1
|
Baghdasaryan O, Lee-Kin J, Tan C. Architectural engineering of Cyborg Bacteria with intracellular hydrogel. Mater Today Bio 2024; 28:101226. [PMID: 39328785 PMCID: PMC11426140 DOI: 10.1016/j.mtbio.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
Synthetic biology primarily uses genetic engineering to control living cells. In contrast, recent work has ushered in the architectural engineering of living cells through intracellular materials. Specifically, Cyborg Bacteria are created by incorporating synthetic PEG-based hydrogel inside cells. Cyborg Bacteria do not replicate but maintain essential cellular functions, including metabolism and protein synthesis. Thus far, Cyborg Bacteria have been engineered using one primary composition of intracellular hydrogel components. Here, we demonstrate the versatility of controlling the physical and biochemical aspects of Cyborg Bacteria using different structures of hydrogels. The intracellular cell-gel architecture is modulated using a different photoinitiator, PEG-diacrylate (PEG-DA) of different molecular weights, 4arm PEG-DA, and dsDNA-PEG. We show that the molecular weight of the PEG-DA affects the generation and metabolism of Cyborg Bacteria. In addition, we show that the hybrid dsDNA-PEG intracellular hydrogel controls protein expression levels of the Cyborg Bacteria through post-transcriptional regulation and polymerase sequestration. Our work creates a new frontier of modulating intracellular gel components to control Cyborg Bacteria function and architecture.
Collapse
Affiliation(s)
| | - Jared Lee-Kin
- Biomedical Engineering, University of California Davis, United States
| | - Cheemeng Tan
- Biomedical Engineering, University of California Davis, United States
| |
Collapse
|
2
|
Alharbi HM. Exploring the Frontier of Biopolymer-Assisted Drug Delivery: Advancements, Clinical Applications, and Future Perspectives in Cancer Nanomedicine. Drug Des Devel Ther 2024; 18:2063-2087. [PMID: 38882042 PMCID: PMC11178098 DOI: 10.2147/dddt.s441325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
The burgeoning global mortality rates attributed to cancer have precipitated a critical reassessment of conventional therapeutic modalities, most notably chemotherapy, due to their pronounced adverse effects. This reassessment has instigated a paradigmatic shift towards nanomedicine, with a particular emphasis on the potentialities of biopolymer-assisted drug delivery systems. Biopolymers, distinguished by their impeccable biocompatibility, versatility, and intrinsic biomimetic properties, are rapidly ascending as formidable vectors within the cancer theragnostic arena. This review endeavors to meticulously dissect the avant-garde methodologies central to biopolymer-based nanomedicine, exploring their synthesis, functional mechanisms, and subsequent clinical ramifications. A key focus of this analysis is the pioneering roles and efficacies of lipid-based, polysaccharide, and composite nano-carriers in enhancing drug delivery, notably amplifying the enhanced permeation and retention effect. This examination is further enriched by referencing flagship nano formulations that have received FDA endorsement, thereby underscoring the transformative potential and clinical viability of biopolymer-based nanomedicines. Furthermore, this discourse illuminates groundbreaking advancements in the realm of photodynamic therapy and elucidates the implications of advanced imaging techniques in live models. Conclusively, this review not only synthesizes current research trajectories but also delineates visionary pathways for the integration of cutting-edge biomaterials in cancer treatment. It charts a course for future explorations within the dynamic domain of biopolymer-nanomedicine, thereby contributing to a deeper understanding and enhanced application of these novel therapeutic strategies.
Collapse
Affiliation(s)
- Hanan M Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Bhattacharya T, Preetam S, Ghosh B, Chakrabarti T, Chakrabarti P, Samal SK, Thorat N. Advancement in Biopolymer Assisted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2023; 6:3959-3983. [PMID: 37699558 PMCID: PMC10583232 DOI: 10.1021/acsabm.3c00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department
of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Nondestructive
Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering,
College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subham Preetam
- Centre
for Biotechnology, Siksha O Anusandhan (Deemed
to be University), Bhubaneswar 751024, Odisha, India
- Daegu
Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Basab Ghosh
- KIIT
School of Biotechnology, Kalinga Institute
of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tulika Chakrabarti
- Department
of Chemistry, Sir Padampat Singhania University, Bhatewar, Udaipur 313601, Rajasthan, India
| | | | - Shailesh Kumar Samal
- Section of
Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
4
|
Regeneration of insulin-producing cells from iPS cells using functionalized scaffolds and solid lipid nanoparticles. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
6
|
Kirar S, Thakur NS, Reddy YN, Banerjee UC, Bhaumik J. Insights on the polypyrrole based nanoformulations for photodynamic therapy. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621300032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review is written to endow updated information on polypyrrole based photosensitizers for the treatment of deadly diseases such as cancer and microbial infection. Tetrapyrrolic macromolecules such as porphyrins and phthalocyanines hold unique photophysical properties which make them very useful compounds for various biomedical applications. Besides their properties, they also have some limitations such as low water solubility, bioavailability, biocompatibility and lack of specificity, etc. Researchers are trying to overcome these limitations by incorporating photosensitizers into the different types of nanoparticles and improve the quality of photodynamic therapy. We have contributed to this field by synthesizing and developing polypyrrolic photosensitizer based nanoparticles for potential applications in antimicrobial and anticancer photodynamic activity. Throughout this review, newly synthesized and existing PSs conjugated/encapsulated/doped/incorporated with nanoparticles are emphasized, which are essential for current and future research themes. Also in this review, we briefly summarized the research work carried over the past few years by considering the porphyrin based photosensitizers as alternative therapeutic entities for the treatment of microbial infections, cancers, and many other diseases.
Collapse
Affiliation(s)
- Seema Kirar
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Neeraj Singh Thakur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Sector-81, S.A.S. Nagar-140306, Mohali, Punjab, India
| | - Uttam Chand Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
| |
Collapse
|
7
|
Nath P, Hamadna SS, Karamchand L, Foster J, Kopelman R, Amar JG, Ray A. Intracellular detection of singlet oxygen using fluorescent nanosensors. Analyst 2021; 146:3933-3941. [PMID: 33982697 PMCID: PMC8210662 DOI: 10.1039/d1an00456e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Detection of singlet oxygen is of great importance for a range of therapeutic applications, particularly photodynamic therapy, plasma therapy and also during photo-endosomolytic activity. Here we present a novel method of intracellular detection of singlet oxygen using biocompatible polymeric nanosensors, encapsulating the organic fluorescent dye, Singlet Oxygen Sensor Green (SOSG) within its hydrophobic core. The singlet oxygen detection efficiency of the nanosensors was quantified experimentally by treating them with a plasma source and these results were further validated by using Monte Carlo simulations. The change in fluorescence intensity of the nanosensors serves as a metric to detect singlet oxygen in the local micro-environment inside mammalian cancer cells. We used these nanosensors for monitoring singlet oxygen inside endosomes and lysosomes of cancer cells, during cold plasma therapy, using a room-temperature Helium plasma jet.
Collapse
Affiliation(s)
- Peuli Nath
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, USA.
| | | | | | - John Foster
- Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Jacques G Amar
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, USA.
| | - Aniruddha Ray
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
8
|
Borah BM, Cacaccio J, Durrani FA, Bshara W, Turowski SG, Spernyak JA, Pandey RK. Sonodynamic therapy in combination with photodynamic therapy shows enhanced long-term cure of brain tumor. Sci Rep 2020; 10:21791. [PMID: 33311561 PMCID: PMC7732989 DOI: 10.1038/s41598-020-78153-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
This article presents the construction of a multimodality platform that can be used for efficient destruction of brain tumor by a combination of photodynamic and sonodynamic therapy. For in vivo studies, U87 patient-derived xenograft tumors were implanted subcutaneously in SCID mice. For the first time, it has been shown that the cell-death mechanism by both treatment modalities follows two different pathways. For example, exposing the U87 cells after 24 h incubation with HPPH [3-(1'-hexyloxy)ethyl-3-devinyl-pyropheophorbide-a) by ultrasound participate in an electron-transfer process with the surrounding biological substrates to form radicals and radical ions (Type I reaction); whereas in photodynamic therapy, the tumor destruction is mainly caused by highly reactive singlet oxygen (Type II reaction). The combination of photodynamic therapy and sonodynamic therapy both in vitro and in vivo have shown an improved cell kill/tumor response, that could be attributed to an additive and/or synergetic effect(s). Our results also indicate that the delivery of the HPPH to tumors can further be enhanced by using cationic polyacrylamide nanoparticles as a delivery vehicle. Exposing the nano-formulation with ultrasound also triggered the release of photosensitizer. The combination of photodynamic therapy and sonodynamic therapy strongly affects tumor vasculature as determined by dynamic contrast enhanced imaging using HSA-Gd(III)DTPA.
Collapse
Affiliation(s)
- Ballav M Borah
- Photolitec, LLC, 73 High Street, Buffalo, NY, 14203, USA
| | - Joseph Cacaccio
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Farukh A Durrani
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Wiam Bshara
- Department of Pathology, Pathology Network Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Steven G Turowski
- Translational Imaging Shared Resource, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | | | - Ravindra K Pandey
- Department of Cell Stress Biology, Photodynamic Therapy Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
9
|
Targeted Nanoparticles for Fluorescence Imaging of Folate Receptor Positive Tumors. Biomolecules 2020; 10:biom10121651. [PMID: 33317162 PMCID: PMC7764199 DOI: 10.3390/biom10121651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
This report presents the synthesis and folate receptor target-specificity of amino-functionalized polyacrylamide nanoparticles (AFPAA NPs) for near-infrared (NIR) fluorescence imaging of cancer. For the synthesis of desired nano-constructs, the AFPAA NPs (hereafter referred to as NPs) were reacted with a NIR cyanine dye (CD) bearing carboxylic acid functionality by following our previously reported approach, and the resulting conjugate (NP-CD) on further reaction with folic acid (FA) resulted in a new nano-construct, FA-NP-CD, which demonstrated significantly higher uptake in folate receptor-positive breast cancer cells (KB+) and in folate receptor over-expressed tumors in vivo. The target-specificity of these nanoparticles was further confirmed by inhibition assay in folate receptor-positive (KB+) and -negative (HT-1080) cell lines. To show the advantages of polyacrylamide (PAA)-based NPs in folate receptor target-specificity, the CD used in preparing the FA-NP-CD construct was also reacted with folic acid alone and the synthetic conjugate (CD-FA) was also investigated for its target-specificity. Interestingly, in contrast to NPs (FA-NP-CD), the CD-FA conjugate did not show any significant in vitro or in vivo specificity toward folate receptors, showing the advantages of PAA-based nanotechnology in delivering the desired agent to tumor cells.
Collapse
|
10
|
Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020; 25:E5317. [PMID: 33202648 PMCID: PMC7698280 DOI: 10.3390/molecules25225317] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment which involves a photosensitizer (PS), light at a specific wavelength for PS activation and oxygen, which combine to elicit cell death. While the illumination required to activate a PS imparts a certain amount of selectivity to PDT treatments, poor tumor accumulation and cell internalization are still inherent properties of most intravenously administered PSs. As a result, common consequences of PDT include skin photosensitivity. To overcome the mentioned issues, PSs may be tailored to specifically target overexpressed biomarkers of tumors. This active targeting can be achieved by direct conjugation of the PS to a ligand with enhanced affinity for a target overexpressed on cancer cells and/or other cells of the tumor microenvironment. Alternatively, PSs may be incorporated into ligand-targeted nanocarriers, which may also encompass multi-functionalities, including diagnosis and therapy. In this review, we highlight the major advances in active targeting of PSs, either by means of ligand-derived bioconjugates or by exploiting ligand-targeting nanocarriers.
Collapse
Affiliation(s)
- Piotr Gierlich
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Ana I. Mata
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| | - Claire Donohoe
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Rui M. M. Brito
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- BSIM Therapeutics, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Lígia C. Gomes-da-Silva
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| |
Collapse
|
11
|
Gajbhiye KR, Chaudhari BP, Pokharkar VB, Pawar A, Gajbhiye V. Stimuli-responsive biodegradable polyurethane nano-constructs as a potential triggered drug delivery vehicle for cancer therapy. Int J Pharm 2020; 588:119781. [DOI: 10.1016/j.ijpharm.2020.119781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/28/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
|
12
|
Morishita T, Yoshida A, Hayakawa N, Kiguchi K, Cheubong C, Sunayama H, Kitayama Y, Takeuchi T. Molecularly Imprinted Nanogels Possessing Dansylamide Interaction Sites for Controlling Protein Corona In Situ by Cloaking Intrinsic Human Serum Albumin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10674-10682. [PMID: 32794751 DOI: 10.1021/acs.langmuir.0c00927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanomaterials have become increasingly promising for biomedical applications owing to their specific biological characteristics. As drug delivery vehicles, nanomaterials have to circulate in the bloodstream to deliver the encapsulated components to the target tissues. Protein corona regulation is one of the promising approaches that gives stealth capability to avoid immune response. The aim of this study was to develop molecularly imprinted polymer nanogels (MIP-NGs) capable of protein corona regulation, using intrinsic human serum albumin (HSA) and with a functional monomer, dansylamide ethyl acrylamide (DAEAm), the dansylamide group serving as a ligand for HSA. The recognition capability of HSA for MIP-NGs was investigated by isothermal titration calorimetry (ITC). The affinity of the MIP-NGs prepared with DAEAm was then compared to that of the reference MIP-NGs prepared with pyrrolidyl acrylate developed in our previous study. Furthermore, we demonstrated that the concurrent use of these two different functional monomers for molecular imprinting was further effective to construct high-affinity recognition nanocavities for HSA and to form HSA-rich protein corona in the human plasma owing to the different interaction modes of the monomers. We believe that the molecular imprinting strategy developed through the use of ligand-based functional monomer is an effective strategy to create artificial molecular recognition materials.
Collapse
Affiliation(s)
- Takahiro Morishita
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Aoi Yoshida
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Natsuki Hayakawa
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Kentaro Kiguchi
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Chehasan Cheubong
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
| | - Hirobumi Sunayama
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Yukiya Kitayama
- Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan
- Center for Advanced Medical Engineering Research & Development (CAMED), Kobe University, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
13
|
Mirsafaei R, Varshosaz J. Polyacrylamide-punicic acid conjugate-based micelles for flutamide delivery in PC3 cells of prostate cancer: synthesis, characterisation and cytotoxicity studies. IET Nanobiotechnol 2020; 14:417-422. [PMID: 32691745 PMCID: PMC8676636 DOI: 10.1049/iet-nbt.2020.0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 01/26/2023] Open
Abstract
The aim of the present study was to synthesize a novel biopolymeric micelle based on punicic acid (PA) and polyacrylamide (PAM) for carrying chemotherapeutic drugs used in prostate cancer treatment. A polymer composite micelle was prepared by chemical conjugation between PAM and PA. The micelles were prepared by self-assembly via film casting followed by ultrasonication method. The successful production of PAMPA copolymeric micelles was confirmed using FTIR, 1H-NMR, and TEM. Then, flutamide was loaded in the designed nanomicelles and they were characterized. The cell cytotoxicity of the micelles was studied on PC3 cells of prostate cancer. The prepared nanomicelles showed the particle size of 88 nm, PDI of 0.246, zeta potential of -9 mV, drug loading efficiency of 94.5%, drug release of 85.6% until 10 hours in pH 7.4 and CMC of 74.13 μg/ml. The cell viability in blank nanocarriers was about 70% in PC3 cells at concentration of 25 μM. More significant cytotoxic effects were seen for flutamide loaded micelles at this concentration compared to the free drug. The results suggest that the PAMPA co-polymeric nanomicelles can be utilized as an effective carrier to enhance the cytotoxic effects of flutamide in prostate cancer.
Collapse
Affiliation(s)
- Razieh Mirsafaei
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre and Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Su S, Kang PM. Systemic Review of Biodegradable Nanomaterials in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E656. [PMID: 32244653 PMCID: PMC7221794 DOI: 10.3390/nano10040656] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nanomedicine is a field of science that uses nanoscale materials for the diagnosis and treatment of human disease. It has emerged as an important aspect of the therapeutics, but at the same time, also raises concerns regarding the safety of the nanomaterials involved. Recent applications of functionalized biodegradable nanomaterials have significantly improved the safety profile of nanomedicine. OBJECTIVE Our goal is to evaluate different types of biodegradable nanomaterials that have been functionalized for their biomedical applications. METHOD In this review, we used PubMed as our literature source and selected recently published studies on biodegradable nanomaterials and their applications in nanomedicine. RESULTS We found that biodegradable polymers are commonly functionalized for various purposes. Their property of being naturally degraded under biological conditions allows these biodegradable nanomaterials to be used for many biomedical purposes, including bio-imaging, targeted drug delivery, implantation and tissue engineering. The degradability of these nanoparticles can be utilized to control cargo release, by allowing efficient degradation of the nanomaterials at the target site while maintaining nanoparticle integrity at off-target sites. CONCLUSION While each biodegradable nanomaterial has its advantages and disadvantages, with careful design and functionalization, biodegradable nanoparticles hold great future in nanomedicine.
Collapse
Affiliation(s)
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA;
| |
Collapse
|
15
|
Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020; 5:100035. [PMID: 32211603 PMCID: PMC7083767 DOI: 10.1016/j.mtbio.2019.100035] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer, as one of the most life-threatening diseases, shows a high fatality rate around the world. When improving the therapeutic efficacy of conventional cancer treatments, researchers also conduct extensive studies into alternative therapeutic approaches, which are safe, valid, and economical. Phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), are tumor-ablative and function-reserving oncologic interventions, showing strong potential in clinical cancer treatment. During phototherapies, the non-toxic phototherapeutic agents can be activated upon light irradiation to induce cell death without causing much damage to normal tissues. Besides, with the rapid development of nanotechnology in the past decades, phototheranostic nanomedicine also has attracted tremendous interests aiming to continuously refine their performance. Herein, we reviewed the recent progress of phototheranostic nanomedicine for improved cancer therapy. After a brief introduction of the therapeutic principles and related phototherapeutic agents for PDT and PTT, the existing works on developing of phototheranostic nanomedicine by mainly focusing on their categories and applications, particularly on phototherapy-synergized cancer immunotherapy, are comprehensively reviewed. More importantly, a brief conclusion and future challenges of phototheranostic nanomedicine from our point of view are delivered in the last part of this article.
Collapse
Affiliation(s)
- D. Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - X. Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - X. Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - S. Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Y. Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - T. Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - G. Huang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Y. Gao
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Number 7 Weiwu Road, Zhengzhou, 450003, China
| | - Z. Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Z. Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
16
|
Borah BM, Cacaccio J, Watson R, Pandey RK. Phototriggered Release of Tumor-Imaging and Therapy Agents from Lyophilized Multifunctional Polyacrylamide Nanoparticles. ACS APPLIED BIO MATERIALS 2019; 2:5663-5675. [DOI: 10.1021/acsabm.9b00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ballav M. Borah
- Photolitec, LLC, 73 High Street, Buffalo, New York 14203, United States
| | - Joseph Cacaccio
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, United States
| | - Ramona Watson
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, United States
| | - Ravindra K. Pandey
- Photolitec, LLC, 73 High Street, Buffalo, New York 14203, United States
- Photodynamic Therapy Center, Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, United States
| |
Collapse
|
17
|
Dong H, Pang L, Cong H, Shen Y, Yu B. Application and design of esterase-responsive nanoparticles for cancer therapy. Drug Deliv 2019; 26:416-432. [PMID: 30929527 PMCID: PMC6450553 DOI: 10.1080/10717544.2019.1588424] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have been developed for tumor treatment due to the enhanced permeability and retention effects. However, lack of specific cancer cells selectivity results in low delivery efficiency and undesired side effects. In that case, the stimuli-responsive nanoparticles system designed for the specific structure and physicochemical properties of tumors have attracted more and more attention of researchers. Esterase-responsive nanoparticle system is widely used due to the overexpressed esterase in tumor cells. For a rational designed esterase-responsive nanoparticle, ester bonds and nanoparticle structures are the key characters. In this review, we overviewed the design of esterase-responsive nanoparticles, including ester bonds design and nano-structure design, and analyzed the fitness of each design for different application. In the end, the outlook of esterase-responsive nanoparticle is looking forward.
Collapse
Affiliation(s)
- Haonan Dong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
| | - Long Pang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong, P.R. China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
18
|
Abstract
Colorectal cancer is considered the third most frequent malignant neoplasm occurring in both men and women worldwide. Most approaches that have been used to fight and treat this type of malignancy are either invasive or nonselective. Noninvasive therapy using oral route can increase patient compliance and reduce treatment costs. Innovative measures such as use of nanotechnology and theranostic systems have been initiated in the oral therapy, which has been proven to be greatly advantageous in decreasing side effects, improving detection and diagnoses. This manuscript investigates recent innovative and novel therapeutic approaches through oral route and potential targets in the treatment of colorectal cancer.
Collapse
|
19
|
Kessel D. Photodynamic Therapy: A Brief History. J Clin Med 2019; 8:E1581. [PMID: 31581613 PMCID: PMC6832404 DOI: 10.3390/jcm8101581] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/23/2022] Open
Abstract
Photodynamic therapy (PDT) involves the selective sensitization of tissues to light. A major advance in the field occurred when Thomas Dougherty at the Roswell Park Cancer Institute initiated a series of clinical studies that eventually led to FDA approval of the procedure. This report contains a summary of Dougherty's contributions and an assessment of where this has led, along with a summary of implications for future drug development.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
20
|
Khurana B, Gierlich P, Meindl A, Gomes-da-Silva LC, Senge MO. Hydrogels: soft matters in photomedicine. Photochem Photobiol Sci 2019; 18:2613-2656. [PMID: 31460568 DOI: 10.1039/c9pp00221a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT), a shining beacon in the realm of photomedicine, is a non-invasive technique that utilizes dye-based photosensitizers (PSs) in conjunction with light and oxygen to produce reactive oxygen species to combat malignant tissues and infectious microorganisms. Yet, for PDT to become a common, routine therapy, it is still necessary to overcome limitations such as photosensitizer solubility, long-term side effects (e.g., photosensitivity) and to develop safe, biocompatible and target-specific formulations. Polymer based drug delivery platforms are an effective strategy for the delivery of PSs for PDT applications. Among them, hydrogels and 3D polymer scaffolds with the ability to swell in aqueous media have been deeply investigated. Particularly, hydrogel-based formulations present real potential to fulfill all requirements of an ideal PDT platform by overcoming the solubility issues, while improving the selectivity and targeting drawbacks of the PSs alone. In this perspective, we summarize the use of hydrogels as carrier systems of PSs to enhance the effectiveness of PDT against infections and cancer. Their potential in environmental and biomedical applications, such as tissue engineering photoremediation and photochemistry, is also discussed.
Collapse
Affiliation(s)
- Bhavya Khurana
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland.
| | - Piotr Gierlich
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and CQC, Coimbra Chemistry Department, University of Coimbra, Coimbra, Portugal
| | - Alina Meindl
- Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | | | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany and Institute for Advanced Study (TUM-IAS), Technische Universität München, Lichtenberg-Str. 2a, 85748 Garching, Germany
| |
Collapse
|
21
|
Liu Y, Suo X, Peng H, Yan W, Li H, Yang X, Li Z, Zhang J, Liu D. Multifunctional Magnetic Nanoplatform Eliminates Cancer Stem Cells via Inhibiting the Secretion of Extracellular Heat Shock Protein 90. Adv Healthc Mater 2019; 8:e1900160. [PMID: 30969015 DOI: 10.1002/adhm.201900160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/16/2019] [Indexed: 12/26/2022]
Abstract
Cancer stem cells (CSCs) are responsible for malignant tumor initiation, recurrences, and metastasis. Therefore, targeting CSCs is a promising strategy for the development of cancer therapies. A big challenge for CSC-based cancer therapy is the overexpression of therapeutic stress protein, heat shock protein 90 (Hsp90), which protects CSCs from further therapeutic-induced damage, leading to the failure of treatment. Thus, efficient strategies to target CSCs are urgently needed for cancer therapy. To this end, a multifunctional nanoparticle (MNP) for CSC-based combined thermotherapy and chemotherapy is reported. This strategy dramatically suppresses tumor growth in breast CSC xenograft-bearing mice. Furthermore, a new mechanism is present that the MNP exerts its striking effects on CSCs by inhibiting the secretion of extracellular Hsp90 (eHsp90), resulting in the interruption of several key signaling pathways. These findings open new perspectives on the use of an MNP for effective CSC-based cancer treatment by inhibiting the function of eHsp90.
Collapse
Affiliation(s)
- Yajing Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Xiaomin Suo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Haotong Peng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Weixiao Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Hongjuan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Xinjian Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Zhenhua Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of EducationHebei University Baoding 071002 P. R. China
- College of Chemistry and Environmental ScienceChemical Biology Key Laboratory of Hebei ProvinceHebei University Baoding 071002 P. R. China
| |
Collapse
|
22
|
Shah TV, Vasava DV. A glimpse of biodegradable polymers and their biomedical applications. E-POLYMERS 2019. [DOI: 10.1515/epoly-2019-0041] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractOver the past two decades, biodegradable polymers (BPs) have been widely used in biomedical applications such as drug carrier, gene delivery, tissue engineering, diagnosis, medical devices, and antibacterial/antifouling biomaterials. This can be attributed to numerous factors such as chemical, mechanical and physiochemical properties of BPs, their improved processibility, functionality and sensitivity towards stimuli. The present review intended to highlight main results of research on advances and improvements in terms of synthesis, physical properties, stimuli response, and/or applicability of biodegradable plastics (BPs) during last two decades, and its biomedical applications. Recent literature relevant to this study has been cited and their developing trends and challenges of BPs have also been discussed.
Collapse
Affiliation(s)
- Tejas V. Shah
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat- 380009, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, Gujarat- 380009, India
| |
Collapse
|
23
|
Dahanayake V, Pornrungroj C, Pablico-Lansigan M, Hickling WJ, Lyons T, Lah D, Lee Y, Parasido E, Bertke JA, Albanese C, Rodriguez O, Van Keuren E, Stoll SL. Paramagnetic Clusters of Mn 3(O 2CCH 3) 6(Bpy) 2 in Polyacrylamide Nanobeads as a New Design Approach to a T 1- T 2 Multimodal Magnetic Resonance Imaging Contrast Agent. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18153-18164. [PMID: 30964631 PMCID: PMC8515904 DOI: 10.1021/acsami.9b03216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
There is an increasing need for gadolinium-free magnetic resonance imaging (MRI) contrast agents, particularly for patients suffering from chronic kidney disease. Using a cluster-nanocarrier combination, we have identified a novel approach to the design of biomedical nanomaterials and report here the criteria for the cluster and the nanocarrier and the advantages of this combination. We have investigated the relaxivity of the following manganese oxo clusters: the parent cluster Mn3(O2CCH3)6(Bpy)2 (1) where Bpy = 2,2'-bipyridine and three new analogs, Mn3(O2CC6H4CH═CH2)6(Bpy)2 (2), Mn3(O2CC(CH3)═CH2)6(Bpy)2 (3), and Mn3O(O2CCH3)6(Pyr)2 (4) where Pyr = pyridine. The parent cluster, Mn3(O2CCH3)6(Bpy)2 (1), had impressive relaxivity ( r1 = 6.9 mM-1 s-1, r2 = 125 mM-1 s-1) and was found to be the most amenable for the synthesis of cluster-nanocarrier nanobeads. Using the inverse miniemulsion polymerization technique (1) in combination with the hydrophilic monomer acrylamide, we synthesized nanobeads (∼125 nm diameter) with homogeneously dispersed clusters within the polyacrylamide matrix (termed Mn3Bpy-PAm). The nanobeads were surface-modified by co-polymerization with an amine-functionalized monomer. This enabled various postsynthetic modifications, for example, to attach a near-IR dye, Cyanine7, as well as a targeting agent. When evaluated as a potential multimodal MRI contrast agent, high relaxivity and contrast were observed with r1 = 54.4 mM-1 s-1 and r2 = 144 mM-1 s-1, surpassing T1 relaxivity of clinically used Gd-DTPA chelates as well as comparable T2 relaxivity to iron oxide microspheres. Physicochemical properties, cellular uptake, and impacts on cell viability were also investigated.
Collapse
Affiliation(s)
- Vidumin Dahanayake
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Chanon Pornrungroj
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
- IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Michele Pablico-Lansigan
- Department of Chemistry, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, United States
| | - William J. Hickling
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Trevor Lyons
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - David Lah
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Yichien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center and Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Erika Parasido
- Department of Oncology, Lombardi Comprehensive Cancer Center and Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Jeffery A. Bertke
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center and Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center and Center for Translational Imaging, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Edward Van Keuren
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
| | - Sarah L. Stoll
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, United States
- Corresponding Author:
| |
Collapse
|
24
|
Fan HH, Le Q, Lan S, Liang JX, Tie SL, Xu JL. Modifying the mechanical properties of gold nanorods by copper doping and triggering their cytotoxicity with ultrasonic wave. Colloids Surf B Biointerfaces 2018; 163:47-54. [DOI: 10.1016/j.colsurfb.2017.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022]
|
25
|
|
26
|
Swain SK, Prusty K. Biomedical applications of acrylic-based nanohydrogels. JOURNAL OF MATERIALS SCIENCE 2018; 53:2303-2325. [DOI: 10.1007/s10853-017-1726-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Chakraborty S, Dhakshinamurthy GS, Misra SK. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J Biomed Mater Res A 2017. [PMID: 28643475 DOI: 10.1002/jbm.a.36141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanotechnology has emerged strongly as a viable option to overcome the challenge of early diagnosis and effective drug delivery, for cancer treatment. Emerging research articles have expounded the advantages of using a specific type of nanomaterial-based system called as "nanocarriers," for anti-cancer therapy. The nanocarrier system is used as a transport unit for targeted drug delivery of the therapeutic drug moiety. In order for the nanocarriers to be effective for anticancer therapy, their physicochemical parameter needs to be tuned so that bio-functionalisation can be achieved to (1) allow drugs being attached to the substrate and for their controlled release, (2) ensure the stability of the nanocarrier up to the point of delivery, and (3) clearance of the nanocarrier after the delivery. It is therefore envisaged that tailoring of the physicochemical properties of nanocarriers can greatly influence their reactivity and interaction in the biological milieu, and this is becoming an important parameter for increasing the efficacy of cancer therapy. This review emphasizes the importance of physicochemical properties of nanocarriers, and how they influence its usage as chemotherapeutic drug carriers. The goal of this review is to present a correlation between the physicochemical properties of the nanocarriers and its intended action, and how their design based on these properties can enhance their cancer combating abilities while minimizing damage to the healthy tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2906-2928, 2017.
Collapse
Affiliation(s)
- Swaroop Chakraborty
- Biological Engineering, Indian Institute of Technology-Gandhinagar, Ahmedabad, 382424, India
| | | | - Superb K Misra
- Materials Science and Engineering, Indian Institute of Technology-Gandhinagar, Ahmedabad, 382424, India
| |
Collapse
|
28
|
Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y. Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 2017; 115:115-154. [PMID: 28778715 DOI: 10.1016/j.addr.2017.07.021] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Gene therapy represents a promising cancer treatment featuring high efficacy and limited side effects, but it is stymied by a lack of safe and efficient gene-delivery vectors. Cationic polymers and lipid-based nonviral gene vectors have many advantages and have been extensively explored for cancer gene delivery, but their low gene-expression efficiencies relative to viral vectors limit their clinical translations. Great efforts have thus been devoted to developing new carrier materials and fabricating functional vectors aimed at improving gene expression, but the overall efficiencies are still more or less at the same level. This review analyzes the cancer gene-delivery cascade and the barriers, the needed nanoproperties and the current strategies for overcoming these barriers, and outlines PEGylation, surface-charge, size, and stability dilemmas in vector nanoproperties to efficiently accomplish the cancer gene-delivery cascade. Stability, surface, and size transitions (3S Transitions) are proposed to resolve those dilemmas and strategies to realize these transitions are comprehensively summarized. The review concludes with a discussion of the future research directions to design high-performance nonviral gene vectors.
Collapse
Affiliation(s)
- Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xiangrui Liu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Dingcheng Zhu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Yue Wang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Zhen Zhang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuefei Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Key Lab of Polymer Ecomaterials, Changchun, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027 Hangzhou, China.
| |
Collapse
|
29
|
Saenz C, Cheruku RR, Ohulchanskyy TY, Joshi P, Tabaczynski WA, Missert JR, Chen Y, Pera P, Tracy E, Marko A, Rohrbach D, Sunar U, Baumann H, Pandey RK. Structural and Epimeric Isomers of HPPH [3-Devinyl 3-{1-(1-hexyloxy) ethyl}pyropheophorbide-a]: Effects on Uptake and Photodynamic Therapy of Cancer. ACS Chem Biol 2017; 12:933-946. [PMID: 28165706 DOI: 10.1021/acschembio.7b00023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The tetrapyrrole structure of porphyrins used as photosentizing agents is thought to determine uptake and retention by malignant epithelial cancer cells. To assess the contribution of the oxidized state of individual rings to these cellular processes, bacteriochlorophyll a was converted into the ring "D" reduced 3-devinyl-3-[1-(1-hexyloxy)ethyl]pyropheophorbide-a (HPPH) and the corresponding ring "B" reduced isomer (iso-HPPH). The carboxylic acid analogs of both ring "B" and ring "D" reduced isomers showed several-fold higher accumulation into the mitochondria and endoplasmic reticulum by primary culture of human lung and head and neck cancer cells than the corresponding methyl ester analogs that localize primarily to granular vesicles and to a lesser extent to mitochondria. However, long-term cellular retention of these compounds exhibited an inverse relationship with tumor cells generally retaining better the methyl-ester derivatives. In vivo distribution and tumor uptake was evaluated in the isogenic model of BALB/c mice bearing Colon26 tumors using the respective 14C-labeled analogs. Both carboxylic acid derivatives demonstrated similar intracellular localization and long-term tumor cure with no significant skin phototoxicity. PDT-mediated tumor action involved vascular damage, which was confirmed by a reduction in blood flow and immunohistochemical assessment of damage to the vascular endothelium. The HPPH stereoisomers (epimers) showed identical uptake (in vitro & in vivo), intracellular retention and photoreaction.
Collapse
Affiliation(s)
| | | | - Tymish Y. Ohulchanskyy
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China 518060
- Institute for Lasers, Photonics and Biophotonics, SUNY at Buffalo, Buffalo, New York 14260, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ruiz-González R, Bresolí-Obach R, Gulías Ò, Agut M, Savoie H, Boyle RW, Nonell S, Giuntini F. NanoSOSG: A Nanostructured Fluorescent Probe for the Detection of Intracellular Singlet Oxygen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rubén Ruiz-González
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Roger Bresolí-Obach
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Òscar Gulías
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Montserrat Agut
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Huguette Savoie
- Department of Chemistry; University of Hull; Cottingham Road Kingston upon Hull HU6 7RX UK
| | - Ross W. Boyle
- Department of Chemistry; University of Hull; Cottingham Road Kingston upon Hull HU6 7RX UK
| | - Santi Nonell
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Francesca Giuntini
- Department of Chemistry; University of Hull; Cottingham Road Kingston upon Hull HU6 7RX UK
- School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| |
Collapse
|
31
|
Ruiz-González R, Bresolí-Obach R, Gulías Ò, Agut M, Savoie H, Boyle RW, Nonell S, Giuntini F. NanoSOSG: A Nanostructured Fluorescent Probe for the Detection of Intracellular Singlet Oxygen. Angew Chem Int Ed Engl 2017; 56:2885-2888. [DOI: 10.1002/anie.201609050] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/11/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Rubén Ruiz-González
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Roger Bresolí-Obach
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Òscar Gulías
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Montserrat Agut
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Huguette Savoie
- Department of Chemistry; University of Hull; Cottingham Road Kingston upon Hull HU6 7RX UK
| | - Ross W. Boyle
- Department of Chemistry; University of Hull; Cottingham Road Kingston upon Hull HU6 7RX UK
| | - Santi Nonell
- Institut Químic de Sarrià; Universitat Ramon Llull; Via Augusta 390 08019 Barcelona Spain
| | - Francesca Giuntini
- Department of Chemistry; University of Hull; Cottingham Road Kingston upon Hull HU6 7RX UK
- School of Pharmacy and Biomolecular Sciences; Liverpool John Moores University; Liverpool L3 3AF UK
| |
Collapse
|
32
|
Sneider A, VanDyke D, Paliwal S, Rai P. Remotely Triggered Nano-Theranostics For Cancer Applications. Nanotheranostics 2017; 1:1-22. [PMID: 28191450 PMCID: PMC5298883 DOI: 10.7150/ntno.17109] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/16/2016] [Indexed: 01/02/2023] Open
Abstract
Nanotechnology has enabled the development of smart theranostic platforms that can concurrently diagnose disease, start primary treatment, monitor response, and, if required, initiate secondary treatments. Recent in vivo experiments demonstrate the promise of using theranostics in the clinic. In this paper, we review the use of remotely triggered theranostic nanoparticles for cancer applications, focusing heavily on advances in the past five years. Remote triggering mechanisms covered include photodynamic, photothermal, phototriggered chemotherapeutic release, ultrasound, electro-thermal, magneto-thermal, X-ray, and radiofrequency therapies. Each section includes a brief overview of the triggering mechanism and summarizes the variety of nanoparticles employed in each method. Emphasis in each category is placed on nano-theranostics with in vivo success. Some of the nanotheranostic platforms highlighted include photoactivatable multi-inhibitor nanoliposomes, plasmonic nanobubbles, reduced graphene oxide-iron oxide nanoparticles, photoswitching nanoparticles, multispectral optoacoustic tomography using indocyanine green, low temperature sensitive liposomes, and receptor-targeted iron oxide nanoparticles loaded with gemcitabine. The studies reviewed here provide strong evidence that the field of nanotheranostics is rapidly evolving. Such nanoplatforms may soon enable unique advances in the clinical management of cancer. However, reproducibility in the synthesis procedures of such "smart" platforms that lend themselves to easy scale-up in their manufacturing, as well as the development of new and improved models of cancer that are more predictive of human responses, need to happen soon for this field to make a rapid clinical impact.
Collapse
Affiliation(s)
| | | | | | - Prakash Rai
- ✉ Corresponding author: Prakash Rai, Phone 978-934-4971,
| |
Collapse
|
33
|
Carrillo-Carrion C, Escudero A, Parak WJ. Optical sensing by integration of analyte-sensitive fluorophore to particles. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Rui LL, Cao HL, Xue YD, Liu LC, Xu L, Gao Y, Zhang WA. Functional organic nanoparticles for photodynamic therapy. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Crespy D, Lv LP, Landfester K. Redefining the functions of nanocapsule materials. NANOSCALE HORIZONS 2016; 1:268-271. [PMID: 32260646 DOI: 10.1039/c5nh00112a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanocapsules are key components in new technologies related to biomedicine and materials science. However, their long-term fate after use is still largely ignored. We discuss here a sustainable approach where the products of degradation of the nanoparticles play a significant role in their application because they are also functional molecules. The polymer shell of the nanocapsules is chemically engineered so that the degradation products formed upon chemical damage are useful after their normal use.
Collapse
Affiliation(s)
- D Crespy
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55118 Mainz, Germany.
| | | | | |
Collapse
|
36
|
Jeong K, Park S, Lee YD, Kang CS, Kim HJ, Park H, Kwon IC, Kim J, Park CR, Kim S. Size-engineered biocompatible polymeric nanophotosensitizer for locoregional photodynamic therapy of cancer. Colloids Surf B Biointerfaces 2016; 144:303-310. [PMID: 27107384 DOI: 10.1016/j.colsurfb.2016.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/03/2016] [Accepted: 04/13/2016] [Indexed: 02/02/2023]
Abstract
Current approaches in use of water-insoluble photosensitizers for photodynamic therapy (PDT) of cancer often demand a nano-delivery system. Here, we report a photosensitizer-loaded biocompatible nano-delivery formulation (PPaN-20) whose size was engineered to ca. 20nm to offer improved cell/tissue penetration and efficient generation of cytotoxic singlet oxygen. PPaN-20 was fabricated through the physical assembly of all biocompatible constituents: pyropheophorbide-a (PPa, water-insoluble photosensitizer), polycaprolactone (PCL, hydrophobic/biodegradable polymer), and Pluronic F-68 (clinically approved polymeric surfactant). Repeated microemulsification/evaporation method resulted in a fine colloidal dispersion of PPaN-20 in water, where the particulate PCL matrix containing well-dispersed PPa molecules inside was stabilized by the Pluronic corona. Compared to a control sample of large-sized nanoparticles (PPaN-200) prepared by a conventional solvent displacement method, PPaN-20 revealed optimal singlet oxygen generation and efficient cellular uptake by virtue of the suitably engineered size and constitution, leading to high in vitro phototoxicity against cancer cells. Upon administration to tumor-bearing mice by peritumoral route, PPaN-20 showed efficient tumor accumulation by the enhanced cell/tissue penetration evidenced by in vivo near-infrared fluorescence imaging. The in vivo PDT treatment with peritumorally administrated PPaN-20 showed significantly enhanced suppression of tumor growth compared to the control group, demonstrating great potential as a biocompatible photosensitizing agent for locoregional PDT treatment of cancer.
Collapse
Affiliation(s)
- Keunsoo Jeong
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea; Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University, Gwanak-gu, Seoul 151-744, South Korea
| | - Solji Park
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea; Department of Chemistry, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701, South Korea
| | - Yong-Deok Lee
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea
| | - Chi Soo Kang
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea
| | - Hyun Jun Kim
- Department of Chemistry, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701, South Korea
| | - Hyeonjong Park
- Department of Chemistry, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701, South Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea
| | - Jungahn Kim
- Department of Chemistry, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701, South Korea
| | - Chong Rae Park
- Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University, Gwanak-gu, Seoul 151-744, South Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea.
| |
Collapse
|
37
|
Zhou Y, Xu M, Liu Y, Bai Y, Deng Y, Liu J, Chen L. Green synthesis of Se/Ru alloy nanoparticles using gallic acid and evaluation of theiranti-invasive effects in HeLa cells. Colloids Surf B Biointerfaces 2016; 144:118-124. [PMID: 27085043 DOI: 10.1016/j.colsurfb.2016.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
Methods for the synthesis of nanoparticles (NPs) for biomedical applications ideally involve the use of nontoxic reducing and capping agents, and more importantly, enable control over the shape and size of the particles. As such, we used gallic acid (GA) as both a reducing and a capping agent in a simple and "green" synthesis of stable Se/Rualloy NPs (GA-Se/RuNPs). The diameter and morphology of the Se/Ru alloy NPs were regulated by GA concentration, and the presence of Ru was found to be a key factor in regulating and controlling the size of GA-Se/RuNPs. Moreover, GA-Se/RuNPs suppressed HeLa cell proliferation through the induction of apoptosis at concentrations that were nontoxic in normal cells. Furthermore, GA-Se/RuNPs effectively inhibited migration and invasion in HeLa cells via the inhibition of MMP-2 and MMP-9 proteins. Our findings confirm that bimetallic (Se/Ru) NPs prepared via GA-mediated synthesis exhibit enhanced anticancer effects.
Collapse
Affiliation(s)
- Yanhui Zhou
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Meng Xu
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yanan Liu
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yan Bai
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yuqian Deng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jie Liu
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Lanmei Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China; School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China.
| |
Collapse
|
38
|
Reisch A, Klymchenko AS. Fluorescent Polymer Nanoparticles Based on Dyes: Seeking Brighter Tools for Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1968-92. [PMID: 26901678 PMCID: PMC5405874 DOI: 10.1002/smll.201503396] [Citation(s) in RCA: 375] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/13/2015] [Indexed: 05/13/2023]
Abstract
Speed, resolution and sensitivity of today's fluorescence bioimaging can be drastically improved by fluorescent nanoparticles (NPs) that are many-fold brighter than organic dyes and fluorescent proteins. While the field is currently dominated by inorganic NPs, notably quantum dots (QDs), fluorescent polymer NPs encapsulating large quantities of dyes (dye-loaded NPs) have emerged recently as an attractive alternative. These new nanomaterials, inspired from the fields of polymeric drug delivery vehicles and advanced fluorophores, can combine superior brightness with biodegradability and low toxicity. Here, we describe the strategies for synthesis of dye-loaded polymer NPs by emulsion polymerization and assembly of pre-formed polymers. Superior brightness requires strong dye loading without aggregation-caused quenching (ACQ). Only recently several strategies of dye design were proposed to overcome ACQ in polymer NPs: aggregation induced emission (AIE), dye modification with bulky side groups and use of bulky hydrophobic counterions. The resulting NPs now surpass the brightness of QDs by ≈10-fold for a comparable size, and have started reaching the level of the brightest conjugated polymer NPs. Other properties, notably photostability, color, blinking, as well as particle size and surface chemistry are also systematically analyzed. Finally, major and emerging applications of dye-loaded NPs for in vitro and in vivo imaging are reviewed.
Collapse
Affiliation(s)
- Andreas Reisch
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| |
Collapse
|
39
|
Song HS, Kwon OS, Kim JH, Conde J, Artzi N. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens Bioelectron 2016; 89:187-200. [PMID: 27020065 DOI: 10.1016/j.bios.2016.03.045] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022]
Abstract
Hydrogels consisting of three-dimensional (3D) polymeric networks have found a wide range of applications in biotechnology due to their large water capacity, high biocompatibility, and facile functional versatility. The hydrogels with stimulus-responsive swelling properties have been particularly instrumental to realizing signal transduction in biosensors and bioelectronics. Graphenes are two-dimensional (2D) nanomaterials with unprecedented physical, optical, and electronic properties and have also found many applications in biosensors and bioelectronics. These two classes of materials present complementary strengths and limitations which, when effectively coupled, can result in significant synergism in their electrical, mechanical, and biocompatible properties. This report reviews recent advances made with hydrogel and graphene materials for the development of high-performance bioelectronics devices. The report focuses on the interesting intersection of these materials wherein 2D graphenes are hybridized with 3D hydrogels to develop the next generation biosensors and bioelectronics.
Collapse
Affiliation(s)
- Hyun Seok Song
- Korea Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Yuseong, Daejeon 169-148, Republic of Korea
| | - Oh Seok Kwon
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon 305-600, Republic of Korea
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - João Conde
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, USA; School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| | - Natalie Artzi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Biomedical Engineering Division, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
40
|
Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem Rev 2016; 116:2826-85. [DOI: 10.1021/acs.chemrev.5b00148] [Citation(s) in RCA: 1014] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guanying Chen
- Institute
for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Indrajit Roy
- Institute
for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Chunhui Yang
- School
of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Paras N. Prasad
- Institute
for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
41
|
Bhaumik J, Gogia G, Kirar S, Vijay L, Thakur NS, Banerjee UC, Laha JK. Bioinspired nanophotosensitizers: synthesis and characterization of porphyrin–noble metal nanoparticle conjugates. NEW J CHEM 2016. [DOI: 10.1039/c5nj02056e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Conjugatable and compact porphyrinic photosensitizer nanoparticle conjugates were developed through rational synthesis followed by conjugation with noble metal nanoparticles.
Collapse
Affiliation(s)
- Jayeeta Bhaumik
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| | - Gitanjali Gogia
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| | - Seema Kirar
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| | - Lekshmi Vijay
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| | - Neeraj S. Thakur
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| | - Uttam C. Banerjee
- Department of Pharmaceutical Technology (Biotechnology)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| | - Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- S.A.S. Nagar – 160062
- India
| |
Collapse
|
42
|
Fu C, Bongers A, Wang K, Yang B, Zhao Y, Wu H, Wei Y, Duong HTT, Wang Z, Tao L. Facile synthesis of a multifunctional copolymer via a concurrent RAFT-enzymatic system for theranostic applications. Polym Chem 2016. [DOI: 10.1039/c5py01652e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Through a straightforward concurrent RAFT-enzymatic multicomponent polymerization system and subsequent post-polymerization modifications, a multi-functional copolymer for theranostic application has been efficiently prepared.
Collapse
Affiliation(s)
- Changkui Fu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Andre Bongers
- Biomedical Resources Imaging Laboratory
- Mark Wainwright Analytical Centre
- The University of New South Wales
- Sydney
- Australia
| | - Ke Wang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Bin Yang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yuan Zhao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | | | - Zhiming Wang
- School of Petrochemical Engineering
- Changzhou University
- Changzhou
- China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
43
|
Bhaumik J, Kirar S, Laha JK. Theranostic Nanoconjugates of Tetrapyrrolic Macrocycles and Their Applications in Photodynamic Therapy. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2016. [DOI: 10.1007/978-3-319-30705-3_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Kang H, Mintri S, Menon AV, Lee HY, Choi HS, Kim J. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. NANOSCALE 2015; 7:18848-62. [PMID: 26528835 PMCID: PMC4648690 DOI: 10.1039/c5nr05264e] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanoparticles (NPs) are considered a promising tool in both diagnosis and therapeutics. Theranostic NPs possess the combined properties of targeted imaging and drug delivery within a single entity. While the categorization of theranostic NPs is based on their structure and composition, the pharmacokinetics of NPs are significantly influenced by the physicochemical properties of theranostic NPs as well as the routes of administration. Consequently, altered pharmacokinetics modify the pharmacodynamic efficacy and toxicity of NPs. Although theranostic NPs hold great promise in nanomedicine and biomedical applications, a lack of understanding persists on the mechanisms of the biodistribution and adverse effects of NPs. To better understand the diagnostic and therapeutic functions of NPs, this review discusses the factors that influence the pharmacokinetics, pharmacodynamics and toxicology of theranostic NPs, along with several strategies for developing novel diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Homan Kang
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA. Phone: 617-667-6024, Fax: 617-667-0214
| | - Shrutika Mintri
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA. Phone: 617-373-3214, Fax: 617-373-8886
| | - Archita Venugopal Menon
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA. Phone: 617-373-3214, Fax: 617-373-8886
| | - Hea Yeon Lee
- Department of Nanotechnology, Detroit R&D, Inc., Detroit, MI 48201, USA
| | - Hak Soo Choi
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA. Phone: 617-667-6024, Fax: 617-667-0214
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA. Phone: 617-373-3214, Fax: 617-373-8886
| |
Collapse
|
45
|
Pedotti S, Pistarà V, Cannavà C, Carbone C, Cilurzo F, Corsaro A, Puglisi G, Ventura CA. Synthesis and physico-chemical characterization of a β-cyclodextrin conjugate for sustained release of Acyclovir. Carbohydr Polym 2015; 131:159-67. [DOI: 10.1016/j.carbpol.2015.05.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 01/06/2023]
|
46
|
Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem Rev 2015; 115:10530-74. [PMID: 26313138 DOI: 10.1021/acs.chemrev.5b00321] [Citation(s) in RCA: 643] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alyssa B Chinen
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chenxia M Guan
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer R Ferrer
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stacey N Barnaby
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timothy J Merkel
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
47
|
Lane LA, Qian X, Nie S. SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chem Rev 2015; 115:10489-529. [DOI: 10.1021/acs.chemrev.5b00265] [Citation(s) in RCA: 607] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lucas A. Lane
- Departments
of Biomedical Engineering and Chemistry, Emory University and Georgia Institute of Technology, Health Sciences Research Building,
Room E116, 1760 Haygood Drive, Atlanta, Georgia 30322, United States
| | - Ximei Qian
- Departments
of Biomedical Engineering and Chemistry, Emory University and Georgia Institute of Technology, Health Sciences Research Building,
Room E116, 1760 Haygood Drive, Atlanta, Georgia 30322, United States
| | - Shuming Nie
- Departments
of Biomedical Engineering and Chemistry, Emory University and Georgia Institute of Technology, Health Sciences Research Building,
Room E116, 1760 Haygood Drive, Atlanta, Georgia 30322, United States
- College
of Engineering and Applied Sciences, Nanjing University, 22 Hankou
Road, Nanjing, Jiangsu Province 210093, China
| |
Collapse
|
48
|
Oliva N, Unterman S, Zhang Y, Conde J, Song HS, Artzi N. Personalizing Biomaterials for Precision Nanomedicine Considering the Local Tissue Microenvironment. Adv Healthc Mater 2015; 4:1584-99. [PMID: 25963621 DOI: 10.1002/adhm.201400778] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/02/2015] [Indexed: 12/11/2022]
Abstract
New advances in (nano)biomaterial design coupled with the detailed study of tissue-biomaterial interactions can open a new chapter in personalized medicine, where biomaterials are chosen and designed to match specific tissue types and disease states. The notion of a "one size fits all" biomaterial no longer exists, as growing evidence points to the value of customizing material design to enhance (pre)clinical performance. The complex microenvironment in vivo at different tissue sites exhibits diverse cell types, tissue chemistry, tissue morphology, and mechanical stresses that are further altered by local pathology. This complex and dynamic environment may alter the implanted material's properties and in turn affect its in vivo performance. It is crucial, therefore, to carefully study tissue context and optimize biomaterials considering the implantation conditions. This practice would enable attaining predictable material performance and enhance clinical outcomes.
Collapse
Affiliation(s)
- Nuria Oliva
- Massachusetts Institute of Technology; Institute for Medical Engineering and Science; Harvard-MIT Division for Health Sciences and Technology; E25-449 Cambridge MA USA
| | - Shimon Unterman
- Massachusetts Institute of Technology; Institute for Medical Engineering and Science; Harvard-MIT Division for Health Sciences and Technology; E25-449 Cambridge MA USA
| | - Yi Zhang
- Massachusetts Institute of Technology; Institute for Medical Engineering and Science; Harvard-MIT Division for Health Sciences and Technology; E25-449 Cambridge MA USA
| | - João Conde
- Massachusetts Institute of Technology; Institute for Medical Engineering and Science; Harvard-MIT Division for Health Sciences and Technology; E25-449 Cambridge MA USA
- School of Engineering and Materials Science; Queen Mary University of London; London UK
| | - Hyun Seok Song
- Massachusetts Institute of Technology; Institute for Medical Engineering and Science; Harvard-MIT Division for Health Sciences and Technology; E25-449 Cambridge MA USA
| | - Natalie Artzi
- Massachusetts Institute of Technology; Institute for Medical Engineering and Science; Harvard-MIT Division for Health Sciences and Technology; E25-449 Cambridge MA USA
- Department of Anesthesiology; Brigham and Women's Hospital; Harvard Medical School; Boston MA 02115 USA
| |
Collapse
|
49
|
Abstract
Soft fluorescent nanomaterials have attracted recent attention as imaging agents for biological applications, because they provide the advantages of good biocompatibility, high brightness, and easy biofunctionalization. Here, we provide a survey of recent developments in fluorescent soft nano-sized biological imaging agents. Various soft fluorescent nanoparticles (NPs) (including dye-doped polymer NPs, semiconducting polymer NPs, small-molecule organic NPs, nanogels, micelles, vesicles, and biomaterial-based NPs) are summarized from the perspectives of preparation methods, structure, optical properties, and surface functionalization. Based on both optical and functional properties of the nano-sized imaging agents, their applications are then reviewed in terms of in vitro imaging, in vivo imaging, and cellular-process imaging, by means of specific or nonspecific targeting.
Collapse
Affiliation(s)
- Hong-Shang Peng
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|
50
|
Bhaumik J, Thakur NS, Aili PK, Ghanghoriya A, Mittal AK, Banerjee UC. Bioinspired Nanotheranostic Agents: Synthesis, Surface Functionalization, and Antioxidant Potential. ACS Biomater Sci Eng 2015; 1:382-392. [DOI: 10.1021/ab500171a] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jayeeta Bhaumik
- Department of Pharmaceutical
Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Neeraj S. Thakur
- Department of Pharmaceutical
Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Pavan K. Aili
- Department of Pharmaceutical
Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Amit Ghanghoriya
- Department of Pharmaceutical
Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Amit K. Mittal
- Department of Pharmaceutical
Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Uttam C. Banerjee
- Department of Pharmaceutical
Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| |
Collapse
|