1
|
Petrova B, Lacey TE, Culhane AJ, Cui J, Brook JR, Raskind A, Misra A, Lehtinen MK, Kanarek N. Profiling metabolome of mouse embryonic cerebrospinal fluid following maternal immune activation. J Biol Chem 2024; 300:107749. [PMID: 39251136 PMCID: PMC11497393 DOI: 10.1016/j.jbc.2024.107749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024] Open
Abstract
The embryonic cerebrospinal fluid (eCSF) plays an essential role in the development of the central nervous system (CNS), influencing processes from neurogenesis to lifelong cognitive functions. An important process affecting eCSF composition is inflammation. Inflammation during development can be studied using the maternal immune activation (MIA) mouse model, which displays altered cytokine eCSF composition and mimics neurodevelopmental disorders including autism spectrum disorder (ASD). The limited nature of eCSF as a biosample restricts its research and has hindered our understanding of the eCSF's role in brain pathologies. Specifically, investigation of the small molecule composition of the eCSF is lacking, leaving this aspect of eCSF composition under-studied. We report here the eCSF metabolome as a resource for investigating developmental neuropathologies from a metabolic perspective. Our reference metabolome includes comprehensive MS1 and MS2 datasets and evaluates two mouse strains (CD-1 and C57Bl/6) and two developmental time points (E12.5 and E14.5). We illustrate the reference metabolome's utility by using untargeted metabolomics to identify eCSF-specific compositional changes following MIA. We uncover MIA-relevant metabolic pathways as differentially abundant in eCSF and validate changes in glucocorticoid and kynurenine pathways through targeted metabolomics. Our resource can guide future studies into the causes of MIA neuropathology and the impact of eCSF composition on brain development.
Collapse
Affiliation(s)
- Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| | - Tiara E Lacey
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew J Culhane
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jin Cui
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Jeannette R Brook
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Aditya Misra
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
2
|
Radoszkiewicz K, Bzinkowska A, Chodkowska M, Rybkowska P, Sypecka M, Zembrzuska-Kaska I, Sarnowska A. Deciphering the impact of cerebrospinal fluid on stem cell fate as a new mechanism to enhance clinical therapy development. Front Neurosci 2024; 17:1332751. [PMID: 38282622 PMCID: PMC10811009 DOI: 10.3389/fnins.2023.1332751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Neural stem cells (NSCs) hold a very significant promise as candidates for cell therapy due to their robust neuroprotective and regenerative properties. Preclinical studies using NSCs have shown enough encouraging results to perform deeper investigations into more potential clinical applications. Nevertheless, our knowledge regarding neurogenesis and its underlying mechanisms remains incomplete. To understand them better, it seems necessary to characterize all components of neural stem cell niche and discover their role in physiology and pathology. Using NSCs in vivo brings challenges including limited cell survival and still inadequate integration within host tissue. Identifying overlooked factors that might influence these outcomes becomes pivotal. In this review, we take a deeper examination of the influence of a fundamental element that is present in the brain, the cerebrospinal fluid (CSF), which still remains relatively unexplored. Its role in neurogenesis could be instrumental to help find novel therapeutic solutions for neurological disorders, eventually advancing our knowledge on central nervous system (CNS) regeneration and repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
3
|
Petrova B, Lacey TE, Culhane AJ, Cui J, Raskin A, Misra A, Lehtinen MK, Kanarek N. Metabolomics of Mouse Embryonic CSF Following Maternal Immune Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570507. [PMID: 38105934 PMCID: PMC10723469 DOI: 10.1101/2023.12.06.570507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The cerebrospinal fluid (CSF) serves various roles in the developing central nervous system (CNS), from neurogenesis to lifelong cognitive functions. Changes in CSF composition due to inflammation can impact brain function. We recently identified an abnormal cytokine signature in embryonic CSF (eCSF) following maternal immune activation (MIA), a mouse model of autism spectrum disorder (ASD). We hypothesized that MIA leads to other alterations in eCSF composition and employed untargeted metabolomics to profile changes in the eCSF metabolome in mice after inducing MIA with polyI:C. We report these data here as a resource, include a comprehensive MS1 and MS2 reference dataset, and present additional datasets comparing two mouse strains (CD-1 and C57Bl/6) and two developmental time points (E12.5 and E14.5). Targeted metabolomics further validated changes upon MIA. We show a significant elevation of glucocorticoids and kynurenine pathway related metabolites. Both pathways are relevant for suppressing inflammation or could be informative as disease biomarkers. Our resource should inform future mechanistic studies regarding the etiology of MIA neuropathology and roles and contributions of eCSF metabolites to brain development.
Collapse
|
4
|
Voukali E, Veetil NK, Němec P, Stopka P, Vinkler M. Comparison of plasma and cerebrospinal fluid proteomes identifies gene products guiding adult neurogenesis and neural differentiation in birds. Sci Rep 2021; 11:5312. [PMID: 33674647 PMCID: PMC7935914 DOI: 10.1038/s41598-021-84274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 11/27/2022] Open
Abstract
Cerebrospinal fluid (CSF) proteins regulate neurogenesis, brain homeostasis and participate in signalling during neuroinflammation. Even though birds represent valuable models for constitutive adult neurogenesis, current proteomic studies of the avian CSF are limited to chicken embryos. Here we use liquid chromatography-tandem mass spectrometry (nLC-MS/MS) to explore the proteomic composition of CSF and plasma in adult chickens (Gallus gallus) and evolutionarily derived parrots: budgerigar (Melopsittacus undulatus) and cockatiel (Nymphicus hollandicus). Because cockatiel lacks a complete genome information, we compared the cross-species protein identifications using the reference proteomes of three model avian species: chicken, budgerigar and zebra finch (Taeniopygia guttata) and found the highest identification rates when mapping against the phylogenetically closest species, the budgerigar. In total, we identified 483, 641 and 458 unique proteins consistently represented in the CSF and plasma of all chicken, budgerigar and cockatiel conspecifics, respectively. Comparative pathways analyses of CSF and blood plasma then indicated clusters of proteins involved in neurogenesis, neural development and neural differentiation overrepresented in CSF in each species. This study provides the first insight into the proteomics of adult avian CSF and plasma and brings novel evidence supporting the adult neurogenesis in birds.
Collapse
Affiliation(s)
- Eleni Voukali
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| | - Nithya Kuttiyarthu Veetil
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| |
Collapse
|
5
|
Abstract
The mammalian cerebral cortex is the pinnacle of brain evolution, reaching its maximum complexity in terms of neuron number, diversity and functional circuitry. The emergence of this outstanding complexity begins during embryonic development, when a limited number of neural stem and progenitor cells manage to generate myriads of neurons in the appropriate numbers, types and proportions, in a process called neurogenesis. Here we review the current knowledge on the regulation of cortical neurogenesis, beginning with a description of the types of progenitor cells and their lineage relationships. This is followed by a review of the determinants of neuron fate, the molecular and genetic regulatory mechanisms, and considerations on the evolution of cortical neurogenesis in vertebrates leading to humans. We finish with an overview on how dysregulation of neurogenesis is a leading cause of human brain malformations and functional disabilities.
Collapse
Affiliation(s)
- Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München & Biomedical Center, Ludwig-Maximilians Universitaet, Planegg-Martinsried, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
6
|
Kaiser K, Bryja V. Choroid Plexus: The Orchestrator of Long-Range Signalling Within the CNS. Int J Mol Sci 2020; 21:E4760. [PMID: 32635478 PMCID: PMC7369786 DOI: 10.3390/ijms21134760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023] Open
Abstract
Cerebrospinal fluid (CSF) is the liquid that fills the brain ventricles. CSF represents not only a mechanical brain protection but also a rich source of signalling factors modulating diverse processes during brain development and adulthood. The choroid plexus (CP) is a major source of CSF and as such it has recently emerged as an important mediator of extracellular signalling within the brain. Growing interest in the CP revealed its capacity to release a broad variety of bioactive molecules that, via CSF, regulate processes across the whole central nervous system (CNS). Moreover, CP has been also recognized as a sensor, responding to altered composition of CSF associated with changes in the patterns of CNS activity. In this review, we summarize the recent advances in our understanding of the CP as a signalling centre that mediates long-range communication in the CNS. By providing a detailed account of the CP secretory repertoire, we describe how the CP contributes to the regulation of the extracellular environment-in the context of both the embryonal as well as the adult CNS. We highlight the role of the CP as an important regulator of CNS function that acts via CSF-mediated signalling. Further studies of CP-CSF signalling hold the potential to provide key insights into the biology of the CNS, with implications for better understanding and treatment of neuropathological conditions.
Collapse
Affiliation(s)
- Karol Kaiser
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
7
|
Lamus F, Martín C, Carnicero E, Moro J, Fernández J, Mano A, Gato Á, Alonso M. FGF2/EGF contributes to brain neuroepithelial precursor proliferation and neurogenesis in rat embryos: the involvement of embryonic cerebrospinal fluid. Dev Dyn 2019; 249:141-153. [DOI: 10.1002/dvdy.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- F. Lamus
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
| | - C. Martín
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
| | - E. Carnicero
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL)Universidad de Valladolid Valladolid Spain
| | | | - J.M.F. Fernández
- Departamento de Biología Celular, Histología y Farmacología; Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
| | - A. Mano
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL)Universidad de Valladolid Valladolid Spain
| | - Á. Gato
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL)Universidad de Valladolid Valladolid Spain
| | - M.I. Alonso
- Departamento de Anatomía y Radiología, Facultad de MedicinaUniversidad de Valladolid Valladolid Spain
- Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL)Universidad de Valladolid Valladolid Spain
| |
Collapse
|
8
|
Gato A, Alonso MI, Lamus F, Miyan J. Neurogenesis: A process ontogenically linked to brain cavities and their content, CSF. Semin Cell Dev Biol 2019; 102:21-27. [PMID: 31786097 DOI: 10.1016/j.semcdb.2019.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 01/02/2023]
Abstract
Neurogenesis is the process underlying the development of the highly evolved central nervous system (CNS) in vertebrates. Neurogenesis takes place by differentiation of specific Neural Precursor Cells in the neurogenic niche. The main objective of this review is to highlight the specific relationship between the brain cavities, and neurogenesis from neural precursors. Brain cavities and their content, Cerebrospinal Fluid (CSF), establish a key relation with the neurogenic "niche" because of the presence in this fluid of neurogenic signals able to control neural precursor cell behaviour, inducing precursor proliferation and neuronal differentiation. This influence seems to be ontogenically preserved, despite the temporal and spatial variations that occur throughout life. In order to better understand this concept, we consider three main life periods in the CSF-Neurogenesis interaction: The "Embryonic" period, which take place at the Neural Tube stage and extends from the isolation of the neural tube at the end of "neurulation" to the beginning of Choroid Plexus activity; the "Fetal" period, which includes the remaining developmental and the early postnatal stages; and the "Adult" period, which continues for the rest of adult life. Each period has specific characteristics in respect of CSF synthesis and composition, and the location, extension and neurogenic activity of the neurogenic niche. However, CSF interaction with the neurogenic niche is a common factor, which should be taken into account to better understand the ontogeny of neuron formation and replacement, as well as its potential role in the success or failure of therapies for the ageing, injured or diseased brain.
Collapse
Affiliation(s)
- A Gato
- Departamento De Anatomía Y Radiología, Facultad De Medicina, Universidad De Valladolid, C/ Ramón Y Cajal 7, 47005, Valladolid, Spain; Laboratorio de Desarrollo y Teratología del Sistema Nervioso. Instituto de Neurociencias de Castilla y León (INCYL). Universidad de Valladolid. Valladolid, Spain.
| | - M I Alonso
- Departamento De Anatomía Y Radiología, Facultad De Medicina, Universidad De Valladolid, C/ Ramón Y Cajal 7, 47005, Valladolid, Spain; Laboratorio de Desarrollo y Teratología del Sistema Nervioso. Instituto de Neurociencias de Castilla y León (INCYL). Universidad de Valladolid. Valladolid, Spain
| | - F Lamus
- Departamento De Anatomía Y Radiología, Facultad De Medicina, Universidad De Valladolid, C/ Ramón Y Cajal 7, 47005, Valladolid, Spain; Laboratorio de Desarrollo y Teratología del Sistema Nervioso. Instituto de Neurociencias de Castilla y León (INCYL). Universidad de Valladolid. Valladolid, Spain
| | - J Miyan
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine & Health, the University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
9
|
Bueno D, Parvas M, Nabiuni M, Miyan J. Embryonic cerebrospinal fluid formation and regulation. Semin Cell Dev Biol 2019; 102:3-12. [PMID: 31615690 DOI: 10.1016/j.semcdb.2019.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
The vertebrate brain is organized, from its embryonic origin and throughout adult life, around a dynamic and complex fluid, the cerebrospinal fluid (CSF). There is growing interest in the composition, dynamics and function of the CSF in brain development research. It has been demonstrated in higher vertebrates that CSF has key functions in delivering diffusible signals and nutrients to the developing brain, contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the patterning of the brain. It has also been shown that the composition and the homeostasis of CSF are tightly regulated following the closure of the anterior neuropore, just before the initiation of primary neurogenesis in the neural tissue surrounding brain cavities, before the formation of functional choroid plexus. In this review we draw together existing literature about the composition and formation of embryonic cerebrospinal fluid in birds and mammals, from the closure of the anterior neuropore to the formation of functional fetal choroid plexus, including mechanisms regulating its composition and homeostasis. The significance of CSF regulation within embryonic brain is also discussed from an evolutionary perspective.
Collapse
Affiliation(s)
- David Bueno
- Section of Biomedical, Evolutionary and Developmental Genetics, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643. Barcelona 08028, Catalonia Spain.
| | - Maryam Parvas
- Section of Biomedical, Evolutionary and Developmental Genetics, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643. Barcelona 08028, Catalonia Spain
| | - Mohammad Nabiuni
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine & Health, The University of Manchester, Stopford Building, Oxford Road. Manchester M13 9PT, UK
| | - Jaleel Miyan
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine & Health, The University of Manchester, Stopford Building, Oxford Road. Manchester M13 9PT, UK
| |
Collapse
|
10
|
Kaiser K, Gyllborg D, Procházka J, Salašová A, Kompaníková P, Molina FL, Laguna-Goya R, Radaszkiewicz T, Harnoš J, Procházková M, Potěšil D, Barker RA, Casado ÁG, Zdráhal Z, Sedláček R, Arenas E, Villaescusa JC, Bryja V. WNT5A is transported via lipoprotein particles in the cerebrospinal fluid to regulate hindbrain morphogenesis. Nat Commun 2019; 10:1498. [PMID: 30940800 PMCID: PMC6445127 DOI: 10.1038/s41467-019-09298-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
WNTs are lipid-modified proteins that control multiple functions in development and disease via short- and long-range signaling. However, it is unclear how these hydrophobic molecules spread over long distances in the mammalian brain. Here we show that WNT5A is produced by the choroid plexus (ChP) of the developing hindbrain, but not the telencephalon, in both mouse and human. Since the ChP produces and secretes the cerebrospinal fluid (CSF), we examine the presence of WNT5A in the CSF and find that it is associated with lipoprotein particles rather than exosomes. Moreover, since the CSF flows along the apical surface of hindbrain progenitors not expressing Wnt5a, we examined whether deletion of Wnt5a in the ChP controls their function and find that cerebellar morphogenesis is impaired. Our study thus identifies the CSF as a route and lipoprotein particles as a vehicle for long-range transport of biologically active WNT in the central nervous system.
Collapse
Affiliation(s)
- Karol Kaiser
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Daniel Gyllborg
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Jan Procházka
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v. v. i., Prumyslova 595, Vestec, 252 42, Czech Republic
| | - Alena Salašová
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
- Danish Research Institute of Translational Neuroscience, Department of Biomedicine, Aarhus University, Aarhus, C 8000, Denmark
| | - Petra Kompaníková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Francisco Lamus Molina
- Departamento de Anatomía y Radiología, Facultad de medicina, Universidad de Valladolid, Ramón y Cajal 5, 47005, Valladolid, Spain
| | - Rocio Laguna-Goya
- John van Geest Centre for Brain Repair and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Tomasz Radaszkiewicz
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Jakub Harnoš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Michaela Procházková
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v. v. i., Prumyslova 595, Vestec, 252 42, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, 625 00, Brno, Czech Republic
| | - Roger A Barker
- John van Geest Centre for Brain Repair and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Ángel Gato Casado
- Departamento de Anatomía y Radiología, Facultad de medicina, Universidad de Valladolid, Ramón y Cajal 5, 47005, Valladolid, Spain
| | - Zbyněk Zdráhal
- Central European Institute of Technology, 625 00, Brno, Czech Republic
| | - Radislav Sedláček
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v. v. i., Prumyslova 595, Vestec, 252 42, Czech Republic
| | - Ernest Arenas
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden.
| | - J Carlos Villaescusa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic.
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden.
- Psychiatric Stem Cell Group, Neurogenetics Unit, Center for Molecular Medicine, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, 171 76, Sweden.
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic.
| |
Collapse
|
11
|
Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD. Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. J Physiol 2018; 596:5723-5756. [PMID: 29774535 PMCID: PMC6265560 DOI: 10.1113/jp275376] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022] Open
Abstract
Properties of the local internal environment of the adult brain are tightly controlled providing a stable milieu essential for its normal function. The mechanisms involved in this complex control are structural, molecular and physiological (influx and efflux transporters) frequently referred to as the 'blood-brain barrier'. These mechanisms include regulation of ion levels in brain interstitial fluid essential for normal neuronal function, supply of nutrients, removal of metabolic products, and prevention of entry or elimination of toxic agents. A key feature is cerebrospinal fluid secretion and turnover. This is much less during development, allowing greater accumulation of permeating molecules. The overall effect of these mechanisms is to tightly control the exchange of molecules into and out of the brain. This review presents experimental evidence currently available on the status of these mechanisms in developing brain. It has been frequently stated for over nearly a century that the blood-brain barrier is not present or at least is functionally deficient in the embryo, fetus and newborn. We suggest the alternative hypothesis that the barrier mechanisms in developing brain are likely to be appropriately matched to each stage of its development. The contributions of different barrier mechanisms, such as changes in constituents of cerebrospinal fluid in relation to specific features of brain development, for example neurogenesis, are only beginning to be studied. The evidence on this previously neglected aspect of brain barrier function is outlined. We also suggest future directions this field could follow with special emphasis on potential applications in a clinical setting.
Collapse
Affiliation(s)
- Norman R. Saunders
- Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3CopenhagenDenmark
| | - Katarzyna M. Dziegielewska
- Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3CopenhagenDenmark
| | - Kjeld Møllgård
- Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3CopenhagenDenmark
| | - Mark D. Habgood
- Department of Pharmacology and TherapeuticsUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenBlegdamsvej 3CopenhagenDenmark
| |
Collapse
|
12
|
Alonso MI, Lamus F, Carnicero E, Moro JA, de la Mano A, Fernández JMF, Desmond ME, Gato A. Embryonic Cerebrospinal Fluid Increases Neurogenic Activity in the Brain Ventricular-Subventricular Zone of Adult Mice. Front Neuroanat 2017; 11:124. [PMID: 29311854 PMCID: PMC5742215 DOI: 10.3389/fnana.2017.00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Neurogenesis is a very intensive process during early embryonic brain development, becoming dramatically restricted in the adult brain in terms of extension and intensity. We have previously demonstrated the key role of embryonic cerebrospinal fluid (CSF) in developing brain neurogenic activity. We also showed that cultured adult brain neural stem cells (NSCs) remain competent when responding to the neurogenic influence of embryonic CSF. However, adult CSF loses its neurogenic inductive properties. Here, by means of an organotypic culture of adult mouse brain sections, we show that local administration of embryonic CSF in the subventricular zone (SVZ) niche is able to trigger a neurogenic program in NSCs. This leads to a significant increase in the number of non-differentiated NSCs, and also in the number of new neurons which show normal migration, differentiation and maturation. These new data reveal that embryonic CSF activates adult brain NSCs, supporting the previous idea that it contains key instructive components which could be useful in adult brain neuroregenerative strategies.
Collapse
Affiliation(s)
- Maria I Alonso
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Valladolid, Valladolid, Spain
| | - Francisco Lamus
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Estela Carnicero
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Valladolid, Valladolid, Spain
| | - Jose A Moro
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Valladolid, Valladolid, Spain
| | - Anibal de la Mano
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Valladolid, Valladolid, Spain
| | - Jose M F Fernández
- Departamento de Biología Celular, Histología y Farmacología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Mary E Desmond
- Department of Biology, Villanova University, Villanova, PA, United States
| | - Angel Gato
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain.,Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
13
|
Djenoune L, Wyart C. Light on a sensory interface linking the cerebrospinal fluid to motor circuits in vertebrates. J Neurogenet 2017; 31:113-127. [PMID: 28789587 DOI: 10.1080/01677063.2017.1359833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cerebrospinal fluid (CSF) is circulating around the entire central nervous system (CNS). The main function of the CSF has been thought to insure the global homeostasis of the CNS. Recent evidence indicates that the CSF also dynamically conveys signals modulating the development and the activity of the nervous system. The later observation implies that cues from the CSF could act on neurons in the brain and the spinal cord via bordering receptor cells. Candidate neurons to enable such modulation are the cerebrospinal fluid-contacting neurons (CSF-cNs) that are located precisely at the interface between the CSF and neuronal circuits. The atypical apical extension of CSF-cNs bears a cluster of microvilli bathing in the CSF indicating putative sensory or secretory roles in relation with the CSF. In the brainstem and spinal cord, CSF-cNs have been described in over two hundred species by Kolmer and Agduhr, suggesting an important function within the spinal cord. However, the lack of specific markers and the difficulty to access CSF-cNs hampered their physiological investigation. The transient receptor potential channel PKD2L1 is a specific marker of spinal CSF-cNs in vertebrate species. The transparency of zebrafish at early stages eases the functional characterization of pkd2l1+ CSF-cNs. Recent studies demonstrate that spinal CSF-cNs detect spinal curvature via the channel PKD2L1 and modulate locomotion and posture by projecting onto spinal interneurons and motor neurons in vivo. In vitro recordings demonstrated that spinal CSF-cNs are sensing pH variations mainly through ASIC channels, in combination with PKD2L1. Altogether, neurons contacting the CSF appear as a novel sensory modality enabling the detection of mechanical and chemical stimuli from the CSF and modulating the excitability of spinal circuits underlying locomotion and posture.
Collapse
Affiliation(s)
- Lydia Djenoune
- a Institut du Cerveau et de la Moelle épinière (ICM) , Paris , France
| | - Claire Wyart
- a Institut du Cerveau et de la Moelle épinière (ICM) , Paris , France
| |
Collapse
|
14
|
Proteomic Analysis of Non-depleted Serum Proteins from Bottlenose Dolphins Uncovers a High Vanin-1 Phenotype. Sci Rep 2016; 6:33879. [PMID: 27667588 PMCID: PMC5036180 DOI: 10.1038/srep33879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022] Open
Abstract
Targeted approaches have been widely used to help explain physiological adaptations, but few studies have used non-targeted omics approaches to explore differences between diving marine mammals and terrestrial mammals. A rank comparison of undepleted serum proteins from common bottlenose dolphins (Tursiops truncatus) and pooled normal human serum led to the discovery of 11 proteins that appeared exclusive to dolphin serum. Compared to the comprehensive human plasma proteome, 5 of 11 serum proteins had a differential rank greater than 200. One of these proteins, Vanin-1, was quantified using parallel reaction monitoring in dolphins under human care and free-ranging dolphins. Dolphin serum Vanin-1 ranged between 31–106 μg/ml, which is 20–1000 times higher than concentrations reported for healthy humans. Serum Vanin-1 was also higher in dolphins under human care compared to free-ranging dolphins (64 ± 16 vs. 47 ± 12 μg/ml P < 0.05). Vanin-1 levels positively correlated with liver enzymes AST and ALT, and negatively correlated with white blood cell counts and fibrinogen in free-ranging dolphins. Major differences exist in the circulating blood proteome of the bottlenose dolphin compared to terrestrial mammals and exploration of these differences in bottlenose dolphins and other marine mammals may identify veiled protective strategies to counter physiological stress.
Collapse
|
15
|
Chau KF, Springel MW, Broadbelt KG, Park HY, Topal S, Lun MP, Mullan H, Maynard T, Steen H, LaMantia AS, Lehtinen MK. Progressive Differentiation and Instructive Capacities of Amniotic Fluid and Cerebrospinal Fluid Proteomes following Neural Tube Closure. Dev Cell 2016; 35:789-802. [PMID: 26702835 DOI: 10.1016/j.devcel.2015.11.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/28/2015] [Accepted: 11/16/2015] [Indexed: 01/04/2023]
Abstract
After neural tube closure, amniotic fluid (AF) captured inside the neural tube forms the nascent cerebrospinal fluid (CSF). Neuroepithelial stem cells contact CSF-filled ventricles, proliferate, and differentiate to form the mammalian brain, while neurogenic placodes, which generate cranial sensory neurons, remain in contact with the AF. Using in vivo ultrasound imaging, we quantified the expansion of the embryonic ventricular-CSF space from its inception. We developed tools to obtain pure AF and nascent CSF, before and after neural tube closure, and to define how the AF and CSF proteomes diverge during mouse development. Using embryonic neural explants, we demonstrate that age-matched fluids promote Sox2-positive neurogenic identity in developing forebrain and olfactory epithelia. Nascent CSF also stimulates SOX2-positive self-renewal of forebrain progenitor cells, some of which is attributable to LIFR signaling. Our Resource should facilitate the investigation of fluid-tissue interactions during this highly vulnerable stage of early brain development.
Collapse
Affiliation(s)
- Kevin F Chau
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Mark W Springel
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin G Broadbelt
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hye-Yeon Park
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Salih Topal
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Melody P Lun
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hillary Mullan
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Thomas Maynard
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Hanno Steen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anthony S LaMantia
- Department of Pharmacology and Physiology, Institute for Neuroscience, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Bueno D, Garcia-Fernàndez J. Evolutionary development of embryonic cerebrospinal fluid composition and regulation: an open research field with implications for brain development and function. Fluids Barriers CNS 2016; 13:5. [PMID: 26979569 PMCID: PMC4793645 DOI: 10.1186/s12987-016-0029-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/10/2016] [Indexed: 12/29/2022] Open
Abstract
Within the consolidated field of evolutionary development, there is emerging research on evolutionary aspects of central nervous system development and its implications for adult brain structure and function, including behaviour. The central nervous system is one of the most intriguing systems in complex metazoans, as it controls all body and mind functions. Its failure is responsible for a number of severe and largely incurable diseases, including neurological and neurodegenerative ones. Moreover, the evolution of the nervous system is thought to be a critical step in the adaptive radiation of vertebrates. Brain formation is initiated early during development. Most embryological, genetic and evolutionary studies have focused on brain neurogenesis and regionalisation, including the formation and function of organising centres, and the comparison of homolog gene expression and function among model organisms from different taxa. The architecture of the vertebrate brain primordium also reveals the existence of connected internal cavities, the cephalic vesicles, which in fetuses and adults become the ventricular system of the brain. During embryonic and fetal development, brain cavities and ventricles are filled with a complex, protein-rich fluid called cerebrospinal fluid (CSF). However, CSF has not been widely analysed from either an embryological or evolutionary perspective. Recently, it has been demonstrated in higher vertebrates that embryonic cerebrospinal fluid has key functions in delivering diffusible signals and nutrients to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. Moreover, it has been shown that the composition and homeostasis of CSF are tightly controlled in a time-dependent manner from the closure of the anterior neuropore, just before the initiation of primary neurogenesis, up to the formation of functional choroid plexuses. In this review, we draw together existing literature about the formation, function and homeostatic regulation of embryonic cerebrospinal fluid, from the closure of the anterior neuropore to the formation of functional fetal choroid plexuses, from an evolutionary perspective. The relevance of these processes to the normal functions and diseases of adult brain will also be discussed.
Collapse
Affiliation(s)
- David Bueno
- Department of Genetics, Microbiology and Statistics, Unit of Biomedical, Evolutionary and Developmental Genetics, Faculty of Biological Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain.
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Unit of Biomedical, Evolutionary and Developmental Genetics, Faculty of Biological Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Ochoa V, Loeffler AJ, Fowler CD. Emerging Role of the Cerebrospinal Fluid - Neuronal Interface in Neuropathology. ACTA ACUST UNITED AC 2015; 2:92-98. [PMID: 28702514 DOI: 10.17140/noj-2-118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The choroid plexus and cerebrospinal fluid have recently begun to emerge as essential regulators of neural function. Factors produced by the choroid plexus are released into the ventricular environment and thus provide a rich source of extracellular signaling molecules throughout the central nervous system. Identified factors in the cerebrospinal fluid include growth factors, hormones, proteins, peptides, lipids, glucose, microRNAs (miRNAs), messenger RNA (mRNA), and enzymes. In addition to mediating neural function, these factors have the potential to serve as biomarkers of disease states. In this review, we highlight recent advances demonstrating the importance of extracellular signaling mechanisms in mediating neural function and provide recent evidence for their role in neuropathology.
Collapse
Affiliation(s)
- Vanessa Ochoa
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Annalee J Loeffler
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Bueno D, Parvas M, Garcia-Fernàndez J. The embryonic blood-cerebrospinal fluid barrier function before the formation of the fetal choroid plexus: role in cerebrospinal fluid formation and homeostasis. Croat Med J 2015; 55:306-16. [PMID: 25165045 PMCID: PMC4157384 DOI: 10.3325/cmj.2014.55.306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cerebrospinal fluid (CSF) has attracted interest as an active signaling milieu that regulates brain development, homeostasis, and course disease. CSF is a nutrient-rich fluid, which also contains growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS). CSF constitution is controlled tightly and constituent concentrations are maintained narrow, depending on developmental stage. From fetal stages to adult life, CSF is produced mainly by the choroid plexus. The development and functional activities of the choroid plexus, and other blood-brain barrier systems in adults, have been extensively analyzed. However, the study of CSF production and homeostasis in embryos from the closure of the anterior neuropore, when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus has been largely neglected. This developmental stage is characterized by tightly controlled morphological and cellular events in the anterior part of the CNS, such as rapid brain anlagen growth and initiation of primary neurogenesis in the neural progenitor cells lining the cavities, events which are driven by specific molecules contained within the embryonic CSF. In this article, we review the existing literature on formation and function of the temporary embryonic blood-CSF barrier, from closure of the anterior neuropore to the formation of functional fetal choroid plexuses, with regard to crucial roles that embryonic CSF plays in neural development.
Collapse
Affiliation(s)
- David Bueno
- David Bueno, Departament de Genética, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia (Spain),
| | | | | |
Collapse
|
19
|
Gato A, Alonso MI, Martín C, Carnicero E, Moro JA, De la Mano A, Fernández JMF, Lamus F, Desmond ME. Embryonic cerebrospinal fluid in brain development: neural progenitor control. Croat Med J 2015; 55:299-305. [PMID: 25165044 PMCID: PMC4157377 DOI: 10.3325/cmj.2014.55.299] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Due to the effort of several research teams across the world, today we have a solid base of knowledge on the liquid contained in the brain cavities, its composition, and biological roles. Although the cerebrospinal fluid (CSF) is among the most relevant parts of the central nervous system from the physiological point of view, it seems that it is not a permanent and stable entity because its composition and biological properties evolve across life. So, we can talk about different CSFs during the vertebrate life span. In this review, we focus on the CSF in an interesting period, early in vertebrate development before the formation of the choroid plexus. This specific entity is called “embryonic CSF.” Based on the structure of the compartment, CSF composition, origin and circulation, and its interaction with neuroepithelial precursor cells (the target cells) we can conclude that embryonic CSF is different from the CSF in later developmental stages and from the adult CSF. This article presents arguments that support the singularity of the embryonic CSF, mainly focusing on its influence on neural precursor behavior during development and in adult life.
Collapse
Affiliation(s)
- Angel Gato
- Ángel Gato Casado, Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, C/ Ramón y Cajal 7, E-47005-Valladolid, Spain,
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bueno D, Parvas M, Hermelo I, Garcia-Fernàndez J. Embryonic blood-cerebrospinal fluid barrier formation and function. Front Neurosci 2014; 8:343. [PMID: 25389383 PMCID: PMC4211391 DOI: 10.3389/fnins.2014.00343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/08/2014] [Indexed: 12/11/2022] Open
Abstract
During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF). CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS). The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF) has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood-brain barrier (BBB) systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood-CSF barrier in the context of the crucial roles played by the molecules in eCSF.
Collapse
Affiliation(s)
- David Bueno
- Department of Genetics, Faculty of Biological Sciences, University of BarcelonaBarcelona, Spain
| | | | | | | |
Collapse
|
21
|
Retinoic Acid, under Cerebrospinal Fluid Control, Induces Neurogenesis during Early Brain Development. J Dev Biol 2014. [DOI: 10.3390/jdb2020072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
22
|
The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J Neurosci 2013; 33:17553-9. [PMID: 24198345 DOI: 10.1523/jneurosci.3258-13.2013] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although universally recognized as the source of cerebrospinal fluid (CSF), the choroid plexus (ChP) has been one of the most understudied tissues in neuroscience. The reasons for this are multiple and varied, including historical perceptions about passive and permissive roles for the ChP, experimental issues, and lack of clinical salience. However, recent work on the ChP and instructive signals in the CSF have sparked new hypotheses about how the ChP and CSF provide unexpected means for regulating nervous system structure and function in health and disease, as well as new ChP-based therapeutic approaches using pluripotent stem cell technology. This minisymposium combines new and established investigators to capture some of the newfound excitement surrounding the ChP-CSF system.
Collapse
|
23
|
Abstract
Embryonic cerebrospinal fluid (E-CSF) is a protein-containing fluid present in brain cavities that plays key roles in neuronal development and function. From the beginning of primary brain neurogenesis, E-CSF composition and homeostasis are precisely tuned by a transient blood-CSF barrier function, which controls protein transport and their relative concentration of within-brain cavities. One of the proteins found in E-CSF is ovalbumin, which is postulated to play a role in nutrition. Here, we address the question of whether neuroepithelial progenitor cells in developing chick embryos use ovalbumin as a highly specific nutritional source of amino acids or alternatively whether they use other amino acid sources, despite the fact that they cannot be transported from blood serum to brain cavities under physiological conditions. Although ovalbumin was not found to be a key protein required for neurogenesis and cell survival, our observations reinforce the crucial role of the embryonic blood-CSF barrier, as its precise regulation of protein transport and E-CSF homeostasis ensures the maximum efficiency of neural development.
Collapse
|
24
|
Vera A, Stanic K, Montecinos H, Torrejón M, Marcellini S, Caprile T. SCO-spondin from embryonic cerebrospinal fluid is required for neurogenesis during early brain development. Front Cell Neurosci 2013; 7:80. [PMID: 23761733 PMCID: PMC3669746 DOI: 10.3389/fncel.2013.00080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/09/2013] [Indexed: 02/04/2023] Open
Abstract
The central nervous system (CNS) develops from the neural tube, a hollow structure filled with embryonic cerebrospinal fluid (eCSF) and surrounded by neuroepithelial cells. Several lines of evidence suggest that the eCSF contains diffusible factors regulating the survival, proliferation, and differentiation of the neuroepithelium, although these factors are only beginning to be uncovered. One possible candidate as eCSF morphogenetic molecule is SCO-spondin, a large glycoprotein whose secretion by the diencephalic roof plate starts at early developmental stages. In vitro, SCO-spondin promotes neuronal survival and differentiation, but its in vivo function still remains to be elucidated. Here we performed in vivo loss of function experiments for SCO-spondin during early brain development by injecting and electroporating a specific shRNA expression vector into the neural tube of chick embryos. We show that SCO-spondin knock down induces an increase in neuroepithelial cells proliferation concomitantly with a decrease in cellular differentiation toward neuronal lineages, leading to hyperplasia in both the diencephalon and the mesencephalon. In addition, SCO-spondin is required for the correct morphogenesis of the posterior commissure and pineal gland. Because SCO-spondin is secreted by the diencephalon, we sought to corroborate the long-range function of this protein in vitro by performing gain and loss of function experiments on mesencephalic explants. We find that culture medium enriched in SCO-spondin causes an increased neurodifferentiation of explanted mesencephalic region. Conversely, inhibitory antibodies against SCO-spondin cause a reduction in neurodifferentiation and an increase of mitosis when such explants are cultured in eCSF. Our results suggest that SCO-spondin is a crucial eCSF diffusible factor regulating the balance between proliferation and differentiation of the brain neuroepithelial cells.
Collapse
Affiliation(s)
- A Vera
- Department of Cell Biology, Faculty of Biological Sciences, University of Concepción Biobío Region, Chile
| | | | | | | | | | | |
Collapse
|
25
|
Zappaterra MW, LaMantia AS, Walsh CA, Lehtinen MK. Isolation of cerebrospinal fluid from rodent embryos for use with dissected cerebral cortical explants. J Vis Exp 2013:e50333. [PMID: 23524481 DOI: 10.3791/50333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The CSF is a complex fluid with a dynamically varying proteome throughout development and in adulthood. During embryonic development, the nascent CSF differentiates from the amniotic fluid upon closure of the anterior neural tube. CSF volume then increases over subsequent days as the neuroepithelial progenitor cells lining the ventricles and the choroid plexus generate CSF. The embryonic CSF contacts the apical, ventricular surface of the neural stem cells of the developing brain and spinal cord. CSF provides crucial fluid pressure for the expansion of the developing brain and distributes important growth promoting factors to neural progenitor cells in a temporally-specific manner. To investigate the function of the CSF, it is important to isolate pure samples of embryonic CSF without contamination from blood or the developing telencephalic tissue. Here, we describe a technique to isolate relatively pure samples of ventricular embryonic CSF that can be used for a wide range of experimental assays including mass spectrometry, protein electrophoresis, and cell and primary explant culture. We demonstrate how to dissect and culture cortical explants on porous polycarbonate membranes in order to grow developing cortical tissue with reduced volumes of media or CSF. With this method, experiments can be performed using CSF from varying ages or conditions to investigate the biological activity of the CSF proteome on target cells.
Collapse
Affiliation(s)
- Mauro W Zappaterra
- Department of Physical Medicine and Rehabilitation, VA Greater Los Angeles Healthcare System, USA
| | | | | | | |
Collapse
|
26
|
Carnicero E, Alonso M, Carretero R, Lamus F, Moro J, de la Mano A, Fernández J, Gato A. Embryonic Cerebrospinal Fluid Activates Neurogenesis of Neural Precursors within the Subventricular Zone of the Adult Mouse Brain. Cells Tissues Organs 2013; 198:398-404. [DOI: 10.1159/000356983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2013] [Indexed: 11/19/2022] Open
|
27
|
Chang JT, Sive H. Manual drainage of the zebrafish embryonic brain ventricles. J Vis Exp 2012:e4243. [PMID: 23271011 DOI: 10.3791/4243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cerebrospinal fluid (CSF) is a protein rich fluid contained within the brain ventricles. It is present during early vertebrate embryonic development and persists throughout life. Adult CSF is thought to cushion the brain, remove waste, and carry secreted molecules(1,2). In the adult and older embryo, the majority of CSF is made by the choroid plexus, a series of highly vascularized secretory regions located adjacent to the brain ventricles(3-5). In zebrafish, the choroid plexus is fully formed at 144 hours post fertilization (hpf)(6). Prior to this, in both zebrafish and other vertebrate embryos including mouse, a significant amount of embryonic CSF (eCSF) is present . These data and studies in chick suggest that the neuroepithelium is secretory early in development and may be the major source of eCSF prior to choroid plexus development(7). eCSF contains about three times more protein than adult CSF, suggesting that it may have an important role during development(8,9). Studies in chick and mouse demonstrate that secreted factors in the eCSF, fluid pressure, or a combination of these, are important for neurogenesis, gene expression, cell proliferation, and cell survival in the neuroepithelium(10-20). Proteomic analyses of human, rat, mouse, and chick eCSF have identified many proteins that may be necessary for CSF function. These include extracellular matrix components, apolipoproteins, osmotic pressure regulating proteins, and proteins involved in cell death and proliferation(21-24). However, the complex functions of the eCSF are largely unknown. We have developed a method for removing eCSF from zebrafish brain ventricles, thus allowing for identification of eCSF components and for analysis of the eCSF requirement during development. Although more eCSF can be collected from other vertebrate systems with larger embryos, eCSF can be collected from the earliest stages of zebrafish development, and under genetic or environmental conditions that lead to abnormal brain ventricle volume or morphology. Removal and collection of eCSF allows for mass spectrometric analysis, investigation of eCSF function, and reintroduction of select factors into the ventricles to assay their function. Thus the accessibility of the early zebrafish embryo allows for detailed analysis of eCSF function during development.
Collapse
Affiliation(s)
- Jessica T Chang
- Department of Biology, Whitehead Institute of Biomedical Research, Massachusetts Institute of Technology
| | | |
Collapse
|
28
|
Gianazza E, Wait R, Eberini I, Sensi C, Sironi L, Miller I. Proteomics of rat biological fluids — The tenth anniversary update. J Proteomics 2012; 75:3113-28. [DOI: 10.1016/j.jprot.2012.03.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 01/29/2023]
|
29
|
Zappaterra MW, Lehtinen MK. The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci 2012; 69:2863-78. [PMID: 22415326 DOI: 10.1007/s00018-012-0957-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 12/11/2022]
Abstract
The cerebrospinal fluid (CSF) has attracted renewed interest as an active signaling milieu that regulates brain development, homeostasis, and disease. Advances in proteomics research have enabled an improved characterization of the CSF from development through adulthood, and key neurogenic signaling pathways that are transmitted via the CSF are now being elucidated. Due to its immediate contact with neural stem cells in the developing and adult brain, the CSF's ability to swiftly distribute signals across vast distances in the central nervous system is opening avenues to novel and exciting therapeutic approaches. In this review, we will discuss the development of the choroid plexus-CSF system, and review the current literature on how the CSF actively regulates mammalian brain development, behavior, and responses to traumatic brain injury.
Collapse
Affiliation(s)
- Mauro W Zappaterra
- Department of Physical Medicine and Rehabilitation, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA.
| | | |
Collapse
|
30
|
Abstract
Cerebral cortical progenitor cells can be classified into several different types, and each progenitor type integrates cell-intrinsic and cell-extrinsic cues to regulate neurogenesis. On one hand, cell-intrinsic mechanisms that depend upon appropriate apical-basal polarity are established by adherens junctions and apical complex proteins and are particularly important in progenitors with apical processes contacting the lateral ventricle. The apical protein complexes themselves are concentrated at the ventricular surface, and apical complex proteins regulate mitotic spindle orientation and cell fate. On the other hand, remarkably little is known about how cell-extrinsic cues signal to progenitors and couple with cell-intrinsic mechanisms to instruct neurogenesis. Recent research shows that the cerebrospinal fluid, which contacts apical progenitors at the ventricular surface and bathes the apical complex of these cells, provides growth- and survival-promoting cues for neural progenitor cells in developing and adult brain. This review addresses how the apical-basal polarity of progenitor cells regulates cell fate and allows progenitors to sample diffusible signals distributed by the cerebrospinal fluid. We also review several classes of signaling factors that the cerebrospinal fluid distributes to the developing brain to instruct neurogenesis.
Collapse
Affiliation(s)
- Maria K Lehtinen
- Division of Genetics, Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
31
|
Alonso MI, Martín C, Carnicero E, Bueno D, Gato A. Cerebrospinal fluid control of neurogenesis induced by retinoic acid during early brain development. Dev Dyn 2011; 240:1650-9. [PMID: 21594951 DOI: 10.1002/dvdy.22657] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2011] [Indexed: 01/13/2023] Open
Abstract
Embryonic-cerebrospinal fluid (E-CSF) plays crucial roles in early brain development including the control of neurogenesis. Although FGF2 and lipoproteins present in the E-CSF have previously been shown to be involved in neurogenesis, the main factor triggering this process remains unknown. E-CSF contains all-trans-retinol and retinol-binding protein involved in the synthesis of retinoic acid (RA), a neurogenesis inducer. In early chick embryo brain, only the mesencephalic-rombencephalic isthmus (IsO) is able to synthesize RA. Here we show that in chick embryo brain development: (1) E-CSF helps to control RA synthesis in the IsO by means of the RBP and all-trans-retinol it contains; (2) E-CSF has retinoic acid activity, which suggests it may act as a diffusion pathway for RA; and (3) the influence of E-CSF on embryonic brain neurogenesis is to a large extent due to its involvement in RA synthesis. These data help to understand neurogenesis from neural progenitor cells.
Collapse
Affiliation(s)
- M I Alonso
- Departamento de Anatomía y Radiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | | | | | | | | |
Collapse
|
32
|
Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill A, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D’Ercole AJ, Wong ET, LaMantia AS, Walsh CA. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 2011; 69:893-905. [PMID: 21382550 PMCID: PMC3085909 DOI: 10.1016/j.neuron.2011.01.023] [Citation(s) in RCA: 472] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 12/13/2022]
Abstract
Cortical development depends on the active integration of cell-autonomous and extrinsic cues, but the coordination of these processes is poorly understood. Here, we show that the apical complex protein Pals1 and Pten have opposing roles in localizing the Igf1R to the apical, ventricular domain of cerebral cortical progenitor cells. We found that the cerebrospinal fluid (CSF), which contacts this apical domain, has an age-dependent effect on proliferation, much of which is attributable to Igf2, but that CSF contains other signaling activities as well. CSF samples from patients with glioblastoma multiforme show elevated Igf2 and stimulate stem cell proliferation in an Igf2-dependent manner. Together, our findings demonstrate that the apical complex couples intrinsic and extrinsic signaling, enabling progenitors to sense and respond appropriately to diffusible CSF-borne signals distributed widely throughout the brain. The temporal control of CSF composition may have critical relevance to normal development and neuropathological conditions.
Collapse
Affiliation(s)
- Maria K. Lehtinen
- Division of Genetics, Howard Hughes Medical Institute, and Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, Massachusetts 02115, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Mauro W. Zappaterra
- Division of Genetics, Howard Hughes Medical Institute, and Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, Massachusetts 02115, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xi Chen
- Division of Genetics, Howard Hughes Medical Institute, and Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, Massachusetts 02115, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Yawei J. Yang
- Division of Genetics, Howard Hughes Medical Institute, and Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, Massachusetts 02115, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Anthony Hill
- Division of Genetics, Howard Hughes Medical Institute, and Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, Massachusetts 02115, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Melody Lun
- Division of Genetics, Howard Hughes Medical Institute, and Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, Massachusetts 02115, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Brain Tumor Center & Neuro-Oncology Unit, and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02115, USA
| | - Thomas Maynard
- Department of Pharmacology and Physiology, The George Washington Institute for Neuroscience, The George Washington University School of Medicine, Washington, DC, 20037, USA
| | - Dilenny Gonzalez
- Division of Genetics, Howard Hughes Medical Institute, and Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, Massachusetts 02115, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Seonhee Kim
- Division of Pediatric Research Center, Department of Pediatrics, University of Texas Health Science Center at Houston, MSE411, 6431 Fannin St., Houston, TX 77030, USA
| | - Ping Ye
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - A. Joseph D’Ercole
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Eric T. Wong
- Brain Tumor Center & Neuro-Oncology Unit, and Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, 02115, USA
| | - Anthony S. LaMantia
- Department of Pharmacology and Physiology, The George Washington Institute for Neuroscience, The George Washington University School of Medicine, Washington, DC, 20037, USA
| | - Christopher A. Walsh
- Division of Genetics, Howard Hughes Medical Institute, and Manton Center for Orphan Disease Research, Children’s Hospital Boston, Boston, Massachusetts 02115, and Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
Zhang C. Proteomic Studies on the Development of the Central Nervous System and Beyond. Neurochem Res 2010; 35:1487-500. [DOI: 10.1007/s11064-010-0218-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2010] [Indexed: 11/27/2022]
|
34
|
Parvas M, Bueno D. The embryonic blood-CSF barrier has molecular elements to control E-CSF osmolarity during early CNS development. J Neurosci Res 2010; 88:1205-12. [PMID: 19937806 DOI: 10.1002/jnr.22293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In vertebrates, brain development takes place at the expanded anterior end of the neural tube. After closure of the anterior neuropore, the brain wall forms a physiologically sealed cavity that encloses embryonic cerebrospinal fluid (E-CSF), a complex and protein-rich fluid. E-CSF has several crucial roles in brain anlagen development. In this respect, during the initiation of neurogenesis, increases in the volume of brain cavities account for 70% of the total growth of the brain primordium, and are accompanied by a parallel increase in E-CSF volume. Recently, we reported the presence of several blood vessels located in the brain stem lateral to the ventral midline, at the mesencephalon and prosencephalon level, which have a transient blood-CSF barrier function in chick embryos by transporting proteins in a selective manner via transcellular routes. These blood vessels control E-CSF protein composition and homeostasis during this early stage of CNS development, just after closure of the neuropores. Here we report that in chick and rat embryos these same blood vessels, which lie close to the neuroectoderm, express several molecules related to water and ion transport, namely AQP1, AQP4 and Kir4.1. Our results confirm that a blood-CSF barrier controls E-CSF composition and homeostasis from early stages of brain development in chick embryos, including water and ion influx, thus regulating E-CSF osmolarity. On the basis of our findings, we also propose that a similar blood-CSF barrier is present in mammals at equivalent developmental stages of the brain.
Collapse
Affiliation(s)
- Maryam Parvas
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
35
|
Buddensiek J, Dressel A, Kowalski M, Runge U, Schroeder H, Hermann A, Kirsch M, Storch A, Sabolek M. Cerebrospinal fluid promotes survival and astroglial differentiation of adult human neural progenitor cells but inhibits proliferation and neuronal differentiation. BMC Neurosci 2010; 11:48. [PMID: 20377845 PMCID: PMC2856586 DOI: 10.1186/1471-2202-11-48] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 04/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neural stem cells (NSCs) are a promising source for cell replacement therapies for neurological diseases. Growing evidence suggests an important role of cerebrospinal fluid (CSF) not only on neuroectodermal cells during brain development but also on the survival, proliferation and fate specification of NSCs in the adult brain. Existing in vitro studies focused on embryonic cell lines and embryonic CSF. We therefore studied the effects of adult human leptomeningeal CSF on the behaviour of adult human NSCs (ahNSCs). RESULTS Adult CSF increased the survival rate of adult human NSCs compared to standard serum free culture media during both stem cell maintenance and differentiation. The presence of CSF promoted differentiation of NSCs leading to a faster loss of their self-renewal capacity as it is measured by the proliferation markers Ki67 and BrdU and stronger cell extension outgrowth with longer and more cell extensions per cell. After differentiation in CSF, we found a larger number of GFAP+ astroglial cells compared to differentiation in standard culture media and a lower number of beta-tubulin III+ neuronal cells. CONCLUSIONS Our data demonstrate that adult human leptomeningeal CSF creates a beneficial environment for the survival and differentiation of adult human NSCs. Adult CSF is in vitro a strong glial differentiation stimulus and leads to a rapid loss of stem cell potential.
Collapse
Affiliation(s)
- Judith Buddensiek
- Department of Neurology, Ernst Moritz Arndt University of Greifswald, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Buddensiek J, Dressel A, Kowalski M, Storch A, Sabolek M. Adult cerebrospinal fluid inhibits neurogenesis but facilitates gliogenesis from fetal rat neural stem cells. J Neurosci Res 2009; 87:3054-66. [PMID: 19530161 DOI: 10.1002/jnr.22150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) are a promising source for cell replacement therapies for neurological diseases. Administration of NSCs into the cerebrospinal fluid (CSF) offers a nontraumatic transplantation method into the brain. However, cell survival and intraparenchymal migration of the transplants are limited. Furthermore, CSF was recently reported to be an important milieu for controlling stem cell processes in the brain. We studied the effects of adult human leptomeningeal CSF on the behavior of fetal rat NSCs. CSF increased survival of NSCs compared with standard culture media during stem cell maintenance and differentiation. The presence of CSF enhanced NSC differentiation, leading to a faster loss of self-renewal capacity and faster and stronger neurite outgrowth. Some of these effects (mainly cell survival, neurite brancing) were blocked by addition of the bone morphogenic protein (BMP) inhibitor noggin. After differentiation in CSF, significantly fewer MAP2ab(+) neurons were found, but there were more GFAP(+) astroglia compared with standard media. By RT-PCR analysis, we determined a decrease of mRNA of the NSC marker gene Nestin but an increase of Gfap mRNA during differentiation up to 72 hr in CSF compared with standard media. Our data demonstrate that adult human leptomeningeal CSF enhances cell survival of fetal rat NSCs during proliferation and differentiation. Furthermore, CSF provides a stimulus for gliogenesis but inhibits neurogenesis from fetal NSCs. Our data suggest that CSF contains factors such as BMPs regulating NSC behavior, and we hypothesize that fast differentiation of NSCs in CSF leads to a rapid loss of migration capacity of intrathecally transplanted NSCs.
Collapse
Affiliation(s)
- Judith Buddensiek
- Department of Neurology, EMA University of Greifswald, Greifswald, Germany
| | | | | | | | | |
Collapse
|
37
|
Wu Y, Zhou J, Zhang X, Zheng X, Jiang X, Shi L, Yin W, Wang J. Optimized sample preparation for two-dimensional gel electrophoresis of soluble proteins from chicken bursa of Fabricius. Proteome Sci 2009; 7:38. [PMID: 19814785 PMCID: PMC2770044 DOI: 10.1186/1477-5956-7-38] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 10/08/2009] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Two-dimensional gel electrophoresis (2-DE) is a powerful method to study protein expression and function in living organisms and diseases. This technique, however, has not been applied to avian bursa of Fabricius (BF), a central immune organ. Here, optimized 2-DE sample preparation methodologies were constructed for the chicken BF tissue. Using the optimized protocol, we performed further 2-DE analysis on a soluble protein extract from the BF of chickens infected with virulent avibirnavirus. To demonstrate the quality of the extracted proteins, several differentially expressed protein spots selected were cut from 2-DE gels and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). RESULTS An extraction buffer containing 7 M urea, 2 M thiourea, 2% (w/v) 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS), 50 mM dithiothreitol (DTT), 0.2% Bio-Lyte 3/10, 1 mM phenylmethylsulfonyl fluoride (PMSF), 20 U/ml Deoxyribonuclease I (DNase I), and 0.25 mg/ml Ribonuclease A (RNase A), combined with sonication and vortex, yielded the best 2-DE data. Relative to non-frozen immobilized pH gradient (IPG) strips, frozen IPG strips did not result in significant changes in the 2-DE patterns after isoelectric focusing (IEF). When the optimized protocol was used to analyze the spleen and thymus, as well as avibirnavirus-infected bursa, high quality 2-DE protein expression profiles were obtained. 2-DE maps of BF of chickens infected with virulent avibirnavirus were visibly different and many differentially expressed proteins were found. CONCLUSION These results showed that method C, in concert extraction buffer IV, was the most favorable for preparing samples for IEF and subsequent protein separation and yielded the best quality 2-DE patterns. The optimized protocol is a useful sample preparation method for comparative proteomics analysis of chicken BF tissues.
Collapse
|
38
|
Martin C, Alonso MI, Santiago C, Moro JA, De la Mano A, Carretero R, Gato A. Early embryonic brain development in rats requires the trophic influence of cerebrospinal fluid. Int J Dev Neurosci 2009; 27:733-40. [PMID: 19540909 DOI: 10.1016/j.ijdevneu.2009.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 05/22/2009] [Accepted: 06/06/2009] [Indexed: 12/31/2022] Open
Abstract
Cerebrospinal fluid has shown itself to be an essential brain component during development. This is particularly evident at the earliest stages of development where a lot of research, performed mainly in chick embryos, supports the evidence that cerebrospinal fluid is involved in different mechanisms controlling brain growth and morphogenesis, by exerting a trophic effect on neuroepithelial precursor cells (NPC) involved in controlling the behaviour of these cells. Despite it being known that cerebrospinal fluid in mammals is directly involved in corticogenesis at fetal stages, the influence of cerebrospinal fluid on the activity of NPC at the earliest stages of brain development has not been demonstrated. Here, using "in vitro" organotypic cultures of rat embryo brain neuroepithelium in order to expose NPC to or deprive them of cerebrospinal fluid, we show that the neuroepithelium needs the trophic influence of cerebrospinal fluid to undergo normal rates of cell survival, replication and neurogenesis, suggesting that NPC are not self-sufficient to induce their normal activity. This data shows that cerebrospinal fluid is an essential component in chick and rat early brain development, suggesting that its influence could be constant in higher vertebrates.
Collapse
Affiliation(s)
- C Martin
- Departamento de Anatomía y Radiología, Laboratorio de Desarrollo y Teratología del Sistema Nervioso, Instituto de Neurociencias de Castilla y León, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Lowery LA, Sive H. Totally tubular: the mystery behind function and origin of the brain ventricular system. Bioessays 2009; 31:446-58. [PMID: 19274662 DOI: 10.1002/bies.200800207] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A unique feature of the vertebrate brain is the ventricular system, a series of connected cavities which are filled with cerebrospinal fluid (CSF) and surrounded by neuroepithelium. While CSF is critical for both adult brain function and embryonic brain development, neither development nor function of the brain ventricular system is fully understood. In this review, we discuss the mystery of why vertebrate brains have ventricles, and whence they originate. The brain ventricular system develops from the lumen of the neural tube, as the neuroepithelium undergoes morphogenesis. The molecular mechanisms underlying this ontogeny are described. We discuss possible functions of both adult and embryonic brain ventricles, as well as major brain defects that are associated with CSF and brain ventricular abnormalities. We conclude that vertebrates have taken advantage of their neural tube to form the essential brain ventricular system.
Collapse
Affiliation(s)
- Laura Anne Lowery
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
40
|
Why the embryo still matters: CSF and the neuroepithelium as interdependent regulators of embryonic brain growth, morphogenesis and histiogenesis. Dev Biol 2009; 327:263-72. [PMID: 19154733 DOI: 10.1016/j.ydbio.2008.12.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/10/2008] [Accepted: 12/17/2008] [Indexed: 11/20/2022]
Abstract
The key focus of this review is that both the neuroepithelium and embryonic cerebrospinal fluid (CSF) work in an integrated way to promote embryonic brain growth, morphogenesis and histiogenesis. The CSF generates pressure and also contains many biologically powerful trophic factors; both play key roles in early brain development. Accumulation of fluid via an osmotic gradient creates pressure that promotes rapid expansion of the early brain in a developmental regulated way, since the rates of growth differ between the vesicles and for different species. The neuroepithelium and ventricles both contribute to this growth but by different and coordinated mechanisms. The neuroepithelium grows primarily by cell proliferation and at the same time the ventricle expands via hydrostatic pressure generated by active transport of Na(+) and transport or secretion of proteins and proteoglycans that create an osmotic gradient which contribute to the accumulation of fluid inside the sealed brain cavity. Recent evidence shows that the CSF regulates relevant aspects of neuroepithelial behavior such as cell survival, replication and neurogenesis by means of growth factors and morphogens. Here we try to highlight that early brain development requires the coordinated interplay of the CSF contained in the brain cavity with the surrounding neuroepithelium. The information presented is essential in order to understand the earliest phases of brain development and also how neuronal precursor behavior is regulated.
Collapse
|
41
|
All-trans retinol and retinol-binding protein from embryonic cerebrospinal fluid exhibit dynamic behaviour during early central nervous system development. Neuroreport 2008; 19:945-50. [PMID: 18520998 DOI: 10.1097/wnr.0b013e3283021c94] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Embryonic cerebrospinal fluid (E-CSF) is involved in the regulation of survival, proliferation and neurogenesis of neuroectodermal progenitor cells, as well as in the control of mesencephalic gene expression in collaboration with the isthmic organizer. Recently, we showed the presence of retinol-binding protein (RBP) within the E-CSF proteome. RBP is an all-trans retinol carrier, a molecule that can be metabolized into retinoic acid, a morphogen involved in central nervous system (CNS) morphogenesis and patterning. Here we demonstrate the presence of all-trans retinol within the E-CSF and analyse the dynamics of RBP and all-trans retinol within this fluid, as well as the expression of retinoic acid-synthesizing enzymes during early CNS development. Our results suggest a relationship between the dynamics of these molecules and the early events of CNS patterning.
Collapse
|
42
|
Parada C, Escolà-Gil JC, Bueno D. Low-density lipoproteins from embryonic cerebrospinal fluid are required for neural differentiation. J Neurosci Res 2008; 86:2674-84. [DOI: 10.1002/jnr.21724] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
A blood–CSF barrier function controls embryonic CSF protein composition and homeostasis during early CNS development. Dev Biol 2008; 321:51-63. [DOI: 10.1016/j.ydbio.2008.05.552] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/19/2008] [Accepted: 05/28/2008] [Indexed: 01/31/2023]
|
44
|
Cogburn LA, Porter TE, Duclos MJ, Simon J, Burgess SC, Zhu JJ, Cheng HH, Dodgson JB, Burnside J. Functional genomics of the chicken--a model organism. Poult Sci 2007; 86:2059-94. [PMID: 17878436 DOI: 10.1093/ps/86.10.2059] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Since the sequencing of the genome and the development of high-throughput tools for the exploration of functional elements of the genome, the chicken has reached model organism status. Functional genomics focuses on understanding the function and regulation of genes and gene products on a global or genome-wide scale. Systems biology attempts to integrate functional information derived from multiple high-content data sets into a holistic view of all biological processes within a cell or organism. Generation of a large collection ( approximately 600K) of chicken expressed sequence tags, representing most tissues and developmental stages, has enabled the construction of high-density microarrays for transcriptional profiling. Comprehensive analysis of this large expressed sequence tag collection and a set of approximately 20K full-length cDNA sequences indicate that the transcriptome of the chicken represents approximately 20,000 genes. Furthermore, comparative analyses of these sequences have facilitated functional annotation of the genome and the creation of several bioinformatic resources for the chicken. Recently, about 20 papers have been published on transcriptional profiling with DNA microarrays in chicken tissues under various conditions. Proteomics is another powerful high-throughput tool currently used for examining the dynamics of protein expression in chicken tissues and fluids. Computational analyses of the chicken genome are providing new insight into the evolution of gene families in birds and other organisms. Abundant functional genomic resources now support large-scale analyses in the chicken and will facilitate identification of transcriptional mechanisms, gene networks, and metabolic or regulatory pathways that will ultimately determine the phenotype of the bird. New technologies such as marker-assisted selection, transgenics, and RNA interference offer the opportunity to modify the phenotype of the chicken to fit defined production goals. This review focuses on functional genomics in the chicken and provides a road map for large-scale exploration of the chicken genome.
Collapse
Affiliation(s)
- L A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark 19717, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zappaterra MD, Lisgo SN, Lindsay S, Gygi SP, Walsh CA, Ballif BA. A Comparative Proteomic Analysis of Human and Rat Embryonic Cerebrospinal Fluid. J Proteome Res 2007; 6:3537-48. [PMID: 17696520 DOI: 10.1021/pr070247w] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During vertebrate central nervous system development, the apical neuroepithelium is bathed with embryonic Cerebrospinal Fluid (e-CSF) which plays regulatory roles in cortical cell proliferation and maintenance. Here, we report the first proteomic analysis of human e-CSF and compare it to an extensive proteomic analysis of rat e-CSF. As expected, we identified a large collection of protease inhibitors, extracellular matrix proteins, and transport proteins in CSF. However, we also found a surprising suite of signaling and intracellular proteins not predicted by previous proteomic analysis. Some of the intracellular proteins are likely to represent the contents of microvesicles recently described within the CSF (Marzesco, A. M., et al. J. Cell Sci. 2005, 118 (Pt. 13), 2849-2858). Defining the rich composition of e-CSF will enable a greater understanding of its concerted actions during critical stages of brain development.
Collapse
Affiliation(s)
- Mauro D Zappaterra
- Division of Genetics, Children's Hospital Boston, Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
46
|
Doherty MK, McLean L, Beynon RJ. Avian proteomics: advances, challenges and new technologies. Cytogenet Genome Res 2007; 117:358-69. [PMID: 17675879 DOI: 10.1159/000103199] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 11/30/2006] [Indexed: 11/19/2022] Open
Abstract
Proteomics is defined as an analysis of the full complement of proteins of a cell or tissue under given conditions. Avian proteomics, or more specifically chicken proteomics, has focussed on the study of individual tissues and organs of interest to specific researchers. Researchers have looked at skeletal muscle and growth, and embryonic development and have performed initial studies in avian disease. Traditional proteomics involves identifying and cataloguing proteins in a cell and identifying relative changes in populations between two or more states, be that physiological or disease-induced states. Recent advances in proteomic technologies have included absolute quantification, proteome simplification and the ability to determine the turnover of individual proteins in a global context. This review discusses the current developments in this relatively new field, new technologies and how they may be applied to biological questions, and the challenges faced by researchers in this ever-expanding and exciting field.
Collapse
Affiliation(s)
- M K Doherty
- Protein Function Group, Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|