1
|
Chang FC, James MM, Zhou Y, Ando Y, Zareie HM, Yang J, Zhang M. Human Neural Stem Cell Expansion in Natural Polymer Scaffolds Under Chemically Defined Condition. Adv Biol (Weinh) 2024; 8:e2400224. [PMID: 38963310 DOI: 10.1002/adbi.202400224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Indexed: 07/05/2024]
Abstract
The maintenance and expansion of human neural stem cells (hNSCs) in 3D tissue scaffolds is a promising strategy in producing cost-effective hNSCs with quality and quantity applicable for clinical applications. A few biopolymers have been extensively used to fabricate 3D scaffolds, including hyaluronic acid, collagen, alginate, and chitosan, due to their bioactive nature and availability. However, these polymers are usually applied in combination with other biomolecules, leading to their responses difficult to ascribe to. Here, scaffolds made of chitosan, alginate, hyaluronic acid, or collagen, are explored for hNSC expansion under xeno-free and chemically defined conditions and compared for hNSC multipotency maintenance. This study shows that the scaffolds made of pure chitosan support the highest adhesion and growth of hNSCs, yielding the most viable cells with NSC marker protein expression. In contrast, the presence of alginate, hyaluronic acid, or collagen induces differentiation toward immature neurons and astrocytes even in the maintenance medium and absence of differentiation factors. The cells in pure chitosan scaffolds preserve the level of transmembrane protein profile similar to that of standard culture. These findings point to the potential of using pure chitosan scaffolds as a base scaffolding material for hNSC expansion in 3D.
Collapse
Affiliation(s)
- Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Matthew Michael James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yang Zhou
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yoshiki Ando
- Materials Department, Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, Yasu, Shiga, 520-2362, Japan
| | - Hadi M Zareie
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jihui Yang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
2
|
Nosrati H, Fallah Tafti M, Aghamollaei H, Bonakdar S, Moosazadeh Moghaddam M. Directed Differentiation of Adipose-Derived Stem Cells Using Imprinted Cell-Like Topographies as a Growth Factor-Free Approach. Stem Cell Rev Rep 2024; 20:1752-1781. [PMID: 39066936 DOI: 10.1007/s12015-024-10767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The influence of surface topography on stem cell behavior and differentiation has garnered significant attention in regenerative medicine and tissue engineering. The cell-imprinting method has been introduced as a promising approach to mimic the geometry and topography of cells. The cell-imprinted substrates are designed to replicate the topographies and dimensions of target cells, enabling tailored interactions that promote the differentiation of stem cells towards desired specialized cell types. In fact, by replicating the size and shape of cells, biomimetic substrates provide physical cues that profoundly impact stem cell differentiation. These cues play a pivotal role in directing cell morphology, cytoskeletal organization, and gene expression, ultimately influencing lineage commitment. The biomimetic substrates' ability to emulate the native cellular microenvironment supports the creation of platforms capable of steering stem cell fate with high precision. This review discusses the role of mechanical factors that impact stem cell fate. It also provides an overview of the design and fabrication principles of cell-imprinted substrates. Furthermore, the paper delves into the use of cell-imprinted polydimethylsiloxane (PDMS) substrates to direct adipose-derived stem cells (ADSCs) differentiation into a variety of specialized cells for tissue engineering and regenerative medicine applications. Additionally, the review discusses the limitations of cell-imprinted PDMS substrates and highlights the efforts made to overcome these limitations.
Collapse
Affiliation(s)
- Hamed Nosrati
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahsa Fallah Tafti
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Vellayappan MV, Duarte F, Sollogoub C, Dirrenberger J, Guinault A, Frith JE, Parkington HC, Molotnikov A, Cameron NR. Creation of Grooved Tissue Engineering Scaffolds from Architectured Multilayer Polymer Composites by a Tuneable One-Step Degradation Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401902. [PMID: 38949308 DOI: 10.1002/smll.202401902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/03/2024] [Indexed: 07/02/2024]
Abstract
The surface properties of biomaterials interact directly with biological systems, influencing cellular responses, tissue integration, and biocompatibility. Surface topography plays a critical role in cardiac tissue engineering by affecting electrical conductivity, cardiomyocyte alignment, and contractile function. Current methods for controlling surface properties and topography in cardiac tissue engineering scaffolds are limited, expensive, and lack precision. This study introduces a low-cost, one-step degradation process to create scaffolds with well-defined micro-grooves from multilayered 3D printed poly(lactic acid)/thermoplastic polyurethane composites. The approach provides control over erosion rate and surface morphology, allowing easy tuning of scaffold topographical cues for tissue engineering applications. The findings reported in this study provide a library of easily tuneable scaffold topographical cues. A strong dependence of neonatal rat cardiomyocyte (NRCM) contact guidance with the multilayers' dimension and shape in partially degraded polylactic acid (PLA)/thermoplastic polyurethane (TPU) samples is observed. NRCMs cultured on samples with a layer thickness of 13 ± 2 µm and depth of 4.7 ± 0.2 µm demonstrate the most regular contractions. Hence, the proposed fabrication scheme can be used to produce a new generation of biomaterials with excellent controllability determined by multilayer thickness, printing parameters, and degradation treatment duration.
Collapse
Affiliation(s)
- Muthu Vignesh Vellayappan
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
| | - Francisco Duarte
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
| | - Cyrille Sollogoub
- PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l'Hopital, Paris, 75013, France
| | - Justin Dirrenberger
- PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l'Hopital, Paris, 75013, France
| | - Alain Guinault
- PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l'Hopital, Paris, 75013, France
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, 26, Innovation Walk, Victoria, 3800, Australia
| | - Andrey Molotnikov
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, VIC, 3800, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, 3800, Australia
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
- Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
4
|
Ozcicek I, Aysit N, Balcikanli Z, Ayturk NU, Aydeger A, Baydas G, Aydin MS, Altintas E, Erim UC. Development of BDNF/NGF/IKVAV Peptide Modified and Gold Nanoparticle Conductive PCL/PLGA Nerve Guidance Conduit for Regeneration of the Rat Spinal Cord Injury. Macromol Biosci 2024; 24:e2300453. [PMID: 38224015 DOI: 10.1002/mabi.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Spinal cord injuries are very common worldwide, leading to permanent nerve function loss with devastating effects in the affected patients. The challenges and inadequate results in the current clinical treatments are leading scientists to innovative neural regenerative research. Advances in nanoscience and neural tissue engineering have opened new avenues for spinal cord injury (SCI) treatment. In order for designed nerve guidance conduit (NGC) to be functionally useful, it must have ideal scaffold properties and topographic features that promote the linear orientation of damaged axons. In this study, it is aimed to develop channeled polycaprolactone (PCL)/Poly-D,L-lactic-co-glycolic acid (PLGA) hybrid film scaffolds, modify their surfaces by IKVAV pentapeptide/gold nanoparticles (AuNPs) or polypyrrole (PPy) and investigate the behavior of motor neurons on the designed scaffold surfaces in vitro under static/bioreactor conditions. Their potential to promote neural regeneration after implantation into the rat SCI by shaping the film scaffolds modified with neural factors into a tubular form is also examined. It is shown that channeled groups decorated with AuNPs highly promote neurite orientation under bioreactor conditions and also the developed optimal NGC (PCL/PLGA G1-IKVAV/BDNF/NGF-AuNP50) highly regenerates SCI. The results indicate that the designed scaffold can be an ideal candidate for spinal cord regeneration.
Collapse
Affiliation(s)
- Ilyas Ozcicek
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Nese Aysit
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Zeynep Balcikanli
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Nilufer Ulas Ayturk
- Department of Histology and Embryology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Canakkale, 17020, Turkey
| | - Asel Aydeger
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Gulsena Baydas
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Mehmet Serif Aydin
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Esra Altintas
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Umit Can Erim
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, 34815, Turkey
| |
Collapse
|
5
|
Mahmoudi N, Mohamed E, Dehnavi SS, Aguilar LMC, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Calming the Nerves via the Immune Instructive Physiochemical Properties of Self-Assembling Peptide Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303707. [PMID: 38030559 PMCID: PMC10837390 DOI: 10.1002/advs.202303707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Current therapies for the devastating damage caused by traumatic brain injuries (TBI) are limited. This is in part due to poor drug efficacy to modulate neuroinflammation, angiogenesis and/or promoting neuroprotection and is the combined result of challenges in getting drugs across the blood brain barrier, in a targeted approach. The negative impact of the injured extracellular matrix (ECM) has been identified as a factor in restricting post-injury plasticity of residual neurons and is shown to reduce the functional integration of grafted cells. Therefore, new strategies are needed to manipulate the extracellular environment at the subacute phase to enhance brain regeneration. In this review, potential strategies are to be discussed for the treatment of TBI by using self-assembling peptide (SAP) hydrogels, fabricated via the rational design of supramolecular peptide scaffolds, as an artificial ECM which under the appropriate conditions yields a supramolecular hydrogel. Sequence selection of the peptides allows the tuning of these hydrogels' physical and biochemical properties such as charge, hydrophobicity, cell adhesiveness, stiffness, factor presentation, degradation profile and responsiveness to (external) stimuli. This review aims to facilitate the development of more intelligent biomaterials in the future to satisfy the parameters, requirements, and opportunities for the effective treatment of TBI.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Elmira Mohamed
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
| | - Shiva Soltani Dehnavi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
| | - Lilith M. Caballero Aguilar
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Alan R. Harvey
- School of Human SciencesThe University of Western Australiaand Perron Institute for Neurological and Translational SciencePerthWA6009Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleMelbourneVIC3010Australia
| | | | - David R. Nisbet
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
- Melbourne Medical SchoolFaculty of MedicineDentistry and Health ScienceThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
6
|
Cho Y, Choi Y, Seong H. Nanoscale surface coatings and topographies for neural interfaces. Acta Biomater 2024; 175:55-75. [PMID: 38141934 DOI: 10.1016/j.actbio.2023.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
With the lack of minimally invasive tools for probing neuronal systems across spatiotemporal scales, understanding the working mechanism of the nervous system and limited assessments available are imperative to prevent or treat neurological disorders. In particular, nanoengineered neural interfaces can provide a solution to this technological barrier. This review covers recent surface engineering approaches, including nanoscale surface coatings, and a range of topographies from the microscale to the nanoscale, primarily focusing on neural-interfaced biosystems. Specifically, the immobilization of bioactive molecules to fertilize the neural cell lineage, topographical engineering to induce mechanotransduction in neural cells, and enhanced cell-chip coupling using three-dimensional structured surfaces are highlighted. Advances in neural interface design will help us understand the nervous system, thereby achieving the effective treatments for neurological disorders. STATEMENT OF SIGNIFICANCE: • This review focuses on designing bioactive neural interface with a nanoscale chemical modification and topographical engineering at multiscale perspective. • Versatile nanoscale surface coatings and topographies for neural interface are summarized. • Recent advances in bioactive materials applicable for neural cell culture, electrophysiological sensing, and neural implants are reviewed.
Collapse
Affiliation(s)
- Younghak Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yunyoung Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyejeong Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
7
|
Litowczenko J, Wychowaniec JK, Załęski K, Marczak Ł, Edwards-Gayle CJC, Tadyszak K, Maciejewska BM. Micro/nano-patterns for enhancing differentiation of human neural stem cells and fabrication of nerve conduits via soft lithography and 3D printing. BIOMATERIALS ADVANCES 2023; 154:213653. [PMID: 37862812 DOI: 10.1016/j.bioadv.2023.213653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
Topographical cues on materials can manipulate cellular fate, particularly for neural cells that respond well to such cues. Utilizing biomaterial surfaces with topographical features can effectively influence neuronal differentiation and promote neurite outgrowth. This is crucial for improving the regeneration of damaged neural tissue after injury. Here, we utilized groove patterns to create neural conduits that promote neural differentiation and axonal growth. We investigated the differentiation of human neural stem cells (NSCs) on silicon dioxide groove patterns with varying height-to-width/spacing ratios. We hypothesize that NSCs can sense the microgrooves with nanoscale depth on different aspect ratio substrates and exhibit different morphologies and differentiation fate. A comprehensive approach was employed, analyzing cell morphology, neurite length, and cell-specific markers. These aspects provided insights into the behavior of the investigated NSCs and their response to the topographical cues. Three groove-pattern models were designed with varying height-to-width/spacing ratios of 80, 42, and 30 for groove pattern widths of 1 μm, 5 μm, and 10 μm and nanoheights of 80 nm, 210 nm, and 280 nm. Smaller groove patterns led to longer neurites and more effective differentiation towards neurons, whereas larger patterns promoted multidimensional differentiation towards both neurons and glia. We transferred these cues onto patterned polycaprolactone (PCL) and PCL-graphene oxide (PCL-GO) composite 'stamps' using simple soft lithography and reproducible extrusion 3D printing methods. The patterned scaffolds elicited a response from NSCs comparable to that of silicon dioxide groove patterns. The smallest pattern stimulated the highest neurite outgrowth, while the middle-sized grooves of PCL-GO induced effective synaptogenesis. We demonstrated the potential for such structures to be wrapped into tubes and used as grafts for peripheral nerve regeneration. Grooved PCL and PCL-GO conduits could be a promising alternative to nerve grafting.
Collapse
Affiliation(s)
- Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland.
| | - Jacek K Wychowaniec
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland; AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Łukasz Marczak
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | - Krzysztof Tadyszak
- Institute of Macromolecular Chemistry, CAS, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Barbara M Maciejewska
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| |
Collapse
|
8
|
Lei X, Miao S, Wang X, Gao Y, Wu H, Cheng P, Song Y, Bi L, Pei G. Microgroove Cues Guiding Fibrogenesis of Stem Cells via Intracellular Force. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16380-16393. [PMID: 36961871 DOI: 10.1021/acsami.2c20903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Groove patterns are widely used in material surface modifications. However, the independent role of ditches/ridges in regulating fibrosis of soft tissues is not well-understood, especially the lack of linkage evidence in vitro and in vivo. Herein, two kinds of combinational microgroove chips with the gradient ditch/ridge width were fabricated by photolithography technology, termed R and G groups, respectively. In group R, the ridge width was 1, 5, 10, and 30 μm, with a ditch width of 30 μm; in group G, the groove width was 5, 10, 20, and 30 μm, and the ridge width was 5 μm. The effect of microgrooves on the morphology, proliferation, and expression of fibrous markers of stem cells was systematically investigated in vitro. Moreover, thicknesses of fibrous capsules were evaluated after chips were implanted into the muscular pouches of rats for 5 months. The results show that microgrooves have almost no effect on cell proliferation but significantly modulate the morphology of cells and focal adhesions (FAs) in vitro, as well as fibrosis differentiation. In particular, the differentiation of stem cells is attenuated after the intracellular force caused by stress fibers and FAs is interfered by drugs, such as rotenone and blebbistatin. Histological analysis shows that patterns of high intracellular force can apparently stimulate soft tissue fibrosis in vivo. This study not only reveals the specific rules and mechanisms of ditch/ridge regulating stem cell behaviors but also offers insight into tailoring implant surface patterns to induce controlled soft tissue fibrosis.
Collapse
Affiliation(s)
- Xing Lei
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi 276000, China
| | - Sheng Miao
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Xiuli Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yi Gao
- Southern University of Science and Technology Hospital, No. 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen 518055, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Wu
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Pengzhen Cheng
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yue Song
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Guoxian Pei
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
- Southern University of Science and Technology Hospital, No. 6019 Liuxian Street, Xili Avenue, Nanshan District, Shenzhen 518055, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Ahn H, Cho Y, Yun GT, Jung KB, Jeong W, Kim Y, Son MY, Lee E, Im SG, Jung HT. Hierarchical Topography with Tunable Micro- and Nanoarchitectonics for Highly Enhanced Cardiomyocyte Maturation via Multi-Scale Mechanotransduction. Adv Healthc Mater 2023; 12:e2202371. [PMID: 36652539 DOI: 10.1002/adhm.202202371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Enhancing cardiomyocyte (CM) maturation by topographical cues is a critical issue in cardiac tissue engineering. Thus far, single-scale topographies with a broad range of feature shapes and dimensions have been utilized including grooves, pillars, and fibers. This study reports for the first time a hierarchical structure composed of nano-pillars (nPs) on micro-wrinkles (µWs) for effective maturation of CMs. Through capillary force lithography followed by a wrinkling process, vast size ranges of topographies are fabricated, and the responses of CMs are systematically investigated. Maturation of CMs on the hierarchical structures is highly enhanced compared to a single-scale topography: cardiac differentiation of H9C2s (rat cardiomyocytes) on the hierarchical topography is ≈ 2.8 and ≈ 1.9 times higher than those consisting of single-scale µWs and nPs. Both nPs and µWs have important roles in cardiac maturation, and the aspect ratio (height/diameter) of the nPs and the wavelength of the µWs are important in CM maturation. This enhancement is caused by strong focal adhesion and nucleus mediated mechanotransduction of CMs from the confinement effects of the different wavelengths of µWs and the cellular membrane protrusion on the nPs. This study demonstrates how a large family of hierarchical structures is used for cardiac maturation.
Collapse
Affiliation(s)
- Hyunah Ahn
- National Laboratory for Organic Opto-Electronic Material, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Younghak Cho
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Geun-Tae Yun
- National Nanofab Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Kwang Bo Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Wonji Jeong
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Yesol Kim
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
| | - Eunjung Lee
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Sung Gap Im
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.,KI for NanoCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hee-Tae Jung
- National Laboratory for Organic Opto-Electronic Material, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| |
Collapse
|
10
|
Castillo Ransanz L, Van Altena PFJ, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol 2022; 10:1096054. [PMID: 36588937 PMCID: PMC9794772 DOI: 10.3389/fbioe.2022.1096054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.
Collapse
Affiliation(s)
- Lucía Castillo Ransanz
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter F. J. Van Altena
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Vivi M. Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
11
|
Cai J, Zhang H, Hu Y, Huang Z, Wang Y, Xia Y, Chen X, Guo J, Cheng H, Xia L, Lu W, Zhang C, Xie J, Wang H, Chai R. GelMA-MXene hydrogel nerve conduits with microgrooves for spinal cord injury repair. J Nanobiotechnology 2022; 20:460. [PMID: 36307790 PMCID: PMC9617371 DOI: 10.1186/s12951-022-01669-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
Repair of spinal cord injury (SCI) depends on microenvironment improvement and the reconnection between injured axons and regenerated neurons. Here, we fabricate a GelMA-MXene hydrogel nerve conduit with electrical conductivity and internal-facing longitudinal grooves and explore its function in SCI repair. It is found that the resultant grooved GelMA-MXene hydrogel could effectively promote the neural stem cells (NSCs) adhesion, directed proliferation and differentiation in vitro. Additionally, when the GelMA-MXene conduit loaded with NSCs (GMN) is implanted into the injured spinal cord site, effective repair capability for the complete transection of SCI was demonstrated. The GMN group shows remarkable nerve recovery and significantly higher BBB scores in comparison to the other groups. Therefore, GMN with the microgroove structure and loaded with NSCs is a promising strategy in treating SCI.
Collapse
Affiliation(s)
- Jiaying Cai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yangnan Hu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zhichun Huang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yan Wang
- Chien-Shiung Wu College, Southeast university, Nanjing, China
| | - Yu Xia
- Chien-Shiung Wu College, Southeast university, Nanjing, China
| | - Xiaoyan Chen
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiamin Guo
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lin Xia
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Weicheng Lu
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
| | - Huan Wang
- The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China. .,Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100086, China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Patel M, Ahn S, Koh WG. Topographical pattern for neuronal tissue engineering. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Sun C, Dong Y, Wei J, Cai M, Liang D, Fu Y, Zhou Y, Sui Y, Wu F, Mikhaylov R, Wang H, Fan F, Xie Z, Stringer M, Yang Z, Wu Z, Tian L, Yang X. Acoustically Accelerated Neural Differentiation of Human Embryonic Stem Cells. Acta Biomater 2022; 151:333-345. [DOI: 10.1016/j.actbio.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/14/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
|
14
|
Wu L, Dang Y, Liang LX, Gong YC, Zeeshan M, Qian Z, Geiger SD, Vaughn MG, Zhou Y, Li QQ, Chu C, Tan YW, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu Y, Dong GH. Perfluorooctane sulfonates induces neurobehavioral changes and increases dopamine neurotransmitter levels in zebrafish larvae. CHEMOSPHERE 2022; 297:134234. [PMID: 35259355 DOI: 10.1016/j.chemosphere.2022.134234] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
It has been reported that exposure to perfluorooctane sulfonates (PFOS) causes behavioral abnormalities in zebrafish larvae, but the possible mechanisms underlying these changes remain unexplored. In this study, zebrafish embryos (2 h postfertilization, 2-hpf) were exposed to PFOS at different concentrations (0, 0.032, 0.32 and 3.2 mg/L) for 120 h. Developmental endpoints and the locomotion behavior of larvae were evaluated. Reactive oxygen species (ROS) levels, dopamine contents, several genes and proteins related to neurodevelopment and dopamine signaling were examined. Our results indicate that increased ROS levels in the zebrafish larvae heads may be causally associated with neurodevelopment damage. Meanwhile, brain-derived neurotrophic factor (BDNF) and alpha1-Tubulin (α1-Tubulin) protein contents were significantly increased, which may be a compensatory mechanism for the impaired central nervous system. PFOS-induced locomotor hyperactivity was observed in the first light phase and dark phase at the 0.32 and 3.2 mg/L of PFOS. Upregulation of dopamine-related genes tyrosine hydroxylase (th) and dopamine transporter (dat) associated with increased dopamine contents in the 3.2 mg/L of PFOS. In addition, protein expression of TH and DAT were noted at the 0.32 and 3.2 mg/L of PFOS concentrations. Our results suggested that PFOS induces neurobehavioral changes in zebrafish larvae, possibly by perturbing a dopamine signaling pathway. In addition, PFOS induced development damage, such as increased malformation rate and shorter body length.
Collapse
Affiliation(s)
- Luyin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Li-Xia Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan-Chen Gong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Sarah Dee Geiger
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Michael G Vaughn
- School of Social Work, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, 63103, USA
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chu Chu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Wen Tan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Bjørge IM, Correia CR, Mano JF. Hipster microcarriers: exploring geometrical and topographical cues of non-spherical microcarriers in biomedical applications. MATERIALS HORIZONS 2022; 9:908-933. [PMID: 34908074 DOI: 10.1039/d1mh01694f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structure and organisation are key aspects of the native tissue environment, which ultimately condition cell fate via a myriad of processes, including the activation of mechanotransduction pathways. By modulating the formation of integrin-mediated adhesions and consequently impacting cell contractility, engineered geometrical and topographical cues may be introduced to activate downstream signalling and ultimately control cell morphology, proliferation, and differentiation. Microcarriers appear as attractive vehicles for cell-based tissue engineering strategies aiming to modulate this 3D environment, but also as vehicles for cell-free applications, given the ease in tuning their chemical and physical properties. In this review, geometry and topography are highlighted as two preponderant features in actively regulating interactions between cells and the extracellular matrix. While most studies focus on the 2D environment, we focus on how the incorporation of these strategies in 3D systems could be beneficial. The techniques applied to design 3D microcarriers with unique geometries and surface topographical cues are covered, as well as specific tissue engineering approaches employing these microcarriers. In fact, successfully achieving a functional histoarchitecture may depend on a combination of fine-tuned geometrically shaped microcarriers presenting intricately tailored topographical cues. Lastly, we pinpoint microcarrier geometry as a key player in cell-free biomaterial-based strategies, and its impact on drug release kinetics, the production of steerable microcarriers to target tumour cells, and as protein or antibody biosensors.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - Clara R Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
16
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Lee JS, Kim J, Cui B, Kim SK, Cho SA, An S, Cho SW. Hybrid skin chips for toxicological evaluation of chemical drugs and cosmetic compounds. LAB ON A CHIP 2022; 22:343-353. [PMID: 34904990 DOI: 10.1039/d1lc00550b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Development of drugs and cosmetics for topical application require safety tests in skin models. However, current skin models, such as skin cell sheets and artificial tissue-engineered skin, do not allow sophisticated toxicological evaluations (e.g., sensory irritation, hepatotoxicity). Animal models are prohibited worldwide for testing cosmetics. Therefore, reliable human skin models that recapitulate physiological events in skin tissue need to be established under in vitro settings. In this study, hybrid human skin models that enable delicate toxicological evaluations of drugs and cosmetic compounds are demonstrated. To recapitulate skin cornification, keratinocytes in the top layer of a vertical microfluidic chip were cultured at the air-liquid interface. For the skin-nerve hybrid model, differentiated neural stem cells in 3D collagen were positioned adjacent to and right below the skin layer. This model enables real-time quantitative skin sensitization analysis following chemical treatments by detecting alterations in neuronal activity in combination with a calcium imaging technique. For the skin-liver model, hepatic cells derived from pluripotent stem cells were cultured in 3D collagen distant from the skin layer. Potential hepatotoxicity of cutaneously applied chemicals in this model can be evaluated by quantification of glutathione and reactive oxygen species. Our study suggests that 3D hybrid skin chips would provide useful human skin models in pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Jong Seung Lee
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Jin Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Su Kyeom Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Sun-A Cho
- Safety & Microbiology Lab, Amorepacific Co. R&D Unit, Yongin 17038, Republic of Korea
| | - Susun An
- Safety & Microbiology Lab, Amorepacific Co. R&D Unit, Yongin 17038, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
18
|
Kryszak B, Szustakiewicz K, Dzienny P, Junka A, Paleczny J, Szymczyk-Ziółkowska P, Hoppe V, Grzymajło M, Antończak A. 'Cookies on a tray': Superselective hierarchical microstructured poly(l-lactide) surface as a decoy for cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112648. [PMID: 35034812 DOI: 10.1016/j.msec.2022.112648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/11/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022]
Abstract
In this research we developed a micro-sized hierarchical structures on a poly(l-lactide) (PLLA) surface. The obtained structures consist of round-shaped protrusions with a diameter of ~20 μm, a height of ~3 μm, and the distance between them ~30 μm. We explored the effect of structuring PLLA to design a non-cytotoxic material with increased roughness to encourage cells to settle on the surface. The PLLA films were prepared using the casting melt extrusion technique and were modified using ultra-short pulse irradiation - a femtosecond laser operating at λ = 1030 nm. A hierarchical microstructure was obtained resembling 'cookies on a tray'. The cellular response of fibro- and osteoblasts cell lines was investigated. The conducted research has shown that the laser-modified surface is more conducive to cell adhesion and growth (compared to unmodified surface) to such an extent that allows the formation of highly-selectively patterns consisting of living cells. In contrast to eukaryotic cells, the pathogenic bacteria Staphylococcus aureus covered modified and unmodified structures in an even, non-preferential manner. In turn, adhesion pattern of eukaryotic fungus Saccharomyces boulardii resembled that of fibro- and osteoblast cells rather than that of Staphylococcus. The discovered effect can be used for fabrication of personalized and smart implants in regenerative medicine.
Collapse
Affiliation(s)
- Bartłomiej Kryszak
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Konrad Szustakiewicz
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Paulina Dzienny
- Laser and Fiber Electronics Group, Faculty of Electronics, Photonics and Microsystem, WUST, Poland
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | | | - Viktoria Hoppe
- Center for Advanced Manufacturing Technologies, Faculty of Mechanical Engineering, WUST, Poland
| | - Michał Grzymajło
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology (WUST), Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Arkadiusz Antończak
- Laser and Fiber Electronics Group, Faculty of Electronics, Photonics and Microsystem, WUST, Poland
| |
Collapse
|
19
|
Multiscale-Engineered Muscle Constructs: PEG Hydrogel Micro-Patterning on an Electrospun PCL Mat Functionalized with Gold Nanoparticles. Int J Mol Sci 2021; 23:ijms23010260. [PMID: 35008686 PMCID: PMC8745500 DOI: 10.3390/ijms23010260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
The development of new, viable, and functional engineered tissue is a complex and challenging task. Skeletal muscle constructs have specific requirements as cells are sensitive to the stiffness, geometry of the materials, and biological micro-environment. The aim of this study was thus to design and characterize a multi-scale scaffold and to evaluate it regarding the differentiation process of C2C12 skeletal myoblasts. The significance of the work lies in the microfabrication of lines of polyethylene glycol, on poly(ε-caprolactone) nanofiber sheets obtained using the electrospinning process, coated or not with gold nanoparticles to act as a potential substrate for electrical stimulation. The differentiation of C2C12 cells was studied over a period of seven days and quantified through both expression of specific genes, and analysis of the myotubes’ alignment and length using confocal microscopy. We demonstrated that our multiscale bio-construct presented tunable mechanical properties and supported the different stages skeletal muscle, as well as improving the parallel orientation of the myotubes with a variation of less than 15°. These scaffolds showed the ability of sustained myogenic differentiation by enhancing the organization of reconstructed skeletal muscle. Moreover, they may be suitable for applications in mechanical and electrical stimulation to mimic the muscle’s physiological functions.
Collapse
|
20
|
Li M, Ma H, Han F, Zhai D, Zhang B, Sun Y, Li T, Chen L, Wu C. Microbially Catalyzed Biomaterials for Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104829. [PMID: 34632631 DOI: 10.1002/adma.202104829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bone is a complex mineralized tissue composed of various organic (proteins, cells) and inorganic (hydroxyapatite, calcium carbonate) substances with micro/nanoscale structures. To improve interfacial bioactivity of bone-implanted biomaterials, extensive efforts are being made to fabricate favorable biointerface via surface modification. Inspired by microbially catalyzed mineralization, a novel concept to biologically synthesize the micro/nanostructures on bioceramics, microbial-assisted catalysis, is presented. It involves three processes: bacterial adhesion on biomaterials, production of CO3 2- assisted by bacteria, and nucleation and growth of CaCO3 nanocrystals on the surface of bioceramics. The microbially catalyzed biominerals exhibit relatively uniform micro/nanostructures on the surface of both 2D and 3D α-CaSiO3 bioceramics. The topographic and chemical cues of the grown micro/nanostructures present excellent in vitro and in vivo bone-forming bioactivity. The underlying mechanism is closely related to the activation of multiple biological processes associated with bone regeneration. The study offers a microbially catalytic concept and strategy of fabricating micro/nanostructured biomaterials for tissue regeneration.
Collapse
Affiliation(s)
- Mengmeng Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Fei Han
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Bingjun Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yuhua Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Niari SA, Rahbarghazi R, Geranmayeh MH, Karimipour M. Biomaterials patterning regulates neural stem cells fate and behavior: The interface of biology and material science. J Biomed Mater Res A 2021; 110:725-737. [PMID: 34751503 DOI: 10.1002/jbm.a.37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022]
Abstract
The combination of nanotechnology and stem cell biology is one of the most promising advances in the field of regenerative medicine. This novel combination has widely been utilized in vitro settings in an attempt to develop efficient therapeutic strategies to overcome the limited capacity of the central nervous system (CNS) in replacing degenerating neural cells with functionally normal cells after the onset of acute and chronic neurological disorders. Importantly, biomaterials, not only, enhance the endogenous CNS neurogenesis and plasticity, but also, could provide a desirable supportive microenvironment to harness the full potential of the in vitro expanded neural stem cells (NSCs) for regenerative purposes. Here, first, we discuss how the physical and biochemical properties of biomaterials, such as their stiffness and elasticity, could influence the behavior of NSCs. Then, since the NSCs niche or microenvironment is of fundamental importance in controlling the dynamic destiny of NSCs such as their quiescent and proliferative states, topographical effects of surface diversity in biomaterials, that is, the micro-and nano-patterned surfaces will be discussed in detail. Finally, the influence of biomaterials as artificial microenvironments on the behavior of NSCs through the specific mechanotransduction signaling pathway mediated by focal adhesion formation will be reviewed.
Collapse
Affiliation(s)
- Shabnam Asghari Niari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Luo Y, Li J, Li B, Xia Y, Wang H, Fu C. Physical Cues of Matrices Reeducate Nerve Cells. Front Cell Dev Biol 2021; 9:731170. [PMID: 34646825 PMCID: PMC8502847 DOI: 10.3389/fcell.2021.731170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
The behavior of nerve cells plays a crucial role in nerve regeneration. The mechanical, topographical, and electrical microenvironment surrounding nerve cells can activate cellular signaling pathways of mechanical transduction to affect the behavior of nerve cells. Recently, biological scaffolds with various physical properties have been developed as extracellular matrix to regulate the behavior conversion of nerve cell, such as neuronal neurite growth and directional differentiation of neural stem cells, providing a robust driving force for nerve regeneration. This review mainly focused on the biological basis of nerve cells in mechanical transduction. In addition, we also highlighted the effect of the physical cues, including stiffness, mechanical tension, two-dimensional terrain, and electrical conductivity, on neurite outgrowth and differentiation of neural stem cells and predicted their potential application in clinical nerve tissue engineering.
Collapse
Affiliation(s)
- Yiqian Luo
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
24
|
Yadav S, Majumder A. Biomimicked hierarchical 2D and 3D structures from natural templates: applications in cell biology. Biomed Mater 2021; 16. [PMID: 34438385 DOI: 10.1088/1748-605x/ac21a7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 08/26/2021] [Indexed: 11/11/2022]
Abstract
Intricate structures of natural surfaces and materials have amazed people over the ages. The unique properties of various surfaces also created interest and curiosity in researchers. In the recent past, with the advent of superior microscopy techniques, we have started to understand how these complex structures provide superior properties. With that knowledge, scientists have developed various biomimicked and bio-inspired surfaces for different non-biological applications. In the last two decades, we have also started to learn how structures of the tissue microenvironment influence cell function and behaviour, both in physiological and pathological conditions. Hence, it became essential to decipher the role and importance of structural hierarchy in the cellular context. With advances in microfabricated techniques, such complex structures were made by superimposing features of different dimensions. However, the fabricated topographies are far from matching the complexities presentin vivo. Hence, the need of biomimicking the natural surfaces for cellular applications was felt. In this review, we discuss a few examples of hierarchical surfaces found in plants, insects, and vertebrates. Such structures have been widely biomimicked for various applications but rarely studied for cell-substrate interaction and cellular response. Here, we discuss the research work wherein 2D hierarchical substrates were prepared using biomimicking to understand cellular functions such as adhesion, orientation, differentiation, and formation of spheroids. Further, we also present the status of ongoing research in mimicking 3D tissue architecture using de-cellularized plant-based and tissue/organ-based scaffolds. We will also discuss 3D printing for fabricating 2D and 3D hierarchical structures. The review will end by highlighting the various advantages and research challenges in this approach. The biomimickedin-vivolike substrate can be used to better understand cellular physiology, and for tissue engineering.
Collapse
Affiliation(s)
- Shital Yadav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
25
|
Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 2021; 7:4136-4163. [PMID: 33780230 PMCID: PMC8441975 DOI: 10.1021/acsbiomaterials.1c00030] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hydrogel materials have been employed as biological scaffolds for tissue regeneration across a wide range of applications. Their versatility and biomimetic properties make them an optimal choice for treating the complex and delicate milieu of neural tissue damage. Aside from finely tailored hydrogel properties, which aim to mimic healthy physiological tissue, a minimally invasive delivery method is essential to prevent off-target and surgery-related complications. The specific class of injectable hydrogels termed self-assembling peptides (SAPs), provide an ideal combination of in situ polymerization combined with versatility for biofunctionlization, tunable physicochemical properties, and high cytocompatibility. This review identifies design criteria for neural scaffolds based upon key cellular interactions with the neural extracellular matrix (ECM), with emphasis on aspects that are reproducible in a biomaterial environment. Examples of the most recent SAPs and modification methods are presented, with a focus on biological, mechanical, and topographical cues. Furthermore, SAP electrical properties and methods to provide appropriate electrical and electrochemical cues are widely discussed, in light of the endogenous electrical activity of neural tissue as well as the clinical effectiveness of stimulation treatments. Recent applications of SAP materials in neural repair and electrical stimulation therapies are highlighted, identifying research gaps in the field of hydrogels for neural regeneration.
Collapse
Affiliation(s)
- Sofia Peressotti
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Gillian E. Koehl
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Josef A. Goding
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Rylie A. Green
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| |
Collapse
|
26
|
Lestrell E, O'Brien CM, Elnathan R, Voelcker NH. Vertically Aligned Nanostructured Topographies for Human Neural Stem Cell Differentiation and Neuronal Cell Interrogation. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Esther Lestrell
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| | - Carmel M. O'Brien
- CSIRO Manufacturing Clayton Victoria 3168 Australia
- Australian Regenerative Medicine Institute Monash University Clayton Victoria 3168 Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
| | - Nicolas H. Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton Victoria 3168 Australia
- CSIRO Manufacturing Clayton Victoria 3168 Australia
| |
Collapse
|
27
|
Correia CR, Bjørge IM, Nadine S, Mano JF. Minimalist Tissue Engineering Approaches Using Low Material-Based Bioengineered Systems. Adv Healthc Mater 2021; 10:e2002110. [PMID: 33709572 DOI: 10.1002/adhm.202002110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Indexed: 12/14/2022]
Abstract
From an "over-engineering" era in which biomaterials played a central role, now it is observed to the emergence of "developmental" tissue engineering (TE) strategies which rely on an integrative cell-material perspective that paves the way for cell self-organization. The current challenge is to engineer the microenvironment without hampering the spontaneous collective arrangement ability of cells, while simultaneously providing biochemical, geometrical, and biophysical cues that positively influence tissue healing. These efforts have resulted in the development of low-material based TE strategies focused on minimizing the amount of biomaterial provided to the living key players of the regenerative process. Through a "minimalist-engineering" approach, the main idea is to fine-tune the spatial balance occupied by the inanimate region of the regenerative niche toward maximum actuation of the key living components during the healing process.
Collapse
Affiliation(s)
- Clara R. Correia
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Isabel M. Bjørge
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Sara Nadine
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
28
|
Ghazali ZS, Eskandari M, Bonakdar S, Renaud P, Mashinchian O, Shalileh S, Bonini F, Uckay I, Preynat-Seauve O, Braschler T. Neural priming of adipose-derived stem cells by cell-imprinted substrates. Biofabrication 2021; 13. [PMID: 33126230 DOI: 10.1088/1758-5090/abc66f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Cell-imprinting technology is a novel method for directing stem cell fate using substrates molded from target cells. Here, we fabricated and studied cell-imprinted substrates for neural priming in human adipose-derived stem cells in the absence of chemical cues. We molded polydimethylsiloxane silicone substrates on fixed differentiated neural progenitor cells (ReNcellTMVM). The ReNcellTMcell line consists of immortalized human neural progenitor cells that are capable to differentiate into neural cells. The fabricated cell-imprinted silicone substrates represent the geometrical micro- and nanotopology of the target cell morphology. During the molding procedure, no transfer of cellular proteins was detectable. In the first test with undifferentiated ReNcellTMVM cells, the cell-imprinted substrates could accelerate neural differentiation. With adipose-derived stem cells cultivated on the imprinted substrates, we observed modifications of cell morphology, shifting from spread to elongated shape. Both immunofluorescence and quantitative gene expression analysis showed upregulation of neural stem cell and early neuronal markers. Our study, for the first time, demonstrated the effectiveness of cell-imprinted substrates for neural priming of adipose-derived stem cells for regenerative medicine applications.
Collapse
Affiliation(s)
- Zahra Sadat Ghazali
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mahnaz Eskandari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Iran Pasteur Institute, Tehran, Iran
| | - Philippe Renaud
- STI-IMT-LMIS4, Station 17, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Omid Mashinchian
- Nestlé Research, École Polytechnique Fédérale de Lausanne Innovation Park, 1015 Lausanne, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Shahriar Shalileh
- School of Electrical and computer engineering, University of Tehran, Tehran, Iran
| | - Fabien Bonini
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ilker Uckay
- Orthopedic Surgery Service, Geneva University Hospitals, Geneva, Switzerland
| | | | - Thomas Braschler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Guo S, Huang H, Zeng W, Jiang Z, Wang X, Huang W, Wang X. Facile cell patterning induced by combined surface topography and chemistry on polydopamine-defined nanosubstrates. NANOTECHNOLOGY 2021; 32:145303. [PMID: 33361576 DOI: 10.1088/1361-6528/abd6d2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cell patterning holds significant implications for cell-based analysis and high-throughput screening. The challenge and key factor for formation of cell patterns is to precisely modulate the interaction between cells and substrate surfaces. Many nanosubstrates have been developed to control cell adhesion and patterning, however, requirements of complicated fabrication procedures, harsh reaction conditions, and delicate manipulation are not routinely feasible. Here, we developed a hierarchical polydimethylsiloxane nanosubstrate (HPNS) coated with mussel-inspired polydopamine (PDA) micropatterns for effective cell patterning, depending on both surface topography and chemistry. HPNSs obtained by facile template-assisted replication brought enhanced topographic interaction between cells and substrates, but they were innately hydrophobic and cell-repellent. The hydrophobic nanosubstrates were converted to be hydrophilic after PDA coatings formed via spontaneous self-polymerization, which greatly facilitated cell adhesion. As such, without resorting to any external forces or physical constraints, cells selectively adhered and spread on spatially defined PDA regions with high efficiency, and well-defined cell microarrays could be formed within 20 min. Therefore, this easy-to-fabricate nanosubstrate with no complex chemical modification will afford a facile yet effective platform for rapid cell patterning.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Haiyan Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Weiwu Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhuoran Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xin Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Weihua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xinghuan Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| |
Collapse
|
30
|
Kim H, Kumbar SG, Nukavarapu SP. Biomaterial-directed cell behavior for tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 17:100260. [PMID: 33521410 PMCID: PMC7839921 DOI: 10.1016/j.cobme.2020.100260] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful tissue regeneration strategies focus on the use of novel biomaterials, structures, and a variety of cues to control cell behavior and promote regeneration. Studies discovered how biomaterial/ structure cues in the form of biomaterial chemistry, material stiffness, surface topography, pore, and degradation properties play an important role in controlling cellular events in the contest of in vitro and in vivo tissue regeneration. Advanced biomaterials structures and strategies are developed to focus on the delivery of bioactive factors, such as proteins, peptides, and even small molecules to influence cell behavior and regeneration. The present article is an effort to summarize important findings and further discuss biomaterial strategies to influence and control cell behavior directly via physical and chemical cues. This article also touches on various modern methods in biomaterials processing to include bioactive factors as signaling cues to program cell behavior for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hyun Kim
- Biomedical Engineering, University of Connecticut, Storrs-06269
| | - Sangamesh G. Kumbar
- Biomedical Engineering, University of Connecticut, Storrs-06269
- Materials Science & Engineering, University of Connecticut, Storrs-06269
- Orthopaedic Surgery, University of Connecticut Health, Farmington-06030
| | - Syam P. Nukavarapu
- Biomedical Engineering, University of Connecticut, Storrs-06269
- Materials Science & Engineering, University of Connecticut, Storrs-06269
- Orthopaedic Surgery, University of Connecticut Health, Farmington-06030
| |
Collapse
|
31
|
Liu C, Li X, Zhao Q, Xie Y, Yao X, Wang M, Cao F. Nanofibrous bicomponent scaffolds for the dual delivery of NGF and GDNF: controlled release of growth factors and their biological effects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:9. [PMID: 33471206 PMCID: PMC7817556 DOI: 10.1007/s10856-020-06479-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/18/2020] [Indexed: 06/01/2023]
Abstract
Electrospun fibrous scaffolds capable of providing dual growth factor delivery in a controlled manner have distinctive advantages for tissue engineering. In this study, we have investigated the formation, structure, and characteristics/properties of fibrous bicomponent scaffolds for the dual delivery of glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) for peripheral nerve tissue regeneration. GDNF and NGF were incorporated into core-shell structured poly(lactic-co-glycolic acid) (PLGA) and poly (D,L-lactic acid) (PDLLA) nanofibers, respectively, through emulsion electrospinning. Using dual-source dual-power electrospinning, bicomponent scaffolds composed of GDNF/PLGA fibers and NGF/PDLLA fibers with different fiber component ratios were produced. The structure, properties, and in vitro release behavior of mono- and bicomponent scaffolds were systematically investigated. Concurrent and sustained release of GDNF and NGF from bicomponent scaffolds was achieved and their release profiles could be tuned. In vitro biological investigations were conducted. Rat pheochromocytoma cells were found to attach, spread, and proliferate on all scaffolds. The release of growth factors from scaffolds could induce much improved neurite outgrowth and neural differentiation. GDNF and NGF released from GDNF/PLGA scaffolds and NGF/PDLLA scaffolds, respectively, could induce dose-dependent neural differentiation separately. GDNF and NGF released from bicomponent scaffolds exerted a synergistic effect on promoting neural differentiation.
Collapse
Affiliation(s)
- Chaoyu Liu
- Department of Research and Development, Shenzhen Shiningbiotek Co., Ltd, Shenzhen, 518055, P. R. China.
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | - Xiaohua Li
- Department of Research and Development, Shenzhen Shiningbiotek Co., Ltd, Shenzhen, 518055, P. R. China
- Oncology Center, Hubei University of Medicine, Shiyan, 442000, P. R. China
| | - Qilong Zhao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, P. R. China
| | - Yuancai Xie
- Department of Thoracic, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Xumei Yao
- Department of Research and Development, Shenzhen Shiningbiotek Co., Ltd, Shenzhen, 518055, P. R. China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Fengjun Cao
- Oncology Center, Hubei University of Medicine, Shiyan, 442000, P. R. China.
| |
Collapse
|
32
|
Tchobanian A, Ceyssens F, Cóndor Salgado M, Van Oosterwyck H, Fardim P. Patterned dextran ester films as a tailorable cell culture platform. Carbohydr Polym 2021; 252:117183. [PMID: 33183630 DOI: 10.1016/j.carbpol.2020.117183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/22/2023]
Abstract
The elucidation of cell-surface interactions and the development of model platforms to help uncover their underlying mechanisms remains vital to the design of effective biomaterials. To this end, dextran palmitates with varying degrees of substitution were synthesised with a multipurpose functionality: an ability to modulate surface energy through surface chemistry, and an ideal thermal behaviour for patterning. Herein, dextran palmitate films are produced by spin coating, and patterned by thermal nanoimprint lithography with nano-to-microscale topographies. These films of moderately hydrophobic polysaccharide esters with low nanoscale roughness performed as well as fibronectin coatings in the culture of bovine aortic endothelial cells. Upon patterning, they display distinct regions of roughness, restricting cell adhesion to the smoothest surfaces, while guiding multicellular arrangements in the patterned topographies. The development of biomaterial interfaces through topochemical fabrication such as this could prove useful in understanding protein and cell-surface interactions.
Collapse
Affiliation(s)
- Armen Tchobanian
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| | - Frederik Ceyssens
- Department of Electrical Engineering, ESAT-MICAS, KU Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium.
| | - Mar Cóndor Salgado
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300, B-3001 Heverlee, Belgium.
| | - Hans Van Oosterwyck
- Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300, B-3001 Heverlee, Belgium; Prometheus Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49 - bus 813, Leuven, Belgium.
| | - Pedro Fardim
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| |
Collapse
|
33
|
Narasimhan BN, Ting MS, Kollmetz T, Horrocks MS, Chalard AE, Malmström J. Mechanical Characterization for Cellular Mechanobiology: Current Trends and Future Prospects. Front Bioeng Biotechnol 2020; 8:595978. [PMID: 33282852 PMCID: PMC7689259 DOI: 10.3389/fbioe.2020.595978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Accurate mechanical characterization of adherent cells and their substrates is important for understanding the influence of mechanical properties on cells themselves. Recent mechanobiology studies outline the importance of mechanical parameters, such as stress relaxation and strain stiffening on the behavior of cells. Numerous techniques exist for probing mechanical properties and it is vital to understand the benefits of each technique and how they relate to each other. This mini review aims to guide the reader through the toolbox of mechanical characterization techniques by presenting well-established and emerging methods currently used to assess mechanical properties of substrates and cells.
Collapse
Affiliation(s)
- Badri Narayanan Narasimhan
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Matthew S. Ting
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Tarek Kollmetz
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Matthew S. Horrocks
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Anaïs E. Chalard
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, The University of Auckland, Auckland, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
34
|
Marques-Almeida T, Cardoso VF, Gama M, Lanceros-Mendez S, Ribeiro C. Patterned Piezoelectric Scaffolds for Osteogenic Differentiation. Int J Mol Sci 2020; 21:E8352. [PMID: 33171761 PMCID: PMC7672637 DOI: 10.3390/ijms21218352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/02/2023] Open
Abstract
The morphological clues of scaffolds can determine cell behavior and, therefore, the patterning of electroactive polymers can be a suitable strategy for bone tissue engineering. In this way, this work reports on the influence of poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) electroactive micropatterned scaffolds on the proliferation and differentiation of bone cells. For that, micropatterned P(VDF-TrFE) scaffolds were produced by lithography in the form of arrays of lines and hexagons and then tested for cell proliferation and differentiation of pre-osteoblast cell line. Results show that more anisotropic surface microstructures promote bone differentiation without the need of further biochemical stimulation. Thus, the combination of specific patterns with the inherent electroactivity of materials provides a promising platform for bone regeneration.
Collapse
Affiliation(s)
- Teresa Marques-Almeida
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (T.M.-A.); (V.F.C.)
- CEB, Centro de Engenharia Biológica, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Vanessa F. Cardoso
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (T.M.-A.); (V.F.C.)
- CMEMS-UMinho, Campus de Azurém, Universidade do Minho, 4800-058 Guimarães, Portugal
| | - Miguel Gama
- CEB, Centro de Engenharia Biológica, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Clarisse Ribeiro
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (T.M.-A.); (V.F.C.)
- CEB, Centro de Engenharia Biológica, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal;
| |
Collapse
|
35
|
Domínguez-Bajo A, Rodilla BL, Calaresu I, Arché-Núñez A, González-Mayorga A, Scaini D, Pérez L, Camarero J, Miranda R, López-Dolado E, González MT, Ballerini L, Serrano MC. Interfacing Neurons with Nanostructured Electrodes Modulates Synaptic Circuit Features. ACTA ACUST UNITED AC 2020; 4:e2000117. [PMID: 32761896 DOI: 10.1002/adbi.202000117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Understanding neural physiopathology requires advances in nanotechnology-based interfaces, engineered to monitor the functional state of mammalian nervous cells. Such interfaces typically contain nanometer-size features for stimulation and recording as in cell-non-invasive extracellular microelectrode arrays. In such devices, it turns crucial to understand specific interactions of neural cells with physicochemical features of electrodes, which could be designed to optimize performance. Herein, versatile flexible nanostructured electrodes covered by arrays of metallic nanowires are fabricated and used to investigate the role of chemical composition and nanotopography on rat brain cells in vitro. By using Au and Ni as exemplary materials, nanostructure and chemical composition are demonstrated to play major roles in the interaction of neural cells with electrodes. Nanostructured devices are interfaced to rat embryonic cortical cells and postnatal hippocampal neurons forming synaptic circuits. It is shown that Au-based electrodes behave similarly to controls. Contrarily, Ni-based nanostructured electrodes increase cell survival, boost neuronal differentiation, and reduce glial cells with respect to flat counterparts. Nonetheless, Au-based electrodes perform superiorly compared to Ni-based ones. Under electrical stimulation, Au-based nanostructured substrates evoke intracellular calcium dynamics compatible with neural networks activation. These studies highlight the opportunity for these electrodes to excite a silent neural network by direct neuronal membranes depolarization.
Collapse
Affiliation(s)
- Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| | - Beatriz Loreto Rodilla
- Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.,International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste, 34136, Italy
| | - Ivo Calaresu
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, Toledo, 45071, Spain
| | - Ana Arché-Núñez
- Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain
| | - Ankor González-Mayorga
- Instituto "Nicolas Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, Madrid, 28049, Spain
| | - Denis Scaini
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, Toledo, 45071, Spain
| | - Lucas Pérez
- Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.,International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste, 34136, Italy
| | - Julio Camarero
- Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.,Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, Madrid, 28040, Spain
| | - Rodolfo Miranda
- Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.,Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, Madrid, 28040, Spain
| | - Elisa López-Dolado
- Instituto "Nicolas Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, Madrid, 28049, Spain.,Research Unit of "Design and development of biomaterials for neural regeneration", Hospital Nacional de Parapléjicos, Joint Research Unit with CSIC, Toledo, 45071, Spain
| | | | - Laura Ballerini
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, Toledo, 45071, Spain
| | - María Concepción Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain
| |
Collapse
|
36
|
Yu ZH, Chen WJ, Liu X, Xia QY, Yang YN, Dong M, Liu JH, Guan HJ, Sun C, Feng FD, Shen QD. Folate-Modified Photoelectric Responsive Polymer Microarray as Bionic Artificial Retina to Restore Visual Function. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28759-28767. [PMID: 32478503 DOI: 10.1021/acsami.0c04058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A high-optical-resolution artificial retina system that accurately communicates with the optic nerve is the main challenge in the modern biological science and bionic field. Here, we developed a bionic artificial retina possessing phototransduction "cells" with measurements even smaller than that of the neural cells. Using the technique of micrometer processing, we constructed a pyramid-shape periodic microarray of a photoreceptor. Each "sensing cell" took advantage of polythiophene derivative/fullerene derivative (PCBM) as a photoelectric converter. Because folic acid played an essential role in eye growth, we particularly modified the polythiophene derivatives with folic acid tags. Therefore, the artificial retina could enlarge the contact area and even recognize the nerve cells to improve the consequence of nerve stimulation. We implanted the artificial retina into blinded rats' eyes. Electrophysiological analysis revealed its recovery of photosensitive function 3 months after surgery. Our work provides an innovative idea for fabricating a high-resolution bionic artificial retina system. It shows great potential in artificial intelligence and biomedicine.
Collapse
Affiliation(s)
- Zheng-Hang Yu
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Jian Chen
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xi Liu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Qiu-Yu Xia
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Nuo Yang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Mei Dong
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia-Hao Liu
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huai-Jin Guan
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Cheng Sun
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fu-De Feng
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qun-Dong Shen
- Department of Polymer Science & Engineering and Key Laboratory of High Performance Polymer Materials & Technology of MOE, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Yang L, Jurczak KM, Ge L, Rijn P. High-Throughput Screening and Hierarchical Topography-Mediated Neural Differentiation of Mesenchymal Stem Cells. Adv Healthc Mater 2020; 9:e2000117. [PMID: 32363812 DOI: 10.1002/adhm.202000117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Biophysical factors such as anisotropic topography composed of micro/nanosized structures are important for directing the fate of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and have been applied to neuronal differentiation. Via high-throughput screening (HTS) methods based on topography gradients, the optimum topography is determined and translated toward a hierarchical architecture designed to mimic the nerve nano/microstructure. The polydimethylsiloxane (PDMS)-based topography gradient with amplitudes (A) from 541 to 3073 nm and wavelengths (W) between 4 and 30 µm is developed and the fate commitment of MSC toward neuron lineage is investigated. The hierarchical structures, combining nano- and microtopography (W0.3/W26 parallel/perpendicular) are fabricated to explore the combined topography effects on neuron differentiation. From the immunofluorescent staining results (Tuj1 and MAP2), the substrate characterized by W: 26 µm; A: 2.9 µm shows highest potential for promoting neurogenesis. Furthermore, the hierarchical features (W0.3/W26 parallel) significantly enhance neural differentiation. The hBM-MSCs on the hierarchical substrates exhibit a significantly lower percentage of nuclear Yes-associated protein (YAP)/TAZ and weaker cell contractility indicating that the promoted neurogenesis is mediated by the cell tension and YAP/TAZ pathway. This research provides new insight into designing biomaterials for applications in neural tissue engineering and contributes to the understanding of topography-mediated neuronal differentiation.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Klaudia Malgorzata Jurczak
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Lu Ge
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| | - Patrick Rijn
- Department of Biomedical Engineering University Medical Center GroningenUniversity of Groningen Groningen, A. Deusinglaan 1 Groningen 9713 AV The Netherlands
| |
Collapse
|
38
|
Seo E, Seong MR, Lee JW, Lim H, Park J, Kim H, Hwang H, Lee D, Kim J, Kim GH, Hwang DS, Lee SJ. Anti-Biofouling Features of Eco-Friendly Oleamide-PDMS Copolymers. ACS OMEGA 2020; 5:11515-11521. [PMID: 32478240 PMCID: PMC7254802 DOI: 10.1021/acsomega.0c00633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The biofouling of marine organisms on a surface induces serious economic damage. One of the conventional anti-biofouling strategies is the use of toxic chemicals. In this study, a new eco-friendly oleamide-PDMS copolymer (OPC) is proposed for sustainable anti-biofouling and effective drag reduction. The anti-biofouling characteristics of the OPC are investigated using algal spores and mussels. The proposed OPC is found to inhibit the adhesion of algal spores and mussels. The slippery features of the fabricated OPC surfaces are examined by direct measurement of pressure drops in channel flows. The proposed OPC surface would be utilized in various industrial applications including marine vehicles and biomedical devices.
Collapse
Affiliation(s)
- Eunseok Seo
- Department
of Mechanical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Myeong Ryun Seong
- Department
of Mechanical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Ji Woong Lee
- Department
of Biological Sciences, Kongju National
University, Gongju 314-701, South Korea
| | - Heejin Lim
- Department
of New Biology, DGIST (Daegu Gyeongbuk Institute
of Science and Technology), Daegu 711-873, South Korea
| | - Jiwon Park
- Department
of Microbiology, Chungbuk National University, Cheongju 28644, South Korea
| | - Hyungbin Kim
- Division
of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hyundo Hwang
- Department
of Mechanical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Dohoon Lee
- Division
of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jiho Kim
- Pohang
Accelerator Laboratory, Pohang 37673, South Korea
| | - Gwang Hoon Kim
- Department
of Biological Sciences, Kongju National
University, Gongju 314-701, South Korea
| | - Dong Soo Hwang
- Division
of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Sang Joon Lee
- Department
of Mechanical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
39
|
Chen S, Wu C, Liu A, Wei D, Xiao Y, Guo Z, Chen L, Zhu Y, Sun J, Luo H, Fan H. Biofabrication of nerve fibers with mimetic myelin sheath-like structure and aligned fibrous niche. Biofabrication 2020; 12:035013. [PMID: 32240990 DOI: 10.1088/1758-5090/ab860d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nerve tissues contain hierarchically ordered nerve fibers, while each of the nerve fibers has nano-oriented fibrous extracellular matrix and a core-shell structure of tubular myelin sheath with elongated axons encapsulated. Here, we report, for the first time, a ready approach to fabricate biomimetic nerve fibers which are oriented and have a core-shell structure to spatially encapsulate two types of cells, neurons and Schwann cells. A microfluidic system was designed and assembled, which contained a coaxial triple-channel chip and a stretching loading device. Alginate was used first to assist the fabrication, which was washed away afterwards. The orientation of the biomimetic nerve fibers was optimized by the control of the compositions of methacrylate hyaluronan and fibrin, together with the parameters of microfluidic shearing and external stretching. Also, neurons and Schwann cells, which were respectively located in the core and shell of the fibers, displayed advanced biologic functions, including neurogenesis and myelinating maturation. We demonstrate that the neural performance is relatively good, compared to that resulted from individually encapsulated in single-layer microfibers. The present study brings insights to fabricate biomimetic nerve fibers for their potential in neuroscience research and nerve regeneration. Moreover, the present methodology on the fabrication of oriented fibers with different types of cells separately encapsulated should be applicable to biomimetic constructions of various tissues.
Collapse
Affiliation(s)
- Suping Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610064 People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Combinatorial biophysical cue sensor array for controlling neural stem cell fate. Biosens Bioelectron 2020; 156:112125. [DOI: 10.1016/j.bios.2020.112125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
|
41
|
Dai EN, Heo S, Mauck RL. "Looping In" Mechanics: Mechanobiologic Regulation of the Nucleus and the Epigenome. Adv Healthc Mater 2020; 9:e2000030. [PMID: 32285630 DOI: 10.1002/adhm.202000030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Cells respond to physical cues in their microenvironment. These cues result in changes in cell behavior, some of which are transient, and others of which are permanent. Understanding and leveraging permanent alteration of cell behavior induced by mechanical cues, or "mechanical memories," is an important aim in cell and tissue engineering. Herein, this paper reviews the existing literature outlining how cells may store memories of biophysical cues with a specific focus on the nucleus, the storehouse of information in eukaryotic cells. In particular, this review details mechanically driven adaptations in nuclear structure and genome organization and outlines potential mechanisms by which mechanical memories may be encoded within the structure and organization of the nucleus and chromatin.
Collapse
Affiliation(s)
- Eric N. Dai
- Departments of Orthopaedic Surgery and Bioengineering University of Pennsylvania Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J. Crescenz VA Medical Center Philadelphia PA 19104 USA
| | - Su‐Jin Heo
- Departments of Orthopaedic Surgery and Bioengineering University of Pennsylvania Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J. Crescenz VA Medical Center Philadelphia PA 19104 USA
| | - Robert L. Mauck
- Departments of Orthopaedic Surgery and Bioengineering University of Pennsylvania Philadelphia PA 19104 USA
- Translational Musculoskeletal Research Center Corporal Michael J. Crescenz VA Medical Center Philadelphia PA 19104 USA
- McKay Orthopaedic Research Laboratory University of Pennsylvania Philadelphia PA 19104‐6081 USA
| |
Collapse
|
42
|
Huethorst E, Cutiongco MF, Campbell FA, Saeed A, Love R, Reynolds PM, Dalby MJ, Gadegaard N. Customizable, engineered substrates for rapid screening of cellular cues. Biofabrication 2020; 12:025009. [PMID: 31783378 PMCID: PMC7655147 DOI: 10.1088/1758-5090/ab5d3f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biophysical cues robustly direct cell responses and are thus important tools for
in vitro and translational biomedical applications. High
throughput platforms exploring substrates with varying physical properties are
therefore valuable. However, currently existing platforms are limited in
throughput, the biomaterials used, the capability to segregate between different
cues and the assessment of dynamic responses. Here we present a multiwell array
(3 × 8) made of a substrate engineered to present topography or rigidity cues
welded to a bottomless plate with a 96-well format. Both the patterns on the
engineered substrate and the well plate format can be easily customized,
permitting systematic and efficient screening of biophysical cues. To
demonstrate the broad range of possible biophysical cues examinable, we designed
and tested three multiwell arrays to influence cardiomyocyte, chondrocyte and
osteoblast function. Using the multiwell array, we were able to measure
different cell functionalities using analytical modalities such as live
microscopy, qPCR and immunofluorescence. We observed that grooves (5
μm in size) induced less variation in contractile function
of cardiomyocytes. Compared to unpatterned plastic, nanopillars with 127 nm
height, 100 nm diameter and 300 nm pitch enhanced matrix deposition,
chondrogenic gene expression and chondrogenic maintenance. High aspect ratio
pillars with an elastic shear modulus of 16 kPa mimicking the matrix found in
early stages of bone development improved osteogenic gene expression compared to
stiff plastic. We envisage that our bespoke multiwell array will accelerate the
discovery of relevant biophysical cues through improved throughput and
variety.
Collapse
Affiliation(s)
- Eline Huethorst
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom. Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Jain D, Mattiassi S, Goh EL, Yim EKF. Extracellular matrix and biomimetic engineering microenvironment for neuronal differentiation. Neural Regen Res 2020; 15:573-585. [PMID: 31638079 PMCID: PMC6975142 DOI: 10.4103/1673-5374.266907] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM) influences cell differentiation through its structural and biochemical properties. In nervous system, neuronal behavior is influenced by these ECMs structures which are present in a meshwork, fibrous, or tubular forms encompassing specific molecular compositions. In addition to contact guidance, ECM composition and structures also exert its effect on neuronal differentiation. This short report reviewed the native ECM structure and composition in central nervous system and peripheral nervous system, and their impact on neural regeneration and neuronal differentiation. Using topographies, stem cells have been differentiated to neurons. Further, focussing on engineered biomimicking topographies, we highlighted the role of anisotropic topographies in stem cell differentiation to neurons and its recent temporal application for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Deepak Jain
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Eyleen L Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, Singapore
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
44
|
Zhao H, Xu J, Peng K, Fu X, Zhang E, Lv F, Liu L, Zhang N, Wang Y, Wang S, Gu Q. Supramolecular Nanofibers for Encapsulation and In Situ Differentiation of Neural Stem Cells. Adv Healthc Mater 2020; 9:e1901295. [PMID: 31746152 DOI: 10.1002/adhm.201901295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Design and fabrication of fibrous materials by natural biological macromolecules in light of biomimetics to achieve spatially cellular arrangements are highly desirable in tissue engineering. Herein, chromatin-inspired supramolecular fibers formed through the interfacial polyelectrolyte complexation (IPC) process by DNA and histone proteins for encapsulation and in situ differentiation of murine brain-derived neural stem cells (NSCs) are reported. High cell viability of encapsulated NSCs demonstrates the excellent biocompatibility of fibers as 3D scaffolds. Moreover, a cell-adhesive peptide (K6 -PEG-RGD) is introduced into fibers by electrostatic interaction to improve NSCs encapsulation efficiency and prevent them from migrating out of fibers for enhanced spatially cellular arrangement. In situ differentiation of NSCs into oligodendrocytes within fibers is revealed by immunocytochemical staining assay. Due to the robust abilities to encapsulate and in situ differentiate NSCs, these chromatin-inspired supramolecular fibers show great potential in neural system-related tissue.
Collapse
Affiliation(s)
- Hao Zhao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jingwen Xu
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of Sciences Beijing 100101 P. R. China
| | - Ke Peng
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xuancheng Fu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Endong Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Na Zhang
- Key Laboratory of Colloid and Interface ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Yilin Wang
- Key Laboratory of Colloid and Interface ScienceInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
- Institute for Stem Cell and RegenerationChinese Academy of Sciences Beijing 100101 P. R. China
| | - Qi Gu
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of Sciences Beijing 100101 P. R. China
- Institute for Stem Cell and RegenerationChinese Academy of Sciences Beijing 100101 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
45
|
Makhija EP, Espinosa-Hoyos D, Jagielska A, Van Vliet KJ. Mechanical regulation of oligodendrocyte biology. Neurosci Lett 2019; 717:134673. [PMID: 31838017 DOI: 10.1016/j.neulet.2019.134673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocytes (OL) are a subset of glial cells in the central nervous system (CNS) comprising the brain and spinal cord. The CNS environment is defined by complex biochemical and biophysical cues during development and response to injury or disease. In the last decade, significant progress has been made in understanding some of the key biophysical factors in the CNS that modulate OL biology, including their key role in myelination of neurons. Taken together, those studies offer translational implications for remyelination therapies, pharmacological research, identification of novel drug targets, and improvements in methods to generate human oligodendrocyte progenitor cells (OPCs) and OLs from donor stem cells in vitro. This review summarizes current knowledge of how various physical and mechanical cues affect OL biology and its implications for disease, therapeutic approaches, and generation of human OPCs and OLs.
Collapse
Affiliation(s)
- Ekta P Makhija
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore
| | - Daniela Espinosa-Hoyos
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Anna Jagielska
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| | - Krystyn J Van Vliet
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| |
Collapse
|
46
|
Mechanisms of noncanonical binding dynamics in multivalent protein-protein interactions. Proc Natl Acad Sci U S A 2019; 116:25659-25667. [PMID: 31776263 DOI: 10.1073/pnas.1902909116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein multivalency can provide increased affinity and specificity relative to monovalent counterparts, but these emergent biochemical properties and their mechanistic underpinnings are difficult to predict as a function of the biophysical properties of the multivalent binding partners. Here, we present a mathematical model that accurately simulates binding kinetics and equilibria of multivalent protein-protein interactions as a function of the kinetics of monomer-monomer binding, the structure and topology of the multidomain interacting partners, and the valency of each partner. These properties are all experimentally or computationally estimated a priori, including approximating topology with a worm-like chain model applicable to a variety of structurally disparate systems, thus making the model predictive without parameter fitting. We conceptualize multivalent binding as a protein-protein interaction network: ligand and receptor valencies determine the number of interacting species in the network, with monomer kinetics and structural properties dictating the dynamics of each species. As predicted by the model and validated by surface plasmon resonance experiments, multivalent interactions can generate several noncanonical macroscopic binding dynamics, including a transient burst of high-energy configurations during association, biphasic equilibria resulting from interligand competition at high concentrations, and multiexponential dissociation arising from differential lifetimes of distinct network species. The transient burst was only uncovered when extending our analysis to trivalent interactions due to the significantly larger network, and we were able to predictably tune burst magnitude by altering linker rigidity. This study elucidates mechanisms of multivalent binding and establishes a framework for model-guided analysis and engineering of such interactions.
Collapse
|
47
|
Wang Z, Zhang L, Labib M, Chen H, Wei M, Poudineh M, Green BJ, Duong B, Das J, Ahmed S, Sargent EH, Kelley SO. Peptide-Functionalized Nanostructured Microarchitectures Enable Rapid Mechanotransductive Differentiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41030-41037. [PMID: 31600052 DOI: 10.1021/acsami.9b13694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microenvironmental factors play critical roles in regulating stem cell fate, providing a rationale to engineer biomimetic microenvironments that facilitate rapid and effective stem cell differentiation. Three-dimensional (3D) hierarchical microarchitectures have been developed to enable rapid neural differentiation of multipotent human mesenchymal stromal cells (HMSCs) via mechanotransduction. However, low cell viability during long-term culture and poor cell recovery efficiency from the architectures were also observed. Such problems hinder further applications of the architectures in stem cell differentiation. Here, we present improved 3D nanostructured microarchitectures functionalized with cell-adhesion-promoting arginylglycylaspartic acid (RGD) peptides. These RGD-functionalized architectures significantly upregulated long-term cell viability and facilitated effective recovery of differentiated cells from the architectures while maintaining high differentiation efficiency. Efficient recovery of highly viable differentiated cells enabled the downstream analysis of morphology and protein expression to be performed. Remarkably, even after the removal of the mechanical stimulus provided by the 3D microarchitectures, the recovered HMSCs showed a neuron-like elongated morphology for 10 days and consistently expressed microtubule-associated protein 2, a mature neural marker. RGD-functionalized nanostructured microarchitectures hold great potential to guide effective differentiation of highly viable stem cells.
Collapse
Affiliation(s)
- Zongjie Wang
- The Edward S. Rogers Sr., Department of Electrical & Computer Engineering , University of Toronto , Toronto M5S 3G4 , Canada
- Institute for Biomaterials and Biomedical Engineering , University of Toronto , Toronto M5S 3G9 , Canada
| | - Libing Zhang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - Haijie Chen
- The Edward S. Rogers Sr., Department of Electrical & Computer Engineering , University of Toronto , Toronto M5S 3G4 , Canada
| | - Mingyang Wei
- The Edward S. Rogers Sr., Department of Electrical & Computer Engineering , University of Toronto , Toronto M5S 3G4 , Canada
| | - Mahla Poudineh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - Brenda J Green
- Institute for Biomaterials and Biomedical Engineering , University of Toronto , Toronto M5S 3G9 , Canada
| | - Bill Duong
- Department of Biochemistry, Faculty of Medicine , University of Toronto , Toronto M5S 1A8 , Canada
| | - Jagotamoy Das
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - Sharif Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
| | - Edward H Sargent
- The Edward S. Rogers Sr., Department of Electrical & Computer Engineering , University of Toronto , Toronto M5S 3G4 , Canada
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering , University of Toronto , Toronto M5S 3G9 , Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto M5S 3M2 , Canada
- Department of Biochemistry, Faculty of Medicine , University of Toronto , Toronto M5S 1A8 , Canada
| |
Collapse
|
48
|
Yu M, Liu Y, Yu X, Li J, Zhao W, Hu J, Cheng K, Weng W, Zhang B, Wang H, Dong L. Enhanced osteogenesis of quasi-three-dimensional hierarchical topography. J Nanobiotechnology 2019; 17:102. [PMID: 31581945 PMCID: PMC6777029 DOI: 10.1186/s12951-019-0536-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Natural extracellular matrices (ECMs) are three-dimensional (3D) and multi-scale hierarchical structure. However, coatings used as ECM-mimicking structures for osteogenesis are typically two-dimensional or single-scaled. Here, we design a distinct quasi-three-dimensional hierarchical topography integrated of density-controlled titania nanodots and nanorods. We find cellular pseudopods preferred to anchor deeply across the distinct 3D topography, dependently of the relative density of nanorods, which promote the osteogenic differentiation of osteoblast but not the viability of fibroblast. The in vivo experimental results further indicate that the new bone formation, the relative bone-implant contact as well as the push-put strength, are significantly enhanced on the 3D hierarchical topography. We also show that the exposures of HFN7.1 and mAb1937 critical functional motifs of fibronectin for cellular anchorage are up-regulated on the 3D hierarchical topography, which might synergistically promote the osteogenesis. Our findings suggest the multi-dimensions and multi-scales as vital characteristic of cell-ECM interactions and as an important design parameter for bone implant coatings.
Collapse
Affiliation(s)
- Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, 310027, China
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Yu Liu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaowen Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianhua Li
- Hangzhou Dental Hospital, Hangzhou, 310006, China
| | - Wenquan Zhao
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ji'an Hu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China
| | - Bin Zhang
- The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, 310027, China.
| | - Huiming Wang
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Lingqing Dong
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
49
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
50
|
Zimmermann JA, Schaffer DV. Engineering biomaterials to control the neural differentiation of stem cells. Brain Res Bull 2019; 150:50-60. [DOI: 10.1016/j.brainresbull.2019.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
|