selection of polymer and lipid combinations based on a thorough understanding of their properties and interactions with therapeutic agents and biological systems. AREAS COVERED This review provides an overview of PLN including the motive and history of PLN development, types of PLN, preparation methods, attestations of their versatility, and design strategies to circumvent various barriers for increasing drug delivery accuracy and efficiency. It also highlights recent advances in PLN design including: rationale selection of polymer and lipid components to achieve spatiotemporal drug targeting and multi-targeted cascade drug delivery; utilizing the intracellular lipid transport mechanism for active targeting to desired organelles; and harnessing bioreactive lipids and polymers to magnify therapeutic effects. EXPERT OPINION A thorough understanding of properties of PLN components and their biofate is important for enhancing disease site targeting, deep tumor tissue penetration, cellular uptake, and intracellular trafficking of PLN. For futuristic PLN development, active lipid transport and dual functions of lipids and polymers as both nanocarrier material and pharmacological agents can be further explored.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
3
|
Cui Y, Wu C, Li L, shi H, Li C, Yin S. Toward nanotechnology-enabled application of bilirubin in the treatment and diagnosis of various civilization diseases. Mater Today Bio 2023; 20:100658. [PMID: 37214553 PMCID: PMC10196858 DOI: 10.1016/j.mtbio.2023.100658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Bilirubin, an open chain tetrapyrrole, has powerful antioxidant, anti-inflammatory, immuno-suppressive, metabolic-modulating and anti-proliferative activities. Bilirubin is a natural molecule that is produced and metabolized within the human body, making it highly biocompatible and well suited for clinical use. However, the use of bilirubin has been hampered by its poor water solubility and instability. With advanced construction strategies, bilirubin-derived nanoparticles (BRNPs) have not only overcome the disadvantages of bilirubin but also enhanced its therapeutic effects by targeting damaged tissues, passing through physiological barriers, and ensuring controlled sustained release. We review the mechanisms underlying the biological activities of bilirubin, BRNP preparation strategies and BRNP applications in various disease models. Based on their superior performance, BRNPs require further exploration of their efficacy, biodistribution and long-term biosafety in nonhuman primate models that recapitulate human disease to promote their clinical translation.
Collapse
|
4
|
Violatto MB, Sitia G, Talamini L, Morelli A, Tran NL, Zhang Q, Masood A, Pelaz B, Chakraborty I, Cui D, Parak WJ, Salmona M, Bastús NG, Puntes V, Bigini P. Variations in Biodistribution and Acute Response of Differently Shaped Titania Nanoparticles in Healthy Rodents. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1174. [PMID: 37049267 PMCID: PMC10097059 DOI: 10.3390/nano13071174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are one of the main sources of the nanoparticulate matter exposure to humans. Although several studies have demonstrated their potential toxic effects, the real nature of the correlation between NP properties and their interaction with biological targets is still far from being fully elucidated. Here, engineered TiO2 NPs with various geometries (bipyramids, plates, and rods) have been prepared, characterized and intravenously administered in healthy mice. Parameters such as biodistribution, accumulation, and toxicity have been assessed in the lungs and liver. Our data show that the organ accumulation of TiO2 NPs, measured by ICP-MS, is quite low, and this is only partially and transiently affected by the NP geometries. The long-lasting permanence is exclusively restricted to the lungs. Here, bipyramids and plates show a higher accumulation, and interestingly, rod-shaped NPs are the most toxic, leading to histopathological pulmonary alterations. In addition, they are also able to induce a transient increase in serum markers related to hepatocellular injury. These results indicate that rods, more than bipyramidal and spherical geometries, lead to a stronger and more severe biological effect. Overall, small physico-chemical differences can dramatically modify both accumulation and safety.
Collapse
Affiliation(s)
- Martina B. Violatto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (M.B.V.); (L.T.); (A.M.); (M.S.)
| | - Giovanni Sitia
- Experimental Hepatology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy; (G.S.); (N.L.T.)
| | - Laura Talamini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (M.B.V.); (L.T.); (A.M.); (M.S.)
| | - Annalisa Morelli
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (M.B.V.); (L.T.); (A.M.); (M.S.)
| | - Ngoc Lan Tran
- Experimental Hepatology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy; (G.S.); (N.L.T.)
| | - Qian Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China; (Q.Z.); (D.C.)
| | - Atif Masood
- Karachi Institute of Radiotherapy and Nuclear Medicine (KIRAN), 75530 Karachi, Pakistan;
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Indranath Chakraborty
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China; (Q.Z.); (D.C.)
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany;
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (M.B.V.); (L.T.); (A.M.); (M.S.)
| | - Neus G. Bastús
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (N.G.B.); (V.P.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Victor Puntes
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (N.G.B.); (V.P.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08036 Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (M.B.V.); (L.T.); (A.M.); (M.S.)
| |
Collapse
|
5
|
Reliable assessment of carbon black nanomaterial of a variety of cell culture media for in vitro toxicity assays by asymmetrical flow field-flow fractionation. Anal Bioanal Chem 2023; 415:2121-2132. [PMID: 36829041 PMCID: PMC10079754 DOI: 10.1007/s00216-023-04597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
Carbon black nanomaterial (CB-NM), as an industrial product with a large number of applications, poses a high risk of exposure, and its impact on health needs to be assessed. The most common testing platform for engineered (E)NMs is in vitro toxicity assessment, which requires prior ENM dispersion, stabilization, and characterization in cell culture media. Here, asymmetric flow field-flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series was used for the study of CB dispersions in cell culture media, optimizing instrumental variables and working conditions. It was possible to disperse CB in a non-ionic surfactant aqueous solution due to the steric effect provided by surfactant molecules attached on the CB surface which prevented agglomeration. The protection provided by the surfactant or by culture media alone was insufficient to ensure good dispersion stability needed for carrying out in vitro toxicity studies. On the other hand, cell culture media in combination with the surfactant improved dispersion stability considerably, enabling the generation of shorter particles and a more favourable zeta potential magnitude, leading to greater stability due to electrostatic repulsion. It was demonstrated that the presence of amino acids in the culture media improved the monodisperse nature and stability of the CB dispersions, and resulted in a turn towards more negative zeta potential values when the pH was above the amino acid isoelectric point (IEP). Culture media used in real cell culture scenarios were also tested, and in vitro toxicity assays were developed optimizing the compatible amount of surfactant.
Collapse
|
6
|
Zhao X, Xu H, Li Y, Ma R, Qi Y, Zhang M, Guo C, Sun Z, Li Y. Proteomic profiling reveals dysregulated mitochondrial complex subunits responsible for myocardial toxicity induced by SiNPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159206. [PMID: 36198348 DOI: 10.1016/j.scitotenv.2022.159206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The relationship between environmental exposure to silica nanoparticles (SiNPs) and adverse cardiac outcomes has received more attention. Our recent work has revealed a size-dependent impact of the intratracheal instilled SiNPs on cardiac health of ApoE-/- mice using nanoscale SiNPs-60 and submicro-sized SiNPs-300, but the underlying mechanism of action still remains unclear. Hence, we identified proteins and protein networks perturbed by SiNPs in myocardial tissues of ApoE-/- mice by using LC-MS/MS-based quantitative proteomics. A set of 435 differentially expressed proteins (DEPs) were screened in response to SiNPs, which mainly enriched in the mitochondria and functioned in cell metabolism, biosynthesis and signal transduction. KEGG analysis showed that DEPs were significantly associated with oxidative phosphorylation and cardiomyopathy. The protein-protein interaction (PPI) network revealed 9 DEPs (e.g., Ndufs1, Ndufv1, Cox4i1) as potential biomarkers of SiNPs-induced myocardial toxicity. Of note, all the 9 candidate proteins were subunits of mitochondria respiratory chain complex, and their expressions were dependent on particle size, which were remarkably down-regulated by SiNPs-60 but not by SiNPs-300. More importantly, the correlation analysis verified the 9 dysregulated mitochondria complex protein subunits strongly correlated to the biochemical and functional indexes of cardiac injury in response to SiNPs. In conclusion, our study firstly provided significant proteomic insights into the potential molecular mechanisms underlying SiNPs-elicited cardiotoxicity, with the dysregulated mitochondrial complex subunits as core regulatory molecules. Overall, our study would provide the scientific basis for the molecular actions and mechanisms of toxicity induced by SiNPs.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Min Zhang
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Assessment of acute oral toxicity of quercetin loaded alginate/chitosan nanoparticles: in vivo study. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Critical Review on Toxicological Mechanisms Triggered by Inhalation of Alumina Nanoparticles on to the Lungs. Biomedicines 2022; 10:biomedicines10102664. [PMID: 36289927 PMCID: PMC9599368 DOI: 10.3390/biomedicines10102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Alumina nanoparticles (Al2O3 NPs) can be released in occupational environments in different contexts such as industry, defense, and aerospace. Workers can be exposed by inhalation to these NPs, for instance, through welding fumes or aerosolized propellant combustion residues. Several clinical and epidemiological studies have reported that inhalation of Al2O3 NPs could trigger aluminosis, inflammation in the lung parenchyma, respiratory symptoms such as cough or shortness of breath, and probably long-term pulmonary fibrosis. The present review is a critical update of the current knowledge on underlying toxicological, molecular, and cellular mechanisms induced by exposure to Al2O3 NPs in the lungs. A major part of animal studies also points out inflammatory cells and secreted biomarkers in broncho-alveolar lavage fluid (BALF) and blood serum, while in vitro studies on lung cells indicate contradictory results regarding the toxicity of these NPs.
Collapse
|
9
|
Fakhri S, Abdian S, Zarneshan SN, Moradi SZ, Farzaei MH, Abdollahi M. Nanoparticles in Combating Neuronal Dysregulated Signaling Pathways: Recent Approaches to the Nanoformulations of Phytochemicals and Synthetic Drugs Against Neurodegenerative Diseases. Int J Nanomedicine 2022; 17:299-331. [PMID: 35095273 PMCID: PMC8791303 DOI: 10.2147/ijn.s347187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
As the worldwide average life expectancy has grown, the prevalence of age-related neurodegenerative diseases (NDDs) has risen dramatically. A progressive loss of neuronal function characterizes NDDs, usually followed by neuronal death. Inflammation, apoptosis, oxidative stress, and protein misfolding are critical dysregulated signaling pathways that mainly orchestrate neuronal damage from a mechanistic point. Furthermore, in afflicted families with genetic anomalies, mutations and multiplications of α-synuclein and amyloid-related genes produce some kinds of NDDs. Overproduction of such proteins, and their excessive aggregation, have been proven in various models of neuronal malfunction and death. In this line, providing multi-target therapies carried by novel delivery systems would pave the road to control NDDs through simultaneous modulation of such dysregulated pathways. Phytochemicals are multi-target therapeutic agents, which employ several mechanisms towards neuroprotection. Besides, the blood-brain barrier (BBB) is a critical issue in managing NDDs since it inhibits the accessibility of drugs to the brain in sufficient concentration. Besides, discovering novel delivery systems is vital to improving the efficacy, bioavailability, and pharmacokinetic of therapeutic agents. Such novel formulations are also employed to improve the drug's biodistribution, allow for the co-delivery of several medicines, and offer targeted intracellular delivery against NDDs. The present review proposes nanoformulations of phytochemicals and synthetic agents to combat NDDs by modulating neuroinflammation, neuroapoptosis, neuronal oxidative stress pathways and protein misfolding.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Åberg C, Piattelli V, Montizaan D, Salvati A. Sources of variability in nanoparticle uptake by cells. NANOSCALE 2021; 13:17530-17546. [PMID: 34652349 PMCID: PMC8552707 DOI: 10.1039/d1nr04690j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Understanding how nano-sized objects are taken up by cells is important for applications within medicine (nanomedicine), as well as to avoid unforeseen hazard due to nanotechnology (nanosafety). Even within the same cell population, one typically observes a large cell-to-cell variability in nanoparticle uptake, raising the question of the underlying cause(s). Here we investigate cell-to-cell variability in polystyrene nanoparticle uptake by HeLa cells, with generalisations of the results to silica nanoparticles and liposomes, as well as to A549 and primary human umbilical vein endothelial cells. We show that uptake of nanoparticles is correlated with cell size within a cell population, thereby reproducing and generalising previous reports highlighting the role of cell size in nanoparticle uptake. By repeatedly isolating (using fluorescence-activated cell sorting) the cells that take up the most and least nanoparticles, respectively, and performing RNA sequencing on these cells separately, we examine the underlying gene expression that contributes to high and low polystyrene nanoparticle accumulation in HeLa cells. We can thereby show that cell size is not the sole driver of cell-to-cell variability, but that other cellular characteristics also play a role. In contrast to cell size, these characteristics are more specific to the object (nanoparticle or protein) being taken up, but are nevertheless highly heterogeneous, complicating their detailed identification. Overall, our results highlight the complexity underlying the cellular features that determine nanoparticle uptake propensity.
Collapse
Affiliation(s)
- Christoffer Åberg
- Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Valeria Piattelli
- Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Daphne Montizaan
- Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Anna Salvati
- Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
11
|
Wasim M, Shi F, Liu J, Farooq A, Khan SU, Salam A, Hassan T, Zhao X. An overview of Zn/ZnO modified cellulosic nanocomposites and their potential applications. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02689-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Zamora-Perez P, Pelaz B, Tsoutsi D, Soliman MG, Parak WJ, Rivera-Gil P. Hyperspectral-enhanced dark field analysis of individual and collective photo-responsive gold-copper sulfide nanoparticles. NANOSCALE 2021; 13:13256-13272. [PMID: 34477734 DOI: 10.1039/d0nr08256b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We used hyperspectral-enhanced dark field microscopy for studying physicochemical changes in biomaterials by tracking their unique spectral signatures along their pathway through different biological environments typically found in any biomedical application. We correlate these spectral signatures with discrete environmental features causing changes in nanoparticles' physicochemical properties. We use this correlation to track the nanoparticles intracellularly and to assess the impact of these changes on their functionality. We focus on one example of a photothermal nanocomposite, i.e., polymer-coated gold/copper sulfide nanoparticles, because their performance depends on their localized surface plasmon peak, which is highly sensitive to environmental changes. We found spectral differences both in the dependence of time and discrete environmental factors, affecting the range of illumination wavelengths that can be used to activate the functionality of these types of nanoparticles. The presence of proteins (protein corona) and the increase in ionic strength induce a spectral broadening towards the NIR region which we associated with nanoparticles' agglomeration. In acidic environments, such as that of the lysosome, a red shift was also observed in addition to a decrease in the scattering intensity probably associated with a destabilization of the proteins and/or the change in the net charge of the polymer around the nanoparticles. We observed a loss of the photo-excitation potential of those nanoparticles exposed to acidic conditions in the <600 nm spectral rage. In a similar manner, ageing induces a transitioning from a broad multipeak spectrum to a distinct shoulder with time (up to 8 months) with the loss of spectral contribution in the 450-600 nm range. Hence, a fresh preparation of nanoparticles before their application would be recommended for an optimal performance. We highlight the impact of ageing and the acidic environment on the responsiveness of this type of plasmonic nanoparticle. Regardless of the spectral differences found, polymer-coated gold/copper sulfide nanoparticles retained their photothermal response as demonstrated in vitro upon two-photon irradiation. This could be ascribed to their robust geometry provided by the polymer coating. These results should be useful to rationally design plasmonic photothermal probes.
Collapse
Affiliation(s)
- Paula Zamora-Perez
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Experimental and Health Sciences (DCEXS), Pompeu Fabra University (UPF), Biomedical Research Park (PRBB), carrer Doctor Aiguader 88, 08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
Simeonidis K, Kaprara E, Rivera-Gil P, Xu R, Teran FJ, Kokkinos E, Mitropoulos A, Maniotis N, Balcells L. Hydrotalcite-Embedded Magnetite Nanoparticles for Hyperthermia-Triggered Chemotherapy. NANOMATERIALS 2021; 11:nano11071796. [PMID: 34361181 PMCID: PMC8308439 DOI: 10.3390/nano11071796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/25/2023]
Abstract
A magnetic nanocomposite, consisting of Fe3O4 nanoparticles embedded into a Mg/Al layered double hydroxide (LDH) matrix, was developed for cancer multimodal therapy, based on the combination of local magnetic hyperthermia and thermally induced drug delivery. The synthesis procedure involves the sequential hydrolysis of iron salts (Fe2+, Fe3+) and Mg2+/Al3+ nitrates in a carbonate-rich mild alkaline environment followed by the loading of 5-fluorouracil, an anionic anticancer drug, in the interlayer LDH space. Magnetite nanoparticles with a diameter around 30 nm, dispersed in water, constitute the hyperthermia-active phase able to generate a specific loss of power of around 500 W/g-Fe in an alternating current (AC) magnetic field of 24 kA/m and 300 kHz as determined by AC magnetometry and calorimetric measurements. Heat transfer was found to trigger a very rapid release of drug which reached 80% of the loaded mass within 10 min exposure to the applied field. The potential of the Fe3O4/LDH nanocomposites as cancer treatment agents with minimum side-effects, owing to the exclusive presence of inorganic phases, was validated by cell internalization and toxicity assays.
Collapse
Affiliation(s)
- Konstantinos Simeonidis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Ecoresources P.C., Giannitson-Santaroza Str. 15-17, 54627 Thessaloniki, Greece;
- Correspondence:
| | - Efthimia Kaprara
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Pilar Rivera-Gil
- Integrative Biomedical Materials and Nanomedicine Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (P.R.-G.); (R.X.)
| | - Ruixue Xu
- Integrative Biomedical Materials and Nanomedicine Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (P.R.-G.); (R.X.)
| | - Francisco J. Teran
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain;
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Evgenios Kokkinos
- Ecoresources P.C., Giannitson-Santaroza Str. 15-17, 54627 Thessaloniki, Greece;
| | - Athanassios Mitropoulos
- Hephaestus Advanced Laboratory, Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Nikolaos Maniotis
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Lluis Balcells
- Institut de Ciencia de Materials de Barcelona, CSIC, 08193 Bellaterra, Spain;
| |
Collapse
|
14
|
Rajagopalan S, Brauer M, Bhatnagar A, Bhatt DL, Brook JR, Huang W, Münzel T, Newby D, Siegel J, Brook RD. Personal-Level Protective Actions Against Particulate Matter Air Pollution Exposure: A Scientific Statement From the American Heart Association. Circulation 2020; 142:e411-e431. [PMID: 33150789 DOI: 10.1161/cir.0000000000000931] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since the publication of the last American Heart Association scientific statement on air pollution and cardiovascular disease in 2010, unequivocal evidence of the causal role of fine particulate matter air pollution (PM2.5, or particulate matter ≤2.5 μm in diameter) in cardiovascular disease has emerged. There is a compelling case to provide the public with practical personalized approaches to reduce the health effects of PM2.5. Such interventions would be applicable not only to individuals in heavily polluted countries, high-risk or susceptible individuals living in cleaner environments, and microenvironments with higher pollution exposures, but also to those traveling to locations with high levels of PM2.5. The overarching motivation for this document is to summarize the current evidence supporting personal-level strategies to prevent the adverse cardiovascular effects of PM2.5, guide the use of the most proven/viable approaches, obviate the use of ineffective measures, and avoid unwarranted interventions. The significance of this statement relates not only to the global importance of PM2.5, but also to its focus on the most tested interventions and viable approaches directed at particulate matter air pollution. The writing group sought to provide expert consensus opinions on personal-level measures recognizing the current uncertainty and limited evidence base for many interventions. In doing so, the writing group acknowledges that its intent is to assist other agencies charged with protecting public health, without minimizing the personal choice considerations of an individual who may decide to use these interventions in the face of ongoing air pollution exposure.
Collapse
|
15
|
Khanal D, Lei Q, Pinget G, Cheong DA, Gautam A, Yusoff R, Su B, Yamaguchi S, Kondyurin A, Knowles JC, Georgiou G, Macia L, Jang JH, Ramzan I, Ng KW, Chrzanowski W. The protein corona determines the cytotoxicity of nanodiamonds: implications of corona formation and its remodelling on nanodiamond applications in biomedical imaging and drug delivery. NANOSCALE ADVANCES 2020; 2:4798-4812. [PMID: 36132939 PMCID: PMC9418940 DOI: 10.1039/d0na00231c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/13/2020] [Indexed: 05/06/2023]
Abstract
The use of nanodiamonds for biomedical and consumer applications is growing rapidly. As their use becomes more widespread, so too do concerns around their cytotoxicity. The cytotoxicity of nanodiamonds correlates with their cellular internalisation and circulation time in the body. Both internalisation and circulation time are influenced by the formation of a protein corona on the nanodiamond surface. However, a precise understanding of both how the corona forms and evolves and its influence on cytotoxicity is lacking. Here, we investigated protein corona formation and evolution in response to two classes of nanodiamonds, pristine and aminated, and two types of proteins, bovine serum albumin and fibronectin. Specifically, we found that a corona made of bovine serum albumin (BSA), which represents the most abundant protein in blood plasma, reduced nanodiamond agglomeration. Fibronectin (FN9-10), the second most abundant protein found in the plasma, exhibited a significantly higher nanodiamond binding affinity than BSA, irrespective of the nanodiamond surface charge. Finally, nanodiamonds with a BSA corona displayed less cytotoxicity towards nonphagocytic liver cells. However, regardless of the type of corona (FN9-10 or BSA), both classes of nanodiamonds induced substantial phagocytic cell death. Our results emphasise that a precise understanding of the corona composition is fundamental to determining the fate of nanoparticles in the body.
Collapse
Affiliation(s)
- Dipesh Khanal
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School Sydney NSW 2006 Australia
| | - Qingyu Lei
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School Sydney NSW 2006 Australia
| | - Gabriela Pinget
- The University of Sydney, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health Sydney NSW 2006 Australia
| | - Daniel A Cheong
- The University of Oklahoma, Stephenson School of Biomedical Engineering Oklahoma USA
| | - Archana Gautam
- Nanyang Technological University, School of Materials Science and Engineering Singapore
| | - Ridhwan Yusoff
- Nanyang Technological University, School of Materials Science and Engineering Singapore
| | - Bowyn Su
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School Sydney NSW 2006 Australia
| | - Seiji Yamaguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University Aichi Prefecture 487-8501 Japan
| | | | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute 256 Grays Inn Road London WC1X 8LD UK
- The Discoveries Centre for Regenerative and Precision Medicine UCL Campus London UK
- Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Cheonan 31114 Republic of Korea
| | - George Georgiou
- Division of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute 256 Grays Inn Road London WC1X 8LD UK
| | - Laurence Macia
- The University of Sydney, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health Sydney NSW 2006 Australia
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine Nam-gu Incheon 22212 Korea
| | - Iqbal Ramzan
- The University of Sydney, Faculty of Medicine and Health, Sydney Pharmacy School New South Wales 2006 Australia
| | - Kee Woei Ng
- Nanyang Technological University, School of Materials Science and Engineering Singapore
- Skin Research Institute of Singapore Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute Singapore
| | - Wojciech Chrzanowski
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School Sydney NSW 2006 Australia
| |
Collapse
|
16
|
Schaak RE, Penner RM, Buriak JM, Caruso F, Chhowalla M, Gogotsi Y, Mulvaney P, Parak WJ, Weiss PS. Tutorials and Articles on Best Practices. ACS NANO 2020; 14:10751-10753. [PMID: 32961637 DOI: 10.1021/acsnano.0c07588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
17
|
Frenzel F, König-Mattern L, Stock V, Voss L, Paul MB, Sieg H, Braeuning A, Voigt A, Böhmert L. NanoPASS: an easy-to-use user interface for nanoparticle dosimetry with the 3DSDD model. Part Fibre Toxicol 2020; 17:45. [PMID: 32948196 PMCID: PMC7502021 DOI: 10.1186/s12989-020-00368-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/22/2020] [Indexed: 11/25/2022] Open
Abstract
Nanoparticles exhibit a specific diffusion and sedimentation behavior under cell culture conditions as used in nantoxicological in vitro testing. How a particular particle suspension behaves depends on the particular physicochemical characteristics of the particles and the cell culture system. Only a fraction of the nanoparticles applied to a cell culture will thus reach the cells within a given time frame. Therefore, dosimetric calculations are essential not only to determine the exact fraction of nanoparticles that has come into contact with the cells, but also to ensure experimental comparability and correct interpretation of results, respectively. Yet, the use of published dosimetry models is limited. Not the least because the correct application of these in silico tools usually requires bioinformatics knowledge, which often is perceived a hurdle. Moreover, not all models are freely available and accessible. In order to overcome this obstacle, we have now developed an easy-to-use interface for our recently published 3DSDD dosimetry model, called NanoPASS (NanoParticle Administration Sedimentation Simulator). The interface is freely available to all researchers. It will facilitate the use of in silico dosimetry in nanotoxicology and thus improve interpretation and comparability of in vitro results in the field.
Collapse
Affiliation(s)
- Falko Frenzel
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Laura König-Mattern
- Otto-von-Guericke University Magdeburg, Chair of Process Systems Engineering, Universitätsplatz 2, 39016, Magdeburg, Germany
| | - Valerie Stock
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Linn Voss
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Maxi B Paul
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Andreas Voigt
- Otto-von-Guericke University Magdeburg, Chair of Process Systems Engineering, Universitätsplatz 2, 39016, Magdeburg, Germany
| | - Linda Böhmert
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
18
|
Abstract
Nanoparticles from natural and anthropogenic sources are abundant in the environment, thus human exposure to nanoparticles is inevitable. Due to this constant exposure, it is critically important to understand the potential acute and chronic adverse effects that nanoparticles may cause to humans. In this review, we explore and highlight the current state of nanotoxicology research with a focus on mechanistic understanding of nanoparticle toxicity at organ, tissue, cell, and biomolecular levels. We discuss nanotoxicity mechanisms, including generation of reactive oxygen species, nanoparticle disintegration, modulation of cell signaling pathways, protein corona formation, and poly(ethylene glycol)-mediated immunogenicity. We conclude with a perspective on potential approaches to advance current understanding of nanoparticle toxicity. Such improved understanding may lead to mitigation strategies that could enable safe application of nanoparticles in humans. Advances in nanotoxicity research will ultimately inform efforts to establish standardized regulatory frameworks with the goal of fully exploiting the potential of nanotechnology while minimizing harm to humans.
Collapse
Affiliation(s)
- Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA;
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA;
| | - Evan M Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA;
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73019, USA; .,Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma 73019, USA.,Stephenson Cancer Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
19
|
Marichal L, Degrouard J, Gatin A, Raffray N, Aude JC, Boulard Y, Combet S, Cousin F, Hourdez S, Mary J, Renault JP, Pin S. From Protein Corona to Colloidal Self-Assembly: The Importance of Protein Size in Protein-Nanoparticle Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8218-8230. [PMID: 32585107 DOI: 10.1021/acs.langmuir.0c01334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein adsorption on nanoparticles is an important field of study, particularly with regard to nanomedicine and nanotoxicology. Many factors can influence the composition and structure of the layer(s) of adsorbed proteins, the so-called protein corona. However, the role of protein size has not been specifically investigated, although some evidence has indicated its potential important role in corona composition and structure. To assess the role of protein size, we studied the interactions of hemoproteins (spanning a large size range) with monodisperse silica nanoparticles. We combined various techniques-adsorption isotherms, isothermal titration calorimetry, circular dichroism, and transmission electron cryomicroscopy-to address this issue. Overall, the results show that small proteins behaved as typical model proteins, forming homogeneous monolayers on the nanoparticle surface (protein corona). Their adsorption is purely enthalpy-driven, with subtle structural changes. In contrast, large proteins interact with nanoparticles via entropy-driven mechanisms. Their structure is completely preserved during adsorption, and any given protein can directly bind to several nanoparticles, forming bridges in these newly formed protein-nanoparticle assemblies. Protein size is clearly an overlooked factor that should be integrated into proteomics and toxicological studies.
Collapse
Affiliation(s)
- Laurent Marichal
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, I2BC, B3S, 91190 Gif-sur-Yvette, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Anouchka Gatin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
| | - Nolwenn Raffray
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
| | | | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, I2BC, B3S, 91190 Gif-sur-Yvette, France
| | - Sophie Combet
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Fabrice Cousin
- Université Paris-Saclay, Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Stéphane Hourdez
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Team DYDIV, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Jean Mary
- Sorbonne Université, CNRS, Laboratoire Adaptation et Diversité en Milieu Marin, Team DYDIV, Station Biologique de Roscoff, 29680 Roscoff, France
| | | | - Serge Pin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91190 Gif-sur-Yvette, France
| |
Collapse
|
20
|
Precupas A, Gheorghe D, Botea-Petcu A, Leonties AR, Sandu R, Popa VT, Mariussen E, Naouale EY, Rundén-Pran E, Dumit V, Xue Y, Cimpan MR, Dusinska M, Haase A, Tanasescu S. Thermodynamic Parameters at Bio-Nano Interface and Nanomaterial Toxicity: A Case Study on BSA Interaction with ZnO, SiO 2, and TiO 2. Chem Res Toxicol 2020; 33:2054-2071. [PMID: 32600046 DOI: 10.1021/acs.chemrestox.9b00468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding nanomaterial (NM)-protein interactions is a key issue in defining the bioreactivity of NMs with great impact for nanosafety. In the present work, the complex phenomena occurring at the bio/nano interface were evaluated in a simple case study focusing on NM-protein binding thermodynamics and protein stability for three representative metal oxide NMs, namely, zinc oxide (ZnO; NM-110), titanium dioxide (TiO2; NM-101), and silica (SiO2; NM-203). The thermodynamic signature associated with the NM interaction with an abundant protein occurring in most cell culture media, bovine serum albumin (BSA), has been investigated by isothermal titration and differential scanning calorimetry. Circular dichroism spectroscopy offers additional information concerning adsorption-induced protein conformational changes. The BSA adsorption onto NMs is enthalpy-controlled, with the enthalpic character (favorable interaction) decreasing as follows: ZnO (NM-110) > SiO2 (NM-203) > TiO2 (NM-101). The binding of BSA is spontaneous, as revealed by the negative free energy, ΔG, for all systems. The structural stability of the protein decreased as follows: TiO2 (NM-101) > SiO2 (NM-203) > ZnO (NM-110). As protein binding may alter NM reactivity and thus the toxicity, we furthermore assessed its putative influence on DNA damage, as well as on the expression of target genes for cell death (RIPK1, FAS) and oxidative stress (SOD1, SOD2, CAT, GSTK1) in the A549 human alveolar basal epithelial cell line. The enthalpic component of the BSA-NM interaction, corroborated with BSA structural stability, matched the ranking for the biological alterations, i.e., DNA strand breaks, oxidized DNA lesions, cell-death, and antioxidant gene expression in A549 cells. The relative and total content of BSA in the protein corona was determined using mass-spectrometry-based proteomics. For the present case study, the thermodynamic parameters at bio/nano interface emerge as key descriptors for the dominant contributions determining the adsorption processes and NMs toxicological effect.
Collapse
Affiliation(s)
- Aurica Precupas
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Daniela Gheorghe
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Alina Botea-Petcu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Anca Ruxandra Leonties
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Romica Sandu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Vlad Tudor Popa
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Espen Mariussen
- NILU-Norwegian Institute for Air Research, Kjeller 2027, Norway
| | | | | | - Veronica Dumit
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin 10589, Germany
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen 5020, Norway
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen 5020, Norway
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Kjeller 2027, Norway
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin 10589, Germany
| | - Speranta Tanasescu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| |
Collapse
|
21
|
Klimkevicius V, Janulevicius M, Babiceva A, Drabavicius A, Katelnikovas A. Effect of Cationic Brush-Type Copolymers on the Colloidal Stability of GdPO 4 Particles with Different Morphologies in Biological Aqueous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7533-7544. [PMID: 32493012 PMCID: PMC7467769 DOI: 10.1021/acs.langmuir.0c01130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Indexed: 06/11/2023]
Abstract
In this study, we present the synthesis of cationic brush-type polyelectrolytes and their use in the stabilization of GdPO4 particles in aqueous media. Polymers of various compositions were synthesized via the RAFT polymerization route. SEC equipped with triple detection (RI, DP, RALS, and LALS) was used to determine the molecular parameters (Mn, Mw, Mw/Mn). The exact composition of synthesized polymers was determined using NMR spectroscopy. Cationic brush-type polymers were used to improve the stability of aqueous GdPO4 particle dispersions. First, the IEPs of GdPO4 particles with different morphologies (nanorods, hexagonal nanoprisms, and submicrospheres) were determined by measuring the zeta potential of bare particle dispersions at various pH values. Afterward, cationic brush-type polyelectrolytes with different compositions were used for the surface modification of GdPO4 particles (negatively charged in alkaline media under a pH value of ∼10.6). The concentration and composition effects of used polymers on the change in particle surface potential and stability (DLS measurements) in dispersions were investigated and presented in this work. The most remarkable result of this study is redispersible GdPO4 nanoparticle colloids with increased biocompatibility and stability as well as new insights into possible cationic brush-type polyelectrolyte applicability in both scientific and commercial fields.
Collapse
Affiliation(s)
- Vaidas Klimkevicius
- Institute
of Chemistry, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Matas Janulevicius
- Institute
of Chemistry, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Aleksandra Babiceva
- Institute
of Chemistry, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Audrius Drabavicius
- Centre
of Physical Science and Technology, Sauletekis av. 3, LT-10257 Vilnius, Lithuania
| | - Arturas Katelnikovas
- Institute
of Chemistry, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
22
|
Moore MN. Lysosomes, Autophagy, and Hormesis in Cell Physiology, Pathology, and Age-Related Disease. Dose Response 2020; 18:1559325820934227. [PMID: 32684871 PMCID: PMC7343375 DOI: 10.1177/1559325820934227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Autophagy has been strongly linked with hormesis, however, it is only relatively recently that the mechanistic basis underlying this association has begun to emerge. Lysosomal autophagy is a group of processes that degrade proteins, protein aggregates, membranes, organelles, segregated regions of cytoplasm, and even parts of the nucleus in eukaryotic cells. These degradative processes are evolutionarily very ancient and provide a survival capability for cells that are stressed or injured. Autophagy and autophagic dysfunction have been linked with many aspects of cell physiology and pathology in disease processes; and there is now intense interest in identifying various therapeutic strategies involving its regulation. The main regulatory pathway for augmented autophagy is the mechanistic target of rapamycin (mTOR) cell signaling, although other pathways can be involved, such as 5'-adenosine monophosphate-activated protein kinase. Mechanistic target of rapamycin is a key player in the many highly interconnected intracellular signaling pathways and is responsible for the control of cell growth among other processes. Inhibition of mTOR (specifically dephosphorylation of mTOR complex 1) triggers augmented autophagy and the search is on the find inhibitors that can induce hormetic responses that may be suitable for treating many diseases, including many cancers, type 2 diabetes, and age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Michael N. Moore
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, United Kingdom
- Plymouth Marine Laboratory, Plymouth, Devon, United Kingdom
- School of Biological & Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
23
|
Samak DH, El-Sayed YS, Shaheen HM, El-Far AH, Abd El-Hack ME, Noreldin AE, El-Naggar K, Abdelnour SA, Saied EM, El-Seedi HR, Aleya L, Abdel-Daim MM. Developmental toxicity of carbon nanoparticles during embryogenesis in chicken. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19058-19072. [PMID: 30499089 DOI: 10.1007/s11356-018-3675-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) are very small particles present in a wide range of materials. There is a dearth of knowledge regarding their potential secondary effects on the health of living organisms and the environment. Increasing research attention, however, has been directed toward determining the effects on humans exposed to NPs in the environment. Although the majority of studies focus on adult animals or populations, embryos of various species are considered more susceptible to environmental effects and pollutants. Hence, research studies dealing mainly with the impacts of NPs on embryogenesis have emerged recently, as this has become a major concern. Chicken embryos occupy a special place among animal models used in toxicity and developmental investigations and have also contributed significantly to the fields of genetics, virology, immunology, cell biology, and cancer. Their rapid development and easy accessibility for experimental observance and manipulation are just a few of the advantages that have made them the vertebrate model of choice for more than two millennia. The early stages of chicken embryogenesis, which are characterized by rapid embryonic growth, provide a sensitive model for studying the possible toxic effects on organ development, body weight, and oxidative stress. The objective of this review was to evaluate the toxicity of various types of carbon black nanomaterials administered at the beginning of embryogenesis in a chicken embryo model. In addition, the effects of diamond and graphene NPs and carbon nanotubes are reviewed.
Collapse
Affiliation(s)
- Dalia H Samak
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Hazem M Shaheen
- Department of Pharmacology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Karima El-Naggar
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Essa M Saied
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
24
|
Gangwar RS, Bevan GH, Palanivel R, Das L, Rajagopalan S. Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biol 2020; 34:101545. [PMID: 32505541 PMCID: PMC7327965 DOI: 10.1016/j.redox.2020.101545] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
Ambient air pollution is a leading environmental cause of morbidity and mortality globally with most of the outcomes of cardiovascular origin. While numerous mechanisms are proposed to explain the link between air pollutants and cardiovascular events, the evidence supports a role for oxidative stress as a critical intermediary pathway in the transduction of systemic responses in the cardiovascular system. Indeed, alterations in vascular function are a critical step in the development of cardiometabolic disorders such as hypertension, diabetes, and atherosclerosis. This review will provide an overview of the impact of particulate and gaseous pollutants on oxidative stress from human and animal studies published in the last five years. We discuss current gaps in knowledge and evidence to date implicating the role of oxidative stress with an emphasis on inhalational exposures. We conclude with the identification of gaps, and an exhortation for further studies to elucidate the impact of oxidative stress in air pollution mediated effects. Particulate matter air pollution is the leading risk factor for cardiovascular morbidity and mortality globally. Mechanisms of oxidative stress mediated pathways. How does lung inflammation crucial to inhalational exposure mediate systemic toxicity? Review of recent animal and human exposure studies providing insights into oxidative stress pathways.
Collapse
Affiliation(s)
- Roopesh Singh Gangwar
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rengasamy Palanivel
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lopa Das
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
25
|
Afantitis A, Melagraki G, Isigonis P, Tsoumanis A, Varsou DD, Valsami-Jones E, Papadiamantis A, Ellis LJA, Sarimveis H, Doganis P, Karatzas P, Tsiros P, Liampa I, Lobaskin V, Greco D, Serra A, Kinaret PAS, Saarimäki LA, Grafström R, Kohonen P, Nymark P, Willighagen E, Puzyn T, Rybinska-Fryca A, Lyubartsev A, Alstrup Jensen K, Brandenburg JG, Lofts S, Svendsen C, Harrison S, Maier D, Tamm K, Jänes J, Sikk L, Dusinska M, Longhin E, Rundén-Pran E, Mariussen E, El Yamani N, Unger W, Radnik J, Tropsha A, Cohen Y, Leszczynski J, Ogilvie Hendren C, Wiesner M, Winkler D, Suzuki N, Yoon TH, Choi JS, Sanabria N, Gulumian M, Lynch I. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Comput Struct Biotechnol J 2020; 18:583-602. [PMID: 32226594 PMCID: PMC7090366 DOI: 10.1016/j.csbj.2020.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/29/2020] [Indexed: 01/26/2023] Open
Abstract
Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational 'safe-by-design' approaches to facilitate NM commercialization.
Collapse
Key Words
- (quantitative) Structure–activity relationships
- AI, Artificial Intelligence
- AOPs, Adverse Outcome Pathways
- API, Application Programming interface
- CG, coarse-grained (model)
- CNTs, carbon nanotubes
- Computational toxicology
- Engineered nanomaterials
- FAIR, Findable Accessible Inter-operable and Re-usable
- GUI, Graphical Processing Unit
- HOMO-LUMO, Highest Occupied Molecular Orbital Lowest Unoccupied Molecular Orbital
- Hazard assessment
- IATA, Integrated Approaches to Testing and Assessment
- Integrated approach for testing and assessment
- KE, key events
- MIE, molecular initiating events
- ML, machine learning
- MOA, mechanism (mode) of action
- MWCNT, multi-walled carbon nanotubes
- Machine learning
- NMs, nanomaterials
- Nanoinformatics
- OECD, Organisation for Economic Co-operation and Development
- PBPK, Physiologically Based PharmacoKinetics
- PC, Protein Corona
- PChem, Physicochemical
- PTGS, Predictive Toxicogenomics Space
- Predictive modelling
- QC, quantum-chemical
- QM, quantum-mechanical
- QSAR, quantitative structure-activity relationship
- QSPR, quantitative structure-property relationship
- RA, risk assessment
- REST, Representational State Transfer
- ROS, reactive oxygen species
- Read across
- SAR, structure-activity relationship
- SMILES, Simplified Molecular Input Line Entry System
- SOPs, standard operating procedures
- Safe-by-design
- Toxicogenomics
Collapse
Affiliation(s)
| | | | | | | | | | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Anastasios Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Laura-Jayne A. Ellis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Philip Doganis
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Pantelis Karatzas
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Periklis Tsiros
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Irene Liampa
- School of Chemical Engineering, National Technical University of Athens, 157 80 Athens, Greece
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dario Greco
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, University of Tampere, FI-33014, Finland
| | | | | | - Roland Grafström
- Misvik Biology OY, Itäinen Pitkäkatu 4, 20520 Turku, Finland
- Karolinska Institute, Institute of Environmental Medicine, Nobels väg 13, 17177 Stockholm, Sweden
| | - Pekka Kohonen
- Misvik Biology OY, Itäinen Pitkäkatu 4, 20520 Turku, Finland
- Karolinska Institute, Institute of Environmental Medicine, Nobels väg 13, 17177 Stockholm, Sweden
| | - Penny Nymark
- Misvik Biology OY, Itäinen Pitkäkatu 4, 20520 Turku, Finland
- Karolinska Institute, Institute of Environmental Medicine, Nobels väg 13, 17177 Stockholm, Sweden
| | - Egon Willighagen
- Department of Bioinformatics – BiGCaT, School of Nutrition and Translational Research in Metabolism, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Tomasz Puzyn
- QSAR Lab Ltd., Aleja Grunwaldzka 190/102, 80-266 Gdansk, Poland
- University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland
| | | | - Alexander Lyubartsev
- Institutionen för material- och miljökemi, Stockholms Universitet, 106 91 Stockholm, Sweden
| | - Keld Alstrup Jensen
- The National Research Center for the Work Environment, Lersø Parkallé 105, 2100 Copenhagen, Denmark
| | - Jan Gerit Brandenburg
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany
- Chief Digital Organization, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Stephen Lofts
- UK Centre for Ecology and Hydrology, Library Ave, Bailrigg, Lancaster LA1 4AP, UK
| | - Claus Svendsen
- UK Centre for Ecology and Hydrology, MacLean Bldg, Benson Ln, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Samuel Harrison
- UK Centre for Ecology and Hydrology, Library Ave, Bailrigg, Lancaster LA1 4AP, UK
| | - Dieter Maier
- Biomax Informatics AG, Robert-Koch-Str. 2, 82152 Planegg, Germany
| | - Kaido Tamm
- Department of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
| | - Jaak Jänes
- Department of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
| | - Lauri Sikk
- Department of Chemistry, University of Tartu, Ülikooli 18, 50090 Tartu, Estonia
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Eleonora Longhin
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Espen Mariussen
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Naouale El Yamani
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Wolfgang Unger
- Federal Institute for Material Testing and Research (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Jörg Radnik
- Federal Institute for Material Testing and Research (BAM), Unter den Eichen 44-46, 12203 Berlin, Germany
| | - Alexander Tropsha
- Eschelman School of Pharmacy, University of North Carolina at Chapel Hill, 100K Beard Hall, CB# 7568, Chapel Hill, NC 27955-7568, USA
| | - Yoram Cohen
- Samueli School Of Engineering, University of California, Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA
| | - Jerzy Leszczynski
- Interdisciplinary Nanotoxicity Center, Jackson State University, 1400 J. R. Lynch Street, Jackson, MS 39217, USA
| | - Christine Ogilvie Hendren
- Center for Environmental Implications of Nanotechnologies, Duke University, 121 Hudson Hall, Durham, NC 27708-0287, USA
| | - Mark Wiesner
- Center for Environmental Implications of Nanotechnologies, Duke University, 121 Hudson Hall, Durham, NC 27708-0287, USA
| | - David Winkler
- La Trobe Institute of Molecular Sciences, La Trobe University, Plenty Rd & Kingsbury Dr, Bundoora, VIC 3086, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- CSIRO Data61, Clayton 3168, Australia
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Noriyuki Suzuki
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0053, Japan
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Jang-Sik Choi
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Natasha Sanabria
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa
| | - Mary Gulumian
- National Health Laboratory Services, 1 Modderfontein Rd, Sandringham, Johannesburg 2192, South Africa
- Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| |
Collapse
|
26
|
Bai K, Hong B, Tan R, He J, Hong Z. Selenium Nanoparticles-Embedded Chitosan Microspheres and Their Effects Upon Alcohol-Induced Gastric Mucosal Injury in Rats: Rapid Preparation, Oral Delivery, and Gastroprotective Potential of Selenium Nanoparticles. Int J Nanomedicine 2020; 15:1187-1203. [PMID: 32110016 PMCID: PMC7036990 DOI: 10.2147/ijn.s237089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Selenium (Se) is an indispensable trace element required for animals and human beings, whereas Se-deficiency can accelerate the development of acute gastric injury induced by over-consumption of alcohol. Selenium nanoparticles (SeNPs), as a special Se-supplement with favorable properties and unique bioactivities, are expected to play a passive role in gastroprotection. To the best of our knowledge, the gastroprotective potential of SeNPs is unknown and also, a rapid preparation of orally stable SeNPs available for prospective commercial application in the clinic is needed. Thus, SeNPs-embedded chitosan microspheres (SeNPs-CM) were developed to deliver SeNPs, and their gastroprotective potential was evaluated. Results Herein, a rapid, eco-friendly and economic preparation process, composed of synthesis of SeNPs decorated by chitosan (CS), purification of CS-SeNPs by ultra-filtration (UF) and spray-drying of the purified CS-SeNPs, was introduced to prepare SeNPs-CM. The uniformly distributed SeNPs with a nanosize range of 60 nm were loaded into CS-microspheres, and they could be released from the microspheres in gastric conditions. In addition, SeNPs-CM were safer than selenite in terms of Se dose, with a LD50 of around 8-fold of that of selenite, and it could efficiently enhance the Se retention in Se-deficient Wistar rats. Furthermore, SeNPs-CM pre-treatment might significantly attenuate the ethanol-induced gastric mucosal damage, based on histological evaluation. It might be partly attributed to the systematic antioxidant activities of SeNPs-CM, reflected by the reduction in lipid peroxidation, the augmentation in antioxidant enzymatic activity as well as decreasing aggressive nitric oxides (NO). Conclusion SeNPs-CM could be taken into consideration as a prospective Se-supplement for the oral delivery of SeNPs, with prominent gastroprotective effect against ethanol-induced mucosal injury.
Collapse
Affiliation(s)
- Kaikai Bai
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Republic of China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Bihong Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Republic of China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Ran Tan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Republic of China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Jianlin He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Republic of China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| | - Zhuan Hong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Republic of China.,Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, People's Republic of China
| |
Collapse
|
27
|
Selenium-Nanoparticles-Loaded Chitosan/Chitooligosaccharide Microparticles and Their Antioxidant Potential: A Chemical and In Vivo Investigation. Pharmaceutics 2020; 12:pharmaceutics12010043. [PMID: 31947874 PMCID: PMC7022253 DOI: 10.3390/pharmaceutics12010043] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 11/16/2022] Open
Abstract
Selenium nanoparticles (SeNPs) have attracted attention due to their favorable properties, unique bioactivities, and potential for use in nutritional supplements and nanomedicine applications. However, the application of SeNPs in the clinic has been greatly hindered by their poor stability, and their potential to protect against alcohol-induced oxidative stress has not been fully investigated. Herein, SeNPs were synthesized in the presence of chitosan (CS) or chitooligosaccharide (COS), and a mixture of SeNPs, CS, and COS was spray-dried to prepare selenium-nanoparticles-loaded chitosan/chitooligosaccharide microparticles (SeNPs-CS/COS-Ms). Their physicochemical properties, including morphology, elemental state, size distribution, surface potential, and characteristic structure, were investigated. The release of SeNPs from the vehicle and the free radical scavenging ability of SeNPs-CS/COS-Ms were also studied. Furthermore, the safety of SeNPs-CS/COS-Ms and their antioxidant activity against alcohol were evaluated in mice. The results indicate that SeNPs-CS/COS-Ms, with a novel structure characterized by their smooth or wrinkled surface, hollow core, and COS body filled with SeNPs-CS nanobeads, were able to release SeNPs and scavenge DPPH and superoxide anion radicals. SeNPs-CS/COS-Ms were found to be much safer than selenite, and they might protect mice from ethanol-induced oxidative stress by reducing lipid and protein oxidation and by boosting glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT). In conclusion, SeNPs-CS/COS-Ms offer a new way to develop stable SeNPs with higher efficacy and better biosafety, and the antioxidant potential of SeNPs-CS/COS-Ms against ethanol deserves further development.
Collapse
|
28
|
Fjodorova N, Novič M, Venko K, Rasulev B. A Comprehensive Cheminformatics Analysis of Structural Features Affecting the Binding Activity of Fullerene Derivatives. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E90. [PMID: 31906497 PMCID: PMC7023229 DOI: 10.3390/nano10010090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023]
Abstract
Nanostructures like fullerene derivatives (FDs) belong to a new family of nano-sized organic compounds. Fullerenes have found a widespread application in material science, pharmaceutical, biomedical, and medical fields. This fact caused the importance of the study of pharmacological as well as toxicological properties of this relatively new family of chemicals. In this work, a large set of 169 FDs and their binding activity to 1117 proteins was investigated. The structure-based descriptors widely used in drug design (so-called drug-like descriptors) were applied to understand cheminformatics characteristics related to the binding activity of fullerene nanostructures. Investigation of applied descriptors demonstrated that polarizability, topological diameter, and rotatable bonds play the most significant role in the binding activity of FDs. Various cheminformatics methods, including the counter propagation artificial neural network (CPANN) and Kohonen network as visualization tool, were applied. The results of this study can be applied to compose the priority list for testing in risk assessment related to the toxicological properties of FDs. The pharmacologist can filter the data from the heat map to view all possible side effects for selected FDs.
Collapse
Affiliation(s)
- Natalja Fjodorova
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.N.); (K.V.)
| | - Marjana Novič
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.N.); (K.V.)
| | - Katja Venko
- National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.N.); (K.V.)
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA;
| |
Collapse
|
29
|
Šípová-Jungová H, Andrén D, Jones S, Käll M. Nanoscale Inorganic Motors Driven by Light: Principles, Realizations, and Opportunities. Chem Rev 2019; 120:269-287. [DOI: 10.1021/acs.chemrev.9b00401] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hana Šípová-Jungová
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Daniel Andrén
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Steven Jones
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Mikael Käll
- Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
| |
Collapse
|
30
|
Deville S, Honrath B, Tran QTD, Fejer G, Lambrichts I, Nelissen I, Dolga AM, Salvati A. Time-resolved characterization of the mechanisms of toxicity induced by silica and amino-modified polystyrene on alveolar-like macrophages. Arch Toxicol 2019; 94:173-186. [PMID: 31677074 DOI: 10.1007/s00204-019-02604-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
Macrophages play a major role in the removal of foreign materials, including nano-sized materials, such as nanomedicines and other nanoparticles, which they accumulate very efficiently. Because of this, it is recognized that for a safe development of nanotechnologies and nanomedicine, it is essential to investigate potential effects induced by nano-sized materials on macrophages. To this aim, in this work, a recently established model of primary murine alveolar-like macrophages was used to investigate macrophage responses to two well-known nanoparticle models: 50 nm amino-modified polystyrene, known to induce cell death via lysosomal damage and apoptosis in different cell types, and 50 nm silica nanoparticles, which are generally considered non-toxic. Then, a time-resolved study was performed to characterize in detail the response of the macrophages following exposure to the two nanoparticles. As expected, exposure to the amino-modified polystyrene led to cell death, but surprisingly no lysosomal swelling or apoptosis were detected. On the contrary, a peculiar mitochondrial membrane hyperpolarization was observed, accompanied by endoplasmic reticulum stress (ER stress), increased cellular reactive oxygen species (ROS) and changes of metabolic activity, ultimately leading to cell death. Strong toxic responses were observed also after exposure to silica, which included mitochondrial ROS production, mitochondrial depolarization and cell death by apoptosis. Overall, these results showed that exposure to the two nanoparticles led to a very different series of intracellular events, suggesting that the macrophages responded differently to the two nanoparticle models. Similar time-resolved studies are required to characterize the response of macrophages to nanoparticles, as a key parameter in nanosafety assessment.
Collapse
Affiliation(s)
- Sarah Deville
- Department Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Health Department, Flemish Institute for Technological Research, Mol, Belgium
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Birgit Honrath
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Quynh T D Tran
- Department Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gyorgy Fejer
- School of Biomedical Sciences, Faculty of Medicine and Dentistry, Plymouth University, Derriford Research Facility, Plymouth, UK
| | - Ivo Lambrichts
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Inge Nelissen
- Health Department, Flemish Institute for Technological Research, Mol, Belgium
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Anna Salvati
- Department Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
31
|
Hemmatian T, Kim J. Quantification Methods for Textile-Adhered Bacteria: Extraction, Colorimetric, and Microscopic Analysis. Polymers (Basel) 2019; 11:E1666. [PMID: 31614838 PMCID: PMC6835282 DOI: 10.3390/polym11101666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/01/2023] Open
Abstract
Quantification of bacteria adhered on porous, multi-layered fibers is a challenging task. The goal of this study is to compare different assessment procedures on counting textile-adhered bacteria, and to guide relevant analytical techniques. Three different methods were compared in measuring the amount of Escherichia coli (E. coli) adhered to polymeric film and fibrous nonwovens. In the extraction method, the adhered bacteria were released with the assistance of surfactant/enzyme, where the measurement was rather reproducible. For colorimetric method, stained bacteria enabled direct visualization without needing to detach cells from the surface, yet the linearity of color absorbency to cell counts was limited. The microscopic analysis provided direct observation of bacterial distribution over the surface, but accurate quantification was not possible for porous, fibrous surfaces. This study intends to help choosing a suitable test method to accurately quantify the textile-adhered bacteria, as well as broadly impact the research on anti-bioadhesive surfaces.
Collapse
Affiliation(s)
- Tahmineh Hemmatian
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea.
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea.
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
32
|
Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A, Farabaugh CS, Kenny J, Manjanatha M, Mahadevan B, Moore MM, Ouédraogo G, Stankowski LF, Tanir JY. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol Sci 2019; 164:391-416. [PMID: 29701824 DOI: 10.1093/toxsci/kfy100] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.
Collapse
Affiliation(s)
- Rosalie Elespuru
- Division of Biology, Chemistry and Materials Science, US Food and Drug Administration, CDRH/OSEL, Silver Spring, Maryland 20993
| | - Stefan Pfuhler
- The Procter & Gamble Company, Mason Business Centre, Mason, Ohio 45040
| | | | - Tao Chen
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Ann Doherty
- Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca Genetic Toxicology, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Julia Kenny
- Genetic Toxicology & Photosafety, David Jack Centre for Research & Development, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, UK
| | - Mugimane Manjanatha
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Brinda Mahadevan
- Global Pre-clinical Development Innovation & Development, Established Pharmaceuticals, Abbott, Mumbai 400072, India
| | | | | | | | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute (HESI), Washington, District of Columbia 20005
| |
Collapse
|
33
|
Pereira MP, de Gomes MG, Izoton JC, Nakama KA, Dos Santos RB, Pinto Savall AS, Ramalho JB, Roman SS, Luchese C, Cibin FW, Pinton S, Haas SE. Cationic and anionic unloaded polymeric nanocapsules: Toxicological evaluation in rats shows low toxicity. Biomed Pharmacother 2019; 116:109014. [PMID: 31146108 DOI: 10.1016/j.biopha.2019.109014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/05/2019] [Accepted: 05/21/2019] [Indexed: 01/23/2023] Open
Abstract
The experimental design aiming at evaluating the performance of drugs nanoencapsulated involves inclusion of a formulation without drug (unloaded). This formulation has sometimes presented per se effect. In this sense, we sought to evaluate the toxicity of unloaded polymeric nanocapsules (NCs) with different surfaces (cationic and anionic) in male Wistar rats in male Wistar rats. The physicochemical characterization of NCs with different surfaces: polysorbate 80 (P80), polyethylene glycol (PEG), eudragit ®RS 100 (EUD) and chitosan (CS) was performed. Rats were treated with unloaded NCs (P80, PEG, EUD and CS surfaces) daily for 14 days per oral route. 24 h of last treatment, animals were euthanized and organs were removed and weighted. After, biochemical determinations were performed. In general, NCs-surfaces did not cause alterations in body weight, weight of organs and histopathological analysis. PEG-surface NCs did not generate hepatotoxicity. In investigation of lipid profile, the surface with P80 changed TC and HDL-C levels. Besides that, all NCs did not alter oxidative stress markers in organs studied (TBARS and Reactive Species) and CS-surface presented antioxidant activity in kidney. This study demonstrated that NCs-surfaces depending on their physicochemical characteristics had low or no toxicity.
Collapse
Affiliation(s)
- Muriel Pando Pereira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Marcelo Gomes de Gomes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Jessica Cristina Izoton
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Kelly Ayumi Nakama
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Renata Bem Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Anne Suely Pinto Savall
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil
| | - Juliana Bernera Ramalho
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil
| | - Silvane Souza Roman
- Universidade Regional Integrada do Alto Uruguai e das Missões, Campus Erechim, Erechim, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Francielli Weber Cibin
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil
| | - Simone Pinton
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, UNIPAMPA, Uruguaiana, Brazil
| | - Sandra Elisa Haas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil.
| |
Collapse
|
34
|
Abramenko N, Demidova TB, Krutyakov YA, Zherebin PM, Krysanov EY, Kustov LM, Peijnenburg W. The effect of capping agents on the toxicity of silver nanoparticles to Danio rerio embryos. Nanotoxicology 2019; 13:1-13. [DOI: 10.1080/17435390.2018.1498931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- N. Abramenko
- N. D. Zelinsky Institute of Organic Chemistry, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - T. B. Demidova
- A. N. Severtsov Institute of Ecology and Evolution, Moscow, Russia
| | - Yu. A. Krutyakov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - P. M. Zherebin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - E. Y. Krysanov
- A. N. Severtsov Institute of Ecology and Evolution, Moscow, Russia
| | - L. M. Kustov
- N. D. Zelinsky Institute of Organic Chemistry, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- National University of Science and Technology MISiS, Moscow, Russia
| | - W. Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
- National Institute of Public Health and the Environment, Center for Safety of Substances and Products, Bilthoven, The Netherlands
| |
Collapse
|
35
|
Phyco-linked vs chemogenic magnetite nanoparticles: Route selectivity in nano-synthesis, antibacterial and acute zooplanktonic responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:324-340. [PMID: 31147005 DOI: 10.1016/j.msec.2019.01.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 12/16/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
Despite the fact that magnetic iron oxide nanoparticles (Fe3O4-MNPs) considered as the most promising nanoparticles (NPs) in biomedicine and environmental biotechnology, their safety and ecotoxicological impacts of biogenic and chemogenic routes of Fe3O4-MNPs in the marine aquatic system is scarcely studied. In this work, we report the optimized and suitable phyco-synthesis route for nano-Fe3O4 based on the six selected species of the Persian Gulf seaweeds: Ulva prolifera, U. flexuosa, U. linza, U. intestinalis, U. clathrata, and Sargassum boveanum. Moreover, antibacterial activities and acute zooplanktonic responses in Artemia salina and acorn barnacle Amphibalanus amphitrite to chemogenic and biogenic Fe3O4-MNPs, were evaluated. Although all the seaweeds extract showed reducing potential for Fe3O4-MNPs green synthesis - mainly on the basis of characterization results- the algal route selectivity has been demonstrated to be important for the biosynthesis of magnetite NPs. Herein, the cubo-spherical and polydisperse U. prolifera-derived Fe3O4-MNPs with particles sizes of 9.59 nm were the best ones. The comparative zooplanktonic cytotoxicity of chemo- and bio-route of Fe3O4-MNPs exhibited no acute toxicity in nauplii and adults of A. salina (96-h EC50 ≥ 1000 mg/L) and the potential of toxicity in A. amphitrite nauplii (48-h EC50 = 466.5 and 842.3 mg/L for chemo- and bio-route of Fe3O4-MNPs, respectively). The in vitro antimicrobial activity of both chemo- and bio-route of magnetite NPs to selective human pathogenic bacteria and fungi (i.e. n = 11) showed strong antagonistic activity against Staphylococcus epidermidis, Bacillus subtilis, B. pumulis, and Saccharomyces cerevisiae. In conclusion, these findings demonstrate the optimized phyco-fabrication of Fe3O4-MNPs as promising nontoxic approach in ecobiotechnology, the new insight about the potential adverse effects of chemosynthesized Fe3O4-MNPs to crustacean zoo-organisms after their possible entrance into the marine environments, and bio/chemo-route Fe3O4-MNPs as pivotal agent for nanoantimicrobials.
Collapse
|
36
|
Elgattar A, Washington KS, Talebzadeh S, Alwagdani A, Khalil T, Alghazwat O, Alshammri S, Pal H, Bashur C, Liao Y. Poly(butyl cyanoacrylate) nanoparticle containing an organic photoCORM. Photochem Photobiol Sci 2019; 18:2666-2672. [DOI: 10.1039/c9pp00287a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new organic photoCORM encapsulated in a poly(butyl cyanoacrylate) nanoparticle showed nearly quantitative CO release under visible light and low cytotoxicity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hemant Pal
- Florida Institute of Technology
- Melbourne
- USA
| | | | - Yi Liao
- Florida Institute of Technology
- Melbourne
- USA
| |
Collapse
|
37
|
Kumar V, Choudhary AK, Kumar P, Sharma S. Nanotechnology: Nanomedicine, Nanotoxicity and Future Challenges. ACTA ACUST UNITED AC 2018. [DOI: 10.2174/2210681208666180125143953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction:
This review gives an overview of interesting properties of nanoparticles
finding potential applications in nanomedicines and their considerations that need to be made such
as toxicity while developing a nanomedicine by providing an understanding of a relationship between
nanocarrier, targeting moieties and drugs with optical and magnetic properties. Here, we correlate
the interesting properties of nanomaterials to their applications in living cells/body simultaneously
promises, prospects and toxicity challenges of nanomedicines have also been discussed in
detail. Exemplifying the usage of gold nanoparticles and its derivatives such as hetero and homo
hybrid nanostructures that allow their use as contrast agents, therapeutic entities and supports to attach
functional molecules and targeting ligand along with molecular framework structures. Here,
we present the future prospects for potential applications in nanomedicines. These nanomaterials
have been used for varieties of biomedical applications such as targeted drug delivery, photothermal
cancer therapies, MRI, optical imaging, etc. in vitro and in vivo.
Conclusion:
In summary, this review provides innumerable aspects in the emerging field of
nanomedicine and possible nanotoxicity.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India
| | | | - Prashant Kumar
- Metallurgical Engineering and Materials Science Department, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India
| | - Saurabh Sharma
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi-110007, India
| |
Collapse
|
38
|
Wang S, Li F, Qiao R, Hu X, Liao H, Chen L, Wu J, Wu H, Zhao M, Liu J, Chen R, Ma X, Kim D, Sun J, Davis TP, Chen C, Tian J, Hyeon T, Ling D. Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targeted Theranostics. ACS NANO 2018; 12:12380-12392. [PMID: 30495919 DOI: 10.1021/acsnano.8b06399] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ferroptosis, an iron-based cell-death pathway, has recently attracted great attention owing to its effectiveness in killing cancer cells. Previous investigations focused on the development of iron-based nanomaterials to induce ferroptosis in cancer cells by the up-regulation of reactive oxygen species (ROS) generated by the well-known Fenton reaction. Herein, we report a ferroptosis-inducing agent based on arginine-rich manganese silicate nanobubbles (AMSNs) that possess highly efficient glutathione (GSH) depletion ability and thereby induce ferroptosis by the inactivation of glutathione-dependent peroxidases 4 (GPX4). The AMSNs were synthesized via a one-pot reaction with arginine (Arg) as the surface ligand for tumor homing. Subsequently, a significant tumor suppression effect can be achieved by GSH depletion-induced ferroptosis. Moreover, the degradation of AMSNs during the GSH depletion contributed to T1-weighted magnetic resonance imaging (MRI) enhancement as well as on-demand chemotherapeutic drug release for synergistic cancer therapy. We anticipate that the GSH-depletion-induced ferroptosis strategy by using manganese-based nanomaterials would provide insights in designing nanomedicines for tumor-targeted theranostics.
Collapse
Affiliation(s)
| | | | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences, Monash University , Parkville , Victoria 3052 , Australia
| | | | | | - Lumin Chen
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058 , China
| | | | | | | | - Jianan Liu
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul , 08826 , Korea
| | - Rui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience & Technology of China , Beijing , 100190 , China
| | - Xibo Ma
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Dokyoon Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul , 08826 , Korea
| | - Jihong Sun
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310058 , China
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash Institute of Pharmaceutical Sciences, Monash University , Parkville , Victoria 3052 , Australia
- Department of Chemistry , University of Warwick , Coventry , West Midlands CV4 7AL , United Kingdom
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience & Technology of China , Beijing , 100190 , China
| | - Jie Tian
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging , Institute of Automation, Chinese Academy of Sciences , Beijing 100190 , China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul , 08826 , Korea
- School of Chemical and Biological Engineering , Seoul National University , Seoul , 08826 , Korea
| | - Daishun Ling
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
39
|
Guerra-Bretaña RM, Flórez-Rendón AL. Impact of regulations on innovation in the field of medical devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1590/2446-4740.180054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
McManus P, Hortin J, Anderson AJ, Jacobson AR, Britt DW, Stewart J, McLean JE. Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: Influences on copper bioavailability and uptake. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2619-2632. [PMID: 29978493 DOI: 10.1002/etc.4226] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/26/2018] [Accepted: 07/02/2018] [Indexed: 05/27/2023]
Abstract
The impact of copper oxide nanoparticles (CuONPs) on crop production is dependent on the biogeochemistry of Cu in the rooting zone of the plant. The present study addressed the metabolites in wheat root exudates that increased dissolution of CuONPs and whether solubility correlated with Cu uptake into the plant. Bread wheat (Triticum aestivum cv. Dolores) was grown for 10 d with 0 to 300 mg Cu/kg as CuONPs in sand, a matrix deficient in Fe, Zn, Mn, and Cu for optimum plant growth. Increased NP doses enhanced root exudation, including the Cu-complexing phytosiderophore, 2'-deoxymugineic acid (DMA), and corresponded to greater dissolution of the CuONPs. Toxicity, observed as reduced root elongation, was attributable to a combination of CuONPs and dissolved Cu complexes. Geochemical modeling predicted that the majority of the solution phase Cu was complexed with citrate at low dosing or DMA at higher dosing. Altered biogeochemistry within the rhizosphere correlated with bio-responses via exudate type, quantity, and metal uptake. Exposure of wheat to CuONPs led to dose-dependent decreases in Fe, Ca, Mg, Mn, and K in roots and shoots. The present study is relevant to growth of a commercially important crop, wheat, in the presence of CuONPs as a fertilizer, fungicide, or pollutant. Environ Toxicol Chem 2018;37:2619-2632. © 2018 SETAC.
Collapse
Affiliation(s)
- Paul McManus
- Utah Water Research Laboratory, Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
| | - Joshua Hortin
- Utah Water Research Laboratory, Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
| | - Anne J Anderson
- Department of Biological Engineering, Utah State University, Logan, Utah, USA
| | - Astrid R Jacobson
- Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - David W Britt
- Department of Biological Engineering, Utah State University, Logan, Utah, USA
| | - Joseph Stewart
- Utah Water Research Laboratory, Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
| | - Joan E McLean
- Utah Water Research Laboratory, Civil and Environmental Engineering, Utah State University, Logan, Utah, USA
| |
Collapse
|
41
|
Labrador-Rached CJ, Browning RT, Braydich-Stolle LK, Comfort KK. Toxicological Implications of Platinum Nanoparticle Exposure: Stimulation of Intracellular Stress, Inflammatory Response, and Akt Signaling In Vitro. J Toxicol 2018; 2018:1367801. [PMID: 30364051 PMCID: PMC6188585 DOI: 10.1155/2018/1367801] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022] Open
Abstract
Due to their distinctive physicochemical properties, platinum nanoparticles (PtNPs) have emerged as a material of interest for a number of biomedical therapeutics. However, in some instances NP exposure has been correlated to health and safety concerns, including cytotoxicity, activation of cellular stress, and modification to normal cell functionality. As PtNPs have induced differential cellular responses in vitro, the goal of this study was to further characterize the behavior and toxicological potential of PtNPs within a HepG2 liver model. This study identified that a high PtNP dosage induced HepG2 cytotoxicity. However, lower, subtoxic PtNP concentrations were able to elicit multiple stress responses, secretion of proinflammatory cytokines, and modulation of insulin-like growth factor-1 dependent signal transduction. Taken together, this work suggests that PtNPs would not be overtly toxic for acute exposures, but sustained cellular interactions might produce long term health consequences.
Collapse
Affiliation(s)
| | - Rebecca T. Browning
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
- Molecular Bioeffects Branch, Bioeffects Division, Airmen Systems Directorate, Wright-Patterson Air Force Base, OH 45433, USA
| | - Laura K. Braydich-Stolle
- Molecular Bioeffects Branch, Bioeffects Division, Airmen Systems Directorate, Wright-Patterson Air Force Base, OH 45433, USA
| | - Kristen K. Comfort
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
- Integrative Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
42
|
Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond. Appl Microbiol Biotechnol 2018; 102:9449-9470. [DOI: 10.1007/s00253-018-9352-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
|
43
|
Sokolowski M, Bartsch C, Spiering VJ, Prévost S, Appavou MS, Schweins R, Gradzielski M. Preparation of Polymer Brush Grafted Anionic or Cationic Silica Nanoparticles: Systematic Variation of the Polymer Shell. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Marek Sokolowski
- Stranski Laboratorium für Physikalische Chemie, Technische Universität Berlin, Straße des 17 Juni 124, 10623 Berlin, Germany
| | - Christoph Bartsch
- Stranski Laboratorium für Physikalische Chemie, Technische Universität Berlin, Straße des 17 Juni 124, 10623 Berlin, Germany
| | - Vivian J. Spiering
- Stranski Laboratorium für Physikalische Chemie, Technische Universität Berlin, Straße des 17 Juni 124, 10623 Berlin, Germany
| | - Sylvain Prévost
- Institut
Laue
- Langevin, DS/LSS, 71 Avenue des Martyrs, Cedex 9 38042 Grenoble, France
| | - Marie-Sousai Appavou
- Jülich Center for Neutron Scattering JCNS at Heinz Maier-Leibnitz-Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Ralf Schweins
- Institut
Laue
- Langevin, DS/LSS, 71 Avenue des Martyrs, Cedex 9 38042 Grenoble, France
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische Chemie, Technische Universität Berlin, Straße des 17 Juni 124, 10623 Berlin, Germany
| |
Collapse
|
44
|
The polyplex, protein corona, cell interplay: Tips and drawbacks. Colloids Surf B Biointerfaces 2018; 168:60-67. [DOI: 10.1016/j.colsurfb.2018.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/23/2017] [Accepted: 01/20/2018] [Indexed: 12/12/2022]
|
45
|
Sohal IS, O'Fallon KS, Gaines P, Demokritou P, Bello D. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Part Fibre Toxicol 2018; 15:29. [PMID: 29970114 PMCID: PMC6029122 DOI: 10.1186/s12989-018-0265-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Engineered nanomaterials (ENM) are used extensively in food products to fulfill a number of roles, including enhancement of color and texture, for nutritional fortification, enhanced bioavailability, improved barrier properties of packaging, and enhanced food preservation. Safety assessment of ingested engineered nanomaterials (iENM) has gained interest in the nanotoxicology community in recent years. A variety of test systems and approaches have been used for such evaluations, with in vitro monoculture cell models being the most common test systems, owing to their low cost and ease-of-use. The goal of this review is to systematically assess the current state of science in toxicological testing of iENM, with particular emphasis on model test systems, their physiological relevance, methodological strengths and challenges, realistic doses (ranges and rates), and then to identify future research needs and priorities based on these assessments. METHODS Extensive searches were conducted in Google Scholar, PubMed and Web of Science to identify peer-reviewed literature on safety assessment of iENM over the last decade, using keywords such as "nanoparticle", "food", "toxicity", and combinations thereof. Relevant literature was assessed based on a set of criteria that included the relevance of nanomaterials tested; ENM physicochemical and morphological characterization; dispersion and dosimetry in an in vitro system; dose ranges employed, the rationale and dose realism; dissolution behavior of iENM; endpoints tested, and the main findings of each study. Observations were entered into an excel spreadsheet, transferred to Origin, from where summary statistics were calculated to assess patterns, trends, and research gaps. RESULTS A total of 650 peer-reviewed publications were identified from 2007 to 2017, of which 39 were deemed relevant. Only 21% of the studies used food grade nanomaterials for testing; adequate physicochemical and morphological characterization was performed in 53% of the studies. All in vitro studies lacked dosimetry and 60% of them did not provide a rationale for the doses tested and their relevance. Only 12% of the studies attempted to consider the dissolution kinetics of nanomaterials. Moreover, only 1 study attempted to prepare and characterize standardized nanoparticle dispersions. CONCLUSION We identified 5 clusters of factors deemed relevant to nanotoxicology of food-grade iENM: (i) using food-grade nanomaterials for toxicity testing; (ii) performing comprehensive physicochemical and morphological characterization of iENM in the dry state, (iii) establishing standard NP dispersions and their characterization in cell culture medium, (iv) employing realistic dose ranges and standardized in vitro dosimetry models, and (v) investigating dissolution kinetics and biotransformation behavior of iENM in synthetic media representative of the gastrointestinal (GI) tract fluids, including analyses in a fasted state and in the presence of a food matrix. We discussed how these factors, when not considered thoughtfully, could influence the results and generalizability of in vitro and in vivo testing. We conclude with a set of recommendations to guide future iENM toxicity studies and to develop/adopt more relevant in vitro model systems representative of in vivo animal and human iENM exposure scenarios.
Collapse
Affiliation(s)
- Ikjot Singh Sohal
- Biomedical Engineering & Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Kevin S O'Fallon
- Natick Soldier Research, Development and Engineering Center, Natick, MA, 01760, USA
| | - Peter Gaines
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Philip Demokritou
- Harvard T.H. Chan School of Public Health, Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Boston, MA, 02115, USA
| | - Dhimiter Bello
- Biomedical Engineering & Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
- Harvard T.H. Chan School of Public Health, Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Boston, MA, 02115, USA.
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 883 Broadway Street, Dugan 110-S, Lowell, MA, 01854, USA.
| |
Collapse
|
46
|
Multivariate statistical analysis for selecting optimal descriptors in the toxicity modeling of nanomaterials. Comput Biol Med 2018; 99:161-172. [PMID: 29933127 DOI: 10.1016/j.compbiomed.2018.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 01/05/2023]
Abstract
The present study is based on the application of a multivariate statistical analysis approach for the selection of optimal descriptors of nanomaterials with the objective of robust qualitative modeling of their toxicity. A novel data mining protocol has been developed for the selection of an optimal subset of descriptors of nanomaterials by using the well-known multivariate method principal component analysis (PCA). The selected subsets of descriptors were validated for qualitative modeling of the toxicity of nanomaterials in the PC space. The analysis and validation of the proposed schemes were based on five decisive nanomaterial toxicity data sets available in the published literature. Optimal descriptors were selected on the basis of the maximum loading criteria and using a threshold value of cumulative variance ≤90% on PC directions. A maximum inter-class separation(B) and the minimum intra-classes separation(A) were obtained for toxic vs. nontoxic nanomaterials in the PC space with the selected subsets of optimal descriptors compared to their other combinations for each of the datasets.
Collapse
|
47
|
Wu W, Yan L, Chen S, Li Q, Gu Z, Xu H, Yin ZQ. Investigating oxidation state-induced toxicity of PEGylated graphene oxide in ocular tissue using gene expression profiles. Nanotoxicology 2018; 12:819-835. [PMID: 29888639 DOI: 10.1080/17435390.2018.1480813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wei Wu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P. R. China
| | - Liang Yan
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P. R. China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P. R. China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P. R. China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, P. R. China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, P. R. China
| |
Collapse
|
48
|
Park MV, Catalán J, Ferraz N, Cabellos J, Vanhauten R, Vázquez-Campos S, Janer G. Development of a systematic method to assess similarity between nanomaterials for human hazard evaluation purposes - lessons learnt. Nanotoxicology 2018; 12:652-676. [PMID: 29732939 DOI: 10.1080/17435390.2018.1465142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Within the EU FP-7 GUIDEnano project, a methodology was developed to systematically quantify the similarity between a nanomaterial (NM) that has been tested in toxicity studies and the NM for which risk needs to be evaluated, for the purpose of extrapolating toxicity data between the two materials. The methodology is a first attempt to use current knowledge on NM property-hazard relationships to develop a series of pragmatic and systematic rules for assessing NM similarity. Moreover, the methodology takes into account the practical feasibility, in that it is based on generally available NM characterization information. In addition to presenting this methodology, the lessons learnt and the challenges faced during its development are reported here. We conclude that there is a large gap between the information that is ideally needed and its application to real cases. The current database on property-hazard relationships is still very limited, which hinders the agreement on the key NM properties constituting the basis of the similarity assessment and the development of associated science-based and unequivocal rules. Currently, one of the most challenging NM properties to systematically assess in terms of similarity between two NMs is surface coating and functionalization, which lacks standardized parameters for description and characterization methodology. Standardization of characterization methods that lead to quantitative, unambiguous, and measurable parameters describing NM properties are necessary in order to build a sufficiently robust property-hazard database that allows for evidence-based refinement of our methodology, or any other attempt to systematically assess the similarity of NMs.
Collapse
Affiliation(s)
- Margriet Vdz Park
- a National Institute for Public Health and the Environment, Centre for Health Protection , Bilthoven , The Netherlands
| | - Julia Catalán
- b Finnish Institute of Occupational Health , Helsinki , Finland.,c Department of Anatomy, Embryology and Genetics, University of Zaragoza , Zaragoza , Spain
| | - Natalia Ferraz
- d Nanotechnology and Functional Materials, Department of Engineering Sciences , Uppsala University , Uppsala , Sweden
| | | | | | | | - Gemma Janer
- e Leitat Technological Center , Terrassa , Spain
| |
Collapse
|
49
|
Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of Particulate Matter Air Pollution on Cardiovascular Oxidative Stress Pathways. Antioxid Redox Signal 2018; 28:797-818. [PMID: 29084451 PMCID: PMC5831906 DOI: 10.1089/ars.2017.7394] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Particulate matter (PM) air pollution is a leading cause of global cardiovascular morbidity and mortality. Understanding the biological action of PM is of particular importance in improvement of public health. Recent Advances: Both fine (PM <2.5 μM) and ultrafine particles (<0.1 μM) are widely believed to mediate their effects through redox regulated pathways. A rather simplistic graded ramp model of redox stress has been replaced by a more sophisticated understanding of the role of oxidative stress in signaling, and the realization that many of the observed effects may involve disruption and/or enhancement of normal endogenous redox signaling and induction of a potent immune-mediated response, through entrainment of multiple reactive oxygen species (ROS). CRITICAL ISSUES The molecular events by which pulmonary oxidative stress in response to inhalational exposure to air pollution triggers inflammation, major ROS (e.g., superoxide, hydroxyl radical, nitric oxide, and peroxynitrite) generated in air pollution exposure, types of oxidative tissue damage in target organs, contributions of nonimmune and immune cells in inflammation, and the role of protective proteins (e.g., surfactant, proteins, and antioxidants) are highly complex and may differ depending on models and concomitant disease states. FUTURE DIRECTIONS While the role of oxidative stress in the lung has been well demonstrated, the role of oxidative stress in mediating systemic effects especially in inflammation and injury processes needs further work. The role of antioxidant defenses with chronic exposure will also need further exploration. Antioxid. Redox Signal. 28, 797-818.
Collapse
Affiliation(s)
- Xiaoquan Rao
- 1 Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University , Cleveland, Ohio
| | - Jixin Zhong
- 1 Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University , Cleveland, Ohio
| | - Robert D Brook
- 2 Department of Medicine, Division of Cardiovascular Medicine, University of Michigan , Ann Arbor, Michigan
| | - Sanjay Rajagopalan
- 1 Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
50
|
Zamora-Perez P, Tsoutsi D, Xu R, Rivera Gil P. Hyperspectral-Enhanced Dark Field Microscopy for Single and Collective Nanoparticle Characterization in Biological Environments. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E243. [PMID: 29415420 PMCID: PMC5848940 DOI: 10.3390/ma11020243] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022]
Abstract
We review how the hyperspectral dark field analysis gives us quantitative insights into the manner that different nanoscale materials interact with their environment and how this relationship is directly expressed in an optical readout. We engage classification tools to identify dominant spectral signatures within a scene or to qualitatively characterize nanoparticles individually or in populations based on their composition and morphology. Moreover, we follow up the morphological evolution of nanoparticles over time and in different biological environments to better understand and establish a link between the observed nanoparticles' changes and cellular behaviors.
Collapse
Affiliation(s)
- Paula Zamora-Perez
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Experimental and Health Sciences (DCEXS), Pompeu Fabra University (UPF), PRBB, Barcelona 08003, Spain.
| | - Dionysia Tsoutsi
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Experimental and Health Sciences (DCEXS), Pompeu Fabra University (UPF), PRBB, Barcelona 08003, Spain.
| | - Ruixue Xu
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Experimental and Health Sciences (DCEXS), Pompeu Fabra University (UPF), PRBB, Barcelona 08003, Spain.
| | - Pilar Rivera Gil
- Integrative Biomedical Materials and Nanomedicine Lab, Department of Experimental and Health Sciences (DCEXS), Pompeu Fabra University (UPF), PRBB, Barcelona 08003, Spain.
| |
Collapse
|