1
|
Dong Z, Song B, Ma H, Gao X, Zhang W, Yuan J. A strategy to enhance the water solubility of luminescent β-diketonate-Europium(III) complexes for time-gated luminescence bioassays. Talanta 2024; 274:126000. [PMID: 38608630 DOI: 10.1016/j.talanta.2024.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Luminescent β-diketonate-europium(III) complexes have been found a wide range of applications in time-gated luminescence (TGL) bioassays, but their poor water solubility is a main problem that limits their effective uses. In this work we propose a simple and general strategy to enhance the water solubility of luminescent β-diketonate-europium(III) complexes that permits facile synthesis and purification. By introducing the fluorinated carboxylic acid group into the structures of β-diketone ligands, two highly water-soluble and luminescent Eu3+ complexes, PBBHD-Eu3+ and CPBBHD-Eu3+, were designed and synthesized. An excellent solubility exceeding 20 mg/mL for PBBHD-Eu3+ was found in a pure aqueous buffer, while it also displayed strong and long-lived luminescence (quantum yield φ = 26%, lifetime τ = 0.49 ms). After the carboxyl groups of PBBHD-Eu3+ were activated, the PBBHD-Eu3+-labeled streptavidin-bovine serum albumin (SA-BSA) conjugate was prepared, and successfully used for the immunoassay of human α-fetoprotein (AFP) and the imaging of an environmental pathogen Giardia lamblia under TGL mode, which demonstrated the practicability of PBBHD-Eu3+ for highly sensitive TGL bioassays. The carboxyl groups of PBBHD can also be easily derivatized with other reactive chemical groups, which enables PBBHD-Eu3+ to meet diverse requirements of biolabeling technique, to provide new opportunities for developing functional europium(III) complex biolabels serving for TGL bioassays.
Collapse
Affiliation(s)
- Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Hua Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian, 116600, China.
| |
Collapse
|
2
|
Sprenger T, Schwarze T, Holdt HJ, Hentsch A, Nazaré M. Benzo-Crown-Ether Functionalized O-BODIPY Probes for Cations - A Selective Fluorescent Probe for Ba 2. Chemistry 2024:e202401928. [PMID: 38842498 DOI: 10.1002/chem.202401928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
Herein, we report the synthesis and sensing characteristics of 4,4'-methoxy-substituted BODIPY fluorescent probes (O-BODIPYs) 3, 4 and 5 equipped with differently sized benzo-crown ethers (cf. Scheme 1, 3 (benzo-15-crown-5), 4 (benzo-18-crown-6) and 5 (benzo-21-crown7)). O-BODIPYs 3, 4 and 5 exhibited in comparison to their known F-BODIPY analogues 3a, 4a and 5a (cf. Scheme 1) an improved solubility in aqueous medium and higher fluorescence quantum yields. Fluorometric study in aqueous solutions of 3, 4 and 5 in the presence of different cations show cation induced fluorescence enhancements (FE). Compared to the benzo-crown ether substituted F-BODIPY analogues 3a, 4a and 5a, we found for the free O-BODIPYs 3, 4 and 5 higher fluorescence quantum yields (φf) but lower cation induced FEs. We show that in aqueous medium the fluorescence quenching process (OFF switching), a photoinduced electron transfer, in O-BODIPYs 3, 4 and 5 is less effective and consequently sensitive and selective ON switching of the fluorescence by cations, too. Albeit these observations the novel benzo-21-crown-7 equipped fluorescent probe 5 exhibits a good fluorometric Ba2+ selectivity and Ba2+ sensitivity in conjunction to their aqueous solubility.
Collapse
Affiliation(s)
- Tobias Sprenger
- Medizinische Fakultät, HMU Potsdam, Olympischer Weg 1, Potsdam, 14471, Germany
| | - Thomas Schwarze
- Institut für Chemie, Anorganische Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, Golm, 14476, Germany
| | - Hans-Jürgen Holdt
- Institut für Chemie, Anorganische Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, Golm, 14476, Germany
| | - Axel Hentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin-Buch, 13125, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, Berlin-Buch, 13125, Germany
| |
Collapse
|
3
|
Chazeau E, Fabre C, Privat M, Godard A, Racoeur C, Bodio E, Busser B, Wegner KD, Sancey L, Paul C, Goze C. Comparison of the In Vitro and In Vivo Behavior of a Series of NIR-II-Emitting Aza-BODIPYs Containing Different Water-Solubilizing Groups and Their Trastuzumab Antibody Conjugates. J Med Chem 2024; 67:3679-3691. [PMID: 38393818 DOI: 10.1021/acs.jmedchem.3c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The development of new fluorescent organic probes effective in the NIR-II region is currently a fast-growing field and represents a challenge in the domain of medical imaging. In this study, we have designed and synthesized an innovative series of aza-boron dipyrromethenes emitting in the NIR-II region. We have investigated the effect of different water-solubilizing groups not only on the photophysical properties of the compounds but also on their in vitro and in vivo performance after bioconjugation to the antibody trastuzumab. Remarkably, we discovered that the most lipophilic compound unexpectedly displayed the most favorable in vivo properties after bioconjugation. This underlines the profound influence that the fluorophore functionalization approach can have on the efficiency of the resulting imaging agent.
Collapse
Affiliation(s)
- Elisa Chazeau
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, Dijon 21078, France
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, Paris 75000, France
- LIIC, EA7269, Université de Bourgogne, Dijon 21000, France
| | - Christol Fabre
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble 38000, France
- Grenoble Alpes University Hospital (CHUGA), Grenoble 38043, France
| | - Malorie Privat
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, Dijon 21078, France
| | - Amélie Godard
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, Dijon 21078, France
| | - Cindy Racoeur
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, Paris 75000, France
- LIIC, EA7269, Université de Bourgogne, Dijon 21000, France
| | - Ewen Bodio
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, Dijon 21078, France
| | - Benoit Busser
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble 38000, France
- Grenoble Alpes University Hospital (CHUGA), Grenoble 38043, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - K David Wegner
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Lucie Sancey
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble 38000, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, Paris 75000, France
- LIIC, EA7269, Université de Bourgogne, Dijon 21000, France
| | - Christine Goze
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, Dijon 21078, France
| |
Collapse
|
4
|
Sun H, Xu Q, Ren M, Kong F. A biocompatible chitosan-based fluorescent polymer for efficient H 2O 2 detection in living cells and water samples. Int J Biol Macromol 2024; 257:128760. [PMID: 38103662 DOI: 10.1016/j.ijbiomac.2023.128760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
As a biomarker of oxidative stress, hydrogen peroxide (H2O2) plays a complex role in organisms, including regulating cell signaling, respiration, the immune system, and other life processes. Therefore, it is important to develop a tool that can simply and effectively monitor H2O2 levels in organisms and the environment. In this work, naphthalene fluorophores with a borate structure were introduced into chitosan (CTS) azide, and a CTS-based fluorescence sensor (CTS-HP) was designed for sensitive H2O2 detection. The biocompatibility and degradability of CTS endowed CTS-HP with reduced biotoxicity compared with organic fluorescent dyes, and the substitution degree of fluorophores on the CTS chains was 0.703. The randomly coiled chain structure of the CTS-HP probe enabled the boronic acid recognition sites on the fluorophores to achieve the enrichment of analyte H2O2 through a synergistic effect. Therefore, the probe CTS-HP (10 μg mL-1) exhibited a 21-fold fluorescence enhancement and good detection limit (LOD = 8.98 nM) in H2O2 solution, reaching the maximum fluorescence response faster (within 16 min). The probe also successfully achieved the fluorescence imaging of endogenous and exogenous H2O2 in zebrafish and living cells and labeled the recovery experiment of H2O2 in real water samples (recoveries rates of 90.93-102.9 % and RSD < 3.09 %).
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qingyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
5
|
Tsuneda T, Taketsugu T. Singlet fission initiating organic photosensitizations. Sci Rep 2024; 14:829. [PMID: 38191637 PMCID: PMC10774408 DOI: 10.1038/s41598-023-50860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
The feasibility of singlet fission (SF) in organic photosensitizers is investigated through spin-flip long-range corrected time-dependent density functional theory. This study focuses on four major organic photosensitizer molecules: benzophenone, boron-dipyrromethene, methylene blue, and rose bengal. Calculations demonstrate that all these molecules possess moderate [Formula: see text]-stacking energies and closely-lying singlet (S) and quintet (triplet-triplet, TT) excitations, satisfying the essential conditions for SF: (1) Near-degenerate low-lying S and (TT) excitations with a significant S-T energy gap, and (2) Moderate [Formula: see text]-stacking energy of chromophores, slightly higher than solvation energy, enabling dissociation for triplet-state chromophore generation. Moreover, based on the El-Sayed rule, intersystem crossing is found to simultaneously proceed at very slow rates in all these photosensitizers. This is attributed to the fact that the lowest singlet excitation of the monomers partly involves [Formula: see text] transitions alongside the main [Formula: see text] transitions. The proposed mechanisms are strongly substantiated by comparisons with experimental studies.
Collapse
Affiliation(s)
- Takao Tsuneda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
- Graduate School of Science Technology and Innovation, Kobe University, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| |
Collapse
|
6
|
Shrestha P, Kand D, Weinstain R, Winter AH. meso-Methyl BODIPY Photocages: Mechanisms, Photochemical Properties, and Applications. J Am Chem Soc 2023; 145:17497-17514. [PMID: 37535757 DOI: 10.1021/jacs.3c01682] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
meso-methyl BODIPY photocages have recently emerged as an exciting new class of photoremovable protecting groups (PPGs) that release leaving groups upon absorption of visible to near-infrared light. In this Perspective, we summarize the development of these PPGs and highlight their critical photochemical properties and applications. We discuss the absorption properties of the BODIPY PPGs, structure-photoreactivity studies, insights into the photoreaction mechanism, the scope of functional groups that can be caged, the chemical synthesis of these structures, and how substituents can alter the water solubility of the PPG and direct the PPG into specific subcellular compartments. Applications that exploit the unique optical and photochemical properties of BODIPY PPGs are also discussed, from wavelength-selective photoactivation to biological studies to photoresponsive organic materials and photomedicine.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Dnyaneshwar Kand
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
7
|
Özçelik Ş, Yurttaş AG, Kahveci MU, Sevim AM, Gül A. Aza-BODIPY photosensitizer substituted with phthalonitrile groups: Synthesis, photophysical properties and in vitro tests for breast cancer. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Felion C, Lopez-Gonzalez R, Sewell AL, Marquez R, Gauchotte-Lindsay C. BODIPY-Labeled Estrogens for Fluorescence Analysis of Environmental Microbial Degradation. ACS OMEGA 2022; 7:41284-41295. [PMID: 36406552 PMCID: PMC9670910 DOI: 10.1021/acsomega.2c05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Biodegradation of estrogen hormone micropollutants is a well-established approach toward their remediation. Fluorescently labeled substrates are used extensively for rapid, near-real-time analysis of biological processes and are a potential tool for studying biodegradation processes faster and more efficiently than conventional approaches. However, it is important to understand how the fluorescently tagged surrogates compare with the natural substrate in terms of chemical analysis and the intended application. We derivatized three natural estrogens with BODIPY fluorophores by azide-alkyne cycloaddition click reaction and developed an analytical workflow based on simple liquid-liquid extraction and HPLC-PDA analysis. The developed methods allow for concurrent analysis of both fluorescent and natural estrogens with comparable recovery, accuracy, and precision. We then evaluated the use of BODIPY-labeled estrogens as surrogate substrates for studying biodegradation using a model bacterium for estrogen metabolism. The developed analytical methods were successfully employed to compare the biological transformation of 17β-estradiol (E2), with and without the BODIPY fluorescent tag. Through measuring the complete degradation of E2 and the transformation of BODIPY-estradiol to BODIPY-estrone in the presence of a co-substrate, we found that BODIPY-labeled estrogens are biologically viable surrogates for investigating biodegradation in environmental bacteria.
Collapse
Affiliation(s)
- Celeste Felion
- James
Watt School of Engineering, University of
Glasgow, GlasgowG12 6EW, U.K.
| | - Ricardo Lopez-Gonzalez
- School
of Chemistry, University of Glasgow, GlasgowG12 8QQ, U.K.
- School
of Physical and Chemical Sciences, University
of Canterbury, Christchurch8140, New Zealand
| | - Alan L. Sewell
- School
of Chemistry, University of Glasgow, GlasgowG12 8QQ, U.K.
| | - Rodolfo Marquez
- School
of Chemistry, University of Glasgow, GlasgowG12 8QQ, U.K.
- School
of Physical and Chemical Sciences, University
of Canterbury, Christchurch8140, New Zealand
| | | |
Collapse
|
9
|
Ding W, Chen S, Du X, Cheng X. A self-assembled aza-BODIPY linked dicyanostilbenzene with a large Stokes shift, AIE, mechanochromism and singlet oxygen yield. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Kampaengsri S, Chansaenpak K, Yong GY, Hiranmartsuwan P, Uengwanarat B, Lai RY, Meemon P, Kue CS, Kamkaew A. PEGylated Aza-BODIPY Nanoparticles for Photothermal Therapy. ACS APPLIED BIO MATERIALS 2022; 5:4567-4577. [PMID: 36054220 DOI: 10.1021/acsabm.2c00624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photothermal therapy is a promising treatment modality in the realm of cancer therapy. Photothermal nanomaterials that absorb and emit in the near-infrared range (750-900 nm) have drawn a lot of attention recently because of the deep penetration of NIR light in biological tissue. Most nanomaterials, however, are produced by encapsulating or altering the surface of a nanoplatform, which has limited loading capacity and long-term storage. Herein, we developed a stable polymer conjugated with aza-BODIPY that self-assembled to form nanoparticles (aza-BODIPY-mPEG) with better hydrophilicity and biocompatibility while retaining the dye's photothermal conversion characteristics. Aza-BODIPY-mPEG with a hydrodynamic size of around 170 nm exhibited great photostability and excellent photothermal therapy in vitro and in ovo. Aza-BODIPY-mPEG exhibits approximately 30% better anti-angiogenesis and antitumor activity against implanted xenograft human HCT116 tumor in the chick embryo compared to parent aza-BODIPY-A, altogether suggesting that aza-BODIPY-mPEG is a promising material for cancer photothermal therapy.
Collapse
Affiliation(s)
- Sastiya Kampaengsri
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kantapat Chansaenpak
- National Science and Technology Development Agency, National Nanotechnology Center, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Gong Yi Yong
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
| | - Peraya Hiranmartsuwan
- National Science and Technology Development Agency, National Nanotechnology Center, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Bongkot Uengwanarat
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Rung-Yi Lai
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panomsak Meemon
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chin Siang Kue
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100 Shah Alam, Selangor, Malaysia
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
11
|
Medves M, Toffoli D, Stener M, Sementa L, Fortunelli A. Coupling between Plasmonic and Molecular Excitations: TDDFT Investigation of an Ag-Nanorod/BODIPY-Dye Interaction. J Phys Chem A 2022; 126:5890-5899. [PMID: 36001802 DOI: 10.1021/acs.jpca.2c04168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A time-dependent density functional theory (TDDFT) computational approach is employed to study the optical coupling between a plasmonic system (a Ag50 nanorod) and a fluorescent dye (BODIPY). It is found that the BODIPY dye can interact with a plasmonic system in a rather different and selective way according to the mutual orientation of the fragments. Indeed, (i) the plasmon excitation turns out to be sensitive to the presence of the BODIPY transition and (ii) this can lead to amplify or suppress the resonance accordingly to the relative orientation of the corresponding transition dipoles. To understand the coupling mechanism, we analyze the shape of the induced density in real space and the Individual Component Map of the Oscillator Strength (ICM-OS) plots and achieve a simple rationalization and insight on the origin and features of the coupling. The resulting possibility of understanding plasmon/fluorophore interactions by simple qualitative arguments opens the way to a rational design of hybrid (plasmon + dye) systems with the desired optical behavior.
Collapse
Affiliation(s)
- Marco Medves
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via G. Moruzzi 1, Pisa, 56124, Italy
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via G. Moruzzi 1, Pisa, 56124, Italy
| |
Collapse
|
12
|
Ndung’u C, LaMaster DJ, Dhingra S, Mitchell NH, Bobadova-Parvanova P, Fronczek FR, Elgrishi N, Vicente MDGH. A Comparison of the Photophysical, Electrochemical and Cytotoxic Properties of meso-(2-, 3- and 4-Pyridyl)-BODIPYs and Their Derivatives. SENSORS (BASEL, SWITZERLAND) 2022; 22:5121. [PMID: 35890801 PMCID: PMC9315496 DOI: 10.3390/s22145121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Boron dipyrromethene (BODIPY) dyes bearing a pyridyl moiety have been used as metal ion sensors, pH sensors, fluorescence probes, and as sensitizers for phototherapy. A comparative study of the properties of the three structural isomers of meso-pyridyl-BODIPYs, their 2,6-dichloro derivatives, and their corresponding methylated cationic pyridinium-BODIPYs was conducted using spectroscopic and electrochemical methods, X-ray analyses, and TD-DFT calculations. Among the neutral derivatives, the 3Py and 4Py isomers showed the highest relative fluorescence quantum yields in organic solvents, which were further enhanced 2-4-fold via the introduction of two chlorines at the 2,6-positions. Among the cationic derivatives, the 2catPy showed the highest relative fluorescence quantum yield in organic solvents, which was further enhanced by the use of a bulky counter anion (PF6-). In water, the quantum yields were greatly reduced for all three isomers but were shown to be enhanced upon introduction of 2,6-dichloro groups. Our results indicate that 2,6-dichloro-meso-(2- and 3-pyridinium)-BODIPYs are the most promising for sensing applications. Furthermore, all pyridinium BODIPYs are highly water-soluble and display low cytotoxicity towards human HEp2 cells.
Collapse
Affiliation(s)
- Caroline Ndung’u
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Daniel J. LaMaster
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Simran Dhingra
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Nathan H. Mitchell
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Petia Bobadova-Parvanova
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC 28608, USA;
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Maria da Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| |
Collapse
|
13
|
Zhang G, Wang M, Bobadova-Parvanova P, Fronczek FR, Smith KM, Vicente MGH. Investigations on the Synthesis, Reactivity, and Properties of Perfluoro-α-Benzo-Fused BOPHY Fluorophores. Chemistry 2022; 28:e202200421. [PMID: 35445459 DOI: 10.1002/chem.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 11/06/2022]
Abstract
The synthesis and reactivity of 3,8-dibromo-dodecafluoro-benzo-fused BOPHY 2 are reported, via SN Ar with O-, N- S- and C-nucleophiles, and in Pd(0)-catalyzed cross-coupling reactions (Suzuki and Stille). The resulting perfluoro-BOPHY derivatives were investigated for their reactivity in the presence of various nucleophiles. BOPHY 3 displays reversible color change and fluorescence quenching in the presence of bases (Et3 N, DBU), whereas BOPHY 7 reacts preferentially at the α-pyrrolic positions, and BOPHY 8 undergoes regioselective fluorine substitution in the presence of thiols. The structural and electronic features of the fluorinated BOPHYs were studied by TD-DFT computations. In addition, their spectroscopic and cellular properties were investigated; BOPHY 10 shows the most red-shifted absorption/emission (λmax 659/699 nm) and 7 the highest fluorescence (Φf =0.95), while all compounds studied showed low cytotoxicity toward human HEp2 cells and were efficiently internalized.
Collapse
Affiliation(s)
- Guanyu Zhang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Maodie Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Petia Bobadova-Parvanova
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC 28608, USA
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Kevin M Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - M Graça H Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
14
|
Munch M, Ulrich G, Massue J. Synthesis and Optical Properties of Excited-State Intramolecular Proton Transfer (ESIPT) Emitters with Sulfobetaine Fragments. Org Biomol Chem 2022; 20:4640-4649. [PMID: 35612088 DOI: 10.1039/d2ob00691j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article describes the synthetic efforts towards the solubilization of organic fluorescent emitters based on a 2-(2'-hydroxybenzofuranyl)benzazole (HBBX) scaffold in aqueous media under physiological conditions (PBS, pH 7.4). These dyes are well-known to display the excited-state intramolecular proton transfer (ESIPT) process which leads to a Stokes-shifted fluorescence with enhanced photostability and strong environment dependent features. Organic dyes are hydrophobic by nature and their vectorization into aqueous media usually necessitates amphiphilic polymers. In this study, we show that the incorporation of one or two sulfobetaine fragments, a highly biocompatible zwitterionic unit leads to the vectorization in buffer solution at pH 7.4 while keeping a reasonable ESIPT fluorescence emission. The photophysical properties of all dyes were studied in multiple solvents and showed that, depending on structure and environment, different excited-state species are observed: normal or tautomeric species, as well as a competitive anionic fluorescent derivative. This study shows that it is not only possible to solubilize fluorescent ESIPT dyes in water using sulfobetaine(s) but also that the optical properties can be finely tuned depending on small structural inputs.
Collapse
Affiliation(s)
- Maxime Munch
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France.
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France.
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, 67087 Strasbourg Cedex 02, France.
| |
Collapse
|
15
|
Gierlich P, Rodrigues L, Schaberle FA, Callaghan S, Gomes-da-Silva LC, Senge MO. Trimethoxyphenyl-BODIPYs as probes for lysosome staining. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
He S, Marin L, Cheng X. Novel water soluble polymeric sensors for the sensitive and selective recognition of Fe3+/Fe2+ in aqueous media. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Martynov VI, Pakhomov AA. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Fluorescent compounds have become indispensable tools for imaging molecular activities in the living cell. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is currently one of the most popular fluorescent reporters due to its unique photophysical properties. This review provides a general survey and presents a summary of recent advances in the development of new BODIPY-based cellular biomarkers and biosensors. The review starts with the consideration of the properties of BODIPY derivatives required for their application as cellular reporters. Then review provides examples of the design of sensors for different biologically important molecules, ions, membrane potential, temperature and viscosity defining the live cell status. Special attention is payed to BODPY-based phototransformable reporters.
The bibliography includes 339 references.
Collapse
|
18
|
Wang JL, Zhang L, Gao LX, Chen JL, Zhou T, Liu Y, Jiang FL. A bright, red-emitting water-soluble BODIPY fluorophore as an alternative to the commercial Mito Tracker Red for high-resolution mitochondrial imaging. J Mater Chem B 2021; 9:8639-8645. [PMID: 34585188 DOI: 10.1039/d1tb01585k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the emergence and rapid development of super-resolution fluorescence microscopy, monitoring of mitochondrial morphological changes has aroused great interest for exploring the role of mitochondria in the process of cell metabolism. However, in the absence of water-soluble, photostable and low-toxicity fluorescent dyes, ultra-high-resolution mitochondrial imaging is still challenging. Herein, we designed two fluorescent BODIPY dyes, namely Mito-BDP 630 and Mito-BDP 760, for mitochondrial imaging. The results proved that Mito-BDP 760 underwent aggregation-caused quenching (ACQ) in the aqueous matrix owing to its hydrophobicity and was inaccessible to the cells, which restricted its applications in mitochondrial imaging. In stark contrast, water-soluble Mito-BDP 630 readily penetrated cellular and mitochondrial membranes for mitochondrial imaging with high dye densities under wash-free conditions as driven by membrane potential. As a comparison, Mito Tracker Red presented high photobleaching (the fluorescence intensity dropped by nearly 50%) and high phototoxicity after irradiation by a laser for 30 min. However, Mito-BDP 630 possessed excellent biocompatibility, photostability and chemical stability. Furthermore, clear and bright mitochondria distribution in living HeLa cells after incubation with Mito-BDP 630 could be observed by CLSM. Convincingly, the morphology and cristae of mitochondria could be visualized using an ultra-high-resolution microscope. In short, Mito-BDP 630 provided a powerful and convenient tool for monitoring mitochondrial morphologies in living cells. Given the facile synthesis, photobleaching resistance and low phototoxicity of Mito-BDP 630, it is an alternative to the commercial Mito Tracker Red.
Collapse
Affiliation(s)
- Jiang-Lin Wang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Lu Zhang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Lian-Xun Gao
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Lei Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Te Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China.
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
19
|
Shivran N, Koli M, Chakraborty G, Srivastava AP, Chattopadhyay S, Mula S. A BODIPY- O-glycoside based near-infrared fluorescent sensor for serum albumin. Org Biomol Chem 2021; 19:7920-7929. [PMID: 34549222 DOI: 10.1039/d1ob01564h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly sensitive and selective near-infrared fluorescent bioprobes for serum albumin detection and quantification are in high demand for biomedical applications. Herein, we report a near-infrared emitting BODIPY-O-glycoside dye as a turn-on emission sensor for serum albumin. To the best of our knowledge, this is the first report of NIR-emitting BODIPY dyes for serum albumin sensing. Despite the various outstanding photophysical properties of the BODIPY dyes, their insolubility in water/biological media restricts their real biomedical applications. To overcome this issue, highly stable unadulterated BODIPY-O-glycoside nanoparticles (BDP-Glu-NPs) were prepared in aqueous solution by self-assembly of amphiphilic BODIPY-O-glycoside dyes. The BDP-Glu-NPs were characterized by spectroscopic, NMR, DLS and TEM studies. The ability of the BDP-Glu-NPs for the detection and quantification of serum albumin was demonstrated. It showed a 150-fold fluorescence enhancement in the presence of serum albumin, with excellent selectivity over other amino acids, porphyrin, proteins and various inorganic salts. Detection of human serum albumin (HSA) in urine samples showed that the bioprobe is applicable to a clinically significant range of the analytes with very low detection limit. These results suggested that the BDP-Glu-NPs can act as potential bioprobe to quantify albumin in biochemical and clinical samples.
Collapse
Affiliation(s)
- Neelam Shivran
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| | - Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| | - Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
| | | | | | - Soumyaditya Mula
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai-400094, India
| |
Collapse
|
20
|
Colombo G, Attilio Ardizzoia G, Furrer J, Therrien B, Brenna S. Driving the Emission Towards Blue by Controlling the HOMO-LUMO Energy Gap in BF 2 -Functionalized 2-(Imidazo[1,5-a]pyridin-3-yl)phenols. Chemistry 2021; 27:12380-12387. [PMID: 34160858 PMCID: PMC8456857 DOI: 10.1002/chem.202101520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 01/25/2023]
Abstract
Several boron compounds with 2-(imidazo[1,5-a]pyridin-3-yl)phenols, differentiated by the nature of the substituent (R) in the para position of the hydroxy group, have been synthesized and thoroughly characterized both in solution (1 H, 13 C, 11 B, 19 F NMR) and in the solid state (X-ray). All derivatives displayed attractive photophysical properties like very high Stokes shift, high fluorescence quantum yields and a good photostability in solution. Time-Dependent Density Functional Theory (TD-DFT) calculations allowed to define the main electronic transitions as intra ligand transitions (1 ILT), which was corroborated by the Natural Transition Orbitals (NTOs) shapes. The HOMO-LUMO energy gap was correlated to the electronic properties of the substituent R on the phenolic ring, as quantified by its σp Hammett constant.
Collapse
Affiliation(s)
- Gioele Colombo
- Department of Science and High TechnologyUniversity of InsubriaVia Valleggio, 922100ComoItaly
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC)BariItaly
| | - G. Attilio Ardizzoia
- Department of Science and High TechnologyUniversity of InsubriaVia Valleggio, 922100ComoItaly
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC)BariItaly
| | - Julien Furrer
- Department für ChemieBiochemie und PharmazieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Bruno Therrien
- Institute of ChemistryUniversité de NeuchâtelAvenue de Bellevaux 512000NeuchâtelSwitzerland
| | - Stefano Brenna
- Department of Science and High TechnologyUniversity of InsubriaVia Valleggio, 922100ComoItaly
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC)BariItaly
| |
Collapse
|
21
|
Patalag LJ, Ahadi S, Lashchuk O, Jones PG, Ebbinghaus S, Werz DB. GlycoBODIPYs: Sugars Serving as a Natural Stock for Water‐soluble Fluorescent Probes of Complex Chiral Morphology. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas J. Patalag
- TU Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Somayeh Ahadi
- TU Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Olesia Lashchuk
- TU Braunschweig Institute of Physical and Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| | - Peter G. Jones
- TU Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Simon Ebbinghaus
- TU Braunschweig Institute of Physical and Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| | - Daniel B. Werz
- TU Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
22
|
Patalag LJ, Ahadi S, Lashchuk O, Jones PG, Ebbinghaus S, Werz DB. GlycoBODIPYs: Sugars Serving as a Natural Stock for Water-soluble Fluorescent Probes of Complex Chiral Morphology. Angew Chem Int Ed Engl 2021; 60:8766-8771. [PMID: 33492705 PMCID: PMC8048574 DOI: 10.1002/anie.202016764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Indexed: 12/31/2022]
Abstract
A range of unprocessed, reducing sugar substrates (mono-, di-, and trisaccharides) is shown to take part in a straightforward four-step synthetic route to water-soluble, uncharged BODIPY derivatives with unimpaired chiral integrity and high fluorescence efficiency. A wide compatibility with several postfunctionalizations is demonstrated, thus suggesting a universal utility of the multifunctional glycoconjugates, which we call GlycoBODIPYs. Knoevenagel condensations are able to promote a red-shift in the spectra, thereby furnishing strongly fluorescent red and far-red glycoconjugates of high hydrophilicity. The synthetic outcome was studied by X-ray crystallography and by comprehensive photophysical investigations in several solvent systems. Furthermore, cell experiments illustrate efficient cell uptake and demonstrate differential cell targeting as a function of the integrated chiral information.
Collapse
Affiliation(s)
- Lukas J. Patalag
- TU BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Somayeh Ahadi
- TU BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Olesia Lashchuk
- TU BraunschweigInstitute of Physical and Theoretical Chemistry, and Braunschweig Integrated Centre of Systems BiologyRebenring 5638106BraunschweigGermany
| | - Peter G. Jones
- TU BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Simon Ebbinghaus
- TU BraunschweigInstitute of Physical and Theoretical Chemistry, and Braunschweig Integrated Centre of Systems BiologyRebenring 5638106BraunschweigGermany
| | - Daniel B. Werz
- TU BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
23
|
Wang X, Bai T, Chu T. A molecular design for a turn-off NIR fluoride chemosensor. J Mol Model 2021; 27:104. [PMID: 33686496 DOI: 10.1007/s00894-021-04716-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/23/2022]
Abstract
We designed a turn-off near-infrared fluorescent fluoride chemosensor NIR-BODIPY-Si through the density functional theory/time-dependent functional theory calculations. In the designed sensor, the tert-butyldimethylsilyloxy moiety responses to the fluoride-triggered desilylation process, and the BODIPY dye serves as fluorophore. The molecular design firstly showed that the possibility of photoinduced electron transfer is low/high in NIR-BODIPY-Si/NIR-BODIPY-O (the desilylation product), thus referring that the fluorescence sensing mechanism is a photoinduced electron transfer mechanism that quenched the sensor's fluorescence after detection of fluoride anions. Absorption and emission spectra further demonstrated that the designed sensor is a near-infrared chemosensor. The largest binding energy between NIR-BODIPY-Si and F- suggests that the sensor has an excellent selectivity to F- and the low barrier of the desilylation reaction accounts for the sensor's rapid response speed to F-. We also provided the synthetic routine for the molecule sensor, with the expectation that this molecular design can shed some light on the experimentally based design procedure.
Collapse
Affiliation(s)
- Xiaochen Wang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266235, People's Republic of China
| | - Tianxin Bai
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266235, People's Republic of China
| | - Tianshu Chu
- School of Physics, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
24
|
Collot M. Recent advances in dioxaborine-based fluorescent materials for bioimaging applications. MATERIALS HORIZONS 2021; 8:501-514. [PMID: 34821266 DOI: 10.1039/d0mh01186j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescent materials are continuously contributing to important advances in the field of bioimaging. Among these materials, dioxaborine-based fluorescent materials (DBFM) are arousing growing interest. Due to their rigid structures conferred by a cyclic boron complex, DBFM possess appealing photophysical properties including high extinction coefficients and quantum yields as well as emission in the near infrared, enhanced photostability and high two-photon absorption. We herein discuss the recent advances of DBFM that found use in bioimaging applications. This review covers the development of fluorescent molecular probes for biomolecules (DNA, proteins), small molecules (cysteine, H2O2, oxygen), ions and the environment (polarity, viscosity) as well as polymers and nanomaterials used in bioimaging. This review aims at providing a comprehensive and critical insight on DBFM by highlighting the assets of these promising materials in bioimaging but also by pointing out their limitations that would require further developments.
Collapse
Affiliation(s)
- Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France.
| |
Collapse
|
25
|
Yanai H, Hoshikawa S, Moriiwa Y, Shoji A, Yanagida A, Matsumoto T. A Fluorinated Carbanionic Substituent for Improving Water Solubility and Lipophilicity of Fluorescent Dyes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hikaru Yanai
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Shoki Hoshikawa
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Yukiko Moriiwa
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Atsushi Shoji
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Akio Yanagida
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Takashi Matsumoto
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
26
|
Yanai H, Hoshikawa S, Moriiwa Y, Shoji A, Yanagida A, Matsumoto T. A Fluorinated Carbanionic Substituent for Improving Water Solubility and Lipophilicity of Fluorescent Dyes. Angew Chem Int Ed Engl 2021; 60:5168-5172. [PMID: 33245605 DOI: 10.1002/anie.202012764] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/02/2020] [Indexed: 12/21/2022]
Abstract
Installation of a carbanionic substituent, that is strongly stabilized by two (trifluoromethyl)sulfonyl (Tf=SO2 CF3 ) groups, into several fluorescence dyes including boron-dipyrromethenes (BODIPYs), fluoresceins, and aminocoumarins has been achieved by the 2,2-bis(triflyl)ethylation reaction of the dye frameworks with highly electrophilic Tf2 C=CH2 , followed by neutralization with NaHCO3 . Despite the contradiction between water solubility and lipophilicity, the carbanion-decorated dyes thus obtained showed significant enhancement of not only water solubility but also lipophilicity. This work clearly demonstrates that the fluorinated, highly stabilized carbanionic substituent is a new option for controlling the macroscopic property of chemical materials.
Collapse
Affiliation(s)
- Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shoki Hoshikawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yukiko Moriiwa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Atsushi Shoji
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akio Yanagida
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Takashi Matsumoto
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
27
|
Pham TC, Choi Y, Bae C, Tran CS, Kim D, Jung OS, Kang YC, Seo S, Kim HS, Yun H, Zhou X, Lee S. A molecular design towards sulfonyl aza-BODIPY based NIR fluorescent and colorimetric probe for selective cysteine detection. RSC Adv 2021; 11:10154-10158. [PMID: 35423489 PMCID: PMC8695679 DOI: 10.1039/d0ra10567h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
A new fluorescent and colorimetric probe based-on sulfonyl aza-BODIPY (BDP-1–3) are designed and synthesized for selective cysteine detection.
Collapse
|
28
|
Hoji A, Muhammad T, Wubulikasimu M, Imerhasan M, Li H, Aimaiti Z, Peng X. Syntheses of BODIPY-incorporated polymer nanoparticles with strong fluorescence and water compatibility. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Bisballe N, Laursen BW. What is Best Strategy for Water Soluble Fluorescence Dyes?-A Case Study Using Long Fluorescence Lifetime DAOTA Dyes*. Chemistry 2020; 26:15969-15976. [PMID: 32639046 DOI: 10.1002/chem.202002457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/01/2020] [Indexed: 12/14/2022]
Abstract
The lipophilic nature of organic dyes complicates their effectiveness in aqueous solutions. In this work we investigate three different strategies for achieving water-solubility of the diazaoxatriangulenium (DAOTA+ ) chromophore: hydrophilic counter ions, aromatic sulfonation of the chromophore, and attachment of charged side chains. The long fluorescence lifetime (FLT, τf =20 ns) of DAOTA+ makes it a sensitive probe to analyze solvation and aggregation effects. Direct sulfonation of the chromophore was found to increase solubility drastically, but at the cost of greatly reduced quantum yields (QYs) due to enhanced non-radiative deactivation processes. The introduction of either cationic (4) or zwitterionic side chains (5), however, brings the FLT (τf =18 ns) and QY (ϕf =0.56) of the dye to the same level as the parent chromophore in acetonitrile. Time-resolved fluorescence spectroscopy also reveals a high resistance to aggregation and non-specific binding in a high loading of bovine serum albumin (BSA). The results clearly show that addition of charged flexible side chains is preferable to direct sulfonation of the chromophore core.
Collapse
Affiliation(s)
- Niels Bisballe
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Bo W Laursen
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
30
|
Zhang H, Liu J, Sun YQ, Liu M, Guo W. Carbon–Dipyrromethenes: Bright Cationic Fluorescent Dyes and Potential Application in Revealing Cellular Trafficking of Mitochondrial Glutathione Conjugates. J Am Chem Soc 2020; 142:17069-17078. [DOI: 10.1021/jacs.0c06916] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hongxing Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan-Qiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Mengxing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
31
|
Lioret V, Bellaye PS, Arnould C, Collin B, Decréau RA. Dual Cherenkov Radiation-Induced Near-Infrared Luminescence Imaging and Photodynamic Therapy toward Tumor Resection. J Med Chem 2020; 63:9446-9456. [PMID: 32706253 DOI: 10.1021/acs.jmedchem.0c00625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cherenkov radiation (CR), the blue light seen in nuclear reactors, is emitted by some radiopharmaceuticals. This study showed that (1) a portion of CR could be transferred in the region of the optical spectrum, where biological tissues are most transparent: as a result, upon radiance amplification in the near-infrared window, the detection of light could occur twice deeper in tissues than during classical Cherenkov luminescence imaging and (2) Cherenkov-photodynamic therapy (CR-PDT) on cells could be achieved under conditions mimicking unlimited depth using the CR-embarked light source, which is unlike standard PDT, where light penetration depth is limited in biological tissues. Both results are of utmost importance for simultaneous applications in tumor resection and post-resection treatment of remaining unresected margins, thanks to a molecular construct designed to raise its light collection efficiency (i.e., CR energy transfer) by conjugation with multiple CR-absorbing (water-soluble) antenna followed by intramolecular-FRET/TBET energy transfers.
Collapse
Affiliation(s)
- Vivian Lioret
- ICMUB Institute (Chemistry Department) Sciences Mirande, Université de Bourgogne Franche Comté, 9 Avenue Alain Savary, Dijon 21078, France
| | | | | | - Bertrand Collin
- Centre George François Leclerc, 1 rue du Professeur Marion, Dijon 21079, France
| | - Richard A Decréau
- ICMUB Institute (Chemistry Department) Sciences Mirande, Université de Bourgogne Franche Comté, 9 Avenue Alain Savary, Dijon 21078, France
| |
Collapse
|
32
|
Khuong Mai D, Kang B, Pegarro Vales T, Badon IW, Cho S, Lee J, Kim E, Kim HJ. Synthesis and Photophysical Properties of Tumor-Targeted Water-Soluble BODIPY Photosensitizers for Photodynamic Therapy. Molecules 2020; 25:molecules25153340. [PMID: 32717858 PMCID: PMC7435441 DOI: 10.3390/molecules25153340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022] Open
Abstract
The synthesis of three water-soluble lactose-modified 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based photosensitizers with tumor-targeting capabilities is reported, including an investigation into their photodynamic therapeutic activity on three distinct cancer cell lines (human hepatoma Huh7, cervical cancer HeLa, and breast cancer MCF-7 cell lines). The halogenated BODIPY dyes exhibited a decreased fluorescence quantum yield compared to their non-halogenated counterpart, and facilitated the efficient generation of singlet oxygen species. The synthesized dyes exhibited low cytotoxicities in the dark and high photodynamic therapeutic capabilities against the treated cancer cell lines following irradiation at 530 nm. Moreover, the incorporation of lactose moieties led to an enhanced cellular uptake of the BODIPY dyes. Collectively, the results presented herein provide promising insights for the development of photodynamic therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Duy Khuong Mai
- Department of Chemistry, Chosun University, Gwangju 61452, Korea; (D.K.M.); (T.P.V.); (I.W.B.)
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea
| | - Byungman Kang
- Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea;
| | - Temmy Pegarro Vales
- Department of Chemistry, Chosun University, Gwangju 61452, Korea; (D.K.M.); (T.P.V.); (I.W.B.)
- Department of Natural Sciences, Caraga State University, Butuan City 8600, Philippines
| | - Isabel Wen Badon
- Department of Chemistry, Chosun University, Gwangju 61452, Korea; (D.K.M.); (T.P.V.); (I.W.B.)
| | - Sung Cho
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (S.C.); (J.L.); (E.K.); (H.-J.K.)
| | - Joomin Lee
- College of Food and Nutrition, Chosun University, Gwangju 61452, Korea
- Correspondence: (S.C.); (J.L.); (E.K.); (H.-J.K.)
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju 61452, Korea
- Correspondence: (S.C.); (J.L.); (E.K.); (H.-J.K.)
| | - Ho-Joong Kim
- Department of Chemistry, Chosun University, Gwangju 61452, Korea; (D.K.M.); (T.P.V.); (I.W.B.)
- Correspondence: (S.C.); (J.L.); (E.K.); (H.-J.K.)
| |
Collapse
|
33
|
Chen D, Zhong Z, Ma Q, Shao J, Huang W, Dong X. Aza-BODIPY-Based Nanomedicines in Cancer Phototheranostics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26914-26925. [PMID: 32463220 DOI: 10.1021/acsami.0c05021] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cancer phototheranostics, composed of optical diagnosis and phototherapy (including photodynamic therapy and photothermal therapy), is a promising strategy for precise tumor treatment. Due to the unique properties of near-infrared absorption/emission, high reactive oxygen species generation, and photothermal conversion efficiency, aza-boron-dipyrromethene (aza-BODIPY), as an emerging organic photosensitizer, has shown great potential for tumor phototheranostics. By encapsulating aza-BODIPY photosensitizers within functional amphiphilic polymers, we can afford hydrophilic nanomedicines that selectively target tumor sites via an enhanced permeability and retention effect, thereby efficiently improving diagnosis and therapeutic efficacy. Herein, in this spotlight article, we attempt to highlight our recent contributions in the development of aza-BODIPY-based nanomedicines, which comprises three main sections: (1) to elucidate the design strategy of aza-BODIPY photosensitizers and corresponding nanomedicines; (2) to overview their photophysical properties and biomedical applications in phototheranostics, including fluorescence imaging, photoacoustic imaging, photodynamic therapy, photothermal therapy, and synergistic therapy; and (3) to depict the challenges and future perspectives of aza-BODIPY nanomedicines. It is believed that this Spotlight on Applications article would illuminate the way of developing new aza-BODIPY nanomedicines as well as other organic photosensitizer-based nanomedicines for future clinical translation.
Collapse
Affiliation(s)
- Dapeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Zhihao Zhong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Qianli Ma
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
34
|
Zhang J, Yan X, Tian Y, Li W, Wang H, Li Q, Li Y, Li Z, Wu T. Synthesis of a New Water-Soluble Melatonin Derivative with Low Toxicity and a Strong Effect on Sleep Aid. ACS OMEGA 2020; 5:6494-6499. [PMID: 32258885 PMCID: PMC7114735 DOI: 10.1021/acsomega.9b04120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/06/2020] [Indexed: 05/10/2023]
Abstract
A new melatonin sulfonate derivative sodium 4-(3-(2-acetamidoethyl)-5-methoxy-1H-indol-1-yl) butane-1-sulfonate (MLTBS) with higher water solubility (695 times) and lower cytotoxicity than natural melatonin (MLT) was synthesized, yet with the same sleep aid function. The poor solubility of MLT in water has been improved with a simple chemical reaction, which solves the poor solubility of melatonin in water, overcoming the safety problem caused by adding organic reagents such as dimethyl sulfoxide (DMSO) and ethanol to increase the solubility. Moreover, the modified MLT still has the same sleep aid effect as the natural MLT and higher biological safety. As a novel potential drug for sleep aid, the new MLT derivative could also flourish the application and research of this molecule in medicine and biology.
Collapse
Affiliation(s)
- Jianghong Zhang
- Xiamen Nuokangde
Biological Technology Co., Ltd., Xiamen 361006, China
| | - Xu Yan
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yunpeng Tian
- Xiamen Nuokangde
Biological Technology Co., Ltd., Xiamen 361006, China
| | - Wanyun Li
- Cancer Research Center, Medical School, Xiamen University, Xiamen 361005, China
| | - Haiyang Wang
- Mingguang People’s Hospital, Mingguang City 239400, China
| | - Qinbin Li
- Xiamen Nuokangde
Biological Technology Co., Ltd., Xiamen 361006, China
| | - Yufei Li
- University Affiliated Keji High School, Xiamen 361005, China
| | - Zhu Li
- Xiamen Nuokangde
Biological Technology Co., Ltd., Xiamen 361006, China
| | - Ting Wu
- Cancer Research Center, Medical School, Xiamen University, Xiamen 361005, China
| |
Collapse
|
35
|
Kand D, Liu P, Navarro MX, Fischer LJ, Rousso-Noori L, Friedmann-Morvinski D, Winter AH, Miller EW, Weinstain R. Water-Soluble BODIPY Photocages with Tunable Cellular Localization. J Am Chem Soc 2020; 142:4970-4974. [PMID: 32115942 PMCID: PMC7302507 DOI: 10.1021/jacs.9b13219] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Photoactivation of
bioactive molecules allows manipulation of cellular
processes with high spatiotemporal precision. The recent emergence
of visible-light excitable photoprotecting groups has the potential
to further expand the established utility of the photoactivation strategy
in biological applications by offering higher tissue penetration,
diminished phototoxicity, and compatibility with other light-dependent
techniques. Nevertheless, a critical barrier to such applications
remains the significant hydrophobicity of most visible-light excitable
photocaging groups. Here, we find that applying the conventional 2,6-sulfonation
to meso-methyl BODIPY photocages is incompatible
with their photoreaction due to an increase in the excited state barrier
for photorelease. We present a simple, remote sulfonation solution
to BODIPY photocages that imparts water solubility and provides control
over cellular permeability while retaining their favorable spectroscopic
and photoreaction properties. Peripherally disulfonated BODIPY photocages
are cell impermeable, making them useful for modulation of cell-surface
receptors, while monosulfonated BODIPY retains the ability to cross
the cellular membrane and can modulate intracellular targets. This
new approach is generalizable for controlling BODIPY localization
and was validated by sensitization of mammalian cells and neurons
by visible-light photoactivation of signaling molecules.
Collapse
Affiliation(s)
| | | | | | - Logan J Fischer
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | | | | | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | | | | |
Collapse
|
36
|
VanDenburgh KL, Liu Y, Sadhukhan T, Benson CR, Cox NM, Erbas-Cakmak S, Qiao B, Gao X, Pink M, Raghavachari K, Flood AH. Multi-state amine sensing by electron transfers in a BODIPY probe. Org Biomol Chem 2020; 18:431-440. [DOI: 10.1039/c9ob02466b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photoinduced electron transfer sets up the BODIPY probe for multi-state amine sensing by single-electron transfer then collisional quenching.
Collapse
Affiliation(s)
| | - Yun Liu
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | | | | | | | | | - Bo Qiao
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | - Xinfeng Gao
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | - Maren Pink
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| | | | - Amar H. Flood
- Department of Chemistry
- Indiana University
- Bloomington
- USA
| |
Collapse
|
37
|
Bozdemir ÖA, Al‐Sharif HHT, McFarlane W, Waddell PG, Benniston AC, Harriman A. Solid‐State Emission from Mono‐ and Bichromophoric Boron Dipyrromethene (BODIPY) Derivatives and Comparison with Fluid Solution. Chemistry 2019; 25:15634-15645. [DOI: 10.1002/chem.201903902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Özgür Altan Bozdemir
- Molecular Photonics LaboratorySchool of Natural and Environmental Science (SNES)Newcastle University Newcastle upon Tyne NE1 7RU UK
- Department of ChemistryAtaturk University Erzurum 25240 Turkey
| | - Hatun H. T. Al‐Sharif
- Molecular Photonics LaboratorySchool of Natural and Environmental Science (SNES)Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - William McFarlane
- NMR Laboratory, SNESNewcastle University Newcastle upon Tyne NE1 7RU UK
| | - Paul G. Waddell
- Crystallography Laboratory, SNESNewcastle University Newcastle upon Tyne NE1 7RU UK
| | - Andrew C. Benniston
- Molecular Photonics LaboratorySchool of Natural and Environmental Science (SNES)Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Anthony Harriman
- Molecular Photonics LaboratorySchool of Natural and Environmental Science (SNES)Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
38
|
|
39
|
Descalzo AB, Ashokkumar P, Shen Z, Rurack K. On the Aggregation Behaviour and Spectroscopic Properties of Alkylated and Annelated Boron‐Dipyrromethene (BODIPY) Dyes in Aqueous Solution. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900235] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ana B. Descalzo
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Straße 11 12489 Berlin Germany
- Present address: Dpmt. Organic Chemistry, Faculty of ChemistryComplutense University of Madrid (UCM) Av. Complutense, s/n 28040 Madrid Spain
| | - Pichandi Ashokkumar
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Straße 11 12489 Berlin Germany
- Present address: Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS Faculté de PharmacieUniversité de Strasbourg Strasbourg CS 60024 France
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry Nanjing National Laboratory of Microstructures and School of Chemistry and Chemical EngineeringNanjing University Nanjing 210046 China
| | - Knut Rurack
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Straße 11 12489 Berlin Germany
| |
Collapse
|
40
|
Shagurin AY, Usoltsev SD, Marfin YS. Quantum-chemical study of oxophosphorus dipyrromethene (PODIPY) fluorophore coordination environment. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.112553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Wang M, Zhang G, Bobadova-Parvanova P, Merriweather AN, Odom L, Barbosa D, Fronczek FR, Smith KM, Vicente MGH. Synthesis and Investigation of Linker-Free BODIPY–Gly Conjugates Substituted at the Boron Atom. Inorg Chem 2019; 58:11614-11621. [DOI: 10.1021/acs.inorgchem.9b01474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maodie Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Guanyu Zhang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Ashley N. Merriweather
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lilian Odom
- Department of Chemistry, Rockhurst University, Kansas City, Missouri 64110, United States
| | - David Barbosa
- Department of Chemistry, Rockhurst University, Kansas City, Missouri 64110, United States
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kevin M. Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
42
|
Franke JM, Raliski BK, Boggess SC, Natesan DV, Koretsky ET, Zhang P, Kulkarni RU, Deal PE, Miller EW. BODIPY Fluorophores for Membrane Potential Imaging. J Am Chem Soc 2019; 141:12824-12831. [PMID: 31339313 PMCID: PMC7285656 DOI: 10.1021/jacs.9b05912] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorophores based on the BODIPY scaffold are prized for their tunable excitation and emission profiles, mild syntheses, and biological compatibility. Improving the water-solubility of BODIPY dyes remains an outstanding challenge. The development of water-soluble BODIPY dyes usually involves direct modification of the BODIPY fluorophore core with ionizable groups or substitution at the boron center. While these strategies are effective for the generation of water-soluble fluorophores, they are challenging to implement when developing BODIPY-based indicators: direct modification of BODIPY core can disrupt the electronics of the dye, complicating the design of functional indicators; and substitution at the boron center often renders the resultant BODIPY incompatible with the chemical transformations required to generate fluorescent sensors. In this study, we show that BODIPYs bearing a sulfonated aromatic group at the meso position provide a general solution for water-soluble BODIPYs. We outline the route to a suite of 5 new sulfonated BODIPYs with 2,6-disubstitution patterns spanning a range of electron-donating and -withdrawing propensities. To highlight the utility of these new, sulfonated BODIPYs, we further functionalize them to access 13 new, BODIPY-based, voltage-sensitive fluorophores (VF). The most sensitive of these BODIPY VF dyes displays a 48% ΔF/F per 100 mV in mammalian cells. Two additional BODIPY VFs show good voltage sensitivity (≥24% ΔF/F) and excellent brightness in cells. These compounds can report on action potential dynamics in both mammalian neurons and human stem cell-derived cardiomyocytes. Accessing a range of substituents in the context of a water-soluble BODIPY fluorophore provides opportunities to tune the electronic properties of water-soluble BODIPY dyes for functional indicators.
Collapse
Affiliation(s)
- Jenna M. Franke
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Benjamin K. Raliski
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Steven C. Boggess
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Divya V. Natesan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan T. Koretsky
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Patrick Zhang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Rishikesh U. Kulkarni
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Parker E. Deal
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Department of Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| |
Collapse
|
43
|
Marfin YS, Vodyanova OS, Usoltsev SD, Kazak AV, Rumyantsev EV. Oxophosphoryl Complexes of Dipyrrin: Spectral and Aggregation Characteristics of Solutions and Thin Films. CRYSTALLOGR REP+ 2019. [DOI: 10.1134/s1063774519040138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Uriel C, Sola-Llano R, Bañuelos J, Gomez AM, Lopez JC. A Malonyl-Based Scaffold for Conjugatable Multivalent Carbohydrate-BODIPY Presentations. Molecules 2019; 24:E2050. [PMID: 31146429 PMCID: PMC6600552 DOI: 10.3390/molecules24112050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023] Open
Abstract
A concise synthetic route from methylmalonate to a tetravalent aliphatic scaffold has been developed. The ensuing tetra-tethered derivative is equipped with two hydroxyl groups, as well as orthogonal alkene and alkyne functionalities. The usefulness of the scaffold has been demonstrated with the preparation of two representative multivalent derivatives: (i) a tetravalent compound containing two D-mannose units, one fluorescent boron-dipyrromethene (BODIPY) dye and a suitably functionalized amino acid and (ii) by way of dimerization and saponification, a water-soluble tetramannan derivative containing two fluorescent BODIPY units. Additionally, photophysical measurements conducted on these derivatives support the viability of the herein designed single and double BODIPY-labeled carbohydrate-based clusters as fluorescent markers.
Collapse
Affiliation(s)
- Clara Uriel
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Rebeca Sola-Llano
- Departamento Química Física, Universidad del País Vasco (UPV/EHU), Aptdo 644, 48080 Bilbao, Spain.
| | - Jorge Bañuelos
- Departamento Química Física, Universidad del País Vasco (UPV/EHU), Aptdo 644, 48080 Bilbao, Spain.
| | - Ana M Gomez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - J Cristobal Lopez
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
45
|
Işık M, Simsek Turan I, Dartar S. Development of a water-soluble 3-formylBODIPY dye for fluorogenic sensing and cell imaging of sulfur dioxide derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Badon IW, Lee J, Pegarro Vales T, Cho BK, Kim HJ. Synthesis and photophysical characterization of highly water-soluble PEGylated BODIPY derivatives for cellular imaging. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Fredy JW, Cutolo G, Poret B, Nehmé R, Hubert-Roux M, Gandolfo P, Castel H, Schuler M, Tatibouët A, Sabot C, Renard PY. Diverted Natural Lossen-type Rearrangement for Bioconjugation through in Situ Myrosinase-Triggered Isothiocyanate Synthesis. Bioconjug Chem 2019; 30:1385-1394. [DOI: 10.1021/acs.bioconjchem.9b00153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jean Wilfried Fredy
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014), 76000 Rouen, France
| | - Giuliano Cutolo
- Institut de Chimie Organique et Analytique - ICOA UMR 7311 CNRS, Université d’Orléans, Rue de Chartres, BP6759, 45067 cedex 02 Orléans, France
| | - Benjamin Poret
- Normandie Univ, UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Reine Nehmé
- Institut de Chimie Organique et Analytique - ICOA UMR 7311 CNRS, Université d’Orléans, Rue de Chartres, BP6759, 45067 cedex 02 Orléans, France
| | - Marie Hubert-Roux
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014), 76000 Rouen, France
| | - Pierrick Gandolfo
- Normandie Univ, UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Hélène Castel
- Normandie Univ, UNIROUEN, INSERM U1239, DC2N, Institute for Research and Innovation in Biomedicine (IRIB), 76000 Rouen, France
| | - Marie Schuler
- Institut de Chimie Organique et Analytique - ICOA UMR 7311 CNRS, Université d’Orléans, Rue de Chartres, BP6759, 45067 cedex 02 Orléans, France
| | - Arnaud Tatibouët
- Institut de Chimie Organique et Analytique - ICOA UMR 7311 CNRS, Université d’Orléans, Rue de Chartres, BP6759, 45067 cedex 02 Orléans, France
| | - Cyrille Sabot
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014), 76000 Rouen, France
| | - Pierre-Yves Renard
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
48
|
Felouat A, Curtil M, Massue J, Ulrich G. Excited-state intramolecular proton transfer (ESIPT) emitters based on a 2-(2′-hydroxybenzofuranyl)benzoxazole (HBBO) scaffold functionalised with oligo(ethylene glycol) (OEG) chains. NEW J CHEM 2019. [DOI: 10.1039/c9nj00809h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article describes the multi-step synthesis of 2-(2′-hydroxybenzofuran)benzoxazole (HBBO) derivatives functionalised with one to three oligo(ethylene glycol) (OEG) chains with the goal to allow a good vectorization in aqueous media.
Collapse
Affiliation(s)
- Abdellah Felouat
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM)
- 67087 Strasbourg Cedex 02
- France
| | - Mathieu Curtil
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM)
- 67087 Strasbourg Cedex 02
- France
| | - Julien Massue
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM)
- 67087 Strasbourg Cedex 02
- France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM)
- 67087 Strasbourg Cedex 02
- France
| |
Collapse
|
49
|
Callaghan S, Filatov MA, Savoie H, Boyle RW, Senge MO. In vitro cytotoxicity of a library of BODIPY-anthracene and -pyrene dyads for application in photodynamic therapy. Photochem Photobiol Sci 2019; 18:495-504. [DOI: 10.1039/c8pp00402a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A library of heavy atom-free BODIPY-anthracene and -pyrene dyads capable of generating singlet oxygen via a PeT mechanism have been synthesized and their in vitro activity has been demonstrated.
Collapse
Affiliation(s)
- Susan Callaghan
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- The University of Dublin
| | - Mikhail A. Filatov
- School of Chemistry
- SFI Tetrapyrrole Laboratory
- Trinity Biomedical Sciences Institute
- Trinity College Dublin
- The University of Dublin
| | - Huguette Savoie
- Department of Chemistry
- University of Hull
- Kingston-upon-Hull HU6 7RX
- UK
| | - Ross W. Boyle
- Department of Chemistry
- University of Hull
- Kingston-upon-Hull HU6 7RX
- UK
| | - Mathias O. Senge
- Medicinal Chemistry
- Trinity Translational Medicine Institute
- Trinity Centre for Health Sciences
- Trinity College Dublin
- The University of Dublin
| |
Collapse
|
50
|
Bardon K, Selfridge S, Adams DS, Minns RA, Pawle R, Adams TC, Takiff L. Synthesis of Water-Soluble Far-Red-Emitting Amphiphilic BODIPY Dyes. ACS OMEGA 2018; 3:13195-13199. [PMID: 30411029 PMCID: PMC6217593 DOI: 10.1021/acsomega.8b01487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/01/2018] [Indexed: 05/26/2023]
Abstract
We report the synthesis of two water-soluble BODIPY dyes with far-red absorption and near-infrared fluorescence following cell membrane insertion. Introduction of dicationic or dianionic groups imparts water solubility and prevents translocation of the dye through the plasma membrane for highly effective labeling. The dicationic form is particularly well localized to the plasma membrane and resists quenching even after >8 min of continuous light exposure. The dyes are almost completely nonemissive in water and other highly polar solvents, but display high-fluorescence yields in chloroform and upon insertion into the extracellular leaflet.
Collapse
Affiliation(s)
- Kevin
M. Bardon
- Akita
Innovations LLC, 267
Boston Road, Suite 11, North Billerica, Massachusetts 01862, United States
| | - Scott Selfridge
- Akita
Innovations LLC, 267
Boston Road, Suite 11, North Billerica, Massachusetts 01862, United States
| | - Dany S. Adams
- Tufts
University, Tufts Center for
Regenerative & Developmental Biology, 200 Boston Avenue, Medford, Massachusetts 02155, United States
| | - Richard A. Minns
- Akita
Innovations LLC, 267
Boston Road, Suite 11, North Billerica, Massachusetts 01862, United States
| | - Robert Pawle
- Akita
Innovations LLC, 267
Boston Road, Suite 11, North Billerica, Massachusetts 01862, United States
| | - Timothy C. Adams
- Akita
Innovations LLC, 267
Boston Road, Suite 11, North Billerica, Massachusetts 01862, United States
| | - Larry Takiff
- Akita
Innovations LLC, 267
Boston Road, Suite 11, North Billerica, Massachusetts 01862, United States
| |
Collapse
|