1
|
Mai TH, Do HB, Pham LD, Phan TX, Chen WZ, Lan LW, Lin HJ, Nguyen VH, Dong CL, Kumar ASK, El-Mahdy AFM, Lee H, Dang DK, Vo DVN, Tu LW, Kuo CC, Yang HD, Pham PV. Efficient photoanode with a MoS 2/TiO 2/Au nanoparticle heterostructure for ultraviolet-visible photoelectrocatalysis. NANOTECHNOLOGY 2024; 35:385703. [PMID: 38958589 DOI: 10.1088/1361-6528/ad5aa0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Green energy technology is generally becoming one of hot issues that need to be solved due to the adverse effects on the environment of fossil fuels. One of the strategies being studied and developed by theorists and experimentalists is the use of photoelectrochemical (PEC) cells, which are emerging as a candidate to produce hydrogen from water splitting. However, creating photoelectrodes that meet the requirements for PEC water splitting has emerged as the primary obstacle in bringing this technology to commercial fruition. Here, we construct a heterostructure, which consists of MoS2/TiO2/Au nanoparticles (NPs) to overcome the drawbacks of the photoanode. Owing to the dependence on charge transfer, the bandgap of MoS2/TiO2and the utilization the Au NPs as a stimulant for charges separation of TiO2by localized surface plasmon resonances effect as well as the increase of hot electron injection to cathode, leading to photocatalytic activities are improved. The results have recorded a significant increase in the photocurrent density from 2.3μAcm-2of TiO2to approximately 16.3μAcm-2of MoS2/TiO2/Au NPs. This work unveils a promising route to enhance the visible light adsorption and charge transfer in photo-electrode of the PEC cells by combining two-dimensional materials with metal NPs.
Collapse
Affiliation(s)
- The-Hung Mai
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Huy-Binh Do
- Faculty of Applied Science, Ho Chi Minh University of Technology and Education, Ho Chi Minh 700000, Vietnam
| | - Long Duy Pham
- Institute of Material Science, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Thien Xuan Phan
- Institute of Physics, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Wei-Zhi Chen
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Liang-Wei Lan
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hung-Ju Lin
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Van-Hung Nguyen
- International Training Institute for Material Science, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| | - Chung-Li Dong
- Department of Physics, Tamkang University, Tamsui 25137, Taiwan
| | - Alagarsamy S K Kumar
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Faculty of Geology, Geophysics and Environmental Protection, Akademia Gorniczo-Hutnicza (AGH) University of Science and Technology, Krakow 30-059, Poland
| | - Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hyeonseok Lee
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Dinh Khoi Dang
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, Ho Chi Minh 700000, Vietnam
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh 755414, Vietnam
| | - Li-Wei Tu
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chien-Cheng Kuo
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Hung-Duen Yang
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Phuong V Pham
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
2
|
Gentry NE, Kurimoto A, Cui K, Cleron JL, Xiang CM, Hammes-Schiffer S, Mayer JM. Hydrogen on Colloidal Gold Nanoparticles. J Am Chem Soc 2024; 146:14505-14520. [PMID: 38743444 DOI: 10.1021/jacs.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Colloidal gold nanoparticles (AuNPs) have myriad scientific and technological applications, but their fundamental redox chemistry is underexplored. Reported here are titration studies of oxidation and reduction reactions of aqueous AuNP colloids, which show that the AuNPs bind substantial hydrogen (electrons + protons) under mild conditions. The 5 nm AuNPs are reduced to a similar extent with reductants from borohydrides to H2 and are reoxidized back essentially to their original state by oxidants, including O2. The reactions were monitored via surface plasmon resonance (SPR) optical absorption, which was shown to be much more sensitive to surface H than to changes in solution conditions. Reductions with H2 occurred without pH changes, demonstrating that hydrogenation forms surface H rather than releasing H+. Computational studies suggested that an SPR blueshift was expected for H atom addition, while just electron addition likely would have caused a redshift. Titrations consistently showed a maximum redox change of the 5 nm NPs, independent of the reagent, corresponding to 9% of the total gold or ∼30% hydrogen surface coverage (∼370 H per AuNP). Larger AuNPs showed smaller maximum fractional surface coverages. We conclude that H binds to the edge, corner, and defect sites of the AuNPs, which explains the stoichiometric limitation and the size effect. The finding of substantial and stable hydrogen on the AuNP surface under mild reducing conditions has potential implications for various applications of AuNPs in reducing environments, from catalysis to biomedicine. This finding contrasts with the behavior of bulk gold and with the typical electron-focused perspective in this field.
Collapse
Affiliation(s)
- Noreen E Gentry
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Aiko Kurimoto
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Kai Cui
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Jamie L Cleron
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Claire M Xiang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - James M Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
3
|
Liu Y, Zhao Y, Li M, Liu Y. Annealing temperature effects on monolayer WS 2-veiled Ag nanoparticle array for surface catalytic reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123137. [PMID: 37523849 DOI: 10.1016/j.saa.2023.123137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
Plasmonic-WS2 hybrids have attracted widespread interest for plasmon driven catalytic reactions. In this work, a Ag nanoparticles (NPs)/WS2 hybrid was fabricated by utilizing a one-step anodized Al template-assisted vacuum thermal evaporation technique and wet transfer method. To optimize the catalytic performance, the morphological evolution and corresponding changes in the catalytic properties of the Ag NPs/WS2 hybrid at different thermal annealing temperatures were investigated. It was found that the surface-enhanced Raman scattering (SERS) and catalytic activity of the hybrid were optimized by tuning the annealing temperature, with the optimal SERS and catalytic properties observed at 290 °C. These results may open new avenues for improving the efficiency and expanding the research field of plasmon-driven reactions.
Collapse
Affiliation(s)
- Yanqi Liu
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Engineering Research Center of Optical Instrument and System, The Ministry of Education, 516, Jungong Road, 200093 Shanghai, China
| | - Yan Zhao
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China.
| | - Muhua Li
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yi Liu
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Engineering Research Center of Optical Instrument and System, The Ministry of Education, 516, Jungong Road, 200093 Shanghai, China; CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai 201800, China
| |
Collapse
|
4
|
Lyu PT, Liu XR, Yin LX, Wu P, Sun C, Chen HY, Xu JJ, Kang B. Periodic Distributions and Ultrafast Dynamics of Hot Electrons in Plasmonic Resonators. NANO LETTERS 2023; 23:2269-2276. [PMID: 36897094 DOI: 10.1021/acs.nanolett.2c04964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding and managing hot electrons in metals are of fundamental and practical interest in plasmonic studies and applications. A major challenge for the development of hot electron devices requires the efficient and controllable generation of long-lived hot electrons so that they can be harnessed effectively before relaxation. Here, we report the ultrafast spatiotemporal evolution of hot electrons in plasmonic resonators. Using femtosecond-resolution interferometric imaging, we show the unique periodic distributions of hot electrons due to standing plasmonic waves. In particular, this distribution can be flexibly tuned by the size, shape, and dimension of the resonator. We also demonstrate that the hot electron lifetimes are substantially prolonged at hot spots. This appealing effect is interpreted as a result of the locally concentrated energy density at the antinodes in standing hot electron waves. These results could be useful to control the distributions and lifetimes of hot electrons in plasmonic devices for targeted optoelectronic applications.
Collapse
Affiliation(s)
- Pin-Tian Lyu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiao-Rui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Li-Xin Yin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Pei Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chao Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
5
|
Wang Y, Chen B, Meng D, Song B, Liu Z, Hu P, Yang H, Ou TH, Liu F, Pi H, Pi I, Pi I, Wu W. Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213730. [PMID: 36364506 PMCID: PMC9655529 DOI: 10.3390/nano12213730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/12/2023]
Abstract
Semiconductor photocatalysis has received increasing attention because of its potential to address problems related to the energy crisis and environmental issues. However, conventional semiconductor photocatalysts, such as TiO2 and ZnO, can only be activated by ultraviolet light due to their wide band gap. To extend the light absorption into the visible range, the localized surface plasmon resonance (LSPR) effect of noble metal nanoparticles (NPs) has been widely used. Noble metal NPs can couple incident visible light energy to strong LSPR, and the nonradiative decay of LSPR generates nonthermal hot carriers that can be injected into adjacent semiconductor material to enhance its photocatalytic activity. Here we demonstrate that nanoimprint-defined gap plasmonic nanofinger arrays can function as visible light-driven plasmonic photocatalysts. The sub-5 nm gaps between pairs of collapsed nanofingers can support ultra-strong plasmon resonance and thus boost the population of hot carriers. The semiconductor material is exactly placed at the hot spots, providing an efficient pathway for hot carrier injection from plasmonic metal to catalytic materials. This nanostructure thus exhibits high plasmon-enhanced photocatalytic activity under visible light. The hot carrier injection mechanism of this platform was systematically investigated. The plasmonic enhancement factor was calculated using the finite-difference time-domain (FDTD) method and was consistent with the measured improvement of the photocatalytic activity. This platform, benefiting from the precise controllable geometry, provides a deeper understanding of the mechanism of plasmonic photocatalysis.
Collapse
Affiliation(s)
- Yunxiang Wang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Buyun Chen
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Deming Meng
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Boxiang Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zerui Liu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Pan Hu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Hao Yang
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Tse-Hsien Ou
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Fanxin Liu
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Halton Pi
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Irene Pi
- School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Isleen Pi
- College of Art and Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wei Wu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Xu F, Zhang Z, Ma J, Ma C, Guan BO, Chen K. Large-Area Ordered Palladium Nanostructures by Colloidal Lithography for Hydrogen Sensing. Molecules 2022; 27:6100. [PMID: 36144831 PMCID: PMC9505077 DOI: 10.3390/molecules27186100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/22/2022] Open
Abstract
Reliable gas sensors are very important for hydrogen (H2) gas detection and storage. Detection methods based on palladium (Pd) metal are cost-effective and widely studied. When Pd is exposed to H2, it turns into palladium hydride with modified optical properties, which thus can be monitored for H2 sensing. Here, we fabricated large-area Pd nanostructures, including Pd nanotriangles and nanohole arrays, using colloidal lithography and systematically studied their H2-sensing performance. After hydrogen absorption, both the Pd nanoholes and nanotriangles showed clear transmittance changes in the visible-near infrared range, consistent with numerical simulation results. The influences of the structural parameters (period of the array P and diameter of the nanohole D) of the two structures are further studied, as different structural parameters can affect the hydrogen detection effect of the two structures. The nanohole arrays exhibited bigger transmittance changes than the nanotriangle arrays.
Collapse
Affiliation(s)
| | | | | | | | | | - Kai Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| |
Collapse
|
7
|
Lee S, Yu S. Hot carrier extraction from plasmonic-photonic superimposed heterostructures. J Chem Phys 2022; 156:234703. [PMID: 35732529 DOI: 10.1063/5.0092654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmonic nanostructures have been exploited in photochemical and photocatalytic processes owing to their surface plasmon resonance characteristics. This unique property generates photoinduced potentials and currents capable of driving chemical reactions. However, these processes are hampered by low photon conversion and utilization efficiencies, which are issues that need to be addressed. In this study, we integrate plasmonic photochemistry and simple tunable heterostructure characteristics of a dielectric photonic crystal for the effective control of electromagnetic energy below the diffraction limit of light. The nanostructure comprises high-density Ag nanoparticles on nanocavity arrays of SrTiO3 and TiO2, where two oxides constitute a chemical heterojunction. Such a nanostructure is designed to form intense electric fields and a vectorial electron flow channel of Ag → SrTiO3 → TiO2. When the plasmonic absorption of Ag nanoparticles matched the photonic stopband, we observed an apparent quantum yield of 3.1 × 10-4 e- per absorbed photon. The contributions of light confinement and charge separation to the enhanced photocurrent were evaluated.
Collapse
Affiliation(s)
- Sanghyuk Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Sungju Yu
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
8
|
Ai B, Sun Y, Zhao Y. Plasmonic Hydrogen Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107882. [PMID: 35567399 DOI: 10.1002/smll.202107882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/19/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen is regarded as the ultimate fuel and energy carrier with a high theoretical energy density and universality of sourcing. However, hydrogen is easy to leak and has a wide flammability range in air. For safely handling hydrogen, robust sensors are in high demand. Plasmonic hydrogen sensors (PHS) are attracting growing interest due to the advantages of high sensitivity, fast response speed, miniaturization, and high-degree of integration, etc. In this review, the mechanism and recent development (mainly after the year 2015) of hydrogen sensors based on plasmonic nanostructures are presented. The working principle of PHS is introduced. The sensing properties and the effects of resonance mode, configuration, material, and structure of the plasmonic nanostructures on the sensing performances are discussed. The merit and demerit of different types of plasmonic nanostructures are summarized and potential development directions are proposed. The aim of this review is not only to clarify the current strategies for PHS, but also to give a comprehensive understanding of the working principle of PHS, which may inspire more ingenious designs and execution of plasmonics for advanced hydrogen sensors.
Collapse
Affiliation(s)
- Bin Ai
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
- Chongqing Key Laboratory of Bio perception & Intelligent Information Processing, Chongqing, 400044, P. R. China
| | - Yujing Sun
- School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yiping Zhao
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
9
|
Liu Y, Zhang L, Liu X, Zhang Y, Yan Y, Zhao Y. In situ SERS monitoring of plasmon-driven catalytic reaction on gap-controlled Ag nanoparticle arrays under 785 nm irradiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120803. [PMID: 35007906 DOI: 10.1016/j.saa.2021.120803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Plasmon-enhanced photocatalysis has attracted considerable attention due to its low energy consumption and high energy throughput. Surface-enhanced Raman scattering (SERS) is a highly sensitive and label-free nondestructive tool to investigate plasmon-driven photocatalytic reactions. Herein, we present a facile method to fabricate gap-controlled Ag nanoparticle (NP) arrays with uniform and high-density distribution of hot spots, which can be employed as both efficient plasmonic photocatalysts and stable SERS platforms. The plasmon-driven catalytic reaction of 4-nitrobenzenethiol (4NBT), which transforms it into p, p'-dimercaptoazobenzene (DMAB), is detected by using an in situ SERS technique at the excited wavelength of 785 nm. According to the temperature and laser power density dependent photocatalytic reaction rates observed on the Ag NP arrays, we quantitatively determined that the reductive coupling of 4NBT is more likely to occur as the gap decreases. The finite-difference time-domain (FDTD) simulation results demonstrate that the plasmonic hot spots are significantly enhanced with a decrease in gap, which in turn reduces activation energy. The gap-controlled Ag NP arrays are efficient for both promotion and detection of plasmon-driven catalytic reactions, and may pave a pathway for implementing efficient plasmonic photocatalytic platforms.
Collapse
Affiliation(s)
- Yanqi Liu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Lisheng Zhang
- The Beijing Key Laboratory for Nano-photonics and Nano-structure, Department of Physics, Capital Normal University, Beijing 100048, China
| | - Xuan Liu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Yongzhi Zhang
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Yinzhou Yan
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Yan Zhao
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
10
|
Wang Y, Wang Y, Aravind I, Cai Z, Shen L, Zhang B, Wang B, Chen J, Zhao B, Shi H, Dawlaty JM, Cronin SB. In Situ Investigation of Ultrafast Dynamics of Hot Electron-Driven Photocatalysis in Plasmon-Resonant Grating Structures. J Am Chem Soc 2022; 144:3517-3526. [PMID: 35188777 DOI: 10.1021/jacs.1c12069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the relaxation and injection dynamics of hot electrons is crucial to utilizing them in photocatalytic applications. While most studies have focused on hot carrier dynamics at metal/semiconductor interfaces, we study the in situ dynamics of direct hot electron injection from metal to adsorbates. Here, we report a hot electron-driven hydrogen evolution reaction (HER) by exciting the localized surface plasmon resonance (LSPR) in Au grating photoelectrodes. In situ ultrafast transient absorption (TA) measurements show a depletion peak resulting from hot electrons. When the sample is immersed in solution under -1 V applied potential, the extracted electron-phonon interaction time decreases from 0.94 to 0.67 ps because of additional energy dissipation channels. The LSPR TA signal is redshifted with delay time because of charge transfer and subsequent change in the dielectric constant of nearby solution. Plateau-like photocurrent peaks appear when exciting a 266 nm linewidth grating with p-polarized (on resonance) light, accompanied by a similar profile in the measured absorptance. Double peaks in the photocurrent measurement are observed when irradiating a 300 nm linewidth grating. The enhancement factor (i.e., reaction rate) is 15.6× between p-polarized and s-polarized light for the 300 nm linewidth grating and 4.4× for the 266 nm linewidth grating. Finite-difference time domain (FDTD) simulations show two resonant modes for both grating structures, corresponding to dipolar LSPR modes at the metal/fused silica and metal/water interfaces. To our knowledge, this is the first work in which LSPR-induced hot electron-driven photochemistry and in situ photoexcited carrier dynamics are studied on the same plasmon resonance structure with and without adsorbates.
Collapse
Affiliation(s)
- Yu Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Yi Wang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Indu Aravind
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Zhi Cai
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Lang Shen
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Boxin Zhang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Bo Wang
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Jihan Chen
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Bofan Zhao
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Haotian Shi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Stephen B Cronin
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States.,Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.,Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
11
|
Inter-Cavity Coupling Strength Control in Metal/Insulator Multilayers for Hydrogen Sensing. PHOTONICS 2021. [DOI: 10.3390/photonics8120537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogen (H2) sensing is crucial for modern energy storage technology, which looks to hydrogen as the most promising alternative to fossil fuels. In this respect, magnesium (Mg) offers unique possibilities, since magnesium and hydrogen easily undergo a reversible hydrogenation reaction where Mg reversibly converts into MgH2. From an optical point of view, this process produces an abrupt refractive index change, which can be exploited for sensing applications. To maximize this opportunity, we envision an architecture composed of two Ag/ITO/Mg metal/dielectric resonators facing each other and displaced by 200 nm of vacuum. This structure forms a so-called Epsilon-Near-Zero (ENZ) multi-cavity resonator, in which the two internal Mg layers, used as tunneling coupling metals, are accessible to environmental agents. We demonstrate that the hydrogenation of the two Mg layers leads to substantial changes in the strong coupling between the cavities composing the entire resonator, with a consequent abrupt modification of the spectral response, thus enabling the sensing mechanism. One of the main advantages of the proposed system with respect to previous research is that the proposed multilayered architecture avoids the need for lithographic processes. This feature makes the proposed architecture inexpensive and wafer-to-chip scalable, considering that each kind of substrate from common glass to silicon can be used. Therefore, our sensing architecture offers great promise for applications in embedded H2 sensors.
Collapse
|
12
|
Losurdo M, Gutiérrez Y, Suvorova A, Giangregorio MM, Rubanov S, Brown AS, Moreno F. Gallium Plasmonic Nanoantennas Unveiling Multiple Kinetics of Hydrogen Sensing, Storage, and Spillover. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100500. [PMID: 34076312 PMCID: PMC11469318 DOI: 10.1002/adma.202100500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Hydrogen is the key element to accomplish a carbon-free based economy. Here, the first evidence of plasmonic gallium (Ga) nanoantennas is provided as nanoreactors supported on sapphire (α-Al2 O3 ) acting as direct plasmon-enhanced photocatalyst for hydrogen sensing, storage, and spillover. The role of plasmon-catalyzed electron transfer between hydrogen and plasmonic Ga nanoparticle in the activation of those processes is highlighted, as opposed to conventional refractive index-change-based sensing. This study reveals that, while temperature selectively operates those various processes, longitudinal (LO-LSPR) and transverse (TO-LSPR) localized surface plasmon resonances of supported Ga nanoparticles open selectivity of localized reaction pathways at specific sites corresponding to the electromagnetic hot-spots. Specifically, the TO-LSPR couples light into the surface dissociative adsorption of hydrogen and formation of hydrides, whereas the LO-LSPR activates heterogeneous reactions at the interface with the support, that is, hydrogen spillover into α-Al2 O3 and reverse-oxygen spillover from α-Al2 O3. This Ga-based plasmon-catalytic platform expands the application of supported plasmon-catalysis to hydrogen technologies, including reversible fast hydrogen sensing in a timescale of a few seconds with a limit of detection as low as 5 ppm and in a broad temperature range from room-temperature up to 600 °C while remaining stable and reusable over an extended period of time.
Collapse
Affiliation(s)
- Maria Losurdo
- Institute of NanotechnologyCNR‐NANOTECvia Orabona 4Bari70126Italy
| | - Yael Gutiérrez
- Institute of NanotechnologyCNR‐NANOTECvia Orabona 4Bari70126Italy
| | - Alexandra Suvorova
- Centre for MicroscopyCharacterisation and AnalysisThe University of Western AustraliaCrawleyWestern Australia6009Australia
| | | | - Sergey Rubanov
- Bio21 InstituteUniversity of Melbourne161 Barry StreetParkvilleVictoria3010Australia
| | - April S. Brown
- Department of Electrical and Computer EngineeringDuke UniversityDurhamNC27708USA
| | - Fernando Moreno
- Group of Optics, Department of Applied PhysicsFaculty of SciencesUniversity of CantabriaAvda. Los Castros s/nSantander39005Spain
| |
Collapse
|
13
|
Plasmon Induced Photocatalysts for Light-Driven Nanomotors. MICROMACHINES 2021; 12:mi12050577. [PMID: 34069654 PMCID: PMC8161131 DOI: 10.3390/mi12050577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 11/24/2022]
Abstract
Micro/nanomachines (MNMs) correspond to human-made devices with motion in aqueous solutions. There are different routes for powering these devices. Light-driven MNMs are gaining increasing attention as fuel-free devices. On the other hand, Plasmonic nanoparticles (NPs) and their photocatalytic activity have shown great potential for photochemistry reactions. Here we review several photocatalyst nanosystems, with a special emphasis in Plasmon induced photocatalytic reactions, as a novel proposal to be explored by the MNMs community in order to extend the light-driven motion of MNMs harnessing the visible and near-infrared (NIR) light spectrum.
Collapse
|
14
|
Clark AH, Acerbi N, Chater PA, Hayama S, Collier P, Hyde TI, Sankar G. Temperature reversible synergistic formation of cerium oxyhydride and Au hydride: a combined XAS and XPDF study. Phys Chem Chem Phys 2020; 22:18882-18890. [PMID: 32330216 DOI: 10.1039/d0cp00455c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ studies on the physical and chemical properties of Au in inverse ceria alumina supported catalysts have been conducted between 295 and 623 K using high energy resolved fluorescence detection X-ray absorption near edge spectroscopy and X-ray total scattering. Precise structural information is extracted on the metallic Au phase present in a 0.85 wt% Au containing inverse ceria alumina catalyst (ceria/Au/alumina). Herein evidence for the formation of an Au hydride species at elevated temperature is presented. Through modelling of total scattering data to extract the thermal properties of Au using Grüneisen theory of volumetric thermal expansion it proposed that the Au Hydride formation occurs synergistally with the formation of a cerium oxyhydride. The temperature reversible nature, whilst remaining in a reducing atmosphere, demonstrates the activation of hydrogen without consumption of oxygen from the supporting ceria lattice.
Collapse
Affiliation(s)
- Adam H Clark
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Nanocrystalline TiO 2 Sensitive Layer for Plasmonic Hydrogen Sensing. NANOMATERIALS 2020; 10:nano10081490. [PMID: 32751278 PMCID: PMC7466464 DOI: 10.3390/nano10081490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Solution processed TiO2 anatase film was used as sensitive layer for H2 detection for two plasmonic sensor configurations: A grating-coupled surface plasmon resonance sensor and a localized surface plasmon resonance sensor with gold nanoparticles. The main purpose of this paper is to elucidate the different H2 response observed for the two types of sensors which can be explained considering the hydrogen dissociation taking place on TiO2 at high temperature and the photocatalytic activity of the gold nanoparticles.
Collapse
|
16
|
Tang H, Chen CJ, Huang Z, Bright J, Meng G, Liu RS, Wu N. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. J Chem Phys 2020; 152:220901. [PMID: 32534522 DOI: 10.1063/5.0005334] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In plasmonic metals, surface plasmon resonance decays and generates hot electrons and hot holes through non-radiative Landau damping. These hot carriers are highly energetic, which can be modulated by the plasmonic material, size, shape, and surrounding dielectric medium. A plasmonic metal nanostructure, which can absorb incident light in an extended spectral range and transfer the absorbed light energy to adjacent molecules or semiconductors, functions as a "plasmonic photosensitizer." This article deals with the generation, emission, transfer, and energetics of plasmonic hot carriers. It also describes the mechanisms of hot electron transfer from the plasmonic metal to the surface adsorbates or to the adjacent semiconductors. In addition, this article highlights the applications of plasmonic hot electrons in photodetectors, photocatalysts, photoelectrochemical cells, photovoltaics, biosensors, and chemical sensors. It discusses the applications and the design principles of plasmonic materials and devices.
Collapse
Affiliation(s)
- Haibin Tang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
| | - Chih-Jung Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Zhulin Huang
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
| | - Joeseph Bright
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6106, USA
| | - Guowen Meng
- Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, USA
| |
Collapse
|
17
|
Rodio M, Graf M, Schulz F, Mueller NS, Eich M, Lange H. Experimental Evidence for Nonthermal Contributions to Plasmon-Enhanced Electrochemical Oxidation Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marina Rodio
- Hamburg Centre for Advanced Imaging of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| | - Matthias Graf
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht D-21502, Germany
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, Hamburg D-21073, Germany
| | - Florian Schulz
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| | - Niclas S. Mueller
- Department of Physics, Freie Universitat Berlin, Arnimallee 14, Berlin D-14195, Germany
| | - Manfred Eich
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht D-21502, Germany
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, Hamburg D-21073, Germany
| | - Holger Lange
- Hamburg Centre for Advanced Imaging of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
- Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| |
Collapse
|
18
|
Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chem Rev 2019; 120:986-1041. [PMID: 31725267 DOI: 10.1021/acs.chemrev.9b00187] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alexandra Gellé
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Tony Jin
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Luis de la Garza
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gareth D. Price
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Audrey Moores
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
19
|
Bao JL, Carter EA. Surface-Plasmon-Induced Ammonia Decomposition on Copper: Excited-State Reaction Pathways Revealed by Embedded Correlated Wavefunction Theory. ACS NANO 2019; 13:9944-9957. [PMID: 31393708 DOI: 10.1021/acsnano.9b05030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ammonia is a promising hydrogen storage medium; however, its decomposition via conventional thermal catalysis requires a significant amount of thermal energy input in order to overcome the reaction barriers. Here, we use embedded correlated wavefunction (ECW) theory to quantify reaction pathways and energetics for ammonia decomposition (N-H bond dissociation and N2 and H2 associative desorption) on copper (Cu) nanoparticles using a Cu (111) surface model. We predict that surface plasmon excitations will be able to facilitate ammonia decomposition by substantially reducing the effective barriers along excited-state pathways. We estimate the reductions in reaction barriers for breaking the first N-H bond and for recombinative desorption of surface-bound nitrogen and hydrogen atoms to be approximately 1.7, 0.8, and 0.5 eV, respectively. Further, by using the experimental N2 desorption barrier as a reference, we compare the accuracy of various theoretical methods, including plane-wave Kohn-Sham density functional theory calculations with commonly used exchange-correlation functionals, embedded complete active space second-order perturbation theory, and embedded multiconfiguration pair-density functional theory. This work offers further confirmation that the ECW theoretical framework is the most robust for treating highly correlated local electronic structures of solids.
Collapse
|
20
|
Yue S, Hou Y, Wang R, Liu S, Li M, Zhang Z, Hou M, Wang Y, Zhang Z. CMOS-compatible plasmonic hydrogen sensors with a detection limit of 40 ppm. OPTICS EXPRESS 2019; 27:19331-19347. [PMID: 31503694 DOI: 10.1364/oe.27.019331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Sensing of leakage at an early stage is crucial for the safe utilization of hydrogen. Optical hydrogen sensors eliminate the potential hazard of ignition caused by electrical sparks but achieve a detection limit far higher than their electrical counterparts so far. To essentially improve the performance of optical hydrogen sensors in terms of detection limit, we demonstrate in this work a plasmonic hydrogen sensor based on aluminum-palladium (Al-Pd) hybrid nanorods. Arranged into high-density regular arrays, the hybrid nanorods are capable of sensing hydrogen at a concentration down to 40 ppm, i.e., one thousandth of the lower flammability limit of hydrogen in air. Different sensing behaviors are found for two sensor configurations, where Pd-Al nanorods provide larger spectral shift and Al-Pd ones exhibit shorter response time. In addition, the plasmonic hydrogen sensors here utilize exclusively CMOS-compatible materials, holding the potential for real-world, large-scale applications.
Collapse
|
21
|
Sil D, Lane C, Glor E, Gilroy KD, Sylla S, Barbiellini B, Markiewicz R, Hajfathalian M, Neretina S, Bansil A, Fakhraai Z, Borguet E. Synthesis and Properties of Au Hydride. ChemistrySelect 2019. [DOI: 10.1002/slct.201900925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Devika Sil
- Department of Chemistry Temple University Philadelphia, Pennsylvania 19122 USA
| | - Christopher Lane
- Northeastern University Physics Department 360 Huntington Ave. 111 Dana Research Center Boston, MA 02115 USA
| | - Ethan Glor
- Department of Chemistry University of Pennsylvania 231 S. 34th Street Philadelphia, PA 19104 USA
| | - Kyle D. Gilroy
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA 30332 USA
- College of Engineering Temple University Philadelphia, PA 19122 USA
| | - Safiya Sylla
- Department of Chemistry Temple University Philadelphia, Pennsylvania 19122 USA
| | - Bernardo Barbiellini
- Northeastern University Physics Department 360 Huntington Ave. 111 Dana Research Center Boston, MA 02115 USA
- Department of Physics School of Engineering Science, LUT University FI-53850 Lappeenranta Finland
| | - Robert Markiewicz
- Northeastern University Physics Department 360 Huntington Ave. 111 Dana Research Center Boston, MA 02115 USA
| | | | - Svetlana Neretina
- College of Engineering University of Notre Dame Notre Dame, IN 46556 USA
| | - Arun Bansil
- Northeastern University Physics Department 360 Huntington Ave. 111 Dana Research Center Boston, MA 02115 USA
| | - Zahra Fakhraai
- Department of Chemistry University of Pennsylvania 231 S. 34th Street Philadelphia, PA 19104 USA
| | - Eric Borguet
- Department of Chemistry Temple University Philadelphia, Pennsylvania 19122 USA
| |
Collapse
|
22
|
Sturaro M, Zacco G, Zilio P, Surpi A, Bazzan M, Martucci A. Gold Nanodisks Plasmonic Array for Hydrogen Sensing at Low Temperature. SENSORS 2019; 19:s19030647. [PMID: 30764485 PMCID: PMC6387255 DOI: 10.3390/s19030647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 11/16/2022]
Abstract
We present a novel plasmonic hydrogen sensor consisting of an array of gold nanodisks produced by lithography. The size, height, and spacing of the disks were optimized using finite element simulation to generate a sharp localized surface plasmon resonance peak in the near-infrared wavelength region. The reported results show the possibility of developing an optical gas sensors-based bare Au nanostructures operating at a low temperature.
Collapse
Affiliation(s)
- Marco Sturaro
- Dipartimento di Ingegneria Industriale, Università di Padova, 35131 Padova, Italy.
| | | | | | | | - Marco Bazzan
- Dipartimento di Fisica e Astronomia, Università di Padova, 35131 Padova, Italy.
| | - Alessandro Martucci
- Dipartimento di Ingegneria Industriale, Università di Padova, 35131 Padova, Italy.
| |
Collapse
|
23
|
Lin KT, Chan CJ, Lai YS, Shiu LT, Lin CC, Chen HL. Silicon-Based Embedded Trenches of Active Antennas for High-Responsivity Omnidirectional Photodetection at Telecommunication Wavelengths. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3150-3159. [PMID: 30624888 DOI: 10.1021/acsami.8b15914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although the use of plasmonic nanostructures for photodetection below the band gap energy of the semiconductor has been intensively investigated recently, efficiencies of such hot electron-based devices have, unfortunately, remained low because of the inevitable energy loss of the hot electrons as they move and transfer in active antennas based on metallic nanostructures. In this work, we demonstrate the concept of high-refractive-index material-embedded trench-like (ETL) active antennas that could be used to achieve almost 100% absorbance within the ultrashallow region (approximately 10 nm) beneath the metal-semiconductor interface, which is a much smaller distance compared with the hot electrons' mean free path in the noble metal layer. Taking advantage of these ETL-based active antennas, we obtained photoresponsivities under zero bias at wavelengths of 1310 and 1550 nm of 5854 and 693 nA mW-1, respectively-values higher than most those previously reported for active antenna-based silicon (Si) photodetectors that operate at optical telecommunication wavelengths. Furthermore, the ETL antenna strategy allowed us to preserve an omnidirectional and broadband photoresponse, with a superior degree of detection linearity of R2 = 0.98889 under the light of low power density (down to 11.1 μW cm-2). The photoresponses of the ETL antenna-based device varied by less than 10% upon changing the incident angle from normal incidence to 60°. Because these ETL-based devices provide high responsivity and omnidirectional detection over a broad bandwidth, they show promising potentials for use in hot electron-based optoelectronics for many applications (e.g., Si photonics, energy harvesting, photocatalysis, and sensing devices).
Collapse
Affiliation(s)
| | | | - Yu-Sheng Lai
- National Nano Device Laboratories, National Applied Research Laboratories , 26, Prosperity Road I , Hsinchu 30078 , Taiwan
| | | | | | | |
Collapse
|
24
|
Maurer RJ, Zhang Y, Guo H, Jiang B. Hot electron effects during reactive scattering of H2 from Ag(111): assessing the sensitivity to initial conditions, coupling magnitude, and electronic temperature. Faraday Discuss 2019; 214:105-121. [DOI: 10.1039/c8fd00140e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use an analytical representation of electronic friction for H2 on Ag(111) to assess the validity and robustness of the MDEF method based on TDPT.
Collapse
Affiliation(s)
- Reinhard J. Maurer
- Department of Chemistry
- Centre for Scientific Computing
- University of Warwick
- Coventry
- UK
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
25
|
Houlihan NM, Karker N, Potyrailo RA, Carpenter MA. High Sensitivity Plasmonic Sensing of Hydrogen over a Broad Dynamic Range Using Catalytic Au-CeO 2 Thin Film Nanocomposites. ACS Sens 2018; 3:2684-2692. [PMID: 30484629 DOI: 10.1021/acssensors.8b01193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Next-generation gas-sensor technologies are needed for diverse applications including environmental surveillance, occupational safety, and industrial process control. However, the dynamic range using existing sensors is often too narrow to meet demands. In this work, plasmonic films of Au-CeO2 that detect hydrogen with 0.38% and 60% lower and upper detection limits in an oxygen-free atmosphere experiment are demonstrated. The observed 15 nm peak shift was 4 times stronger versus other plasmonic H2 sensors. The proposed sensing mechanism that involves H2 dissociation by Auδ+ nanoparticles was validated using XPS, kinetics, and Arrhenius studies. Our understanding of this remarkable sensing behavior in oxygen-free conditions opens new horizons for packaging, art conservation, industrial process control, and other applications where conventional oxygen-dependent sensors lack broad dynamic range.
Collapse
Affiliation(s)
- Nora M. Houlihan
- SUNY Polytechnic Institute, College of Nanoscale Engineering and Technology Innovation, 257 Fuller Road, Albany, New York 12203, United States
| | - Nicholas Karker
- SUNY Polytechnic Institute, College of Nanoscale Engineering and Technology Innovation, 257 Fuller Road, Albany, New York 12203, United States
| | | | - Michael A. Carpenter
- SUNY Polytechnic Institute, College of Nanoscale Engineering and Technology Innovation, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
26
|
Plasmon-Induced Electrocatalysis with Multi-Component Nanostructures. MATERIALS 2018; 12:ma12010043. [PMID: 30586856 PMCID: PMC6337250 DOI: 10.3390/ma12010043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022]
Abstract
Noble metal nanostructures are exceptional light absorbing systems, in which electron–hole pairs can be formed and used as “hot” charge carriers for catalytic applications. The main goal of the emerging field of plasmon-induced catalysis is to design a novel way of finely tuning the activity and selectivity of heterogeneous catalysts. The designed strategies for the preparation of plasmonic nanomaterials for catalytic systems are highly crucial to achieve improvement in the performance of targeted catalytic reactions and processes. While there is a growing number of composite materials for photochemical processes-mediated by hot charge carriers, the reports on plasmon-enhanced electrochemical catalysis and their investigated reactions are still scarce. This review provides a brief overview of the current understanding of the charge flow within plasmon-enhanced electrochemically active nanostructures and their synthetic methods. It is intended to shed light on the recent progress achieved in the synthesis of multi-component nanostructures, in particular for the plasmon-mediated electrocatalysis of major fuel-forming and fuel cell reactions.
Collapse
|
27
|
Watkins WL, Borensztein Y. Mechanism of hydrogen adsorption on gold nanoparticles and charge transfer probed by anisotropic surface plasmon resonance. Phys Chem Chem Phys 2018; 19:27397-27405. [PMID: 28972603 DOI: 10.1039/c7cp04843b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of hydrogen on Au nanoparticles (NPs) of size of the order of 10 nm has been investigated by use of localised surface plasmon resonances (LSPR) in the NPs. The samples, formed by Au NPs obtained by oblique angle deposition on glass substrates, display a strong optical dichroism due to two different plasmon resonances dependent on the polarisation of light. This ensured the use of Transmittance Anisotropy Spectroscopy, a sensitive derivative optical technique, which permitted one to measure shifts of the LSPR as small as 0.02 nm upon H adsorption, which are not accessible by conventional plasmonic methods. The measured signal is proportional to the area of the NPs, which shows that H atoms diffuse on their facets. A negative charge transfer from Au to H is clearly demonstrated.
Collapse
Affiliation(s)
- William L Watkins
- Sorbonne Universités, UPMC Univ Paris 06, CNRS-UMR 7588, Institut des NanoSciences de Paris, F-75005, Paris, France.
| | | |
Collapse
|
28
|
Wang P, Krasavin AV, Nasir ME, Dickson W, Zayats AV. Reactive tunnel junctions in electrically driven plasmonic nanorod metamaterials. NATURE NANOTECHNOLOGY 2018; 13:159-164. [PMID: 29230044 PMCID: PMC5805091 DOI: 10.1038/s41565-017-0017-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 10/13/2017] [Indexed: 05/18/2023]
Abstract
Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.
Collapse
Affiliation(s)
- Pan Wang
- Department of Physics, King's College London, London, WC2R 2LS, UK.
| | | | - Mazhar E Nasir
- Department of Physics, King's College London, London, WC2R 2LS, UK
| | - Wayne Dickson
- Department of Physics, King's College London, London, WC2R 2LS, UK
| | - Anatoly V Zayats
- Department of Physics, King's College London, London, WC2R 2LS, UK.
| |
Collapse
|
29
|
Zhang HX, Li Y, Li MY, Zhang H, Zhang J. Boosting electrocatalytic hydrogen evolution by plasmon-driven hot-electron excitation. NANOSCALE 2018; 10:2236-2241. [PMID: 29340395 DOI: 10.1039/c7nr08474a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
High-performance catalysts for electrocatalytic and photoelectrochemical water splitting hold great promise for renewable energy conversion and storage. Herein, using porous N-doped carbon supported Au nanoparticles as catalysts, we demonstrate that the photon-induced localized surface plasmon resonance (LSPR) excitation on Au nanoparticles dramatically improves the hydrogen evolution reaction (HER), leading to a more than 4-fold increase of current and meanwhile affording a markedly decreased overpotential of 99 mV at a current density of 10 mA cm-2. The HER enhancement can be largely attributed to the efficient charge transfer of N-doped carbon that fastens the injection of hot electrons from plasmonic Au nanoparticles. This study highlights the increase of HER catalysis efficiency by plasmonic excitation and could provide new avenues towards the design of higher energy conversion catalytic water splitting systems with the assistance of light energy.
Collapse
Affiliation(s)
- Hai-Xia Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | | | | | | | | |
Collapse
|
30
|
Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy JR, Wei WD. Surface-Plasmon-Driven Hot Electron Photochemistry. Chem Rev 2017; 118:2927-2954. [DOI: 10.1021/acs.chemrev.7b00430] [Citation(s) in RCA: 730] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yuchao Zhang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Shuai He
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Wenxiao Guo
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Yue Hu
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Jiawei Huang
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Justin R. Mulcahy
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| | - Wei David Wei
- Department of Chemistry and Center for Catalysis, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
31
|
Sukharev M, Nitzan A. Optics of exciton-plasmon nanomaterials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:443003. [PMID: 28805193 DOI: 10.1088/1361-648x/aa85ef] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This review provides a brief introduction to the physics of coupled exciton-plasmon systems, the theoretical description and experimental manifestation of such phenomena, followed by an account of the state-of-the-art methodology for the numerical simulations of such phenomena and supplemented by a number of FORTRAN codes, by which the interested reader can introduce himself/herself to the practice of such simulations. Applications to CW light scattering as well as transient response and relaxation are described. Particular attention is given to so-called strong coupling limit, where the hybrid exciton-plasmon nature of the system response is strongly expressed. While traditional descriptions of such phenomena usually rely on analysis of the electromagnetic response of inhomogeneous dielectric environments that individually support plasmon and exciton excitations, here we explore also the consequences of a more detailed description of the molecular environment in terms of its quantum density matrix (applied in a mean field approximation level). Such a description makes it possible to account for characteristics that cannot be described by the dielectric response model: the effects of dephasing on the molecular response on one hand, and nonlinear response on the other. It also highlights the still missing important ingredients in the numerical approach, in particular its limitation to a classical description of the radiation field and its reliance on a mean field description of the many-body molecular system. We end our review with an outlook to the near future, where these limitations will be addressed and new novel applications of the numerical approach will be pursued.
Collapse
Affiliation(s)
- Maxim Sukharev
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, United States of America. Department of Physics, Arizona State University, Tempe, AZ 85287, United States of America
| | | |
Collapse
|
32
|
Sun Y, Yanagisawa M, Kunimoto M, Nakamura M, Homma T. Depth profiling of APTES self-assembled monolayers using surface-enhanced confocal Raman microspectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 184:1-6. [PMID: 28475958 DOI: 10.1016/j.saa.2017.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 04/06/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
The internal structure of self-assembled monolayers (SAMs) such as 3-aminopropyltriethoxysilane (APTES) fabricated on a glass substrate is difficult to characterize and analyze at nanometer level. In this study, we employed surface-enhanced Raman spectroscopy (SERS) to study the internal molecular structure of APTES SAMs. The sample APTES SAMs were deposited with Ag nanoparticles to enhance the Raman signal and to obtain subtler structure information, which were supported by density functional theory calculations. In addition, in order to carry out high-resolution analysis, especially for vertical direction, a fine piezo electric positioner was used to control the depth scanning with a step of 0.1nm. We measured and distinguished the vertical Raman intensity variations of specific groups in APTES, such as Ag/NH2, CH2, and SiO, with high resolution. The interfacial bond at the two interfaces of Ag-APTES and APTES-SiO2 was identified. Moreover, APTES molecule orientation was demonstrated to be inhomogeneous from frequency shift.
Collapse
Affiliation(s)
- Yingying Sun
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Masahiro Yanagisawa
- Nanotechnology Research Center, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Masahiro Kunimoto
- Nanotechnology Research Center, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Masatoshi Nakamura
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Takayuki Homma
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; Nanotechnology Research Center, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| |
Collapse
|
33
|
Vapor sensing with color-tunable multilayered coatings of cellulose nanocrystals. Carbohydr Polym 2017; 174:39-47. [PMID: 28821083 DOI: 10.1016/j.carbpol.2017.06.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 11/23/2022]
Abstract
Colloidal cellulose nanocrystals were LBL deposited to form firmly-stacked optical coatings in which the nanorods regulated their head-to-tail association and aligned in the axial-centrifuged direction. The periodically transition from blue to orange of reflected colors was tunable via deposition layer adjustment. While the sensing coating was exposed to vapors of NH3.H2O, H2O, HCl and HAc, respectively, the color variation in the response process was irreversible at room temperature and highly dependent on vapor diffusion and chemical interface interaction. Consequently, HAc vapor presented the longest sensing transition of wavelength, whereas the alkaline NH3.H2O displays a less recovery ratio than HAc and H2O at room temperature. Under heating at 50°C, the sensed coatings could mostly be restored to their original state except HCl-etched one. Therefore, the naked-eyed qualitative detectability of vapors by nanocellulose could be realized by the divergence in color shift which is of great importance in chemical sensors.
Collapse
|
34
|
Qi Z, Zhai Y, Wen L, Wang Q, Chen Q, Iqbal S, Chen G, Xu J, Tu Y. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection. NANOTECHNOLOGY 2017; 28:275202. [PMID: 28531089 DOI: 10.1088/1361-6528/aa74a3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The heterojunction between metal and silicon (Si) is an attractive route to extend the response of Si-based photodiodes into the near-infrared (NIR) region, so-called Schottky barrier diodes. Photons absorbed into a metallic nanostructure excite the surface plasmon resonances (SPRs), which can be damped non-radiatively through the creation of hot electrons. Unfortunately, the quantum efficiency of hot electron detectors remains low due to low optical absorption and poor electron injection efficiency. In this study, we propose an efficient and low-cost plasmonic hot electron NIR photodetector based on a Au nanoparticle (Au NP)-decorated Si pyramid Schottky junction. The large-area and lithography-free photodetector is realized by using an anisotropic chemical wet etching and rapid thermal annealing (RTA) of a thin Au film. We experimentally demonstrate that these hot electron detectors have broad photoresponsivity spectra in the NIR region of 1200-1475 nm, with a low dark current on the order of 10-5 A cm-2. The observed responsivities enable these devices to be competitive with other reported Si-based NIR hot electron photodetectors using perfectly periodic nanostructures. The improved performance is attributed to the pyramid surface which can enhance light trapping and the localized electric field, and the nano-sized Au NPs which are beneficial for the tunneling of hot electrons. The simple and large-area preparation processes make them suitable for large-scale thermophotovoltaic cell and low-cost NIR detection applications.
Collapse
Affiliation(s)
- Zhiyang Qi
- Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lu Y, Yang Y, Zhang T, Ge Z, Chang H, Xiao P, Xie Y, Hua L, Li Q, Li H, Ma B, Guan N, Ma Y, Chen Y. Photoprompted Hot Electrons from Bulk Cross-Linked Graphene Materials and Their Efficient Catalysis for Atmospheric Ammonia Synthesis. ACS NANO 2016; 10:10507-10515. [PMID: 27934092 DOI: 10.1021/acsnano.6b06472] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ammonia synthesis is the single most important chemical process in industry and has used the successful heterogeneous Haber-Bosch catalyst for over 100 years and requires processing under both high temperature (300-500 °C) and pressure (200-300 atm); thus, it has huge energy costs accounting for about 1-3% of human's energy consumption. Therefore, there has been a long and vigorous exploration to find a milder alternative process. Here, we demonstrate that by using an iron- and graphene-based catalyst, Fe@3DGraphene, hot (ejected) electrons from this composite catalyst induced by visible light in a wide range of wavelength up to red could efficiently facilitate the activation of N2 and generate ammonia with H2 directly at ambient pressure using light (including simulated sun light) illumination directly. No external voltage or electrochemical or any other agent is needed. The production rate increases with increasing light frequency under the same power and with increasing power under the same frequency. The mechanism is confirmed by the detection of the intermediate N2H4 and also with a measured apparent activation energy only ∼1/4 of the iron based Haber-Bosch catalyst. Combined with the morphology control using alumina as the structural promoter, the catalyst retains its activity in a 50 h test.
Collapse
Affiliation(s)
- Yanhong Lu
- School of Chemistry & Material Science, Langfang Teachers University , Langfang 065000, China
| | | | | | | | | | | | - Yuanyuan Xie
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Lei Hua
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Qingyun Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | | | | | | | | |
Collapse
|
36
|
Collins SSE, Wei X, McKenzie TG, Funston AM, Mulvaney P. Single Gold Nanorod Charge Modulation in an Ion Gel Device. NANO LETTERS 2016; 16:6863-6869. [PMID: 27700110 DOI: 10.1021/acs.nanolett.6b02696] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A reliable and reproducible method to rapidly charge single gold nanocrystals in a solid-state device is reported. Gold nanorods (Au NRs) were integrated into an ion gel capacitor, enabling them to be charged in a transparent and highly capacitive device, ideal for optical transmission. Changes in the electron concentration of a single Au NR were observed with dark-field imaging spectroscopy via localized surface plasmon resonance (LSPR) shifts in the scattering spectrum. A time-resolved, laser-illuminated, dark-field system was developed to enable direct measurement of single particle charging rates with time resolution below one millisecond. The added sensitivity of this new approach has enabled the optical detection of fewer than 110 electrons on a single Au NR. Single wavelength resonance shifts provide a much faster, more sensitive method for all surface plasmon-based sensing applications.
Collapse
Affiliation(s)
| | - Xingzhan Wei
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences , Chongqing, 400714, China
| | | | - Alison M Funston
- School of Chemistry, Monash University , Clayton, Victoria 3800, Australia
| | | |
Collapse
|
37
|
Zhang C, Zhao H, Zhou L, Schlather AE, Dong L, McClain MJ, Swearer DF, Nordlander P, Halas NJ. Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts. NANO LETTERS 2016; 16:6677-6682. [PMID: 27676189 DOI: 10.1021/acs.nanolett.6b03582] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photocatalysis uses light energy to drive chemical reactions. Conventional industrial catalysts are made of transition metal nanoparticles that interact only weakly with light, while metals such as Au, Ag, and Al that support surface plasmons interact strongly with light but are poor catalysts. By combining plasmonic and catalytic metal nanoparticles, the plasmonic "antenna" can couple light into the catalytic "reactor". This interaction induces an optical polarization in the reactor nanoparticle, forcing a plasmonic response. When this "forced plasmon" decays it can generate hot carriers, converting the catalyst into a photocatalyst. Here we show that precisely oriented, strongly coupled Al-Pd nanodisk heterodimers fabricated using nanoscale lithography can function as directional antenna-reactor photocatalyst complexes. The light-induced hydrogen dissociation rate on these structures is strongly dependent upon the polarization angle of the incident light with respect to the orientation of the antenna-reactor pair. Their high degree of structural precision allows us to microscopically quantify the photocatalytic activity per heterostructure, providing precise photocatalytic quantum efficiencies. This is the first example of precisely designed heterometallic nanostructure complexes for plasmon-enabled photocatalysis and paves the way for high-efficiency plasmonic photocatalysts by modular design.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Electrical and Computer Engineering, ‡Department of Chemistry, §Department of Physics and Astronomy, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Hangqi Zhao
- Department of Electrical and Computer Engineering, ‡Department of Chemistry, §Department of Physics and Astronomy, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Linan Zhou
- Department of Electrical and Computer Engineering, ‡Department of Chemistry, §Department of Physics and Astronomy, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Andrea E Schlather
- Department of Electrical and Computer Engineering, ‡Department of Chemistry, §Department of Physics and Astronomy, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Liangliang Dong
- Department of Electrical and Computer Engineering, ‡Department of Chemistry, §Department of Physics and Astronomy, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Michael J McClain
- Department of Electrical and Computer Engineering, ‡Department of Chemistry, §Department of Physics and Astronomy, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Dayne F Swearer
- Department of Electrical and Computer Engineering, ‡Department of Chemistry, §Department of Physics and Astronomy, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department of Electrical and Computer Engineering, ‡Department of Chemistry, §Department of Physics and Astronomy, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Naomi J Halas
- Department of Electrical and Computer Engineering, ‡Department of Chemistry, §Department of Physics and Astronomy, and ∥Laboratory for Nanophotonics, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
38
|
Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia Y. Bimetallic Nanocrystals: Syntheses, Properties, and Applications. Chem Rev 2016; 116:10414-72. [DOI: 10.1021/acs.chemrev.6b00211] [Citation(s) in RCA: 1109] [Impact Index Per Article: 123.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kyle D. Gilroy
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | | | | | | | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
39
|
Jeong KS, Guyot-Sionnest P. Mid-Infrared Photoluminescence of CdS and CdSe Colloidal Quantum Dots. ACS NANO 2016; 10:2225-31. [PMID: 26799582 DOI: 10.1021/acsnano.5b06882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mid-infrared intraband photoluminescence is observed from CdSe and CdS colloidal quantum dots (CQDs) and core/shell systems when excited by a visible laser. The CQDs show more intraband photoluminescence with dodecanethiol than with other ligands. Core/shells show an increase of the intraband photoluminescence with increasing shell thickness. The detected emission is restricted to below 2900 cm(-1), bounded by the C-H vibrational modes of the organic ligands. Upon photoexcitation in air for all dodecanethiol ligands capped CQD systems studied, the intraband photoluminescence is quenched over time, and emission at lower frequency is observed, which is assigned to laser heating and thermal emission from oxides.
Collapse
Affiliation(s)
- Kwang Seob Jeong
- James Franck Institute, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Philippe Guyot-Sionnest
- James Franck Institute, The University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
40
|
Ishida R, Yamazoe S, Koyasu K, Tsukuda T. Repeated appearance and disappearance of localized surface plasmon resonance in 1.2 nm gold clusters induced by adsorption and desorption of hydrogen atoms. NANOSCALE 2016; 8:2544-2547. [PMID: 26488140 DOI: 10.1039/c5nr06373f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Addition of an aqueous solution of NaBH4 to a dispersion of small (∼1.2 nm) gold clusters stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) induced a localized surface plasmon resonance (LSPR) absorption for a certain period of time while maintaining the cluster size. The duration of the LSPR band could be lengthened by increasing the NaBH4 concentration and shortened by increasing the concentration of dissolved O2, and the LSPR band could be made to appear and reappear repeatedly. The appearance of the LSPR band is explained by the electron donation to the Au core from the adsorbed H atoms that originate from NaBH4, whereas its disappearance is ascribed to the removal of H atoms by their reaction with O2. These results suggest that the transition between the metallic and non-metallic electronic structures of the Au clusters can be reversibly induced by the adsorption and desorption of H atoms, which are electronically equivalent to Au.
Collapse
Affiliation(s)
- Ryo Ishida
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Seiji Yamazoe
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Kiichirou Koyasu
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
41
|
Tyagi H, Khan T, Mohapatra J, Mitra A, Kalita H, Aslam M. The exclusive response of LSPR in uncapped gold nanoparticles towards silver ions and gold chloride ions. RSC Adv 2016. [DOI: 10.1039/c6ra23403h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
LSPR of gold nanoparticles supported over glass or silica nanoparticles modulated using simple ionic treatment.
Collapse
Affiliation(s)
- Himanshu Tyagi
- Department of Physics
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Tuhin Khan
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Jeotikanta Mohapatra
- Centre for Research in Nanotechnology and Science (CRNTS)
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Arijit Mitra
- Department of Physics
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Hemen Kalita
- Department of Physics
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
- Department of Physics
| | - Mohammed Aslam
- Department of Physics
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
42
|
Yang CP, Chen HC, Wang CC, Tsai PW, Ho CW, Liu YC. Effective Energy Transfer via Plasmon-Activated High-Energy Water Promotes Its Fundamental Activities of Solubility, Ionic Conductivity, and Extraction at Room Temperature. Sci Rep 2015; 5:18152. [PMID: 26658304 PMCID: PMC4674797 DOI: 10.1038/srep18152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/13/2015] [Indexed: 11/08/2022] Open
Abstract
Water is a ubiquitous solvent in biological, physical, and chemical processes. Unique properties of water result from water's tetrahedral hydrogen-bonded (HB) network (THBN). The original THBN is destroyed when water is confined in a nanosized environment or localized at interfaces, resulting in corresponding changes in HB-dependent properties. In this work, we present an innovative idea to validate the reserve energy of high-energy water and applications of high-energy water to promote water's fundamental activities of solubility, ionic conductivity, and extraction at room temperature. High-energy water with reduced HBs was created by utilizing hot electrons with energies from the decay of surface plasmon excited at gold (Au) nanoparticles (NPs). Compared to conventional deionized (DI) water, solubilities of alkali metal-chloride salts in high-energy water were significantly increased, especially for salts that release heat when dissolved. The ionic conductivity of NaCl in high-energy water was also markedly higher, especially when the electrolyte's concentration was extremely low. In addition, antioxidative components, such as polyphenols and 2,3,5,4'-tetrahydroxystilbene-2-O-beta-d-glucoside (THSG) from teas, and Polygonum multiflorum (PM), could more effectively be extracted using high-energy water. These results demonstrate that high-energy water has emerged as a promising innovative solvent for promoting water's fundamental activities via effective energy transfer.
Collapse
Affiliation(s)
- Chih-Ping Yang
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan
| | - Hsiao-Chien Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan
| | - Po-Wei Tsai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan
| | - Chia-Wen Ho
- Center for Cancer Research, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan
| | - Yu-Chuan Liu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan
- Biomedical Mass Imaging Research Center, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan
| |
Collapse
|
43
|
Menumerov E, Marks BA, Dikin DA, Lee FX, Winslow RD, Guru S, Sil D, Borguet E, Hutapea P, Hughes RA, Neretina S. Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation. ACS Sens 2015. [DOI: 10.1021/acssensors.5b00102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eredzhep Menumerov
- College of Engineering and ‡Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Bryan A. Marks
- College of Engineering and ‡Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Dmitriy A. Dikin
- College of Engineering and ‡Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Francis X. Lee
- College of Engineering and ‡Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Robert D. Winslow
- College of Engineering and ‡Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Saurav Guru
- College of Engineering and ‡Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Devika Sil
- College of Engineering and ‡Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Eric Borguet
- College of Engineering and ‡Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Parsaoran Hutapea
- College of Engineering and ‡Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Robert A. Hughes
- College of Engineering and ‡Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Svetlana Neretina
- College of Engineering and ‡Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
44
|
Robatjazi H, Bahauddin SM, Doiron C, Thomann I. Direct Plasmon-Driven Photoelectrocatalysis. NANO LETTERS 2015; 15:6155-61. [PMID: 26243130 DOI: 10.1021/acs.nanolett.5b02453] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Harnessing the energy from hot charge carriers is an emerging research area with the potential to improve energy conversion technologies.1-3 Here we present a novel plasmonic photoelectrode architecture carefully designed to drive photocatalytic reactions by efficient, nonradiative plasmon decay into hot carriers. In contrast to past work, our architecture does not utilize a Schottky junction, the commonly used building block to collect hot carriers. Instead, we observed large photocurrents from a Schottky-free junction due to direct hot electron injection from plasmonic gold nanoparticles into the reactant species upon plasmon decay. The key ingredients of our approach are (i) an architecture for increased light absorption inspired by optical impedance matching concepts,4 (ii) carrier separation by a selective transport layer, and (iii) efficient hot-carrier generation and injection from small plasmonic Au nanoparticles to adsorbed water molecules. We also investigated the quantum efficiency of hot electron injection for different particle diameters to elucidate potential quantum effects while keeping the plasmon resonance frequency unchanged. Interestingly, our studies did not reveal differences in the hot-electron generation and injection efficiencies for the investigated particle dimensions and plasmon resonances.
Collapse
Affiliation(s)
- Hossein Robatjazi
- Department of Electrical and Computer Engineering, ‡Department of Materials Science and NanoEngineering, §Department of Chemistry, ∥Laboratory for Nanophotonics, and ⊥Rice Quantum Institute, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Shah Mohammad Bahauddin
- Department of Electrical and Computer Engineering, ‡Department of Materials Science and NanoEngineering, §Department of Chemistry, ∥Laboratory for Nanophotonics, and ⊥Rice Quantum Institute, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Chloe Doiron
- Department of Electrical and Computer Engineering, ‡Department of Materials Science and NanoEngineering, §Department of Chemistry, ∥Laboratory for Nanophotonics, and ⊥Rice Quantum Institute, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Isabell Thomann
- Department of Electrical and Computer Engineering, ‡Department of Materials Science and NanoEngineering, §Department of Chemistry, ∥Laboratory for Nanophotonics, and ⊥Rice Quantum Institute, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
45
|
Collins SSE, Cittadini M, Pecharromán C, Martucci A, Mulvaney P. Hydrogen Spillover between Single Gold Nanorods and Metal Oxide Supports: A Surface Plasmon Spectroscopy Study. ACS NANO 2015; 9:7846-56. [PMID: 26154166 DOI: 10.1021/acsnano.5b02970] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We used dark field spectroscopy to monitor the dissociation of hydrogen on single gold nanoparticles embedded in metal oxide supports. Individual gold nanorods were monitored in real time to reveal the peak position, the full width at half-maximum, and the relative intensity of the surface plasmon resonances during repeated N2-H2-N2 and air-H2-air cycles. Shifts in the spectra are shown to be due to changes in electron density and not to refractive index shifts in the environment. We demonstrate that hydrogen does not dissociate on gold nanorods (13 nm × 40 nm) at room temperature when in contact with silica and that electrons or hydrogen atoms migrate from Pt nanoparticles to Au nanoparticles through the supporting metal oxide at room temperature. However, this spillover mechanism only occurs for semiconducting oxides (anatase TiO2 and ZnO) and does not occur for Au and Pt nanoparticles embedded in silica. Finally, we show that hydrogen does dissociate directly on anatase surfaces at room temperature during air-H2-air cycles. Our results show that hydrogen spillover, surface dissociation of reactants, and surface migration of chemical intermediates can be detected and monitored in real time at the single particle level.
Collapse
Affiliation(s)
- Sean S E Collins
- School of Chemistry & Bio21 Institute, University of Melbourne , Parkville, VIC 3010, Australia
| | - Michela Cittadini
- INSTM and Dipartimento di Ingegneria Industriale, Università di Padova , Via Marzolo 9, 35131 Padova, Italy
| | - Carlos Pecharromán
- Instituto de Ciencia de Materiales de Madrid (CSIC) , C/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Alessandro Martucci
- INSTM and Dipartimento di Ingegneria Industriale, Università di Padova , Via Marzolo 9, 35131 Padova, Italy
| | - Paul Mulvaney
- School of Chemistry & Bio21 Institute, University of Melbourne , Parkville, VIC 3010, Australia
| |
Collapse
|
46
|
Kumarasinghe CS, Premaratne M, Bao Q, Agrawal GP. Theoretical analysis of hot electron dynamics in nanorods. Sci Rep 2015. [PMID: 26202823 PMCID: PMC4511875 DOI: 10.1038/srep12140] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Localised surface plasmons create a non-equilibrium high-energy electron gas in nanostructures that can be injected into other media in energy harvesting applications. Here, we derive the rate of this localised-surface-plasmon mediated generation of hot electrons in nanorods and the rate of injecting them into other media by considering quantum mechanical motion of the electron gas. Specifically, we use the single-electron wave function of a particle in a cylindrical potential well and the electric field enhancement factor of an elongated ellipsoid to derive the energy distribution of electrons after plasmon excitation. We compare the performance of nanorods with equivolume nanoparticles of other shapes such as nanospheres and nanopallets and report that nanorods exhibit significantly better performance over a broad spectrum. We present a comprehensive theoretical analysis of how different parameters contribute to efficiency of hot-electron harvesting in nanorods and reveal that increasing the aspect ratio can increase the hot-electron generation and injection, but the volume shows an inverse dependency when efficiency per unit volume is considered. Further, the electron thermalisation time shows much less influence on the injection rate. Our derivations and results provide the much needed theoretical insight for optimization of hot-electron harvesting process in highly adaptable metallic nanorods.
Collapse
Affiliation(s)
- Chathurangi S Kumarasinghe
- Monash Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Malin Premaratne
- Monash Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Qiaoliang Bao
- 1] Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia [2] Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Govind P Agrawal
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
47
|
Muhich CL, Qiu J, Holder AM, Wu YC, Weimer AW, Wei WD, McElwee-White L, Musgrave CB. Solvent Control of Surface Plasmon-Mediated Chemical Deposition of Au Nanoparticles from Alkylgold Phosphine Complexes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13384-13394. [PMID: 26036274 DOI: 10.1021/acsami.5b01918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bottom-up approaches to nanofabrication are of great interest because they can enable structural control while minimizing material waste and fabrication time. One new bottom-up nanofabrication method involves excitation of the surface plasmon resonance (SPR) of a Ag surface to drive deposition of sub-15 nm Au nanoparticles from MeAuPPh3. In this work we used density functional theory to investigate the role of the PPh3 ligands of the Au precursor and the effect of adsorbed solvent on the deposition process, and to elucidate the mechanism of Au nanoparticle deposition. In the absence of solvent, the calculated barrier to MeAuPPh3 dissociation on the bare surface is <20 kcal/mol, making it facile at room temperature. Once adsorbed on the surface, neighboring MeAu fragments undergo ethane elimination to produce Au adatoms that cluster into Au nanoparticles. However, if the sample is immersed in benzene, we predict that the monolayer of adsorbed solvent blocks the adsorption of MeAuPPh3 onto the Ag surface because the PPh3 ligand is large compared to the size of the exposed surface between adsorbed benzenes. Instead, the Au-P bond of MeAuPPh3 dissociates in solution (Ea = 38.5 kcal/mol) in the plasmon heated near-surface region followed by the adsorption of the MeAu fragment on Ag in the interstitial space of the benzene monolayer. The adsorbed benzene forces the Au precursor to react through the higher energy path of dissociation in solution rather than dissociatively adsorbing onto the bare surface. This requires a higher temperature if the reaction is to proceed at a reasonable rate and enables the control of deposition by the light induced SPR heating of the surface and nearby solution.
Collapse
Affiliation(s)
- Christopher L Muhich
- †Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, UCB 596, Boulder, Colorado 80309-0596, United States
| | - Jingjing Qiu
- ‡Department of Chemistry and Center for Nanostructured Electronic Materials, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611-7200, United States
| | - Aaron M Holder
- †Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, UCB 596, Boulder, Colorado 80309-0596, United States
- §Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309-0215, United States
| | - Yung-Chien Wu
- ‡Department of Chemistry and Center for Nanostructured Electronic Materials, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611-7200, United States
| | - Alan W Weimer
- †Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, UCB 596, Boulder, Colorado 80309-0596, United States
| | - Wei David Wei
- ‡Department of Chemistry and Center for Nanostructured Electronic Materials, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611-7200, United States
| | - Lisa McElwee-White
- ‡Department of Chemistry and Center for Nanostructured Electronic Materials, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611-7200, United States
| | - Charles B Musgrave
- †Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, UCB 596, Boulder, Colorado 80309-0596, United States
- §Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
48
|
Gilroy KD, Sundar A, Hajfathalian M, Yaghoubzade A, Tan T, Sil D, Borguet E, Hughes RA, Neretina S. Transformation of truncated gold octahedrons into triangular nanoprisms through the heterogeneous nucleation of silver. NANOSCALE 2015; 7:6827-6835. [PMID: 25807181 DOI: 10.1039/c5nr00151j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Described is a straightforward procedure for forming organized substrate-immobilized nanoprisms which are single crystalline, surfactant-free and which form a heteroepitaxial relationship with the underlying substrate. The devised route utilizes truncated Au octahedrons formed through solid state dewetting techniques as high temperature heterogeneous nucleation sites for Ag adatoms which are arriving to the substrate surface in the vapour phase. Observed is a morphological and compositional transformation of the Au structures to triangular nanoprisms comprised of a homogeneous AuAg alloy. During this transformation, the localized surface plasmon resonance red-shifts, broadens and increases in strength. The shape transformation, which cannot be rationalized using thermodynamic arguments dependent on the surface energy minimization, is described in terms of a kinetically driven growth mode, previously predicted by molecular dynamic simulations. The so-formed structures, when coated with a thin layer of Pd, are demonstrated as plasmonic sensing elements for hydrogen detection.
Collapse
Affiliation(s)
- K D Gilroy
- College of Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dong Y, Choi J, Jeong HK, Son DH. Hot Electrons Generated from Doped Quantum Dots via Upconversion of Excitons to Hot Charge Carriers for Enhanced Photocatalysis. J Am Chem Soc 2015; 137:5549-54. [DOI: 10.1021/jacs.5b02026] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yitong Dong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Julius Choi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hae-Kwon Jeong
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
50
|
Sil D, Hines J, Udeoyo U, Borguet E. Palladium nanoparticle-based surface acoustic wave hydrogen sensor. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5709-5714. [PMID: 25746067 DOI: 10.1021/am507531s] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Palladium (Pd) nanoparticles (5-20 nm) are used as the sensing layer on surface acoustic wave (SAW) devices for detecting H2. The interaction with hydrogen modifies the conductivity of the Pd nanoparticle film, producing measurable changes in acoustic wave propagation, which allows for the detection of this explosive gas. The nanoparticle-based SAW sensor responds rapidly and reversibly at room temperature.
Collapse
Affiliation(s)
- Devika Sil
- †Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | | | - Uduak Udeoyo
- †Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Eric Borguet
- †Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|