1
|
Fontana-Escartín A, Rosa E, Diaferia C, Lanzalaco S, Accardo A, Alemán C. Evaluation of the electrochemical response of aromatic peptides for biodetection of dopamine. J Colloid Interface Sci 2025; 679:441-454. [PMID: 39368163 DOI: 10.1016/j.jcis.2024.09.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Biologically inspired aromatic peptide-based materials are gaining increasing interest as novel charge transport materials for bioelectronics due to their remarkable electrical response and inherent biocompatibility. In this work, the electrochemical response of ten aromatic amino acids and eleven aromatic peptides has been evaluated to assess the potential of incorporating peptides into electrochemical sensors not as biorecognition elements but as biocompatible electronic materials. While the electrochemical response of amino acids is null in all cases, the hexapeptide of phenylalanine (Phe) capped with eight polyethylene glycol units at the N-terminus and, especially, the cyclic dipeptide formed by two dehydro-phenylalanine residues (cyclo(ΔPhe2)), which organize in fibrillary self-assembled structures of nano- and submicrometric size, respectively, are the most electroactive peptides. Electrodes to electrochemically detect the oxidation of dopamine have been prepared using a plasma-activated polyethylene terephthalate glycol substrate covered with a poly(3,4-ethylenedioxythiophene) layer and a peptide coating deposited at the surface. The highest analytical sensitivity and the lowest limits of detection and quantifications have been obtained for the electrode coated with cyclo(ΔPhe2), which shows much better results than that without peptide. These results, on the one hand, confirm the significant role of electron transport through π-stacking interactions in the electrochemical response of peptides and, on the other hand, demonstrate that peptides can be directly used as electronic materials rather than as simple recognition elements in electrochemical biosensors.
Collapse
Affiliation(s)
- Adrián Fontana-Escartín
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Departament de Física EETAC, Universitat Politècnica de Catalunya, c/ Esteve Terrades, 7, 08860 Castelldefels, Spain
| | - Elisabetta Rosa
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| | - Carlo Diaferia
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy
| | - Sonia Lanzalaco
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Antonella Accardo
- Department of Pharmacy and CIRPeB, Research Centre on Bioactive Peptides "Carlo Pedone", University of Naples "Federico II", Via T. De Amicis 95, Naples 80145, Italy.
| | - Carlos Alemán
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona Spain.
| |
Collapse
|
2
|
Zhang Y, Li M, Li H. A vertical/horizontal graphene-based microneedle plant sensor for on-site detection of indole-3-acetic acid in vegetables. Talanta 2025; 283:127114. [PMID: 39467443 DOI: 10.1016/j.talanta.2024.127114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
Plant hormones are important regulators of crop growth and production. In this study, an in situ electrochemical sensor was successfully built using flat microelectrodes with horizontally and vertically grown graphene to detect the plant regulator indole-3-acetic acid (IAA) in plants. Vertical and horizontal graphene layers were prepared by electron-assisted hot-filament chemical vapor deposition. Vertical graphene nanosheets were grown on a horizontal graphene layer as sensing electrodes, and a microneedle sensor was assembled by combining Pt and Ti microelectrodes. The vertical/horizontal graphene (VHG) microneedle sensor can rapidly detect IAA levels in various plants in situ over a wide pH range of 4.0-9.0 and concentration range of 1-100 μM, with a minimum detection limit of 0.21 μM (3σ/S). Subsequently, this microneedle sensor was used to determine the IAA content in different tissues of cucumber and cauliflower stems with satisfactory results. The combination of VHG microelectrode arrays and small electrochemical workstations is useful for constructing portable, low-cost, on-site, and fast electrochemical sensing platforms for plant growth monitoring.
Collapse
Affiliation(s)
- Yangyang Zhang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, PR China.
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| |
Collapse
|
3
|
Huang S, Zhang H, Gao X, Su H, Lan J, Bai H, Yue H. Tapered cross-linked ZnO nanowire bundle arrays on three-dimensional graphene foam for highly sensitive electrochemical detection of levodopa. Mikrochim Acta 2024; 191:481. [PMID: 39046557 DOI: 10.1007/s00604-024-06563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
It is crucial to accurately and rapidly monitor the levodopa (LD) concentration for accurate classification and treatment of dyskinesia in Parkinson's disease. In this paper, 3D graphene foam (GF) with a highly conductive network is obtained by chemical vapor deposition. 3D GF serves as the substrate for hydrothermal in situ growth of tapered cross-linked ZnO nanowire bundle arrays (ZnO NWBAs), enabling the development of a highly sensitive detection platform for LD. The formation mechanism of a tapered cross-linked ZnO nanowire bundle arrays on 3D GF is put forward. The integration of 3D GF and ZnO NWBAs can accelerate the electron transfer rate and increase the contact area with biomolecules, resulting in high electrochemical properties. The electrode composed of ZnO NWBAs on 3D GF exhibits significant sensitivity (1.66 µA·µM-1·cm-2) for LD detection in the concentration range 0-60 µM. The electrode is able to rapidly and specifically determine LD in mixed AA or UA solution. The selectivity mechanism of the electrode is also explained by the bandgap model. Furthermore, the successful detection of LD in serum demonstrates the practicality of the electrode and its great potential for clinical application.
Collapse
Affiliation(s)
- Shuo Huang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Haopeng Zhang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Xin Gao
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Hang Su
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Jingming Lan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - He Bai
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Hongyan Yue
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| |
Collapse
|
4
|
Xu H, Hang Y, Lei X, Deng J, Yang J. Synthesis of cobalt phosphide hybrid for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. RSC Adv 2024; 14:14665-14671. [PMID: 38708113 PMCID: PMC11067435 DOI: 10.1039/d4ra01702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Ascorbic acid (AA), dopamine (DA), and uric acid (UA) are important biomarkers for the clinical screening of diseases. However, the simultaneous determination of these three analytes is still challenging. Herein, we report a facile metal-organic framework (MOF)-derived method to synthesize a cobalt phosphide (Co2P) hybrid for the simultaneous electrochemical detection of AA, DA and UA. The introduction of highly dispersed Co2P nanoparticles onto a P, N-doped porous carbon matrix is responsible for providing abundant active sites and facilitating electron transfer, thereby contributing to the improved electrocatalytic performance of the hybrid. Well-resolved oxidation peaks and an enhanced current response for the simultaneous oxidation of AA, DA, and UA were achieved using a Co2P hybrid-modified screen-printed electrode (Co2P hybrid-SPE) with the differential pulse voltammetry (DPV) method. The detection limits for AA, DA, and UA in simultaneous detection were calculated as 17.80 μM, 0.018 μM, and 0.068 μM (S/N = 3), respectively. Furthermore, the feasibility of using Co2P hybrid-SPE for the simultaneous detection of AA, DA, and UA in real serum samples was also confirmed.
Collapse
Affiliation(s)
- Hongyan Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| | - Yulu Hang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| | - Xiaoyu Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| | - Jinan Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| |
Collapse
|
5
|
Moon S, Senokos E, Trouillet V, Loeffler FF, Strauss V. Sustainable design of high-performance multifunctional carbon electrodes by one-step laser carbonization for supercapacitors and dopamine sensors. NANOSCALE 2024; 16:8627-8638. [PMID: 38606506 PMCID: PMC11064777 DOI: 10.1039/d4nr00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Laser carbonization is a rapid method to produce functional carbon materials for electronic devices, but many typical carbon precursors are not sustainable and/or require extensive processing for electrochemical applications. Here, a sustainable concept to fabricate laser patterned carbon (LP-C) electrodes from biomass-derived sodium lignosulfonate, an abundant waste product from the paper industry is presented. By introducing an adhesive polymer interlayer between the sodium lignosulfonate and a graphite foil current collector, stable, abrasion-resistant LP-C electrodes can be fabricated in a single laser irradiation step. The electrode properties can be systematically tuned by controlling the laser processing parameters. The optimized LP-C electrodes demonstrate a promising performance in supercapacitors and electrochemical dopamine biosensors. They exhibit high areal capacitances of 38.9 mF cm-2 in 1 M H2SO4 and high energy and power densities of 4.3 μW h cm-2 and 16 mW cm-2 in 17 M NaClO4, showing the best performance among biomass-derived LP-C materials reported so far. After 20 000 charge/discharge cycles, they retain a high capacitance of 81%. Dopamine was linearly detected in the range of 0.1 to 20 μM with an extrapolated limit of detection of 0.5 μM (S/N = 3) and high sensitivity (13.38 μA μM-1 cm-2), demonstrating better performance than previously reported biomass-derived LP-C dopamine sensors.
Collapse
Affiliation(s)
- Sanghwa Moon
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Evgeny Senokos
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix F Loeffler
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Volker Strauss
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
6
|
Nguyen-Thi PT, Nguyen TT, Phan HL, Ho TT, Vo TV, Vo GV. Cell membrane-based nanomaterials for therapeutics of neurodegenerative diseases. Neurochem Int 2023; 170:105612. [PMID: 37714337 DOI: 10.1016/j.neuint.2023.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/20/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Central nervous system (CNS) diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), glioblastoma (GBM), and peripheral nerve injury have been documented as incurable diseases, which lead to serious impacts on human health especially prevalent in the aging population worldwide. Most of the treatment strategies fail due to low efficacy, toxicity, and poor brain penetration. Recently, advancements in nanotechnology have helped alleviate the challenges associated with the application of cell membrane-based nanomaterials against CNS diseases. In the following review, the existing types of cell membrane-based nanomaterials systems which have improved therapeutic efficacy for CNS diseases would be described. A summary of recent progress in the incorporation of nanomaterials in cell membrane-based production, separation, and analysis will be provided. Addition to, challenges relate to large-scale manufacturing of cell membrane-based nanomaterials and future clinical trial of such platforms will be discussed.
Collapse
Affiliation(s)
| | - Thuy Trang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 71420, Viet Nam.
| | - Hoang Long Phan
- Faculty of Pharmacy, Van Lang University, Ho Chi Minh City, 700000, Viet Nam
| | - Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Toi Van Vo
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University -Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam; Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 70000, Viet Nam; Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 700000, Viet Nam
| |
Collapse
|
7
|
Zhao N, Zhang H, Yang S, Sun Y, Zhao G, Fan W, Yan Z, Lin J, Wan C. Direct Induction of Porous Graphene from Mechanically Strong and Waterproof Biopaper for On-Chip Multifunctional Flexible Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300242. [PMID: 37381614 DOI: 10.1002/smll.202300242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Graphene with a 3D porous structure is directly laser-induced on lignocellulosic biopaper under ambient conditions and is further explored for multifunctional biomass-based flexible electronics. The mechanically strong, flexible, and waterproof biopaper is fabricated by surface-functionalizing cellulose with lignin-based epoxy acrylate (LBEA). This composite biopaper shows as high as a threefold increase in tensile strength and excellent waterproofing compared with pure cellulose one. Direct laser writing (DLW) rapidly induces porous graphene from the biopaper in a single step. The porous graphene shows an interconnected carbon network, well-defined graphene domains, and high electrical conductivity (e.g., ≈3 Ω per square), which can be tuned by lignin precursors and loadings as well as lasing conditions. The biopaper in situ embedded with porous graphene is facilely fabricated into flexible electronics for on-chip and paper-based applications. The biopaper-based electronic devices, including the all-solid-state planer supercapacitor, electrochemical and strain biosensors, and Joule heater, show great performances. This study demonstrates the facile, versatile, and low-cost fabrication of multifunctional graphene-based electronics from lignocellulose-based biopaper.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Blvd, Zhengzhou, Henan Province, 450001, China
| | - Hanwen Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Shuhong Yang
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Yisheng Sun
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, 416 South 6th Street, Columbia, MO, 65211, USA
| | - Wenjun Fan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
- Department of Mechanical and Aerospace Engineering, University of Missouri, 416 South 6th Street, Columbia, MO, 65211, USA
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, University of Missouri, 416 South 6th Street, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
8
|
Tian Q, She Y, Zhu Y, Dai D, Shi M, Chu W, Cai T, Tsai HS, Li H, Jiang N, Fu L, Xia H, Lin CT, Ye C. Highly Sensitive and Selective Dopamine Determination in Real Samples Using Au Nanoparticles Decorated Marimo-like Graphene Microbead-Based Electrochemical Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052870. [PMID: 36905070 PMCID: PMC10007331 DOI: 10.3390/s23052870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 05/05/2023]
Abstract
A sensitive and selective electrochemical dopamine (DA) sensor has been developed using gold nanoparticles decorated marimo-like graphene (Au NP/MG) as a modifier of the glassy carbon electrode (GCE). Marimo-like graphene (MG) was prepared by partial exfoliation on the mesocarbon microbeads (MCMB) through molten KOH intercalation. Characterization via transmission electron microscopy confirmed that the surface of MG is composed of multi-layer graphene nanowalls. The graphene nanowalls structure of MG provided abundant surface area and electroactive sites. Electrochemical properties of Au NP/MG/GCE electrode were investigated by cyclic voltammetry and differential pulse voltammetry techniques. The electrode exhibited high electrochemical activity towards DA oxidation. The oxidation peak current increased linearly in proportion to the DA concentration in a range from 0.02 to 10 μM with a detection limit of 0.016 μM. The detection selectivity was carried out with the presence of 20 μM uric acid in goat serum real samples. This study demonstrated a promising method to fabricate DA sensor-based on MCMB derivatives as electrochemical modifiers.
Collapse
Affiliation(s)
- Qichen Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yangguang Zhu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Dan Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Mingjiao Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Wubo Chu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Cai
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Hsu-Sheng Tsai
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - He Li
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Nan Jiang
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hongyan Xia
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (H.X.); (C.-T.L.); (C.Y.)
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Correspondence: (H.X.); (C.-T.L.); (C.Y.)
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Correspondence: (H.X.); (C.-T.L.); (C.Y.)
| |
Collapse
|
9
|
Jiang J, Li Y, Liu L, Chen L, Zhao J, Streb C, Song YF. First Ultrathin Pure Polyoxometalate 2D Material as a Peroxidase-Mimicking Catalyst for Detecting Oxidative Stress Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1486-1494. [PMID: 36578107 DOI: 10.1021/acsami.2c15579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although two-dimensional (2D) materials with ultrathin geometry and extraordinary electrical attributes have attracted substantial concern, exploiting new-type 2D materials is still a great challenge. In this work, an unprecedented single-layer pure polyoxometalate (POM) 2D material (2D-1) was prepared by ultrasonically exfoliating a one-dimensional (1D)-chain heterometallic crystalline germanotungstate Na4[Ho(H2O)6]2[Fe4(H2O)2(pic)6Ge2W20O72]·16H2O (1) (Hpic = picolinic acid). The 1D polymeric chain of 1 is assembled from particular {Ge2W20}-based [Fe4(H2O)2(pic)6Ge2W20O72]10- segments through bridging [Ho(H2O)6]3+ cations. 2D-1 is formed by π-π interaction driving force among adjacent 1D polymeric chains of 1. Also, the peroxidase-mimicking properties of 2D-1 toward detecting H2O2 were evaluated and good detection result was observed with a limit of detection (LOD) of 58 nM. Density functional theory (DFT) calculation further confirms that 2D-1 displays outstanding catalytic activity and active sites are located on Fe centers and Hpic ligands. Under the catalysis of uricase, uric acid can be transformed to allantoin and H2O2, and then, H2O2 oxidizes TMB to its blue ox-TMB in the presence of 2D-1 as a catalyst. Then, we utilized this cascade reaction to detect uric acid, which also exhibits prominent results. This research opens a door to prepare ultrathin pure POM 2D materials and broadens the scope of potential applications of POMs in biology and iatrology.
Collapse
Affiliation(s)
- Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Kang H, Xiong Y, Ma L, Yang T, Xu X. Recent advances in micro-/nanostructure array integrated microfluidic devices for efficient separation of circulating tumor cells. RSC Adv 2022; 12:34892-34903. [PMID: 36540264 PMCID: PMC9724214 DOI: 10.1039/d2ra06339e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 09/06/2023] Open
Abstract
Circulating tumor cells (CTCs) released from the primary tumor to peripheral blood are promising targets for liquid biopsies. Their biological information is vital for early cancer detection, efficacy assessment, and prognostic monitoring. Despite the tremendous clinical applications of CTCs, development of effective separation techniques are still demanding. Traditional separation methods usually use batch processing for enrichment, which inevitably destroy cell integrity and affect the complete information acquisition. Considering the rarity and heterogeneity of CTCs, it is urgent to develop effective separation methods. Microfluidic chips with precise fluid control at the micron level are promising devices for CTC separation. Their further combination with micro-/nanostructure arrays adds more biomolecule binding sites and exhibit unique fluid barrier effect, which significantly improve the CTC capture efficiency, purity, and sensitivity. This review summarized the recent advances in micro-/nanostructure array integrated microfluidic devices for CTC separation, including microrods, nanowires, and 3D micro-/nanostructures. The mechanisms by which these structures contribute to improved capture efficiency are discussed. Two major categories of separation methods, based on the physical and biological properties of CTCs, are discussed separately. Physical separation includes the design and preparation of micro-/nanostructure arrays, while chemical separation additionally involves the selection and modification of specific capture probes. These emerging technologies are expected to become powerful tools for disease diagnosis in the future.
Collapse
Affiliation(s)
- Hanyue Kang
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Yuting Xiong
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University Hangzhou 310058 China
| | - Tongqing Yang
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Xiaobin Xu
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| |
Collapse
|
11
|
Sivaraman N, Duraisamy V, Senthil Kumar SM, Thangamuthu R. N, S dual doped mesoporous carbon assisted simultaneous electrochemical assay of emerging water contaminant hydroquinone and catechol. CHEMOSPHERE 2022; 307:135771. [PMID: 35931262 DOI: 10.1016/j.chemosphere.2022.135771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Heteroatom doped mesoporous carbon materials are promising catalysts for the electrochemical sensing application. Herein, we report highly efficient dual heteroatom-doped hexagonal mesoporous carbon (MC) derived from Santa Barbara Amorphous-15 (SBA-15) hard template for the detection of phenolic isomers. The synthesis involves dopamine hydrochloride (DA)/thiophene complex, which helps to attain perfectly retained N and S dual doped mesoporous carbon (NS-MC) framework. NS-MC exhibits higher surface area (951 m2 g-1) as well as higher pore volume (0.12 cm3 g-1) with huge graphitic, pyridinic and thiophenic defective sites which facilitates the well-resolved simultaneous electrochemical detection of phenolic isomers hydroquinone (HQ) and catechol (CC). Our results demonstrate that as-synthesized NS-MC material had a LOD of 0.63 μM and 0.29 μM for HQ and CC, respectively. From the calibration curve, sensitivities of proposed sensor were found to be 9.44, 2.71 μA μM-1 cm-2 and 20.80, 10.02 μA μM-1 cm-2 for HQ and CC, respectively with good linear ranges of 10-45 μM and 45-115 μM for HQ; 2-16 μM and 16-40 μM for CC. The NS-MC modified electrode exhibited good selectivity over various possible interferences. The present investigation reveals that the proposed NS-MC material is a promising metal-free catalyst which boosted to electrochemically detect both HQ and CC, present in the municipal tap as well as natural river stream water samples.
Collapse
Affiliation(s)
- Narmatha Sivaraman
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Velu Duraisamy
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India
| | - Rangasamy Thangamuthu
- Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi - 630 003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, India.
| |
Collapse
|
12
|
Kaur H, Siwal SS, Saini RV, Singh N, Thakur VK. Significance of an Electrochemical Sensor and Nanocomposites: Toward the Electrocatalytic Detection of Neurotransmitters and Their Importance within the Physiological System. ACS NANOSCIENCE AU 2022; 3:1-27. [PMID: 37101467 PMCID: PMC10125382 DOI: 10.1021/acsnanoscienceau.2c00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
A prominent neurotransmitter (NT), dopamine (DA), is a chemical messenger that transmits signals between one neuron to the next to pass on a signal to and from the central nervous system (CNS). The imbalanced concentration of DA may cause numerous neurological sicknesses and syndromes, for example, Parkinson's disease (PD) and schizophrenia. There are many types of NTs in the brain, including epinephrine, norepinephrine (NE), serotonin, and glutamate. Electrochemical sensors have offered a creative direction to biomedical analysis and testing. Researches are in progress to improve the performance of sensors and develop new protocols for sensor design. This review article focuses on the area of sensor growth to discover the applicability of polymers and metallic particles and composite materials as tools in electrochemical sensor surface incorporation. Electrochemical sensors have attracted the attention of researchers as they possess high sensitivity, quick reaction rate, good controllability, and instantaneous detection. Efficient complex materials provide considerable benefits for biological detection as they have exclusive chemical and physical properties. Due to distinctive electrocatalytic characteristics, metallic nanoparticles add fascinating traits to materials that depend on the material's morphology and size. Herein, we have collected much information on NTs and their importance within the physiological system. Furthermore, the electrochemical sensors and corresponding techniques (such as voltammetric, amperometry, impedance, and chronoamperometry) and the different types of electrodes' roles in the analysis of NTs are discussed. Furthermore, other methods for detecting NTs include optical and microdialysis methods. Finally, we show the advantages and disadvantages of different techniques and conclude remarks with future perspectives.
Collapse
Affiliation(s)
- Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Reena V. Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nirankar Singh
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, United Kingdom
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
- Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| |
Collapse
|
13
|
Roostaee M, Beitollahi H, Sheikhshoaie I. Simultaneous Determination of Dopamine and Uric Acid in Real Samples Using a Voltammetric Nanosensor Based on Co-MOF, Graphene Oxide, and 1-Methyl-3-butylimidazolium Bromide. MICROMACHINES 2022; 13:mi13111834. [PMID: 36363855 PMCID: PMC9697397 DOI: 10.3390/mi13111834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 05/27/2023]
Abstract
A chemically modified carbon paste electrode, based on a CoMOF-graphene oxide (GO) and an ionic liquid of 1-methyl-3-butylimidazolium bromide (CoMOF-GO/1-M,3-BB/CPE), was fabricated for the simultaneous determination of dopamine (DA) and uric acid (UA). The prepared CoMOF/GO nanocomposite was characterized by field emission-scanning electron microscopy (FE-SEM), the X-ray diffraction (XRD) method, a N2 adsorption-desorption isotherm, and an energy dispersive spectrometer (EDS). The electrochemical sensor clearly illustrated catalytic activity towards the redox reaction of dopamine (DA), which can be authenticated by comparing the increased oxidation peak current with the bare carbon paste electrode. The CoMOF-GO/1-M,3-BB/CPE exhibits a wide linear response for DA in the concentration range of 0.1 to 300.0 µM, with a detection limit of 0.04 µM. The oxidation peaks' potential for DA and uric acid (UA) were separated well in the mixture containing the two compounds. This study demonstrated a simple and effective method for detecting DA and UA in real samples.
Collapse
Affiliation(s)
- Maryam Roostaee
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
14
|
Khandelwal G, Dahiya R. Self-Powered Active Sensing Based on Triboelectric Generators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200724. [PMID: 35445458 DOI: 10.1002/adma.202200724] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The demand for portable and wearable chemical or biosensors and their expeditious development in recent years has created a scientific challenge in terms of their continuous powering. As a result, mechanical energy harvesters such as piezoelectric and triboelectric generators (TEGs) have been explored recently either as sensors or harvesters to store charge in small, but long-life, energy-storage devices to power the sensors. The use of energy harvesters as sensors is particularly interesting, as with such multifunctional operations it is possible to reduce the number devices needed in a system, which also helps overcome the integration complexities. In this regard, TEGs are promising, particularly for energy autonomous chemical and biological sensors, as they can be developed with a wide variety of materials, and their mechanical energy to electricity conversion can be modulated by various analytes. This review focuses on this interesting dimension of TEGs and presents various self-powered active chemical and biological sensors. A brief discussion about the development of TEG-based physical, magnetic, and optical sensors is also included. The influence of environmental factors, various figures of merit, and the significance of TEG design are explained in context with the active sensing. Finally, the key applications, challenges, and future perspective of chemical and biological detection via TEGs are discussed with a view to drive further advances in the field of self-powered sensors.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
15
|
Chen Z, Li B, Liu J, Li H, Li C, Xuan X, Li M. A label-free electrochemical immunosensor based on a gold-vertical graphene/TiO 2 nanotube electrode for CA125 detection in oxidation/reduction dual channels. Mikrochim Acta 2022; 189:257. [PMID: 35701556 DOI: 10.1007/s00604-022-05332-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
A label-free immunosensor was constructed in oxidation and reduction dual channel mode for the trace detection of cancer antigen 125 (CA125) in serum. The gold-vertical graphene/titanium dioxide (Au-VG/TiO2) electrode was used as the signal-amplification platform, and cytosine and dopamine were used as probes in the oxidation and reduction channels, respectively. VG nanosheets were synthesized on a TiO2 nanotube array via chemical vapor deposition (CVD), and Au nanoparticles were deeply embedded on the surface and in the root of the VG nanosheets via electrodeposition. The CA125 antibody was then directly immobilized onto the electrode surface, benefitting from its natural affinity for Au nanoparticles. In the oxidation and reduction channels the CA125 antibody-Au-VG/TiO2 immune electrode had the same response concentration range (0.01-1000 mU∙mL-1) for the determination of the CA125 antigen. However, the oxidation channel had a higher sensitivity (14.82 μA•(log(mU•mL-1))-1 at a working potential of ~ 1.25 V vs. SCE), lower detection limit (0.0001 mU∙mL-1), higher stability, and lower performance deviation than the reduction channel. This immunosensor was successfully used for CA125 detection in human serum. The recoveries of spiked serum samples ranged from 99.8 ± 0.5 to 100 ± 0.4%. The study on the difference in the sensing performance between oxidation and reduction channels provides a preliminary experimental reference for exploring dual-channel synchronous detection immunosensors and verifying the accuracy of the assay based on dual-channel data, which will promote the development of reliable electrochemical immunosensor technology.
Collapse
Affiliation(s)
- Zehua Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Bingbing Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Jinbiao Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Cuiping Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xiuwei Xuan
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
16
|
Li J, Wang Y, Zang J, Zhou Y, Su S, Zou Q, Yuan Y. A film electrode composed of micron-diamond embedded in phenolic resin derived amorphous carbon for electroanalysis of dopamine in the presence of uric acid. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Feng S, Yan M, Xue Y, Huang J, Yang X. An electrochemical sensor for sensitive detection of dopamine based on a COF/Pt/MWCNT-COOH nanocomposite. Chem Commun (Camb) 2022; 58:6092-6095. [PMID: 35502936 DOI: 10.1039/d2cc01376b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, an electrochemical sensor was developed for sensitive detection of dopamine (DA) based on a novel COF-based nanocomposite named COF/Pt/MWCNT-COOH, which possesses large specific surface area, excellent electrical conductivity, and high catalytic activity, thus broadening the application of COFs in the electrochemical sensing area.
Collapse
Affiliation(s)
- Sinuo Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yu Xue
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
18
|
Charlton van der Horst, Vernon Somerset. Nanoparticles Application in the Determination of Uric Acid, Ascorbic Acid, and Dopamine. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s102319352205010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Şen M, Azizi E, Avcı İ, Aykaç A, Ensarioğlu K, Ok İ, Yavuz GF, Güneş F. Screen printed carbon electrodes modified with 3D nanostructured materials for bioanalysis. ELECTROANAL 2022. [DOI: 10.1002/elan.202100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - İpek Avcı
- Izmir Katip Celebi Universitesi TURKEY
| | | | | | | | | | | |
Collapse
|
20
|
Xu Y, Huang W, Zhang Y, Duan H, Xiao F. Electrochemical Microfluidic Multiplexed Bioanalysis by a Highly Active Bottlebrush-like Nanocarbon Microelectrode. Anal Chem 2022; 94:4463-4473. [PMID: 35199513 DOI: 10.1021/acs.analchem.1c05544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a highly efficient multichannel microfluidic electrochemical sensor integrated with an electroactive nanocarbon microelectrode for sensitive and selective detection of multiple biomarkers in different biological samples. Our results have shown that ionic liquid-assisted wet spinning followed by tailored growth of metal-organic frameworks and pyrolysis treatment led to structural and molecular engineering of mechanically robust all-carbon microfibers for excellent electrochemical activities. The flexible bottlebrush-like nanocarbon microelectrode features a "stem" of freestanding N, B-codoped graphene fiber and high-density "bristles" of Co, N-codoped carbon nanotube arrays, leading to promoted electrocatalytic mechanism that has been substantiated by density functional theory calculations. The structural characteristics, high catalytic activities, and favorable biocompatibility of the bottlebrush nanocarbon electrodes provide opportunities for multichannel, microfluidic detection of redox-active biomolecules, including hydrogen sulfide (H2S), dopamine (DA), uric acid (UA), and ascorbic acid (AA), and have been applied to on-chip monitoring of H2S and DA released from live cancer cells or neuroblastoma cells and DA, UA, and AA in trace amounts of body fluids such as sweat, finger blood, tears, saliva, and urine, which is of great significance for clinical diagnosis and prognosis in point-of-care testing.
Collapse
Affiliation(s)
- Yun Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
21
|
de Lima LS, Mortari MR. Therapeutic nanoparticles in the brain: A review of types, physicochemical properties and challenges. Int J Pharm 2022; 612:121367. [PMID: 34896565 DOI: 10.1016/j.ijpharm.2021.121367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
One of the main obstacles in the treatment of neurological diseases, perhaps the biggest one, is the delivery of therapeutic compounds to the central nervous system, and nanoparticles are promising tools to overcome this challenge. Different types of nanoparticles may be used as delivery systems, including liposomes, carbon nanotubes, and dendrimers. Nevertheless, these nanoparticles must display characteristics to be useful in brain drug delivery, such as stability, permeability to blood vessels, biocompatibility, and specificity. All of these aspects are intrinsically related to the physicochemical properties of nanoformulations: size, composition, electric charge, hydrophobicity, mucoadherence, permeability to the blood-brain barrier, and many others. Furthermore, there are challenging hindrances involved in the development and application of nanoparticles - hence the importance of studying and understanding these pharmaceutical tools.
Collapse
Affiliation(s)
- Larissa Silva de Lima
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, 70910-900 Brasilia, Distrito Federal, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, 70910-900 Brasilia, Distrito Federal, Brazil.
| |
Collapse
|
22
|
Surface enhanced electrochemiluminescence of the Ru(bpy)32+/tripropylamine system by Au@SiO2 nanoparticles for highly sensitive and selective detection of dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Zhu J, Huang X, Song W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS NANO 2021; 15:18708-18741. [PMID: 34881870 DOI: 10.1021/acsnano.1c05806] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Laser-induced graphene (LIG) is produced rapidly by directly irradiating carbonaceous precursors, and it naturally exhibits as a three-dimensional porous structure. Due to advantages such as simple preparation, time-saving, environmental friendliness, low cost, and expanding categories of raw materials, LIG and its derivatives have achieved broad applications in sensors. This has been witnessed in various fields such as wearable devices, disease diagnosis, intelligent robots, and pollution detection. However, despite LIG sensors having demonstrated an excellent capability to monitor physical and chemical parameters, the systematic review of synthesis, sensing mechanisms, and applications of them combined with comparison against other preparation approaches of graphene is still lacking. Here, graphene-based sensors for physical, biological, and chemical detection are reviewed first, followed by the introduction of general preparation methods for the laser-induced method to yield graphene. The preparation and advantages of LIG, sensing mechanisms, and the properties of different types of emerging LIG-based sensors are comprehensively reviewed. Finally, possible solutions to the problems and challenges of preparing LIG and LIG-based sensors are proposed. This review may serve as a detailed reference to guide the development of LIG-based sensors that possess properties for future smart sensors in health care, environmental protection, and industrial production.
Collapse
Affiliation(s)
- Junbo Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Weixing Song
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| |
Collapse
|
24
|
Beduk T, de Oliveira Filho JI, Ait Lahcen A, Mani V, Salama KN. Inherent Surface Activation of Laser-Scribed Graphene Decorated with Au and Ag Nanoparticles: Simultaneous Electrochemical Behavior toward Uric Acid and Dopamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13890-13902. [PMID: 34787434 DOI: 10.1021/acs.langmuir.1c02379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Laser-scribed graphene electrodes (LSGEs) have attracted great attention for the development of electrochemical (bio)sensors due to their excellent electronic properties, large surface area, and high porosity, which enhances the electrons' transfer rate. An increasing active surface area and defect sites are the quickest way to amplify the electrochemical sensing attributes of the electrodes. Here, we have found that the activation procedure coupled to the electrodeposition of metal nanoparticles resulted in a significant amplification of the active area and the analytical performance. This preliminary study is supported by the demonstration of the simultaneous electrochemical sensing of dopamine (DA) and uric acid (UA) by the electrochemically activated LSGEs (LSGE*s). Furthermore, the electrodeposition of two different metal nanoparticles, gold (Au) and silver (Ag), was performed in multiple combinations on working and reference electrodes to investigate the enhancement in the electrochemical response of LSGE*s. Current enhancements of 32, 27, and 35% were observed from LSGE* with WE:Au/RE:LSG/CE:LSGE, WE:Au/RE:Au/CE:LSGE, and WE:Au/RE:Ag/CE:LSGE, compared to the same combinations of LSGEs without any surface activation. A homemade and practical potentiostat, KAUSTat, was used in these electrochemical depositions in this study. Among all of the combinations, the surface area was increased 1.6-, 2.0-, and 1.2-fold for WE:Au/RE:LSG/CE:LSGE, WE:Au/RE:Au/CE:LSGE, and WE:Au/RE:Ag/CE:LSGE prepared from LSGE*s, respectively. To evaluate the analytical performance, DA and UA were detected simultaneously in the presence of ascorbic acid. The LODs of DA and UA are calculated to be ∼0.8 and ∼0.6 μM, respectively. Hence, this study has the potential to open new insights into new surface activation strategies with a combination of one-step nanostructured metal depositions by a custom-made potentiostat. This novel strategy could be an excellent and straightforward method to enhance the electrochemical transducer sensitivity for various electrochemical sensing applications.
Collapse
Affiliation(s)
- Tutku Beduk
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - José Ilton de Oliveira Filho
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdellatif Ait Lahcen
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Veerappan Mani
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrocial and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
25
|
Zhu Y, Tian Q, Li X, Wu L, Yu A, Lai G, Fu L, Wei Q, Dai D, Jiang N, Li H, Ye C, Lin CT. A Double-Deck Structure of Reduced Graphene Oxide Modified Porous Ti 3C 2T x Electrode towards Ultrasensitive and Simultaneous Detection of Dopamine and Uric Acid. BIOSENSORS 2021; 11:bios11110462. [PMID: 34821678 PMCID: PMC8615994 DOI: 10.3390/bios11110462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 05/08/2023]
Abstract
Considering the vital physiological functions of dopamine (DA) and uric acid (UA) and their coexistence in the biological matrix, the development of biosensing techniques for their simultaneous and sensitive detection is highly desirable for diagnostic and analytical applications. Therefore, Ti3C2Tx/rGO heterostructure with a double-deck layer was fabricated through electrochemical reduction. The rGO was modified on a porous Ti3C2Tx electrode as the biosensor for the detection of DA and UA simultaneously. Debye length was regulated by the alteration of rGO mass on the surface of the Ti3C2Tx electrode. Debye length decreased with respect to the rGO electrode modified with further rGO mass, indicating that fewer DA molecules were capable of surpassing the equilibrium double layer and reaching the surface of rGO to achieve the voltammetric response of DA. Thus, the proposed Ti3C2Tx/rGO sensor presented an excellent performance in detecting DA and UA with a wide linear range of 0.1-100 μM and 1-1000 μM and a low detection limit of 9.5 nM and 0.3 μM, respectively. Additionally, the proposed Ti3C2Tx/rGO electrode displayed good repeatability, selectivity, and proved to be available for real sample analysis.
Collapse
Affiliation(s)
- Yangguang Zhu
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
| | - Qichen Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China;
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;
- Correspondence: (X.L.); (C.Y.); (C.-T.L.)
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | - Guosong Lai
- Department of Chemistry, Hubei Normal University, Huangshi 435002, China;
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Qiuping Wei
- School of Materials Science and Engineering, Central South University, Changsha 410083, China;
| | - Dan Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Ye
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.L.); (C.Y.); (C.-T.L.)
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.L.); (C.Y.); (C.-T.L.)
| |
Collapse
|
26
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
27
|
Shahsavari M, Tajik S, Sheikhshoaie I, Garkani Nejad F, Beitollahi H. Synthesis of Fe3O4@copper(II) imidazolate nanoparticles: Catalytic activity of modified graphite screen printed electrode for the determination of levodopa in presence of melatonin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Shenbagapushpam M, Muthukumar T, Paulpandian MM, Kodirajan S. Synthesis and electro-catalytic evaluation of Ti(IV)-anchored heterogeneous mesoporous material for uric acid analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Kujawska M, Bhardwaj SK, Mishra YK, Kaushik A. Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson's Disease Diagnostics. BIOSENSORS 2021; 11:433. [PMID: 34821649 PMCID: PMC8615362 DOI: 10.3390/bios11110433] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease in which the neurotransmitter dopamine (DA) depletes due to the progressive loss of nigrostriatal neurons. Therefore, DA measurement might be a useful diagnostic tool for targeting the early stages of PD, as well as helping to optimize DA replacement therapy. Moreover, DA sensing appears to be a useful analytical tool in complex biological systems in PD studies. To support the feasibility of this concept, this mini-review explores the currently developed graphene-based biosensors dedicated to DA detection. We discuss various graphene modifications designed for high-performance DA sensing electrodes alongside their analytical performances and interference studies, which we listed based on their limit of detection in biological samples. Moreover, graphene-based biosensors for optical DA detection are also presented herein. Regarding clinical relevance, we explored the development trends of graphene-based electrochemical sensing of DA as they relate to point-of-care testing suitable for the site-of-location diagnostics needed for personalized PD management. In this field, the biosensors are developed into smartphone-connected systems for intelligent disease management. However, we highlighted that the focus should be on the clinical utility rather than analytical and technical performance.
Collapse
Affiliation(s)
- Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland
| | - Sheetal K. Bhardwaj
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Amsterdam Scientific Instruments B.V., Science Park 106, 1098 XG Amsterdam, The Netherlands
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
| |
Collapse
|
30
|
Domínguez-Bajo A, Rosa JM, González-Mayorga A, Rodilla BL, Arché-Núñez A, Benayas E, Ocón P, Pérez L, Camarero J, Miranda R, González MT, Aguilar J, López-Dolado E, Serrano MC. Nanostructured gold electrodes promote neural maturation and network connectivity. Biomaterials 2021; 279:121186. [PMID: 34700221 DOI: 10.1016/j.biomaterials.2021.121186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022]
Abstract
Progress in the clinical application of recording and stimulation devices for neural diseases is still limited, mainly because of suboptimal material engineering and unfavorable interactions with biological entities. Nanotechnology is providing upgraded designs of materials to better mimic the native extracellular environment and attain more intimate contacts with individual neurons, besides allowing for the miniaturization of the electrodes. However, little progress has been done to date on the understanding of the biological impact that such neural interfaces have on neural network maturation and functionality. In this work, we elucidate the effect of a gold (Au) highly ordered nanostructure on the morphological and functional interactions with neural cells and tissues. Alumina-templated Au nanostructured electrodes composed of parallel nanowires of 160 nm in diameter and 1.2 μm in length (Au-NWs), with 320 nm of pitch, are designed and characterized. Equivalent non-structured Au electrodes (Au-Flat) are used for comparison. By using diverse techniques in in vitro cell cultures including live calcium imaging, we found that Au-NWs interfaced with primary neural cortical cells for up to 14 days allow neural networks growth and increase spontaneous activity and ability of neuronal synchronization, thus indicating that nanostructured features favor neuronal network. The enhancement in the number of glial cells found is hypothesized to be behind these beneficial functional effects. The in vivo effect of the implantation of these nanostructured electrodes and its potential relevance for future clinical applicability has been explored in an experimental model of rat spinal cord injury. Subacute responses to implanted Au-NWs show no overt reactive or toxic biological reactions besides those triggered by the injury itself. These results highlight the translational potential of Au-NWs electrodes for in vivo applications as neural interfaces in contact with central nervous tissues including the injured spinal cord.
Collapse
Affiliation(s)
- Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Juliana M Rosa
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | | | - Beatriz L Rodilla
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, 28040, Madrid, Spain
| | - Ana Arché-Núñez
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain
| | - Esther Benayas
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Pilar Ocón
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Lucas Pérez
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, 28040, Madrid, Spain
| | - Julio Camarero
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Instituto "Nicolás Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid, Madrid, 28049, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Instituto "Nicolás Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid, Madrid, 28049, Spain
| | - M Teresa González
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain
| | - Juan Aguilar
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain; Research Unit of "Design and development of biomaterials for neural regeneration", Hospital Nacional de Parapléjicos, Joint Research Unit with CSIC, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Elisa López-Dolado
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain; Research Unit of "Design and development of biomaterials for neural regeneration", Hospital Nacional de Parapléjicos, Joint Research Unit with CSIC, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.
| |
Collapse
|
31
|
Brief Review of Photocatalysis and Photoresponse Properties of ZnO–Graphene Nanocomposites. ENERGIES 2021. [DOI: 10.3390/en14196403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a typical wide bandgap semiconductor, ZnO has received a great deal of attention from researchers because of its strong physicochemical characteristics. During the past few years, great progress has been made in the optoelectronic applications of ZnO, particularly in the photocatalysis and photodetection fields. To enable further improvements in the material’s optoelectronic performance, construction of a variety of ZnO-based composite structures will be essential. In this paper, we review recent progress in the growth of different ZnO–graphene nanocomposite structures. The related band structures and photocatalysis and photoresponse properties of these nanocomposites are discussed. Additionally, specific examples of the materials are included to provide an insight into the common general physical properties and carrier transport characteristics involved in these unique nanocomposite structures. Finally, further directions for the development of ZnO–graphene nanocomposite materials are forecasted.
Collapse
|
32
|
Miao X, Yu F, Liu K, Lv Z, Deng J, Wu T, Cheng X, Zhang W, Cheng X, Wang X. High special surface area and "warm light" responsive ZnO: Synthesis mechanism, application and optimization. Bioact Mater 2021; 7:181-191. [PMID: 34466726 PMCID: PMC8379355 DOI: 10.1016/j.bioactmat.2021.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, a new series of zinc oxide (ZnO) with high specific surface area and narrow energy band gap are prepared using a facile microwave-induced method. The corresponding formation mechanism is also discussed for the first time. Due to the introduction of C, these ZnO can be excited by long wave temperature light without harmful short wave radiation, and play an efficient photocatalytic activity. This valuable property fundamentally improves the biological safety of its photocatalytic application. Herein, taking teeth whitening as an example, the photocatalytic performance of ZnO is evaluated. The “pure” yellow light-emitting diode (PYLED) with high biological safety is used as the excitation source. It is found that this method could effectively remove pigment on the tooth surface through physical adsorption. In addition, these ZnO could generate active oxygen to degrade the pigment on the tooth surface under the irradiation of yellow light. Some further optimization of these “warm light” responsive ZnO is also discussed in this systematical study, which could open up new opportunities in biomedical field. A series of ZnO (PZCs, ZnO-BC) with high specific surface area and low band gap were synthesized by simple microwave-induced synthesis. The introduction of C or BC can effectively reduce the band gap of ZnO. Long wavelength warm light can effectively stimulate the photocatalytic activity of PZCs and ZnO-BC. Under the yellow light, ZnO can effectively decompose the pigment on the tooth surface. Warm light whitening, from the light source and material two levels to reduce the stimulation of teeth, and no obvious damage to enamel.
Collapse
Affiliation(s)
- Xinxin Miao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Fen Yu
- College of Chemistry, NanChang University, NanChang, Jiangxi, 330031, PR China.,Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, Jiangxi, 330013, PR China
| | - Kuan Liu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Zhongsheng Lv
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Jianjian Deng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Tianlong Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xinyan Cheng
- College of Chemistry, NanChang University, NanChang, Jiangxi, 330031, PR China
| | - Wei Zhang
- College of Chemistry, NanChang University, NanChang, Jiangxi, 330031, PR China
| | - Xigao Cheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaolei Wang
- College of Chemistry, NanChang University, NanChang, Jiangxi, 330031, PR China.,Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| |
Collapse
|
33
|
Qin J, Gao S, Li H, Li C, Li M. Growth of monolayer and multilayer graphene on glassy carbon electrode for simultaneous determination of guanine, adenine, thymine, and cytosine. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
35
|
Tandon A, Singh SJ, Chaturvedi RK. Nanomedicine against Alzheimer's and Parkinson's Disease. Curr Pharm Des 2021; 27:1507-1545. [PMID: 33087025 DOI: 10.2174/1381612826666201021140904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's and Parkinson's are the two most rampant neurodegenerative disorders worldwide. Existing treatments have a limited effect on the pathophysiology but are unable to fully arrest the progression of the disease. This is due to the inability of these therapeutic molecules to efficiently cross the blood-brain barrier. We discuss how nanotechnology has enabled researchers to develop novel and efficient nano-therapeutics against these diseases. The development of nanotized drug delivery systems has permitted an efficient, site-targeted, and controlled release of drugs in the brain, thereby presenting a revolutionary therapeutic approach. Nanoparticles are also being thoroughly studied and exploited for their role in the efficient and precise diagnosis of neurodegenerative conditions. We summarize the role of different nano-carriers and RNAi-conjugated nanoparticle-based therapeutics for their efficacy in pre-clinical studies. We also discuss the challenges underlying the use of nanomedicine with a focus on their route of administration, concentration, metabolism, and any toxic effects for successful therapeutics in these diseases.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sangh J Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rajnish K Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| |
Collapse
|
36
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
37
|
Biosensors in Parkinson's disease. Clin Chim Acta 2021; 518:51-58. [PMID: 33753044 DOI: 10.1016/j.cca.2021.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is one of the most critical disorders of the elderly and strongly associated with increased disability, and reduced quality of life. PD is a progressive neurodegenerative disease affecting more than six million people worldwide. Evaluation of clinical manifestations, as well as movement disorders by a neurologist and some routine laboratory tests are the most important diagnostic methods for PD. However, routine and old methods have several disadvantages and limitations such as low sensitivity and selectivity, high cost, and need for advanced equipment. Biosensors technology opens up new diagnoses approach for PD with the use of a new platform that allows reliable, repeatable, and multidimensional identification to be made with minimal problem and discomfort for patients. For instance, biosensing systems can provide promising tools for PD treatment and monitoring. Amongst biosensor technology, electrochemical techniques have been at the frontline of this progress, thanks to the developments in material science, such as gold nanoparticles (AuNPs), quantum dots (QDs), and carbon nanotubes (CNTs). This paper evaluates the latest progress in electrochemical and optical biosensors for PD diagnosis.
Collapse
|
38
|
Menaa F, Fatemeh Y, Vashist SK, Iqbal H, Sharts ON, Menaa B. Graphene, an Interesting Nanocarbon Allotrope for Biosensing Applications: Advances, Insights, and Prospects. Biomed Eng Comput Biol 2021; 12:1179597220983821. [PMID: 33716517 PMCID: PMC7917420 DOI: 10.1177/1179597220983821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Graphene, a relatively new two-dimensional (2D) nanomaterial, possesses unique structure (e.g. lighter, harder, and more flexible than steel) and tunable physicochemical (e.g. electronical, optical) properties with potentially wide eco-friendly and cost-effective usage in biosensing. Furthermore, graphene-related nanomaterials (e.g. graphene oxide, doped graphene, carbon nanotubes) have inculcated tremendous interest among scientists and industrials for the development of innovative biosensing platforms, such as arrays, sequencers and other nanooptical/biophotonic sensing systems (e.g. FET, FRET, CRET, GERS). Indeed, combinatorial functionalization approaches are constantly improving the overall properties of graphene, such as its sensitivity, stability, specificity, selectivity, and response for potential bioanalytical applications. These include real-time multiplex detection, tracking, qualitative, and quantitative characterization of molecules (i.e. analytes [H2O2, urea, nitrite, ATP or NADH]; ions [Hg2+, Pb2+, or Cu2+]; biomolecules (DNA, iRNA, peptides, proteins, vitamins or glucose; disease biomarkers such as genetic alterations in BRCA1, p53) and cells (cancer cells, stem cells, bacteria, or viruses). However, there is still a paucity of comparative reports that critically evaluate the relative toxicity of carbon nanoallotropes in humans. This manuscript comprehensively reviews the biosensing applications of graphene and its derivatives (i.e. GO and rGO). Prospects and challenges are also introduced.
Collapse
Affiliation(s)
- Farid Menaa
- Department of Nanomedicine and Fluoro-Carbon Spectroscopy, Fluorotronics, Inc and California Innovations Corporation, San Diego, CA, USA
| | - Yazdian Fatemeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sandeep K Vashist
- Hahn-Schickard-Gesellschaft für Angewandte Forschung e.V. (HSG-IMIT), Freiburg, Germany.,College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Haroon Iqbal
- College of Pharmaceutical Sciences, Soochow University, Suzhou, P.R. China
| | - Olga N Sharts
- Department of Nanomedicine and Fluoro-Carbon Spectroscopy, Fluorotronics, Inc and California Innovations Corporation, San Diego, CA, USA
| | - Bouzid Menaa
- Department of Nanomedicine and Fluoro-Carbon Spectroscopy, Fluorotronics, Inc and California Innovations Corporation, San Diego, CA, USA
| |
Collapse
|
39
|
Kubarkov AV, Boeva ZA, Lindfors T, Sergeyev VG. Electrochemical synthesis of 3D microstructured composite films of poly(3,4-ethylenedioxythiophene) and reduced nanographene oxide. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Jin M, Li N, Sheng W, Ji X, Liang X, Kong B, Yin P, Li Y, Zhang X, Liu K. Toxicity of different zinc oxide nanomaterials and dose-dependent onset and development of Parkinson's disease-like symptoms induced by zinc oxide nanorods. ENVIRONMENT INTERNATIONAL 2021; 146:106179. [PMID: 33099061 DOI: 10.1016/j.envint.2020.106179] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
With the increasing applications in various fields, the release and accumulation of zinc oxide (ZnO) nanomaterials ultimately lead to unexpected consequences to environment and human health. Therefore, toxicity comparison among ZnO nanomaterials with different shape/size and their adverse effects need better characterization. Here, we utilized zebrafish larvae and human neuroblastoma cells SH-SY5Y to compare the toxic effects of ZnO nanoparticles (ZnO NPs), short ZnO nanorods (s-ZnO NRs), and long ZnO NRs (l-ZnO NRs). We found their developmental- and neuro-toxicity levels were similar, where the smaller sizes showed slightly higher toxicity than the larger sizes. The developmental neurotoxicity of l-ZnO NRs (0.1, 1, 10, 50, and 100 μg/mL) was further investigated since they had the lowest toxicity. Our results indicated that l-ZnO NRs induced developmental neurotoxicity with hallmarks linked to Parkinson's disease (PD)-like symptoms at relatively high doses, including the disruption of locomotor activity as well as neurodevelopmental and PD responsive genes expression, and the induction of dopaminergic neuronal loss and apoptosis in zebrafish brain. l-ZnO NRs activated reactive oxygen species production, whose excessive accumulation triggered mitochondrial damage and mitochondrial apoptosis, eventually leading to PD-like symptoms. Collectively, the developmental- and neuro-toxicity of ZnO nanomaterials was identified, in which l-ZnO NRs harbors a remarkably potential risk for the onset and development of PD at relatively high doses, stressing the discretion of safe range in view of nano-ZnO exposure to ecosystem and human beings.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China
| | - Xiu Liang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, PR China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200433, China
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Yong Li
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, PR China
| | - Xingshuang Zhang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan 250103, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Jinan 250103, PR China.
| |
Collapse
|
41
|
Duraisamy V, Sudha V, Annadurai K, Senthil Kumar SM, Thangamuthu R. Ultrasensitive simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen on a graphitized porous carbon-modified electrode. NEW J CHEM 2021. [DOI: 10.1039/d0nj04806b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
NHCS-1000/GCE produces a noticeable electrocatalytic response towards the anodic oxidation for the multiple sensing of AA, DA, UA and AC.
Collapse
Affiliation(s)
- Velu Duraisamy
- Electroorganic and Materials Electrochemistry (EME) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Velayutham Sudha
- Electroorganic and Materials Electrochemistry (EME) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Kuppusamy Annadurai
- Electroorganic and Materials Electrochemistry (EME) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry (EME) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Rangasamy Thangamuthu
- Electroorganic and Materials Electrochemistry (EME) Division
- CSIR-Central Electrochemical Research Institute (CECRI)
- Karaikudi-630 003
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
42
|
Feng S, Yu L, Yan M, Ye J, Huang J, Yang X. Holey nitrogen-doped graphene aerogel for simultaneously electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta 2020; 224:121851. [PMID: 33379067 DOI: 10.1016/j.talanta.2020.121851] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/27/2022]
Abstract
In this paper, holey nitrogen-doped graphene aerogel (HNGA) was synthesized and applied to the concurrently electrochemical determination of small biological molecules including ascorbic acid (AA), dopamine (DA) and uric acid (UA). Firstly, holey graphene hydrogel was synthesized by the hydrothermal reaction in the presence of H2O2, which subsequently was lyophilized and further annealed in the mixed gas of ammonia and argon to obtain HNGA. Electron microscopy characterization exhibited a great number of nanopores formed on the basal surface of graphene sheets, and HNGA possessed a hierarchically porous structure. The unique structure and composition of HNGA make it an ideal material for electroanalytical application through accelerating mass and electron transfer. HNGA modified glassy carbon electrode (HNGA/GCE) displayed significantly enhanced electrochemical response to AA, DA, and UA, namely reducing overpotential, increasing current density, and improving the reversibility. The oxidation peaks of these three biomolecules can be entirely separated with evident peak potential differences which are 0.216 V (AA-DA), 0.120 V (DA-UA), and 0.336 V (AA-UA), which it allowed the determination of the three substances at the same time. This sensor shows high sensitivity for the determination of AA, DA, and UA with the detection limit of 16.7 μM, 0.22 μM, and 0.12 μM (S/N = 3), respectively. The proposed sensor was applicable for the practical sample analysis as well and desirable recovery was obtained.
Collapse
Affiliation(s)
- Sinuo Feng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Linying Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jing Ye
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin, 130022, China.
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin, 130022, China; University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
43
|
Zhang X, Zhou J, Gu Z, Zhang H, Gong Q, Luo K. Advances in nanomedicines for diagnosis of central nervous system disorders. Biomaterials 2020; 269:120492. [PMID: 33153757 DOI: 10.1016/j.biomaterials.2020.120492] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
In spite of a great improvement in medical health services and an increase in lifespan, we have witnessed a skyrocket increase in the incidence of central nervous system (CNS) disorders including brain tumors, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease), ischemic stroke, and epilepsy, which have seriously undermined the quality of life and substantially increased economic and societal burdens. Development of diagnostic methods for CNS disorders is still in the early stage, and the clinical outcomes suggest these methods are not ready for the challenges associated with diagnosis of CNS disorders, such as early detection, specific binding, sharp contrast, and continuous monitoring of therapeutic interventions. Another challenge is to overcome various barrier structures during delivery of diagnostic agents, especially the blood-brain barrier (BBB). Fortunately, utilization of nanomaterials has been pursued as a potential and promising strategy to address these challenges. This review will discuss anatomical and functional structures of BBB and transport mechanisms of nanomaterials across the BBB, and special emphases will be placed on the state-of-the-art advances in the development of nanomedicines from a variety of nanomaterials for diagnosis of CNS disorders. Meanwhile, current challenges and future perspectives in this field are also highlighted.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
One-pot and surfactant-free synthesis of N-doped mesoporous carbon spheres for the sensitive and selective screening of small biomolecules. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Shimada T, Yasui T, Yonese A, Yanagida T, Kaji N, Kanai M, Nagashima K, Kawai T, Baba Y. Mechanical Rupture-Based Antibacterial and Cell-Compatible ZnO/SiO 2 Nanowire Structures Formed by Bottom-Up Approaches. MICROMACHINES 2020; 11:E610. [PMID: 32599748 PMCID: PMC7345559 DOI: 10.3390/mi11060610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023]
Abstract
There are growing interests in mechanical rupture-based antibacterial surfaces with nanostructures that have little toxicity to cells around the surfaces; however, current surfaces are fabricated via top-down nanotechnologies, which presents difficulties to apply for bio-surfaces with hierarchal three-dimensional structures. Herein, we developed ZnO/SiO2 nanowire structures by using bottom-up approaches and demonstrated to show mechanical rupture-based antibacterial activity and compatibility with human cells. When Escherichia coli were cultured on the surface for 24 h, over 99% of the bacteria were inactivated, while more than 80% of HeLa cells that were cultured on the surface for 24 h were still alive. This is the first demonstration of mechanical rupture-based bacterial rupture via the hydrothermally synthesized nanowire structures with antibacterial activity and cell compatibility.
Collapse
Affiliation(s)
- Taisuke Shimada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
| | - Akihiro Yonese
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
| | - Takeshi Yanagida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan;
| | - Noritada Kaji
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan;
| | - Kazuki Nagashima
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
46
|
Adhikari J, Rizwan M, Keasberry NA, Ahmed MU. Current progresses and trends in carbon nanomaterials‐based electrochemical and electrochemiluminescence biosensors. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juthi Adhikari
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of ScienceUniversiti Brunei Darussalam Gadong Brunei Darussalam
| | - Mohammad Rizwan
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of ScienceUniversiti Brunei Darussalam Gadong Brunei Darussalam
- School of Natural SciencesBangor University Bangor Wales UK
| | - Natasha Ann Keasberry
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of ScienceUniversiti Brunei Darussalam Gadong Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory, Chemical Science Programme, Faculty of ScienceUniversiti Brunei Darussalam Gadong Brunei Darussalam
| |
Collapse
|
47
|
Gorji MB, Ashkarran AA, Hamidinezhad H. Multifunctional ZnO nanorods decorated with plasmonic gold nanoparticles for enhanced room temperature field emission, photo-luminescence and catalytic properties. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Qiu N, Liu Y, Guo R. Electrodeposition-Assisted Rapid Preparation of Pt Nanocluster/3D Graphene Hybrid Nanozymes with Outstanding Multiple Oxidase-Like Activity for Distinguishing Colorimetric Determination of Dihydroxybenzene Isomers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15553-15561. [PMID: 32134242 DOI: 10.1021/acsami.9b23546] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Here, we demonstrate a facile bottom-up strategy to fabricate Pt nanoclusters (Pt NCs) grafted onto three-dimensional graphene foam (3D GF) assisted by cetyltrimethyl ammonium bromide (CTAB) using the electrodeposition method. The homogeneous grafting of Pt NC onto 3D GF is due to the formation of hemimicelles above some CTAB concentration. With the unique nanocluster structure and the high content of Pt0, the Pt NC/3D GF nanohybrid exhibits extremely high activity and shows higher reusability and stability. Apart from the intrinsic oxidase-like activity with 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate, the Pt NC/3D GF nanohybrid can act simultaneously as an effective polyphenol oxidase (PPO) mimic, such as tyrosinase, catechol oxidase, and laccase. More importantly, utilizing intrinsic catechol oxidase-like activity and the oxidase-like activity with TMB as the substrate of the nanohybrid, distinguishing colorimetric determination of dihydroxybenzene isomers (catechol and hydroquinone) is performed. Distinguishing colorimetric analysis of dihydroxybenzene isomers was first developed using nanozymes. The present work provides a simple bottom-up approach for the reasonable fabrication of various nanostructured nanozymes with excellent performance using the electrodeposition method assisted with surfactants.
Collapse
Affiliation(s)
- Na Qiu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
- College of Chemistry, Chemical Engineering and Material Science, Zaozhuang University, Zaozhuang 277160, Shandong, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, P. R. China
| |
Collapse
|
49
|
Abstract
A cobalt (II) oxide/carboxylic acid functionalized multiwalled carbon nanotube (CoO/COOH-MWNT) composite was fabricated for the biochemical detection of dopamine (DA). CoO particles were tethered to COOH-MWNTs by sonication. The current response versus different concentration was measured using cyclic voltammetry. Various parameters, including sonication time, pH, and loading were varied for the best current response. The composite with optimum current response was formed using a 30-min sonication time, at pH 5.0 and a 0.89 µg/mm2 loading onto the glassy carbon electrode surface. Good sensitivity with a limit of detection of 0.61 ± 0.03 μM, and dynamic range of 10–100 µM for DA is shown, applicable for neuroblastoma screening. The sensor was selective against ascorbic and uric acids.
Collapse
|
50
|
Messina MM, Coustet ME, Ubogui J, Ruiz R, Saccone FD, Dos Santos Claro PC, Ibañez FJ. Simultaneous Detection and Photocatalysis Performed on a 3D Graphene/ZnO Hybrid Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2231-2239. [PMID: 32050076 DOI: 10.1021/acs.langmuir.9b03502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The synergy between graphene foam (Gf) and ZnO nanoparticles (NPs) allows the detection of analytes at low conentrations, which can be subsequently photocatalyzed on the hybrid surface as well as in the liquid phase upon illumination with low-power UV-vis light-emitting diode (LED) lamps. Detection of methylene blue (MB) and bisphenol A (BPA) is monitored either by graphene-enhanced Raman scattering (GERS) or molecular doping/sensing upon analyte adsorption. Using GERS, we were able to detect concentrations as low as 0.3 ppm of MB, which remained adsorbed on the graphene surface after a photocatalytic conversion of 88% (total conversion). The photocatalysis performances of BPA and MB performed in the liquid phase were lower and corresponded to 73 and 33% as indicated by gas chromatography-mass spectrometry (GC/MS) and UV-vis, respectively. The kinetics of photocatalysis was fitted with a quasi-first-order reaction, and the apparent rate constant (kapp) was calculated according to the Langmuir-Hinshelwood model. The fastest kinetics was achieved with the hybrid platform named "Gf-ZnO400", which was thermally treated at high temperatures and with most of the Ni etched away. This is consistent with the excellent electronic interaction between ZnO and graphene foam as indicated by photoelectrochemistry analysis. We mainly employed Raman scattering and UV-vis spectroscopy analyses for detection and photocatalysis applications; however, we also used other complementary techniques such as focused ion-beam scanning electron microscopy (FIB-SEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance, GC/MS, and photoelectrochemistry to explore the synergetic behavior of these two nanomaterials. This work brings about new insights into the detection of analyte molecules followed by photocatalysis performed in the solid and liquid states.
Collapse
Affiliation(s)
- M Mercedes Messina
- Gerencia de Investigación y Desarrollo, YPF Tecnología S. A., Av. Del Petróleo S/N (e/129 y 143), Berisso, Buenos Aires 1923, Argentina
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata - CONICET, Sucursal 4 Casilla de Correo 16, La Plata 1900, Argentina
| | - Marcos E Coustet
- Gerencia de Investigación y Desarrollo, YPF Tecnología S. A., Av. Del Petróleo S/N (e/129 y 143), Berisso, Buenos Aires 1923, Argentina
| | - Joaquín Ubogui
- Gerencia de Investigación y Desarrollo, YPF Tecnología S. A., Av. Del Petróleo S/N (e/129 y 143), Berisso, Buenos Aires 1923, Argentina
| | - Remigio Ruiz
- Gerencia de Investigación y Desarrollo, YPF Tecnología S. A., Av. Del Petróleo S/N (e/129 y 143), Berisso, Buenos Aires 1923, Argentina
| | - Fabio D Saccone
- Gerencia de Investigación y Desarrollo, YPF Tecnología S. A., Av. Del Petróleo S/N (e/129 y 143), Berisso, Buenos Aires 1923, Argentina
- Departamento de Física, Facultad de Ingeniería, Universidad de Buenos Aires, Av. Paseo Colón 850, CABA 1963, Argentina
| | - P Cecilia Dos Santos Claro
- Gerencia de Investigación y Desarrollo, YPF Tecnología S. A., Av. Del Petróleo S/N (e/129 y 143), Berisso, Buenos Aires 1923, Argentina
| | - Francisco J Ibañez
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata - CONICET, Sucursal 4 Casilla de Correo 16, La Plata 1900, Argentina
| |
Collapse
|