1
|
Han S, Zhang D, Kao Y, Zhou X, Guo X, Zhang W, Liu M, Chen H, Kong X, Wei Z, Liu H, Feng S. Trojan Horse Strategy for Wireless Electrical Stimulation-Induced Zn 2+ Release to Regulate Neural Stem Cell Differentiation for Spinal Cord Injury Repair. ACS NANO 2024. [PMID: 39527695 DOI: 10.1021/acsnano.4c08863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Due to the uncertain differentiation of neural stem cells (NSCs), replenishing lost neurons by endogenous neural differentiation to repair spinal cord injury (SCI) remains challenging. The electrical stimulation-induced drug release is a promising approach for the localized and controlled release of drugs to regulate the differentiation of NSCs into neurons. Here, we developed Zn-PDA@BT nanoparticles acted as Trojan Horse to enter cells through endocytosis for Zn2+-controlled release therapy by the potentials generated by the piezoelectric effect. Due to the presence of polydopamine (PDA), under ultrasound stimulation, the electrical signal derived from the piezoelectric effect of barium titanate nanoparticles can be attracted to the surface of Trojan Horse nanoparticles to facilitate the controlled release of Zn2+. And Zn2+ bonded with PDA can increase the intracellular Zn2+ concentration within mouse-derived NSCs (mNSCs) to regulate the differentiation of mNSCs, which could enhance excitatory neuronal differentiation and inhibit astrocyte differentiation of mNSCs by activating the TGF-β and p53 pathways. More importantly, this Trojan Horse therapy allowed mNSCs to differentiate into mature neurons in 5 days, while the natural differentiation process took 10 days. Moreover, the transplantation of mNSC-ingested Zn-PDA@BT nanoparticles effectively replenished lost neurons at the damaged site and promoted function recovery after SCI in vivo, demonstrating the great potential of electrical stimulation-induced Zn2+ release for SCI repair.
Collapse
Affiliation(s)
- Shuwei Han
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Dapeng Zhang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Yanbing Kao
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Xiaolong Zhou
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Xianzheng Guo
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Wencan Zhang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Mingshan Liu
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Haosheng Chen
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Xiaohong Kong
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Zhijian Wei
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan 250100 Shandong, P. R. China
| | - Shiqing Feng
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
- Department of Orthopedics, Second Hospital of Shandong University, Jinan 250033 Shandong, P. R. China
- Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012 Shandong, P. R. China
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, P. R. China
| |
Collapse
|
2
|
Fernandes DA. Multifunctional gold nanoparticles for cancer theranostics. 3 Biotech 2024; 14:267. [PMID: 39416669 PMCID: PMC11473483 DOI: 10.1007/s13205-024-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
The diagnosis and treatment of cancer can often be challenging requiring more attractive options. Some types of cancers are more aggressive than others and symptoms for many cancers are subtle, especially in the early stages. Nanotechnology provides high sensitivity, specificity and multimodal capability for cancer detection, treatment and monitoring. In particular, metal nanoparticles (NPs) such as gold nanoparticles (AuNPs) are attractive nanosystems for researchers interested in bioimaging and therapy. The size, shape and surface of AuNPs can be modified for improving targeting and accumulation in cancer cells, for example through introduction of ligands and surface charge. The interactions of AuNPs with electromagnetic radiation (e.g., visible-near-infrared, X-rays) can be used for photothermal therapy and radiation therapy, through heat generated from light absorption and emission of Auger electrons, respectively. The subsequent expansion and high X-ray attenuation from AuNPs can be used for enhancing contrast for tumor detection (e.g., using photoacoustic, computed tomography imaging). Multi-functionality can be further extended through covalent/non-covalent functionalization, for loading additional imaging/therapeutic molecules for combination therapy and multimodal imaging. In order to cover the important aspects for designing and using AuNPs for cancer theranostics, this review focuses on the synthesis, functionalization and characterization methods that are important for AuNPs, and presents their unique properties and different applications in cancer theranostics.
Collapse
|
3
|
Dou L, Wang X, Bai Y, Li Q, Luo L, Yu W, Wang Z, Wen K, Shen J. Mussel-like polydopamine-assisted aggregation-induced emission nanodot for enhanced broad-spectrum antimicrobial activity: In vitro and in vivo validation. Int J Biol Macromol 2024; 282:136762. [PMID: 39486741 DOI: 10.1016/j.ijbiomac.2024.136762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/22/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Emerging luminogens with aggregation-induced emission properties, namely AIEgens, demonstrated excellent anti-bacteria activity potential. However, their application still limited by the low antibacterial activity caused by the poor binding with bacteria. Polydopamine (PDA), an important biological macromolecule, possesses superior adhesion ability toward various material surface, including bacteria. In this study, the novel mussel-like PDA-assisted AIE Nanodot was proposed, achieving with robust bacterial binding ability and enhanced broad-spectrum antibacterial activity. Binding ability inherited from the PDA enables the constructed PDA-assisted AIE Nanodot to adhere efficiently to the bacterial membrane surface. Meanwhile, the AIE properties endowed them with monitoring capability, allowing for tracking their interaction with bacteria through facile fluorescence imaging in real time. More importantly, excellent killing of both Gram-positive and Gram-negative bacteria were successfully achieved in vitro antibacterial tests with excellent biocompatibility. Furthermore, in the treatment of Methicillin-resistant S. aureus (MRSA)-infected mouse-wound model, the mice exhibited accelerated wound healing with low bacterial load. This novel integrated strategy introduced a simple but effectively design to enhance the binding and antibacterial ability of AIEgens and would diversify the existing pool of antibacterial agents.
Collapse
Affiliation(s)
- Leina Dou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Xiaonan Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Yuchen Bai
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Wenbo Yu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China.
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing 100193, China.
| |
Collapse
|
4
|
Zheng Y, Chen X, Wang Y, Chen Z, Wu D. Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy. J Zhejiang Univ Sci B 2024; 25:890-913. [PMID: 39420524 PMCID: PMC11494163 DOI: 10.1631/jzus.b2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 10/19/2024]
Abstract
Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
- Zhejiang Rehabilitation Medical Center, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310009, China. ,
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
5
|
d’Alessandro N, Coccia F, Vitali LA, Rastelli G, Cinosi A, Mascitti A, Tonucci L. Cu-ZnO Embedded in a Polydopamine Shell for the Generation of Antibacterial Surgical Face Masks. Molecules 2024; 29:4512. [PMID: 39339506 PMCID: PMC11434467 DOI: 10.3390/molecules29184512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
A new easy protocol to functionalize the middle layer of commercial surgical face masks (FMs) with Zn and Cu oxides is proposed in order to obtain antibacterial personal protective equipment. Zinc and copper oxides were synthesized embedded in a polydopamine (PDA) shell as potential antibacterial agents; they were analyzed by XRD and TEM, revealing, in all the cases, the formation of metal oxide nanoparticles (NPs). PDA is a natural polymer appreciated for its simple and rapid synthesis, biocompatibility, and high functionalization; it is used in this work as an organic matrix that, in addition to stabilizing NPs, also acts as a diluent in the functionalization step, decreasing the metal loading on the polypropylene (PP) surface. The functionalized middle layers of the FMs were characterized by SEM, XRD, FTIR, and TXRF and tested in their bacterial-growth-inhibiting effect against Klebsiella pneumoniae and Staphylococcus aureus. Among all functionalizing agents, Cu2O-doped-ZnO NPs enclosed in PDA shell, prepared by an ultrasound-assisted method, showed the best antibacterial effect, even at low metal loading, without changing the hydrophobicity of the FM. This approach offers a sustainable solution by prolonging FM lifespan and reducing material waste.
Collapse
Affiliation(s)
- Nicola d’Alessandro
- Department of Engineering and Geology, “G. d’Annunzio” University of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy; (N.d.); (A.M.)
- TEMA Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesca Coccia
- Department of Socio-Economic, Managerial and Statistical Studies, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Luca Agostino Vitali
- School of Pharmacy, University of Camerino via Gentile III da Varano, 62032 Camerino, Italy;
| | - Giorgia Rastelli
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Amedeo Cinosi
- G.N.R. s.r.l., Via Torino 7, 28010 Agrate Conturbia, Italy;
| | - Andrea Mascitti
- Department of Engineering and Geology, “G. d’Annunzio” University of Chieti-Pescara, Viale Pindaro 42, 65127 Pescara, Italy; (N.d.); (A.M.)
| | - Lucia Tonucci
- TEMA Research Center, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Socio-Economic, Managerial and Statistical Studies, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
6
|
Chen X, Tang J, Dong Y, Xuan M, Tian Y, Liu Y, Peng N, Cheng B. A novel hydrogel with inherent antibacterial and hemostatic properties for burn wound healing. Colloids Surf B Biointerfaces 2024; 245:114250. [PMID: 39303388 DOI: 10.1016/j.colsurfb.2024.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
The skin is the immune system's first line of defense. Extensive skin burns can lead to tissue necrosis, sepsis, and even death. Anti-infectious care of burn wounds is a major challenge in clinical medicine. However, the extensive use of antibiotics led to the emergence of multi-drug-resistant bacteria and silver dressings with antibacterial effects are also cytotoxic. We used the natural cationic antibacterial agent ε-polylysine (EPL) to graft Epigallocatechin-3-gallate (EGCG) to synthesize EPL-EGCG. Then, we used methacrylated gelatin (GelMA) with arginine-glycine-aspartate-rich acid (RGD) sequence and EPL-EGCG form interpenetrating polymer network hydrogels with excellent swelling properties. The hydrogel's inherent antibacterial properties and photo-cross-linking properties can cover irregular burn wounds and isolate bacteria to prevent infection. In addition, we used polydopamine (PDA) to coat GelMA microspheres with excellent hemostatic efficacy and load platelet-rich plasma (PRP) to enhance the hemostatic efficacy of the microspheres and impart inflammation-regulating functions. The hydrogel showed excellent hemostatic efficacy in rat liver injury and tail vein injury models. In the rat infected burn model, the hydrogel exhibited favorable antimicrobial, pro-angiogenic, and anti-inflammatory phenotype polarization of macrophages. Our study shows that GelMA/EPL-EGCG/GM-PDA@PRP hydrogel application has excellent antibacterial, hemostatic and anti-inflammatory effects, providing a new treatment strategy for wound care before burn skin grafting.
Collapse
Affiliation(s)
- Xiaoqiang Chen
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Jianbing Tang
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Yunqing Dong
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Min Xuan
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Yan Tian
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Yijie Liu
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China
| | - Na Peng
- Department of Emergency Surgery, Southern Theater General Hospital, Guangzhou 510010, China.
| | - Biao Cheng
- Department of Burn and Plastic Surgery, Southern Theater General Hospital, Guangzhou 510010, China.
| |
Collapse
|
7
|
Jeon K, Andoy NMO, Dufour D, Yang JYC, Lévesque CM, Sullan RMA. Cocktail Approach with Polyserotonin Nanoparticles and Peptides for Treatment of Streptococcus mutans. ACS Infect Dis 2024; 10:3176-3184. [PMID: 39158205 DOI: 10.1021/acsinfecdis.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Dental plaque, formed by a Streptococcus mutans biofilm, is a major contributor to cavity formation. While antimicrobial strategies exist, the growing risk of antibiotic resistance necessitates alternative therapeutic solutions. Polyserotonin nanoparticles (PSeNPs), recently recognized for their photothermal property and promising biomedical applications, open up a new avenue for antimicrobial use. Here, we introduced a UV-initiated synthetic route for PSeNPs with improved yield. Using these PSeNPs, a cocktail treatment to reduce the viability of this cavity-causing bacteria was developed. This cocktail comprises an S. mutans-targeting antimicrobial peptide (GH12), an intraspecies competence-stimulating peptide that triggers altruistic cell death in S. mutans, and laser-activated heating of PSeNPs. The "peptide + PSeNP + laser" combination effectively inhibits S. mutans growth in both planktonic and biofilm states. Moreover, the cocktail approach remains effective in reducing the viability of S. mutans in a more virulent dual-species biofilm with Candida albicans. Overall, our results reinforce the utility of a multipronged therapeutic strategy to reduce cariogenic bacteria in the complex model oral biofilm.
Collapse
Affiliation(s)
- Keuna Jeon
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department of Chemistry, University of Toronto, 80 Street George Street, Toronto, Ontario M5S 3H6, Canada
| | - Nesha May O Andoy
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Delphine Dufour
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada
| | - Jessica Y C Yang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Céline M Lévesque
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, Ontario M5G 1G6, Canada
| | - Ruby May A Sullan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department of Chemistry, University of Toronto, 80 Street George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
8
|
Eom T, Ozlu B, Ivanová L, Lee S, Lee H, Krajčovič J, Shim BS. Multifunctional Natural and Synthetic Melanin for Bioelectronic Applications: A Review. Biomacromolecules 2024; 25:5489-5511. [PMID: 39194016 DOI: 10.1021/acs.biomac.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Emerging material interest in bioelectronic applications has highlighted natural melanin and its derivatives as promising alternatives to conventional synthetic conductors. These materials, traditionally noted for their adhesive, antioxidant, biocompatible, and biodegradable properties, have barely been used as conductors due to their extremely low electrical activities. However, recent studies have demonstrated good conductive properties in melanin materials that promote electronic-ionic hybrid charge transfer, attributed to the formation of an extended conjugated backbone. This review examines the multifunctional properties of melanin materials, focusing on their chemical and electrochemical synthesis and their resulting structure-property-function relationship. The wide range of bioelectronic applications will also be presented to highlight their importance and potential to expand into new design concepts for high-performance electronic functional materials. The review concludes by addressing the current challenges in utilizing melanin for biodegradable bioelectronics, providing a perspective on future developments.
Collapse
Affiliation(s)
- Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- KIURI Center for Hydrogen Based Next Generation Mechanical System, Inha University, 36 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea
| | - Busra Ozlu
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Lucia Ivanová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - HyeonJeong Lee
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| | - Jozef Krajčovič
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, CZ-612 00 Brno, Czech Republic
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
- Department of Chemical Engineering, Inha University, 100 Inharo, Michuhol-gu, Incheon 22212, South Korea
| |
Collapse
|
9
|
Li Y, Li H, Zhang K, Xu C, Wang J, Li Z, Zhou Y, Liu S, Zhao X, Li Z, Yang F, Hu W, Jing Y, Wu P, Zhang J, Shi C, Zhang R, Jiang W, Xing N, Wen W, Han D, Qin W. Genetically Engineered Membrane-Coated Nanoparticles for Enhanced Prostate-Specific Membrane Antigen Targeting and Ferroptosis Treatment of Castration-Resistant Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401095. [PMID: 38946578 PMCID: PMC11434221 DOI: 10.1002/advs.202401095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/27/2024] [Indexed: 07/02/2024]
Abstract
Conventional androgen deprivation therapy (ADT) targets the androgen receptor (AR) inhibiting prostate cancer (PCa) progression; however, it can eventually lead to recurrence as castration-resistant PCa (CRPC), which has high mortality rates and lacks effective treatment modalities. The study confirms the presence of high glutathione peroxidase 4 (GPX4) expression, a key regulator of ferroptosis (i.e., iron-dependent program cell death) in CRPC cells. Therefore, inducing ferroptosis in CRPC cells might be an effective therapeutic modality for CRPC. However, nonspecific uptake of ferroptosis inducers can result in undesirable cytotoxicity in major organs. Thus, to precisely induce ferroptosis in CRPC cells, a genetic engineering strategy is proposed to embed a prostate-specific membrane antigen (PSMA)-targeting antibody fragment (gy1) in the macrophage membrane, which is then coated onto mesoporous polydopamine (MPDA) nanoparticles to produce a biomimetic nanoplatform. The results indicate that the membrane-coated nanoparticles (MNPs) exhibit high specificity and affinity toward CRPC cells. On further encapsulation with the ferroptosis inducers RSL3 and iron ions, MPDA/Fe/RSL3@M-gy1 demonstrates superior synergistic effects in highly targeted ferroptosis therapy eliciting significant therapeutic efficacy against CRPC tumor growth and bone metastasis without increased cytotoxicity. In conclusion, a new therapeutic strategy is reported for the PSMA-specific, CRPC-targeting platform for ferroptosis induction with increased efficacy and safety.
Collapse
Affiliation(s)
- Yu Li
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral, Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, No.145 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Hongji Li
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Keying Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Chao Xu
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jingwei Wang
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, No.169 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Zeyu Li
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yike Zhou
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Xiaolong Zhao
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Zhengxuan Li
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Wei Hu
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yuming Jing
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Peng Wu
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jingliang Zhang
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Air Force Medical University, No.169 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Rui Zhang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Medical University, No.169 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Wenkai Jiang
- State Key Laboratory of Oral, Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, No.145 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Nianzeng Xing
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Weihong Wen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Air Force Medical University, No.169 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Air Force Medical University, No.127 Western Changle Road, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
10
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
11
|
Shekhar H, Behera P, Naik A, Mishra M, Sahoo H. Interaction between polydopamine-based IONPs and human serum albumin (HSA): a spectroscopic analysis with cytotoxicity impact. Nanotoxicology 2024; 18:479-498. [PMID: 39177468 DOI: 10.1080/17435390.2024.2392579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Iron oxide nanoparticles (IONPs) have been extensively explored in biomedicine, bio-sensing, hyperthermia, and drug/gene delivery, attributed to their versatile and tunable properties. However, owing to its numerous applications, the functionalization of IONPs with appropriate materials is in demand. To achieve optimal functionalization of IONPs, polydopamine (PDA) was utilized due to its ability to provide a superior functionalized surface, near-infrared light absorption, and adhesive nature to customize desired functionalized IONPs. This notion of involving PDA led to the successful synthesis of magnetite-PDA nanoparticles, where PDA is surface-coated on magnetite (Fe3O4@PDA). The Fe3O4@PDA nanoparticles were characterized using techniques like TEM, FESEM, PXRD, XPS, VSM, and FTIR, suggesting PDA's successful attachment with magnetite crystal structure retention. Human serum albumin (HSA), the predominant protein in blood plasma, interacts with the delivered nanoparticles. Therefore, we have employed various spectroscopic techniques, along with cytotoxicity, to inspect the effect of Fe3O4@PDA NPs on the stability and structure of HSA. The structural alterations were examined using circular dichroism (CD) and synchronous fluorescence spectroscopy (SFS). It has been observed that there are no structural perturbations in the secondary structure of the HSA protein after interaction with Fe3O4@PDA. Studies using steady-state fluorescence revealed that the inherent fluorescence intensities of HSA were suppressed after interaction with Fe3O4@PDA. In addition, temperature-dependent fluorescence measurements suggested that the type of quenching consists of both static and dynamic quenching simultaneously. A cytotoxicity study in Drosophila melanogaster larvae revealed no cytotoxic effects but did show a minor genotoxic effect only at higher concentrations.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Priyatama Behera
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ashutosh Naik
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Harekrushna Sahoo
- Biophysical and Protein Chemistry Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
- Center for Nanomaterials, National Institute of Technology, Rourkela, India
| |
Collapse
|
12
|
Bisht N, Patel M, Mondal DP, Srivastava AK, Dwivedi N, Dhand C. Comparative performance analysis of mussel-inspired polydopamine, polynorepinephrine, and poly-α-methyl norepinephrine in electrochemical biosensors. Mikrochim Acta 2024; 191:456. [PMID: 38980419 DOI: 10.1007/s00604-024-06521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Polydopamine (PDA) has garnered significant interest for applications in biosensors, drug delivery, and tissue engineering. However, similar polycatecholamines like polynorepinephrine (PNE) with additional hydroxyl groups and poly-α-methylnorepinephrine (PAMN) with additional hydroxyl and methyl groups remain unexplored in the biosensing domain. This research introduces three innovative biosensing platforms composed of ternary nanocomposite based on reduced graphene oxide (RGO), gold nanoparticles (Au NPs), and three sister polycatecholamine compounds (PDA, PNE, and PAMN). The study compares and evaluates the performance of the three biosensing systems for the ultrasensitive detection of Mycobacterium tuberculosis (MTB). The formation of the nanocomposites was meticulously examined through UV-Visible, Raman, XRD, and FT-IR studies with FE-SEM and HR-TEM analysis. Cyclic voltammetry and differential pulse voltammetry measurements were also performed to determine the electrochemical characteristics of the modified electrodes. Electrochemical biosensing experiments reveal that the RGO-PDA-Au, RGO-PNE-Au, and RGO-PAMN-Au-based biosensors detected target DNA up to a broad detection range of 0.1 × 10-8 to 0.1 × 10-18 M, with a low detection limit (LOD) of 0.1 × 10-18, 0.1 × 10-16, and 0.1 × 10-17 M, respectively. The bioelectrodes were proved to be highly selective with excellent sensitivities of 3.62 × 10-4 mA M-1 (PDA), 7.08 × 10-4 mA M-1 (PNE), and 6.03 × 10-4 mA M-1 (PAMN). This study pioneers the exploration of two novel mussel-inspired polycatecholamines in biosensors, opening avenues for functional nanocoatings that could drive further advancements in this field.
Collapse
Affiliation(s)
- Neha Bisht
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
| | - Monika Patel
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - D P Mondal
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Avanish Kumar Srivastava
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute, Hoshangabad Road, Bhopal, 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Shen YZ, Xie WZ, Wang Z, Ning KP, Ji ZP, Li HB, Hu XY, Ma C, Qin X. A generalizable sensing platform based on molecularly imprinted polymer-aptamer double recognition and nanoenzyme assisted photoelectrochemical-colorimetric dual-mode detection. Biosens Bioelectron 2024; 254:116201. [PMID: 38507928 DOI: 10.1016/j.bios.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Developing highly sensitive and selective methods that incorporate specific recognition elements is crucial for detecting small molecules because of the limited availability of small molecule antibodies and the challenges in obtaining sensitive signals. In this study, a generalizable photoelectrochemical-colorimetric dual-mode sensing platform was constructed based on the synergistic effects of a molecularly imprinted polymer (MIP)-aptamer sandwich structure and nanoenzymes. The MIP functionalized peroxidase-like Fe3O4 (Fe3O4@MIPs) and alkaline phosphatase mimic Zr-MOF labeled aptamer (Zr-mof@Apt) were used as the recognition elements. By selectively accumulating dibutyl phthalate (DBP), a small molecule target model, on Fe3O4@MIPs, the formation of Zr-MOF@Apt-DBP- Fe3O4@MIPs sandwich structure was triggered. Fe3O4@MIPs oxidized TMB to form blue-colored oxTMB. However, upon selective accumulation of DBP, the catalytic activity of Fe3O4@MIPs was inhibited, resulting in a lighter color that was detectable by the colorimetric method. Additionally, Zr-mof@Apt effectively catalyzed the hydrolysis of L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS), generating ascorbic acid (AA) that could neutralize the photogenerated holes to decrease the photocurrent signals for PEC sensing and reduce oxTMB for colorimetric testing. The dual-mode platform showed strong linearity for different concentrations of DBP from 1.0 pM to 10 μM (PEC) and 0.1 nM to 0.5 μM (colorimetry). The detection limits were 0.263 nM (PEC) and 30.1 nM (colorimetry) (S/N = 3), respectively. The integration of dual-signal measurement mode and sandwich recognition strategy provided a sensitive and accurate platform for the detection of small molecules.
Collapse
Affiliation(s)
- Ying-Zhuo Shen
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Wen Zheng Xie
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zheng Wang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Kang Ping Ning
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zheng Ping Ji
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Hong Bo Li
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Xiao-Ya Hu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Cheng Ma
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xu Qin
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| |
Collapse
|
14
|
Liu Y, Chen W, Mu W, Zhou Q, Liu J, Li B, Liu T, Yu T, Hu N, Chen X. Physiological Microenvironment Dependent Self-Cross-Linking of Multifunctional Nanohybrid for Prolonged Antibacterial Therapy via Synergistic Chemodynamic-Photothermal-Biological Processes. NANO LETTERS 2024; 24:6906-6915. [PMID: 38829311 DOI: 10.1021/acs.nanolett.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Herein, a multifunctional nanohybrid (PL@HPFTM nanoparticles) was fabricated to perform the integration of chemodynamic therapy, photothermal therapy, and biological therapy over the long term at a designed location for continuous antibacterial applications. The PL@HPFTM nanoparticles consisted of a polydopamine/hemoglobin/Fe2+ nanocomplex with comodification of tetrazole/alkene groups on the surface as well as coloading of antimicrobial peptides and luminol in the core. During therapy, the PL@HPFTM nanoparticles would selectively cross-link to surrounding bacteria via tetrazole/alkene cycloaddition under chemiluminescence produced by the reaction between luminol and overexpressed H2O2 at the infected area. The resulting PL@HPFTM network not only significantly damaged bacteria by Fe2+-catalyzed ROS production, effective photothermal conversion, and sustained release of antimicrobial peptides but dramatically enhanced the retention time of these therapeutic agents for prolonged antibacterial therapy. Both in vitro and in vivo results have shown that our PL@HPFTM nanoparticles have much higher bactericidal efficiency and remarkably longer periods of validity than free antibacterial nanoparticles.
Collapse
Affiliation(s)
- Yi Liu
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
- Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
| | - Wei Chen
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Department of Urology, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
| | - Wenyun Mu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Qian Zhou
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Baixue Li
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Tingting Yu
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
| | - Nan Hu
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
15
|
Xu Z, Jiang J, Li Y, Hu T, Gu J, Zhang P, Fan L, Xi J, Han J, Guo R. Shape-Regulated Photothermal-Catalytic Tumor Therapy Using Polydopamine@Pt Nanozymes with the Elicitation of an Immune Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309096. [PMID: 38054612 DOI: 10.1002/smll.202309096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Recently, nanozyme-based photothermal-catalytic therapy has emerged as a promising strategy for antitumor treatment. Extensive research has focused on optimizing the catalytic activity and photothermal conversion performance of nanozymes through size, morphology, and surface property regulations. However, the biological effects of nanozymes, such as cellular uptake and cytotoxicity, resulting from their physicochemical properties, remain largely unexplored. In this study, two types of polydopamine/platinum (PDA@Pt) nanozymes, flower-like (FPDA@Pt) and mesoporous spherical-like (MPDA@Pt), to comprehensively compare their enzyme-mimicking activity, photothermal conversion capacity, and antitumor efficiency are designed. These findings revealed that FPDA@Pt exhibited superior peroxidase-like activity and higher photothermal conversion efficiency compared to MPDA@Pt. This led to enhanced production of reactive oxygen species (ROS) and increased heat generation at tumor sites. Importantly, it is observed thatthe flower-like structure of FPDA@Pt facilitated enhanced cellular uptake, leading to an increased accumulation of nanozymes within tumor cells. Furthermore, the light irradiation on tumors also triggered a series of anti-tumor immune responses, further enhancing the therapeutic efficacy. This work provides a possible design orientation for nanozyme-based photothermal-catalytic tumor therapy, highlighting the importance of considering the physicochemical properties of nanozymes to optimize their therapeutic potential in antitumor strategies.
Collapse
Affiliation(s)
- Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jian Jiang
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- Central LAB, Binhai County People's Hospital, Binhai, Jiangsu, 224500, P. R. China
| | - Yanan Li
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, Jiangsu, 225127, P. R. China
| | - Ting Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiake Gu
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Peiying Zhang
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu, 225009, P. R. China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
16
|
Li L, Yu Y, Sun X, Wang X, Yang X, Yu Q, Kang K, Wu Y, Yi Q. Pro-endothelialization of nitinol alloy cardiovascular stents enhanced by the programmed assembly of exosomes and endothelial affinity peptide. J Mater Chem B 2024; 12:4184-4196. [PMID: 38592788 DOI: 10.1039/d4tb00363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Stent implantation is one of the most effective methods for the treatment of atherosclerosis. Nitinol stent is a type of stent with good biocompatibility and relatively mature development; however, it cannot effectively achieve long-term anticoagulation and early endothelialization. In this study, nitinol surfaces with the programmed assembly of heparin, exosomes from endothelial cells, and endothelial affinity peptide (REDV) were fabricated through layer-by-layer assembly technology and click-chemistry, and then exosomes/REDV-modified nitinol interface (ACC-Exo-REDV) was prepared. ACC-Exo-REDV could promote the rapid proliferation and adhesion of endothelial cells and achieve anticoagulant function in the blood. Besides, ACC-Exo-REDV had excellent anti-inflammatory properties and played a positive role in the transformation of macrophage from the pro-inflammatory to anti-inflammatory phenotype. Ex vivo and in vivo experiments demonstrated the effectiveness of ACC-Exo-REDV in preventing thrombosis and hyperplasia formation. Hence, the programmed assembly of exosome interface could contribute to endothelialization and have potential application on the cardiovascular surface modification to prevent stent thrombosis and restenosis.
Collapse
Affiliation(s)
- Linsen Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Yue Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiaoqing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Xingyou Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiayan Yang
- Chengdu NewMed Biotechnology Co., Ltd, Chengdu 611139, P. R. China
| | - Qifeng Yu
- Chengdu NewMed Biotechnology Co., Ltd, Chengdu 611139, P. R. China
| | - Ke Kang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
- Institute of Regulatory Science for Medical Device, Sichuan University, Chengdu, Sichuan Province, 610065, P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
17
|
Zhang R, Thoröe-Boveleth S, Chigrin DN, Kiessling F, Lammers T, Pallares RM. Nanoscale engineering of gold nanostars for enhanced photoacoustic imaging. J Nanobiotechnology 2024; 22:115. [PMID: 38493118 PMCID: PMC10943878 DOI: 10.1186/s12951-024-02379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Photoacoustic (PA) imaging is a diagnostic modality that combines the high contrast resolution of optical imaging with the high tissue penetration of ultrasound. While certain endogenous chromophores can be visualized via PA imaging, many diagnostic assessments require the administration of external probes. Anisotropic gold nanoparticles are particularly valued as contrast agents, since they produce strong PA signals and do not photobleach. However, the synthesis of anisotropic nanoparticles typically requires cytotoxic reagents, which can hinder their biological application. In this work, we developed new PA probes based on nanostar cores and polymeric shells. These AuNS were obtained through one-pot synthesis with biocompatible Good's buffers, and were subsequently functionalized with polyethylene glycol, chitosan or melanin, three coatings widely used in (pre)clinical research. Notably, the structural features of the nanostar cores strongly affected the PA signal. For instance, despite displaying similar sizes (i.e. 45 nm), AuNS obtained with MOPS buffer generated between 2 and 3-fold greater signal intensities in the region between 700 and 800 nm than nanostars obtained with HEPES and EPPS buffers, and up to 25-fold stronger signals than spherical gold nanoparticles. A point source analytical model demonstrated that AuNS synthesized with MOPS displayed greater absorption coefficients than the other particles, corroborating the stronger PA responses. Furthermore, the AuNS shell not only improved the biocompatibility of the nanoconstructs but also affected their performance, with melanin coating enhancing the signal more than 4-fold, due to its own PA capacity, as demonstrated by both in vitro and ex vivo imaging. Taken together, these results highlight the strengths of gold nanoconstructs as PA probes and offer insights into the design rules for the nanoengineering of new nanodiagnostic agents.
Collapse
Affiliation(s)
- Rui Zhang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Sven Thoröe-Boveleth
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Dmitry N Chigrin
- Institute of Physics (1A), RWTH Aachen University, 52056, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, 52076, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074, Aachen, Germany.
| |
Collapse
|
18
|
Wang S, Cui Y, Dalani T, Sit KY, Zhuo X, Choi CK. Polydopamine-based plasmonic nanocomposites: rational designs and applications. Chem Commun (Camb) 2024; 60:2982-2993. [PMID: 38384206 DOI: 10.1039/d3cc05883b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Taking advantage of its adhesive nature and chemical reactivity, polydopamine (PDA) has recently been integrated with plasmonic nanoparticles to yield unprecedented hybrid nanostructures. With advanced architectures and optical properties, PDA-based plasmonic nanocomposites have showcased their potential in a wide spectrum of plasmon-driven applications, ranging from catalysis and chemical sensing, to drug delivery and photothermal therapy. The rational design of PDA-based plasmonic nanocomposites entails different material features of PDA and necessitates a thorough understanding of the sophisticated PDA chemistry; yet, there is still a lack of a systematic review on their fabrication strategies, plasmonic properties, and applications. In this Highlight review, five representative types of PDA-based plasmonic nanocomposites will be featured. Specifically, their design principles, synthetic strategies, and optical behaviors will be elucidated with an emphasis on the irreplaceable roles of PDA in the synthetic mechanisms. Together, their essential functions in diverse applications will be outlined. Lastly, existing challenges and outlooks on the rational design and assembly of next-generation PDA-based plasmonic nanocomposites will be presented. This Highlight review aims to provide synthetic insights and hints to inspire and aid researchers to innovate PDA-based plasmonic nanocomposites.
Collapse
Affiliation(s)
- Shengyan Wang
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Yiou Cui
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Tarun Dalani
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - King Yin Sit
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | - Xiaolu Zhuo
- School of Science Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Chun Kit Choi
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
19
|
Weingarten P, Thomas SR, Luiza de Andrade Querino A, Halama K, Kränzlein M, Casini A, Rieger B. A graft-to strategy of poly(vinylphosphonates) on dopazide-coated gold nanoparticles using in situ catalyst activation. RSC Adv 2024; 14:8145-8149. [PMID: 38464693 PMCID: PMC10921843 DOI: 10.1039/d4ra01116c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
A modular synthetic pathway for poly(diethyl vinylphosphonates) grafting-to gold nanoparticles is presented. Utilising an azide-dopamine derivative as nanoparticle coating agent, alkyne-azide click conditions were used to covalently tether the polymer to gold nanoparticles leading to stable and well distributed colloids for different applications.
Collapse
Affiliation(s)
- Philipp Weingarten
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, School of Natural Sciences, Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
| | - Sophie R Thomas
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
| | - Ana Luiza de Andrade Querino
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
- Department of Chemistry, Universidade Federal de Minas Gerais Belo Horizonte MG 31270-901 Brazil
| | - Kerstin Halama
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, School of Natural Sciences, Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
| | - Moritz Kränzlein
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, School of Natural Sciences, Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, School of Natural Sciences, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Catalysis Research Center, School of Natural Sciences, Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 D-85748 Garching b. München Germany
| |
Collapse
|
20
|
Bakshi S, Li K, Dong P, Barth I, Kunstmann-Olsen C, Johnson S, Krauss TF. Bio-inspired polydopamine layer as a versatile functionalisation protocol for silicon-based photonic biosensors. Talanta 2024; 268:125300. [PMID: 37857107 DOI: 10.1016/j.talanta.2023.125300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Photonic biosensors have made major advances in recent years, achieving very high sensitivity, and progressing towards point-of-care deployment. By using photonic resonances, sensors can be label-free, which is particularly attractive for a low-cost technological realisation. A key remaining issue is the biological interface and the efficient and reliable immobilisation of binder molecules such as antibodies; many protocols are currently in use that have led to widely varying sensor performance. Here, we study a very simple and robust surface functionalisation protocol for silicon photonics, which is based on polydopamine, and we demonstrate both its simplicity and its high performance. The use of polydopamine (PDA) is inspired by molluscs, especially mussels, that employ dopamine to adhere to virtually any surface, especially in an aqueous environment. We studied the versatility of the PDA protocol by showing compatibility with 5 different disease biomarkers (Immunoglobulin (IgG), C-reactive protein (CRP), Tumour Necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Matrix metalloproteinase (MMP-9) and show that the protocol is resistant to hydrolysis during incubation; the loss of functionality due to hydrolysis is a major issue for many of the functionalisation protocols commonly used for silicon-based sensors. The study using guided mode resonance-based sensors highlights the wide dynamic range of the protocol (0.01 ng/mL to 1 μg/mL), using IgG, CRP and MMP-9 protein biomarkers as exemplars. In addition, we show that the surface chemistry allows performing measurements in 10% human serum with a sensitivity as low as 10 ng/mL for IgG. We suggest that adopting this protocol will make it easier for researchers to achieve biofunctionalisation and that the biosensor community will be able to achieve more consistent results.
Collapse
Affiliation(s)
- Shrishty Bakshi
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK.
| | - Kezheng Li
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Pin Dong
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Isabel Barth
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | | | - Steven Johnson
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| | - Thomas F Krauss
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
| |
Collapse
|
21
|
Menichetti A, Mordini D, Montalti M. Polydopamine Nanosystems in Drug Delivery: Effect of Size, Morphology, and Surface Charge. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:303. [PMID: 38334574 PMCID: PMC10856634 DOI: 10.3390/nano14030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Recently, drug delivery strategies based on nanomaterials have attracted a lot of interest in different kinds of therapies because of their superior properties. Polydopamine (PDA), one of the most interesting materials in nanomedicine because of its versatility and biocompatibility, has been widely investigated in the drug delivery field. It can be easily functionalized to favor processes like cellular uptake and blood circulation, and it can also induce drug release through two kinds of stimuli: NIR light irradiation and pH. In this review, we describe PDA nanomaterials' performance on drug delivery, based on their size, morphology, and surface charge. Indeed, these characteristics strongly influence the main mechanisms involved in a drug delivery system: blood circulation, cellular uptake, drug loading, and drug release. The understanding of the connections between PDA nanosystems' properties and these phenomena is pivotal to obtain a controlled design of new nanocarriers based on the specific drug delivery applications.
Collapse
Affiliation(s)
| | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
| |
Collapse
|
22
|
Gupta P, Rai N, Verma A, Gautam V. Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Med Res Rev 2024; 44:138-168. [PMID: 37294298 DOI: 10.1002/med.21981] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Nanomedicine is an emerging field that exploits nanotechnology for the development of novel therapeutic and diagnostic modalities. Researches are been focussed in nanoimaging to develop noninvasive, highly sensitive, and reliable tools for diagnosis and visualization in nanomedical field. The application of nanomedicine in healthcare requires in-depth understanding of their structural, physical and morphological properties, internalization inside living system, biodistribution and localization, stability, mode of action and possible toxic health effects. Microscopic techniques including fluorescence-based confocal laser scanning microscopy, super-resolution fluorescence microscopy and multiphoton microscopy; optical-based Raman microscopy, photoacoustic microscopy and optical coherence tomography; photothermal microscopy; electron microscopy (transmission electron microscope and scanning electron microscope); atomic force microscopy; X-ray microscopy and, correlative multimodal imaging are recognized as an indispensable tool in material research and aided in numerous discoveries. Microscopy holds great promise in detecting the fundamental structures of nanoparticles (NPs) that determines their performance and applications. Moreover, the intricate details that allows assessment of chemical composition, surface topology and interfacial properties, molecular, microstructure, and micromechanical properties are also elucidated. With plethora of applications, microscopy-based techniques have been used to characterize novel NPs alongwith their proficient designing and adoption of safe strategies to be exploited in nanomedicine. Consequently, microscopic techniques have been extensively used in the characterization of fabricated NPs, and their biomedical application in diagnostics and therapeutics. The present review provides an overview of the microscopy-based techniques for in vitro and in vivo application in nanomedical investigation alongwith their challenges and advancement to meet the limitations of conventional methods.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
23
|
Emilsson G, Liu K, Höök F, Svensson L, Rosengren L, Lindfors L, Sigfridsson K. The In Vivo Fate of Polycatecholamine Coated Nanoparticles Is Determined by a Fibrinogen Enriched Protein Corona. ACS NANO 2023; 17:24725-24742. [PMID: 38088920 DOI: 10.1021/acsnano.3c04968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Polycatecholamine coatings have attracted significant attention in the past 10 years owing to their ability to functionalize a wide range of materials. Here we apply the use of such coatings to drug nanocrystals, made from a poorly soluble drug compound, to postfunctionalize the nanocrystal surface with the aim of providing steric stabilization and extending their circulation time after intravenous injection. We show that both polydopamine and polynorepinephrine can be used to successfully modify drug nanocrystals and subsequently incorporate end-functionalized PEG to the surface. Even though high grafting densities of PEG were achieved, we observed rapid clearance and increased liver uptake for polycatecholamine functionalized drug nanocrystals. Using both surface sensitive model systems and protein corona profiling, we determine that the rapid clearance was correlated with an increase in adsorption of proteins involved in coagulation to the polycatecholamine surface, with fibrinogen being the most abundant. Further analysis of the most abundant proteins revealed a significant increase in thiol-rich proteins on polycatecholamine coated surfaces. The observed interaction with coagulation proteins highlights one of the current challenges using polycatecholamines for drug delivery but might also provide insights to the growing use of these materials in hemostatic applications.
Collapse
Affiliation(s)
- Gustav Emilsson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Lena Svensson
- Bioscience Renal In Vivo Research and Early Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Louise Rosengren
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Kalle Sigfridsson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| |
Collapse
|
24
|
Liang Z, He Y, Ieong CS, Choi CHJ. Cell-nano interactions of polydopamine nanoparticles. Curr Opin Biotechnol 2023; 84:103013. [PMID: 37897860 DOI: 10.1016/j.copbio.2023.103013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/03/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023]
Abstract
Polydopamine (PDA) nanoparticles (NPs) have diverse nanomedicine applications owing to their biocompatibility and abundant entry to cells. Yet, our knowledge in their interactions with cells was infrequently studied until recent years. This review presents the latest insights into the cell-nano interactions of PDA NPs, including their 'self-targeting' to dopamine receptors for cellular entry without the aid of ligands, in vitro 'self-therapeutic' cellular responses (antiferroptosis, macrophage polarization, and modulation of mitochondrial bioenergetics) in the absence of drugs, and in vivo cellular localization and pharmacological properties upon various routes of administration. This review concludes with our perspectives on the therapeutic promise of PDA NPs and the need for studies on PDA biochemistry, biodegradability, and protein adsorption.
Collapse
Affiliation(s)
- Zhihui Liang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yuan He
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Christina Su Ieong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
25
|
Yadav R, Momin A, Godugu C. DNase based therapeutic approaches for the treatment of NETosis related inflammatory diseases. Int Immunopharmacol 2023; 124:110846. [PMID: 37634446 DOI: 10.1016/j.intimp.2023.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Neutrophils are the primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils limit pathogen transmission is NETosis, which includes releasing the nuclear content into the cytosol by forming pores in the plasma membrane. The extrusion of cellular deoxyribonucleic acid (DNA) results in neutrophil extracellular traps (NETs) composed of nuclear DNA associated with histones and granule proteins. NETosis is driven by the enzyme PAD-4 (Peptidylarginine deiminase-4), which converts arginine into citrulline, leading to decondensation of chromatin, separation of DNA, and eventual extrusion. DNase is responsible for the breakdown of NETs. On the one hand, the release of DNase may interfere with the antibacterial effects of NETs; further, DNase may protect tissues from self-destruction caused by the increased release of NET under septic conditions. NETs in physiological quantities are expected to have a role in anti-infectious innate immune responses. In contrast, abnormally high concentrations of NETs in the body that are not adequately cleared by DNases can damage tissues and cause inflammation. Through several novel approaches, it is now possible to avoid the adverse effects caused by the continued release of NETs into the extracellular environment. In this review we have highlighted the basic mechanisms of NETosis, its significance in the pathogenesis of various inflammatory disorders, and the role of DNase enzyme with a focus on the possible function of nanotechnology in its management.
Collapse
Affiliation(s)
- Rachana Yadav
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Alfiya Momin
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
26
|
Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. Polydopamine-Based Nanoprobes Application in Optical Biosensing. BIOSENSORS 2023; 13:956. [PMID: 37998131 PMCID: PMC10669744 DOI: 10.3390/bios13110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Polydopamine (PDA), the synthetic counterpart of melanin, is a widely investigated bio-inspired material for its chemical and photophysical properties, and in the last few years, bio-application of PDA and PDA-based materials have had a dramatic increase. In this review, we described PDA application in optical biosensing, exploring its multiple roles as a nanomaterial. In optical sensing, PDA can not only be used for its intrinsic fluorescent and photoacoustic properties as a probe: in some cases, a sample optical signal can be derived by melanin generation in situ or it can be enhanced in another material thanks to PDA modification. The various possibilities of PDA use coupled with its biocompatibility will indeed widen even more its application in optical bioimaging.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (A.M.-P.); (D.M.)
| |
Collapse
|
27
|
Zhou J, Ma L, Li Z, Chen B, Wu Y, Meng X. Synthesis of lenvatinib-loaded upconversion@polydopamine nanocomposites for upconversion luminescence imaging-guided chemo-photothermal synergistic therapy of anaplastic thyroid cancer. RSC Adv 2023; 13:26925-26932. [PMID: 37692340 PMCID: PMC10483932 DOI: 10.1039/d3ra02121a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is the most malignant and aggressive of all classifications of thyroid cancer. ATC normally has poor prognosis after classic treatments such as surgery, endocrine therapy, radiotherapy and chemotherapy. Herein, a novel nanocomposite (named as UCNP@PDA@LEN) has been synthesized for chemo-photothermal therapy of ATC, which is based on a NaErF4:Tm3+@NaYbF4@NaYF4:Nd3+ upconverting nanoparticle (UCNP) as the core, a near-infrared light (NIR)-absorbing polydopamine (PDA) as the shell, and lenvatinib (LEN) as a chemotherapeutic drug. The as-prepared multifunctional UCNP@PDA@LEN exhibits excellent photothermal conversion capability (η = 30.7%), good photothermal stability and reasonable biocompatibility. Owing to the high UCL emission and good tumor accumulation ability, the UCL imaging of mouse-bearing ATC (i.e., C643 tumor) has been achieved by UCNP@PDA@LEN. Under 808 nm NIR laser irradiation, the UCNP@PDA@LEN shows a synergistic interaction between photothermal therapy (PTT) and chemotherapy (CT), resulting in strongly suppressed mouse-bearing C643 tumor. The results provide an explicit approach for developing theranostics with high anti-ATC efficiency.
Collapse
Affiliation(s)
- Jingjing Zhou
- Thyroid Surgery Department, General Surgery Center, First Hosipital of Jilin University Changchun 130021 P. R. China
| | - Lina Ma
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology College Jilin 132101 P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Zhenshengnan Li
- Thyroid Surgery Department, General Surgery Center, First Hosipital of Jilin University Changchun 130021 P. R. China
| | - Bowen Chen
- Thyroid Surgery Department, General Surgery Center, First Hosipital of Jilin University Changchun 130021 P. R. China
| | - Yue Wu
- Thyroid Surgery Department, General Surgery Center, First Hosipital of Jilin University Changchun 130021 P. R. China
| | - Xianying Meng
- Thyroid Surgery Department, General Surgery Center, First Hosipital of Jilin University Changchun 130021 P. R. China
| |
Collapse
|
28
|
Zhang W, Chen Y, Li M, Cao S, Wang N, Zhang Y, Wang Y. A PDA-Functionalized 3D Lung Scaffold Bioplatform to Construct Complicated Breast Tumor Microenvironment for Anticancer Drug Screening and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302855. [PMID: 37424037 PMCID: PMC10502821 DOI: 10.1002/advs.202302855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Indexed: 07/11/2023]
Abstract
2D cell culture occupies an important place in cancer progression and drug discovery research. However, it limitedly models the "true biology" of tumors in vivo. 3D tumor culture systems can better mimic tumor characteristics for anticancer drug discovery but still maintain great challenges. Herein, polydopamine (PDA)-modified decellularized lung scaffolds are designed and can serve as a functional biosystem to study tumor progression and anticancer drug screening, as well as mimic the tumor microenvironment. PDA-modified scaffolds with strong hydrophilicity and excellent cell compatibility can promote cell growth and proliferation. After 96 h treatment with 5-FU, cisplatin, and DOX, higher survival rates in PDA-modified scaffolds are observed compared to nonmodified scaffolds and 2D systems. The E-cadhesion formation, HIF-1α-mediated senescence decrease, and tumor stemness enhancement can drive drug resistance and antitumor drug screening of breast cancer cells. Moreover, there is a higher survival rate of CD45+ /CD3+ /CD4+ /CD8+ T cells in PDA-modified scaffolds for potential cancer immunotherapy drug screening. This PDA-modified tumor bioplatform will supply some promising information for studying tumor progression, overcoming tumor resistance, and screening tumor immunotherapy drugs.
Collapse
Affiliation(s)
- Wanheng Zhang
- Department of PharmacyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China
| | - Yan Chen
- Department of PharmacyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China
| | - Mengyuan Li
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
| | - Shucheng Cao
- Department of Quantitative Life SciencesMcGill UniversityMontréalQuébecH3A 0G4Canada
| | - Nana Wang
- Department of PediatricsShanghai General HospitalShanghai Jiao Tong UniversityShanghai200080China
| | - Yingjian Zhang
- Department of PharmacyThe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China
| | - Yongtao Wang
- Shanghai Engineering Research Center of Organ RepairSchool of MedicineShanghai UniversityShanghai200444China
| |
Collapse
|
29
|
Li M, Xuan Y, Zhang W, Zhang S, An J. Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: A review. Int J Biol Macromol 2023; 247:125826. [PMID: 37455006 DOI: 10.1016/j.ijbiomac.2023.125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Polydopamine (PDA) has fascinating properties such as inherent biocompatibility, simple preparation, strong near-infrared absorption, high photothermal conversion efficiency, and strong metal ion chelation, which have catalyzed extensive research in PDA-containing multifunctional nano-systems particularly for biomedical applications. Thus, it is imperative to overview synthetic strategies of various PDA-containing nanoparticles (NPs) for state-of-the-art cancer multi-mode diagnoses and therapies applications, and offer a timely and comprehensive summary. In this review, we will focus on the synthetic approaches of PDA NPs, and summarize the construction strategies of PDA-containing NPs with different structure forms. Additionally, the application of PDA-containing NPs in bioimaging such as photoacoustic imaging, fluorescence imaging, magnetic resonance imaging and other imaging modalities will be reviewed. We will especially offer an overview of their therapeutic applications in tumor chemotherapy, photothermal therapy, photodynamic therapy, photocatalytic therapy, sonodynamic therapy, radionuclide therapy, gene therapy, immunotherapy and combination therapy. At the end, the current trends, limitations and future prospects of PDA-containing nano-systems will be discussed. This review aims to provide guidelines for new scientists in the field of how to design PDA-containing NPs and what has been achieved in this area, while offering comprehensive insights into the potential of PDA-containing nano-systems used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Min Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, PR China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China.
| | - Jie An
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
30
|
Chen Y, Zhang C, Yin R, Yu M, Liu Y, Liu Y, Wang H, Liu F, Cao F, Chen G, Zhao W. Ultra-robust, high-adhesive, self-healing, and photothermal zwitterionic hydrogels for multi-sensory applications and solar-driven evaporation. MATERIALS HORIZONS 2023; 10:3807-3820. [PMID: 37417340 DOI: 10.1039/d3mh00629h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Zwitterionic hydrogels have received considerable attention owing to their characteristic structures and integrating multifunctionality. However, the superhydrophilicity-induced poor mechanical properties severely hinder their potential applications. Besides, from the perspective of wide applications, zwitterionic hydrogels with integrated high mechanical properties, conductivity and multifunctionalities including self-adhesive, self-healing, and photothermal properties are highly desirable yet challenging. Herein, a new class of high-performance and multifunctional zwitterionic hydrogels are designed based on the incorporation of polydopamine-coated liquid metal nanoparticles (LM@PDA). Due to the efficient energy dissipation endowed by the isotropically extensible deformation of LM@PDA and the multiple interactions within the hydrogel matrix, the resultant hydrogels exhibited ultrahigh robustness with tensile strength of up to 1.3 MPa, strain of up to 1555% and toughness of up to 7.3 MJ m-3, superior or comparable to those of most zwitterionic hydrogels. The introduced LM@PDA also endows the hydrogels with high conductivity, versatile adhesion, autonomous self-healing, excellent injectability, three-dimensional printability, degradability, and photothermal conversion performance. These preferable properties enable the hydrogels promising as wearable sensors with multiple sensory capabilities for a wide range of strain values (1-500%), pressures (0.5-200 kPa) and temperatures (20-80 °C) with an impressive temperature coefficient of resistance (up to 0.15 °C-1). Moreover, these hydrogels can be also applied as solar evaporators with a high water evaporation rate (up to 2.42 kg m-2 h-1) and solar-thermal conversion efficiency (up to 90.3%) for solar desalination and wastewater purification. The present work can pave the way for the future development of zwitterionic hydrogels and beyond.
Collapse
Affiliation(s)
- Youyou Chen
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Chen Zhang
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Rui Yin
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Minghan Yu
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Yijie Liu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Yaming Liu
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Haoran Wang
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Feihua Liu
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Feng Cao
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Guoqing Chen
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
| | - Weiwei Zhao
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001, People's Republic of China.
- Sauvage Laboratory for Smart Materials, The School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China.
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| |
Collapse
|
31
|
Narayanan KB, Bhaskar R, Sudhakar K, Nam DH, Han SS. Polydopamine-Functionalized Bacterial Cellulose as Hydrogel Scaffolds for Skin Tissue Engineering. Gels 2023; 9:656. [PMID: 37623111 PMCID: PMC10454226 DOI: 10.3390/gels9080656] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
Bacterial cellulose (BC) is a natural polysaccharide polymer hydrogel produced sustainably by the strain Gluconacetobacter hansenii under static conditions. Due to their biocompatibility, easy functionalization, and necessary physicochemical and mechanical properties, BC nanocomposites are attracting interest in therapeutic applications. In this study, we functionalized BC hydrogel with polydopamine (PDA) without toxic crosslinkers and used it in skin tissue engineering. The BC nanofibers in the hydrogel had a thickness of 77.8 ± 20.3 nm, and they could be used to produce hydrophilic, adhesive, and cytocompatible composite biomaterials for skin tissue engineering applications using PDA. Characterization techniques, namely Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Raman spectroscopy, were performed to investigate the formation of polydopamine on the BC nanofibers. The XRD peaks for BC occur at 2θ = 14.65°, 16.69°, and 22.39°, which correspond to the planes of (100), (010), and (110) of cellulose type Iα. Raman spectroscopy confirmed the formation of PDA, as indicated by the presence of bands corresponding to the vibration of aromatic rings and aliphatic C-C and C-O stretching at 1336 and 1567 cm-1, respectively. FTIR confirmed the presence of peaks corresponding to PDA and BC in the BC/PDA hydrogel scaffolds at 3673, 3348, 2900, and 1052 cm-1, indicating the successful interaction of PDA with BC nanofibers, which was further corroborated by the SEM images. The tensile strength, swelling ratio, degradation, and surface wettability characteristics of the composite BC biomaterials were also investigated. The BC/PDA hydrogels with PDA-functionalized BC nanofibers demonstrated excellent tensile strength and water-wetting ability while maintaining the stability of the BC fibers. The enhanced cytocompatibility of the BC/PDA hydrogels was studied using the PrestoBlue assay. Culturing murine NIH/3T3 fibroblasts on BC/PDA hydrogels showed higher metabolic activity and enhanced proliferation. Additionally, it improved cell viability when using BC/PDA hydrogels. Thus, these BC/PDA composite biomaterials can be used as biocompatible natural alternatives to synthetic substitutes for skin tissue engineering and wound-dressing applications.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (R.B.); (K.S.); (D.H.N.)
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (R.B.); (K.S.); (D.H.N.)
| | - Kuncham Sudhakar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (R.B.); (K.S.); (D.H.N.)
| | - Dong Hyun Nam
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (R.B.); (K.S.); (D.H.N.)
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (R.B.); (K.S.); (D.H.N.)
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
32
|
Wei H, Yang L, Pang C, Lian L, Hong L. Bacteria-targeted photothermal therapy for combating drug-resistant bacterial infections. Biomater Sci 2023; 11:5634-5640. [PMID: 37404189 DOI: 10.1039/d3bm00841j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Photothermal therapy is an ideal non-invasive treatment for bacterial infections. However, if photothermal agents are unable to target bacteria, they can also cause thermal damage to healthy tissue. This study describes the fabrication of a Ti3C2Tx MXene-based photothermal nanobactericide (denoted as MPP) that targets bacteria by modifying MXene nanosheets with polydopamine and the bacterial recognition peptide CAEKA. The polydopamine layer blunts the sharp edges of MXene nanosheets, preventing their damage to normal tissue cells. Furthermore, as a constituent of peptidoglycan, CAEKA can recognize and penetrate the bacterial cell membrane based on similar compatibility. The obtained MPP exhibits superior antibacterial activity and high cytocompatibility compared to the pristine MXene nanosheets. In vivo studies showed that MPP colloidal solution under 808 nm NIR light can effectively treat a subcutaneous abscess caused by multi-drug resistant bacterial infection without adverse effects.
Collapse
Affiliation(s)
- Hongxin Wei
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Liu Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuming Pang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Liqin Lian
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Liangzhi Hong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
33
|
Sandomierski M, Chojnacka M, Długosz M, Pokora M, Zwolińska J, Majchrzycki Ł, Voelkel A. Mesoporous Silica Modified with Polydopamine and Zinc Ions as a Potential Carrier in the Controlled Release of Mercaptopurine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4358. [PMID: 37374542 DOI: 10.3390/ma16124358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Mercaptopurine is one of the drugs used in the treatment of acute lymphoblastic leukemia. A problem with mercaptopurine therapy is its low bioavailability. This problem can be solved by preparing the carrier that releases the drug in lower doses but over a longer period of time. In this work, polydopamine-modified mesoporous silica with adsorbed zinc ions was used as a drug carrier. SEM images confirm the synthesis of spherical carrier particles. The particle size is close to 200 nm, allowing for its use in intravenous delivery. The zeta potential values for the drug carrier indicate that it is not prone to agglomeration. The effectiveness of drug sorption is indicated by a decrease in the zeta potential and new bands in the FT-IR spectra. The drug was released from the carrier for 15 h, so all of the drug can be released during circulation in the bloodstream. The release of the drug from the carrier was sustained, and no 'burst release' was observed. The material also released small amounts of zinc, which are important in the treatment of the disease because these ions can prevent some of the adverse effects of chemotherapy. The results obtained are promising and have great application potential.
Collapse
Affiliation(s)
- Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Martyna Chojnacka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Maria Długosz
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Monika Pokora
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Joanna Zwolińska
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Łukasz Majchrzycki
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Adam Voelkel
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
34
|
Jeong H, Lee J, Kim S, Moon H, Hong S. Site-specific fabrication of a melanin-like pigment through spatially confined progressive assembly on an initiator-loaded template. Nat Commun 2023; 14:3432. [PMID: 37301846 PMCID: PMC10257687 DOI: 10.1038/s41467-023-38622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/10/2023] [Indexed: 06/12/2023] Open
Abstract
Melanin-like nanomaterials have emerged in surface biofunctionalization in a material-independent manner due to their versatile adhesion arising from their catechol-rich structures. However, the unique adhesive properties of these materials ironically raise difficulties in their site-specific fabrication. Here, we report a method for site-specific fabrication and patterning of melanin-like pigments, using progressive assembly on an initiator-loaded template (PAINT), different from conventional lithographical methods. In this method, the local progressive assembly could be naturally induced on the given surface pretreated with initiators mediating oxidation of the catecholic precursor, as the intermediates generated from the precursors during the progressive assembly possess sufficient intrinsic underwater adhesion for localization without diffusion into solution. The pigment fabricated by PAINT showed efficient NIR-to-heat conversion properties, which can be useful in biomedical applications such as the disinfection of medical devices and cancer therapies.
Collapse
Affiliation(s)
- Haejin Jeong
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jisoo Lee
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Seunghwi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Haeram Moon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Seonki Hong
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
35
|
Wang R, Yang L, Zhang Z, Song W, Wang D, Guo C. Preparation of quasi-core/shell structured composite energetic materials to improve combustion performance. RSC Adv 2023; 13:17834-17841. [PMID: 37323446 PMCID: PMC10262013 DOI: 10.1039/d3ra02732e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Composite explosives with fast reaction rate, high energy release efficiency, and remarkable combustion performance can be obtained by the interaction between homogeneous energetic materials and heterogeneous energetic materials and have broad application prospects. However, ordinary physical mixtures can easily cause separation between the components in the preparation process, which is not conducive to reflecting the advantages of composite materials. In this study, high-energy composite structured explosives with RDX modified by polydopamine as the core and PTFE/Al as the shell were prepared using a simple ultrasonic method. The study of morphology, thermal decomposition, heat release, and combustion performance demonstrated that the quasi-core/shell structured samples have higher exothermic energy, faster combustion rate, more stable combustion characteristics, and lower mechanical sensitivity than the physical mixture.
Collapse
Affiliation(s)
- Ruihao Wang
- Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology Mianyang 621010 PR China
| | - Lanting Yang
- Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology Mianyang 621010 PR China
| | - Zhenwei Zhang
- Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology Mianyang 621010 PR China
| | - Wenkui Song
- Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology Mianyang 621010 PR China
| | - Dunju Wang
- Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology Mianyang 621010 PR China
| | - Changping Guo
- Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology Mianyang 621010 PR China
| |
Collapse
|
36
|
Pan C, Wang L, Zhang M, Li J, Liu J, Liu J. In Situ Polymerization-Mediated Antigen Presentation. J Am Chem Soc 2023. [PMID: 37262440 DOI: 10.1021/jacs.3c02682] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Activating antigen-presenting cells is essential to generate adaptive immunity, while the efficacy of conventional activation strategies remains unsatisfactory due to suboptimal antigen-specific priming. Here, in situ polymerization-mediated antigen presentation (IPAP) is described, in which antigen-loaded nanovaccines are spontaneously formed and efficiently anchored onto the surface of dendritic cells in vivo through co-deposition with dopamine. The resulting chemically bound nanovaccines can promote antigen presentation by elevating macropinocytosis-based cell uptake and reducing lysosome-related antigen degradation. IPAP is able to prolong the duration of antigen reservation in the injection site and enhance subsequent accumulation in the draining lymph nodes, thereby eliciting robust antigen-specific cellular and humoral immune responses. IPAP is also applicable for different antigens and capable of circumventing the disadvantages of complicated preparation and purification. By implementation with ovalbumin, IPAP induces a significant protective immunity against ovalbumin-overexpressing tumor cell challenge in a prophylactic murine model. The use of the SARS-CoV-2 Spike protein S1 subunit also remarkably increases the production of S1-specific immunoglobulin G in mice. IPAP offers a unique strategy for stimulating antigen-presenting cells to boost antigen-specific adaptive responses and proposes a facile yet versatile method for immunization against various diseases.
Collapse
Affiliation(s)
- Chao Pan
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Juanjuan Li
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
37
|
Batul R, Bhave M, Yu A. Investigation of Antimicrobial Effects of Polydopamine-Based Composite Coatings. Molecules 2023; 28:molecules28114258. [PMID: 37298735 DOI: 10.3390/molecules28114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Herein, polydopamine (PDA)-based antimicrobial coatings loaded with silver nanoparticles (Ag NPs) and gentamicin were designed and prepared on glass slides using two different approaches. To our knowledge, this study was performed for the first time with the aim to compare these methods (viz., in situ loading and physical adsorption method) regarding the loading and release behavior of payloads. In one method, gentamicin was in situ loaded on PDA-coated substrates during PDA polymerization followed by Ag NPs immobilization (named as Ag@Gen/PDA); for the second method, Ag NPs and gentamicin were simultaneously loaded onto PDA via physical adsorption by immersing pre-formed PDA coatings into a mixed solution of Ag NPs and gentamicin (named as Ag/Gen@PDA). The loading and release characteristics of these antimicrobial coatings were compared, and both gave variable outcomes. The in situ loading method consequently provided a relatively slow release of loaded antimicrobials, i.e., approx. 46% for Ag@Gen/PDA as compared to 92% from physically adsorbed Ag/GenPDA in an immersion period of 30 days. A similar trend was observed for gentamicin release, i.e., ~0.006 µg/mL from Ag@Gen/PDA and 0.02 µg/mL from Ag/Gen@PDA each day. The slower antimicrobial release from Ag@Gen/PDA coatings would ultimately provide an effective long-term antimicrobial property as compared to Ag/Gen@PDA. Finally, the synergistic antimicrobial activities of these composite coatings were assessed against two microbial species, namely, Staphylococcus aureus and Escherichia coli, hence providing evidence in the prevention of bacterial colonization.
Collapse
Affiliation(s)
- Rahila Batul
- Department of Chemistry and Biotechnology, School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha'il, Ha'il 55211, Saudi Arabia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
38
|
Acter S, Moreau M, Ivkov R, Viswanathan A, Ngwa W. Polydopamine Nanomaterials for Overcoming Current Challenges in Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1656. [PMID: 37242072 PMCID: PMC10223368 DOI: 10.3390/nano13101656] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
In efforts to overcome current challenges in cancer treatment, multifunctional nanoparticles are attracting growing interest, including nanoparticles made with polydopamine (PDA). PDA is a nature-inspired polymer with a dark brown color. It has excellent biocompatibility and is biodegradable, offering a range of extraordinary inherent advantages. These include excellent drug loading capability, photothermal conversion efficiency, and adhesive properties. Though the mechanism of dopamine polymerization remains unclear, PDA has demonstrated exceptional flexibility in engineering desired morphology and size, easy and straightforward functionalization, etc. Moreover, it offers enormous potential for designing multifunctional nanomaterials for innovative approaches in cancer treatment. The aim of this work is to review studies on PDA, where the potential to develop multifunctional nanomaterials with applications in photothermal therapy has been demonstrated. Future prospects of PDA for developing applications in enhancing radiotherapy and/or immunotherapy, including for image-guided drug delivery to boost therapeutic efficacy and minimal side effects, are presented.
Collapse
Affiliation(s)
- Shahinur Acter
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
39
|
Liu L, Xiao X, Guo J, Wang J, Liu S, Wang M, Peng Q, Jiang N. Aptamer and Peptide-Engineered Polydopamine Nanospheres for Target Delivery and Tumor Perfusion in Synergistic Chemo-Phototherapy of Pancreatic Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16539-16551. [PMID: 36961248 DOI: 10.1021/acsami.3c01967] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer death, and the 5 year survival rate is only 4%. Chemotherapy is the treatment option for the majority of PC patients diagnosed at an advanced stage, whereas the desmoplastic stroma of PC could block the perfusion of chemotherapeutic agents to tumor tissues and contribute generally to chemoresistance. Therefore, the clinical status of PC calls for an urgent exploration in the effective treatment strategy. Chemo-phototherapy is an emerging modality against malignant tumors, but owing to the low targeting ability of theranostic agents or unspecific accumulation in the tumor region, majority of chemo-phototherapy techniques have disappointing therapeutic efficiencies. Herein, we have explored CD71-specific targeting aptamers and paclitaxel (PTX)-modified polydopamine (PDA) nanospheres with the conjugation of peptidomimetic AV3 (termed Apt-PDA@PTX/AV3 bioconjugates) to specifically target and combat PC in vivo by synergistic chemo-phototherapy. After the delivery of nanotheranostic agents to the tumor microenvironment (TME) or subsequent endocytic uptake by PC cells, a simultaneous release of AV3 and PTX from Apt-PDA@PTX/AV3 bioconjugates via near-infrared (NIR) irradiation can decrease desmoplastic stroma to enhance tumor perfusion and tumor-killing effects. Meanwhile, PDA cores utilize NIR laser to create unendurable hyperthermia within TME to "cook" tumors. Taken together, the current study finally suggests that our Apt-PDA@PTX/AV3 bioconjugates could act as a novel therapeutic approach by synergistic chemo-phototherapy for the programmable inhibition of PC.
Collapse
Affiliation(s)
- Liang Liu
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xinyu Xiao
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Jiao Guo
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Shanshan Liu
- Department of Hepatobiliary Surgery, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Meijiao Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, P. R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, P. R. China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
40
|
Sharifian A, Varshosaz J, Aliomrani M, Kazemi M. Nose to brain delivery of ibudilast micelles for treatment of multiple sclerosis in an experimental autoimmune encephalomyelitis animal model. Int J Pharm 2023; 638:122936. [PMID: 37030640 DOI: 10.1016/j.ijpharm.2023.122936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Multiple sclerosis is a chronic inflammatory disease of the central nervous system ultimate to neurodegeneration and demyelination. Ibudilast is a phosphodiesterase inhibitor, effective on the function of glial cells and lymphocytes, and inhibits the release of TNF-α by inflammatory cells. Dysregulation of glia is one of the most important pathological causes of MS. Therefore, ibudilast as a glial attenuator can be a useful treatment. The objective of the present study was to investigate the effect of nasal spray of polydopamine coated micelles of surfactin, a biosurfactant, loaded with ibudilast on its brain targeted delivery and effectiveness in remylination and neuroprotection in animal model of MS. In animal studies the micelles were administrated intranasally in different doses of 10, 25 and 50 mg/kg/day in C57/BL6 mice immunized by experimental autoimmune encephalomyelitis (EAE) model. The results of Luxol fast blue staining indicated increment in myelin fiber percent more significantly (p<0.05) in the groups treated with the polydopamine coated micelles (PDAM) compared to nasal spray of free drug or oral administration. These formulations also increased expression of Mbp, Olig2 and Mog genes in the corpus callosum. These results suggest a positive outcome of polydopamine coated micelles loaded with ibudilast in active MS as an anti-inflammatory and neuroprotective agent.
Collapse
Affiliation(s)
- Akram Sharifian
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mehdi Aliomrani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Kazemi
- Department of Genetics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
41
|
Lu Y, Liu Q, Fu B, Li P, Xu W. Label-free MIP-SERS biosensor for sensitive detection of colorectal cancer biomarker. Talanta 2023; 258:124461. [PMID: 36963151 DOI: 10.1016/j.talanta.2023.124461] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/26/2023]
Abstract
Early diagnosis of colorectal cancer can significantly improve the overall survival rate of patients, thus selective and sensitive detection of biomarkers in serum samples is vital for early detection and dynamic monitoring of cancer. Nucleoside diphosphate kinase NM23-H2 (NDKB) is an important biomarker and therapeutic target for the diagnosis of colorectal cancer (CRC). Here, a label-free and ultrasensitive biosensor for NDKB protein markers is presented for the first time, combining the characteristic capture selectivity of molecularly imprinted polymers (MIPs) and the ultrasensitivity of surface-enhanced Raman Spectroscopy (SERS) technique. The imprinted cavity serves as the only channel for Raman reporter to approach the SERS substrate, providing highly complementary non-covalent binding sites that selectively capture the target protein based on ionic, hydrogen bonding or hydrophobic interactions. Specific recognition of the NDKB protein will perfectly fill the imprinted cavity, which makes it difficult for the Raman reporter to get close to the SERS substrate, and the Raman signal decreases significantly, while the proteins of other structural sizes can not match the imprinted cavity. Through the change of the Raman signal, the proposed biosensor can realize the ultra-sensitive detection of NDKB, and the limit of detection (LOD) is 0.82 pg/mL. Compared with the traditional immunoassay technology, this combined approach with the advantages of low cost, fast response, high sensitivity and selectivity, provides clinical application potential for the early diagnosis of CRC.
Collapse
Affiliation(s)
- Yulin Lu
- Department of Geriatrics, Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Qunshan Liu
- Department of Geriatrics, Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Bangguo Fu
- Department of Geriatrics, Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Weiping Xu
- Department of Geriatrics, Institute of Gerontology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Anhui, Hefei, 230001, China.
| |
Collapse
|
42
|
Sun AR, Sun Q, Wang Y, Hu L, Wu Y, Ma F, Liu J, Pang X, Tang B. Surface modifications of titanium dental implants with strontium eucommia ulmoides to enhance osseointegration and suppress inflammation. Biomater Res 2023; 27:21. [PMID: 36927570 PMCID: PMC10022180 DOI: 10.1186/s40824-023-00361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/05/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Titanium (Ti) is now widely used as implant material due to its excellent mechanical properties and superior biocompatibilities, while its inert bioactivities might lead to insufficient osseointegration, and limit its performance in dental applications. METHODS We introduced a robust and simple approach of modifying titanium surfaces with polysaccharide complexes. Titanium samples were subjected to hydrothermal treatment to create a uniform porous structure on the surface, followed by coating with a bioinspired and self-assembly polydopamine layer. Strontium Eucommia Ulmoides Polysaccharide (EUP-Sr) complexes are then introduced to the polydopamine-coated porous titanium. Multiple morphological and physiochemical characterizations are employed for material evaluation, while cell proliferation and gene expression tests using macrophages, primary alveolar bone osteoblasts, and vascular endothelial cells are used to provide an overall insight into the functions of the product. The significances of statistical differences were analyzed using student's t-test. RESULTS Microscopic and spectrometric characterizations confirmed that the Ti surface formed a porous structure with an adequate amount of EUP-Sr loading. The attachment was attributed to hydrogen bonding between the ubiquitous glycosidic linkage of the polysaccharide complex and the ring structure of polydopamine, yet the loaded EUP-Sr complex can be gradually released, consequently benefiting the neighboring microenvironment. Cell experiments showed no cytotoxicity of the material, and the product showed promising anti-inflammation, osseointegration, and angiogenesis properties, which were further confirmed by in vivo evaluations. CONCLUSION We believe the EUP-Sr modified titanium implant is a promising candidate to be used in dental applications with notable osteoimmunomodulation and angiogenesis functions. And the novel technique proposed in this study would benefit the modification of metal/inorganic surfaces with polysaccharides for future research.
Collapse
Affiliation(s)
- Avery Rui Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.,Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore, Singapore.,Mechanobiology Institute (MBI), National University of Singapore, 117411, Singapore, Singapore
| | - Qili Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yansong Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Liqiu Hu
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yutong Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Fenbo Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jiayi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiangchao Pang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China. .,College of Materials Science and Engineering, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China. .,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Guangdong, China. .,Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China.
| |
Collapse
|
43
|
Cai Z, Huan ML, Zhang YW, Zhao TT, Han TY, He W, Zhou SY, Zhang BL. Tumor targeted combination therapeutic system for the effective treatment of drug resistant triple negative breast cancer. Int J Pharm 2023; 636:122821. [PMID: 36914017 DOI: 10.1016/j.ijpharm.2023.122821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
Breast cancer has become the malignant tumor with the largest incidence, especially the drug resistant triple negative breast cancer (TNBC). The combination therapeutic system can play a better role in resisting drug resistant TNBC. In this study, dopamine and tumor targeted folic acid modified dopamine were synthesized as carrier materials to construct melanin-like tumor targeted combination therapeutic system. The optimized nanoparticles of CPT/Fe@PDA-FA10 with efficient loading of camptothecin and iron was achieved, which showed tumor targeted delivery ability, pH sensitive controlled release, effective photothermal conversion performance and excellent anti-tumor efficacy in vitro and in vivo. CPT/Fe@PDA-FA10 plus laser could significantly kill the drug resistant tumor cells, inhibit the growth of the orthotopic drug resistant triple negative breast cancer through apoptosis/ferroptosis/photothermal treatment, and had no significant side effects on the main tissues and organs. This strategy provided a new idea for the construction and clinical application of triple-combination therapeutic system as effective treatment for drug resistant triple negative breast cancer.
Collapse
Affiliation(s)
- Zedong Cai
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Meng-Lei Huan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yao-Wen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Ting-Ting Zhao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Tian-Yan Han
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wei He
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, China; Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Xi'an 710032, China.
| |
Collapse
|
44
|
Syeddan SA. Research Methodology and Mechanisms of Action of Current Orthopaedic Implant Coatings. J Long Term Eff Med Implants 2023; 33:51-66. [PMID: 36734927 DOI: 10.1615/jlongtermeffmedimplants.2022040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orthopedic implants are crucial interventions that are gaining greater importance in modern medicine to restore function to commonly affected joints. Each implantation carries the risk of implant-associated infection and loosening of the implant due to improper integration with soft tissue. Coating strategies have been developed to aid the growth of bone into the implant (osteointegration) and prevent biofilm formation to avoid infection. In this review, primary articles highlighting recent developments and advancements in orthopedic implant coating will be presented. Additionally, the methodology of the articles will be critiqued based on this research criteria: establishment of function on a theoretical basis, validation of coating function, and potential next steps/improvements based on results. A theoretical basis based on understanding the mechanisms at play of these various coatings allows for systems to be developed to tackle the tasks of osteointegration, subversion of infection, and avoidance of cytotoxicity. The current state of research methodology in coating design focuses too heavily on either osteointegration or the prevention of infection, thus, future development in medical implant coating needs to investigate the creation of a coating that accomplishes both tasks. Additionally, next steps and improvements to systems need to be better highlighted to move forward when problems arise within a system. Research currently showcasing new coatings is performed primarily in vitro and in vivo. More clinical trials need to be performed to highlight long-term sustainability, the structural integrity, and the safety of the implant.
Collapse
|
45
|
Hemmatpour H, Haddadi-Asl V, Burgers TCQ, Yan F, Stuart MCA, Reker-Smit C, Vlijm R, Salvati A, Rudolf P. Temperature-responsive and biocompatible nanocarriers based on clay nanotubes for controlled anti-cancer drug release. NANOSCALE 2023; 15:2402-2416. [PMID: 36651239 DOI: 10.1039/d2nr06801j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Administration of temperature-responsive drug carriers that release anticancer drugs at high temperatures can benefit hyperthermia therapies because of the synergistic effect of anticancer drug molecules and high temperature on killing the cancer cells. In this study, we design and characterize a new temperature-responsive nanocarrier based on a naturally occurring and biocompatible clay mineral, halloysite nanotubes. Poly(N-isopropylacrylamide) brushes were grown on the surface of halloysite nanotubes using a combination of mussel-inspired dopamine polymerization and surface-initiated atom transfer radical polymerization. The chemical structure of the hybrid materials was investigated using X-ray photoelectron spectroscopy, thermogravimetric analysis and energy-dispersive X-ray spectroscopy. The hybrid material was shown to have a phase transition temperature of about 32 °C, corresponding to a 40 nm thick polymer layer surrounding the nanotubes. Cell studies suggested that grafting of poly(N-isopropylacrylamide) brushes on the polydopamine-modified halloysite nanotubes suppresses the cytotoxicity caused by the polydopamine interlayer and drug release studies on nanotubes loaded with doxorubicin showed that thanks to the poly(N-isopropylacrylamide) brushes a temperature-dependent drug release is observed. Finally, a fluorescent dye molecule was covalently attached to the polymer-grafted nanotubes and stimulated emission depletion nanoscopy was used to confirm the internalization of the nanotubes in HeLa cells.
Collapse
Affiliation(s)
- Hamoon Hemmatpour
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 1587-4413, Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 1587-4413, Tehran, Iran
| | - Thomas C Q Burgers
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Feng Yan
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Catharina Reker-Smit
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Rifka Vlijm
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| |
Collapse
|
46
|
Murugan C, Lee H, Park S. Tumor-targeted molybdenum disulfide@barium titanate core-shell nanomedicine for dual photothermal and chemotherapy of triple-negative breast cancer cells. J Mater Chem B 2023; 11:1044-1056. [PMID: 36606505 DOI: 10.1039/d2tb02382b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Combinational therapy can improve the effectiveness of cancer treatment by overcoming individual therapy shortcomings, leading to accelerated cancer cell apoptosis. Combinational cancer therapy is attained by a single nanosystem with multiple physicochemical properties providing an efficient synergistic therapy against cancer cells. Herein, we report a folate receptor-targeting dual-therapeutic (photothermal and chemotherapy) core-shell nanoparticle (CSNP) exhibiting a molybdenum disulfide core with a barium titanate shell (MoS2@BT) to improve therapeutic efficacy against triple-negative breast cancer (TNBC) MDA-MB-231 cells. A simple hydrothermal approach was used to achieve the MoS2@BT CSNPs, and their diameter was calculated to be approximately 180 ± 25 nm. In addition to improving the photothermal efficiency and stability of the MoS2@BT CSNPs, their surface was functionalized with polydopamine (PDA) and subsequently modified with folic acid (FA) to achieve enhanced tumour-targeting CSNPs, named MoS2@BT-PDA-FA (MBPF). Then, gemcitabine (Gem) was loaded into the MBPF, and its loading and releasing efficacy were calculated to be 17.5 wt% and 64.5 ± 3%, respectively. Moreover, the photothermal conversion efficiency (PCE) of MBPF was estimated to be 35.3%, and it also showed better biocompatibility, which was determined by an MTT assay. The MBPF significantly increased the ambient temperature to 56.3 °C and triggered Gem release inside the TNBC cells when exposed to a near-infrared (NIR) laser (808 nm, 1.5 W cm-2, 5 min). Notably, the MoS2@BT-based nanosystem was used as a photothermal agent and a therapeutic drug-loading container for combating TNBC cells. Benefiting from the combined therapy, MBPF reduced TNBC cell viability to 81.3% due to its efficient synergistic effects. Thus, the proposed tumour-targeting MoS2@BT CSNP exhibits high drug loading, better biocompatibility, and improved anticancer efficacy toward TNBC cells due to its dual therapeutic approach in a single system, which opens up a new approach for dual cancer therapy.
Collapse
Affiliation(s)
- Chandran Murugan
- Department of Robotics and Mechatronics Engineering, Multiscale Biomedical Robotics Laboratory, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Hyoryong Lee
- Department of Robotics and Mechatronics Engineering, Multiscale Biomedical Robotics Laboratory, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Sukho Park
- Department of Robotics and Mechatronics Engineering, Multiscale Biomedical Robotics Laboratory, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
47
|
Polydopamine assembled stable core-shell nanoworms-DNAzyme probe for selective detection of Pb2+ and in living cells imaging. Talanta 2023. [DOI: 10.1016/j.talanta.2022.123984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Antioxidant ability and increased mechanical stability of hydrogel nanocomposites based on N-isopropylacrylamide crosslinked with Laponite and modified with polydopamine. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Berdecka D, Harizaj A, Goemaere I, Punj D, Goetgeluk G, De Munter S, De Keersmaecker H, Boterberg V, Dubruel P, Vandekerckhove B, De Smedt SC, De Vos WH, Braeckmans K. Delivery of macromolecules in unstimulated T cells by photoporation with polydopamine nanoparticles. J Control Release 2023; 354:680-693. [PMID: 36681281 DOI: 10.1016/j.jconrel.2023.01.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/23/2023]
Abstract
Ex vivo modification of T cells with exogenous cargo is a common prerequisite for the development of T cell therapies, such as chimeric antigen receptor therapy. Despite the clinical success and FDA approval of several such products, T cell manufacturing presents unique challenges related to therapeutic efficacy after adoptive cell transfer and several drawbacks of viral transduction-based manufacturing, such as high cost and safety concerns. To generate cellular products with optimal potency, engraftment potential and persistence in vivo, recent studies have shown that minimally differentiated T cell phenotypes are preferred. However, genetic engineering of quiescent T cells remains challenging. Photoporation is an upcoming alternative non-viral transfection method which makes use of photothermal nanoparticles, such as polydopamine nanoparticles (PDNPs), to induce transient membrane permeabilization by distinct photothermal effects upon laser irradiation, allowing exogenous molecules to enter cells. In this study, we analyzed the capability of PDNP-photoporation to deliver large model macromolecules (FITC-dextran 500 kDa, FD500) in unstimulated and expanded human T cells. We compared different sizes of PDNPs (150, 250 and 400 nm), concentrations of PDNPs and laser fluences and found an optimal condition that generated high delivery yields of FD500 in both T cell phenotypes. A multiparametric analysis of cell proliferation, surface activation markers and cytokine production, revealed that unstimulated T cells photoporated with 150 nm and 250 nm PDNPs retained their propensity to become activated, whereas those photoporated with 400 nm PDNPs did less. Our findings show that PDNP-photoporation is a promising strategy for transfection of quiescent T cells, but that PDNPs should be small enough to avoid excessive cell damage.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Ilia Goemaere
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Deep Punj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Heymanslaan 10, 9000 Ghent, Belgium
| | - Stijn De Munter
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Heymanslaan 10, 9000 Ghent, Belgium
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium
| | - Veerle Boterberg
- Polymer Chemistry and Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University Hospital, Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
50
|
Wang W, Xiong Y, Hu X, Lu F, Qin T, Zhang L, Guo E, Yang B, Fu Y, Hu D, Fan J, Qin X, Liu C, Xiao R, Chen G, Li Z, Sun C. Codelivery of adavosertib and olaparib by tumor-targeting nanoparticles for augmented efficacy and reduced toxicity. Acta Biomater 2023; 157:428-441. [PMID: 36549633 DOI: 10.1016/j.actbio.2022.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Ovarian cancer (OC) ranks first among gynecologic malignancies in terms of mortality. The benefits of poly (ADP-ribose) polymerase (PARP) inhibitors appear to be limited to OC with BRCA mutations. Concurrent administration of WEE1 inhibitors (eg, adavosertib (Ada)) and PARP inhibitors (eg, olaparib (Ola)) effectively suppress ovarian tumor growth regardless of BRCA mutation status, but is poorly tolerated. Henceforth, we aimed to seek a strategy to reduce the toxic effects of this combination by taking advantage of the mesoporous polydopamine (MPDA) nanoparticles with good biocompatibility and high drug loading capacity. In this work, we designed a tumor-targeting peptide TMTP1 modified MPDA-based nano-drug delivery system (TPNPs) for targeted co-delivery of Ada and Ola to treat OC. Ada and Ola could be effectively loaded into MPDA nanoplatform and showed tumor microenvironment triggered release behavior. The nanoparticles induced more apoptosis in OC cells, and significantly enhanced the synergy of combination therapy with Ada plus Ola in murine OC models. Moreover, the precise drug delivery of TPNPs towards tumor cells significantly diminished the toxic side effects caused by concurrent administration of Ada and Ola. Co-delivery of WEE1 inhibitors and PARP inhibitors via TPNPs represents a promising approach for the treatment of OC. STATEMENT OF SIGNIFICANCE: Combination therapy of WEE1 inhibitors (eg, Ada) with PARP inhibitors (eg, Ola) effectively suppress ovarian tumor growth regardless of BRCA mutation status. However, poor tolerability limits its clinical application. To address this issue, we construct a tumor-targeting nano-drug delivery system (TPNP) for co-delivery of Ada and Ola. The nanoparticles specifically target ovarian cancer and effectively enhance the antitumor effect while minimizing undesired toxic side effects. As the first nanomedicine co-loaded with a WEE1 inhibitor and a PARP inhibitor, TPNP-Ada-Ola may provide a promising and generally applicable therapeutic strategy for ovarian cancer patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingyuan Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Funian Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dianxing Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - JunPeng Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - RouRou Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|