1
|
Chen N, Li Y, Liang X, Qin K, Zhang Y, Wang J, Wu Q, Gupta TB, Ding Y. Bacterial extracellular vesicle: A non-negligible component in biofilm life cycle and challenges in biofilm treatments. Biofilm 2024; 8:100216. [PMID: 39184814 PMCID: PMC11341940 DOI: 10.1016/j.bioflm.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Bacterial biofilms, especially those formed by pathogens, have been increasingly impacting human health. Bacterial extracellular vesicle (bEV), a kind of spherical membranous structure released by bacteria, has not only been reported to be a component of the biofilm matrix but also plays a non-negligible role in the biofilm life cycle. Nevertheless, a comprehensive overview of the bEVs functions in biofilms remains elusive. In this review, we summarize the biogenesis and distinctive features characterizing bEVs, and consolidate the current literature on their functions and proposed mechanisms in the biofilm life cycle. Furthermore, we emphasize the formidable challenges associated with vesicle interference in biofilm treatments. The primary objective of this review is to raise awareness regarding the functions of bEVs in the biofilm life cycle and lay the groundwork for the development of novel therapeutic strategies to control or even eliminate bacterial biofilms.
Collapse
Affiliation(s)
- Nuo Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yangfu Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xinmin Liang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Keyuan Qin
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ying Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tanushree B. Gupta
- Food System Integrity Team, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, 4474, New Zealand
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
2
|
Fauzia KA, Effendi WI, Alfaray RI, Malaty HM, Yamaoka Y, Mifthussurur M. Molecular Mechanisms of Biofilm Formation in Helicobacter pylori. Antibiotics (Basel) 2024; 13:976. [PMID: 39452242 PMCID: PMC11504965 DOI: 10.3390/antibiotics13100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Biofilm formation in Helicobacter pylori (H. pylori) helps bacteria survive antibiotic exposure and supports bacterial colonization and persistence in the stomach. Most of the published articles have focused on one aspect of the biofilm. Therefore, we conducted the current study to better understand the mechanism of biofilm formation, how the biofilm contributes to antibiotic resistance, and how the biofilm modifies the medication delivery mechanism. METHODS We conducted a literature review analysis of the published articles on the Helicobacter pylori biofilm between 1998 and 2024 from the PubMed database to retrieve eligible articles. After applying the inclusion and exclusion criteria, two hundred and seventy-three articles were eligible for our study. RESULTS The results showed that biofilm formation starts as adhesion and progresses through micro-colonies, maturation, and dispersion in a planktonic form. Moreover, specific genes modulate each phase of biofilm formation. Few studies have shown that mechanisms, such as quorum sensing and diffusible signal factors, enhance coordination among bacteria when switching from biofilm to planktonic states. Different protein expressions were also observed between planktonic and biofilm strains, and the biofilm architecture was supported by exopolysaccharides, extracellular DNA, and outer membrane vesicles. CONCLUSIONS This infrastructure is responsible for the increased survival of bacteria, especially in harsh environments or in the presence of antibiotics. Therefore, understanding the biofilm formation for H. pylori is crucial. This study illustrates biofilm formation in H. pylori to help improve the treatment of H. pylori infection.
Collapse
Grants
- XXXX Universitas Airlangga
- DK62813 NIH HHS
- 26640114, 221S0002, 16H06279, 15H02657 and 16H05191, 18KK0266, 19H03473, 21H00346, 22H02871, and 23K24133 Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- XXXXX Japan Society for the Promotion of Science Institutional Program for Young Researcher Overseas Visits and the Strategic Funds for the Promotion of Science and Technology Agency (JST)
- xxxx Japanese Government (MEXT) scholarship
- xxxx Japan Agency for Medical Research and Development (AMED) [e-ASIA JRP]
Collapse
Affiliation(s)
- Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency, Bogor 16915, Indonesia;
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine—The Research Center for GLOBAL and LOCAL Infectious Disease (RCGLID), Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (R.I.A.); (Y.Y.)
| | - Hoda M. Malaty
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Univcersitas Airlangga, Surabaya 60286, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine—The Research Center for GLOBAL and LOCAL Infectious Disease (RCGLID), Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (R.I.A.); (Y.Y.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Univcersitas Airlangga, Surabaya 60286, Indonesia
| | - Muhammad Mifthussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60131, Indonesia
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
3
|
Mesas Vaz C, Guembe Mülberger A, Torrent Burgas M. The battle within: how Pseudomonas aeruginosa uses host-pathogen interactions to infect the human lung. Crit Rev Microbiol 2024:1-36. [PMID: 39381985 DOI: 10.1080/1040841x.2024.2407378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Pseudomonas aeruginosa is a versatile Gram-negative pathogen known for its ability to invade the respiratory tract, particularly in cystic fibrosis patients. This review provides a comprehensive analysis of the multifaceted strategies for colonization, virulence, and immune evasion used by P. aeruginosa to infect the host. We explore the extensive protein arsenal of P. aeruginosa, including adhesins, exotoxins, secreted proteases, and type III and VI secretion effectors, detailing their roles in the infective process. We also address the unique challenge of treating diverse lung conditions that provide a natural niche for P. aeruginosa on the airway surface, with a particular focus in cystic fibrosis. The review also discusses the current limitations in treatment options due to antibiotic resistance and highlights promising future approaches that target host-pathogen protein-protein interactions. These approaches include the development of new antimicrobials, anti-attachment therapies, and quorum-sensing inhibition molecules. In summary, this review aims to provide a holistic understanding of the pathogenesis of P. aeruginosa in the respiratory system, offering insights into the underlying molecular mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Carmen Mesas Vaz
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba Guembe Mülberger
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Marc Torrent Burgas
- The Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
4
|
Flemming HC, van Hullebusch ED, Little BJ, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. Microbial extracellular polymeric substances in the environment, technology and medicine. Nat Rev Microbiol 2024:10.1038/s41579-024-01098-y. [PMID: 39333414 DOI: 10.1038/s41579-024-01098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/29/2024]
Abstract
Microbial biofilms exhibit a self-produced matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA and lipids. EPS promote interactions of the biofilm with other cells and sorption of organics, metals and chemical pollutants, and they facilitate cell adhesion at interfaces and ensure matrix cohesion. EPS have roles in various natural environments, such as soils, sediments and marine habitats. In addition, EPS are relevant in technical environments, such as wastewater and drinking water treatment facilities, and water distribution systems, and they contribute to biofouling and microbially influenced corrosion. In medicine, EPS protect pathogens within the biofilm against the host immune system and antimicrobials, and emerging evidence suggests that EPS can represent potential virulence factors. By contrast, EPS yield a wide range of valuable products that include their role in self-repairing concrete. In this Review, we aim to explore EPS as a functional unit of biofilms in the environment, in technology and in medicine.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
- Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.
| | | | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, the Ohio State University, Columbus, OH, USA
- National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, UK
| | - Jost Wingender
- University of Duisburg-Essen, Faculty of Chemistry, Environmental Microbiology and Biotechnology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
5
|
Chiba M, Miri S, Yousuf B, Esmail GA, Leao L, Li Y, Hincke M, Minic Z, Mottawea W, Hammami R. Dual bacteriocin and extracellular vesicle-mediated inhibition of Campylobacter jejuni by the potential probiotic candidate Ligilactobacillus salivarius UO.C249. Appl Environ Microbiol 2024; 90:e0084524. [PMID: 39078127 PMCID: PMC11337818 DOI: 10.1128/aem.00845-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Campylobacter jejuni (C. jejuni) is one of the most common causes of foodborne infections worldwide and a major contributor to diarrheal diseases. This study aimed to explore the ability of commensal gut bacteria to control C. jejuni infection. Bacterial strains from the intestinal mucosa of broilers were screened in vitro against C. jejuni ATCC BAA1153. The cell-free supernatant (CFS) of Ligilactobacillus salivarius UO.C249 showed potent dose-dependent antimicrobial activity against the pathogen, likely due to the presence of bacteriocin-like moieties, as confirmed by protease treatment. Genome and exoproteome analyses revealed the presence of known bacteriocins, including Abp118. The genome of Lg. salivarius UO.C249 harbors a 1.8-Mb chromosome and a 203-kb megaplasmid. The strain was susceptible to several antibiotics and had a high survival rate in the simulated chicken gastrointestinal tract (GIT). Post-protease treatment revealed residual inhibitory activity, suggesting alternative antimicrobial mechanisms. Short-chain fatty acid (SCFA) quantification confirmed non-inhibitory levels of acetic (24.4 ± 1.2 mM), isovaleric (34 ± 1.0 µM), and butyric (32 ± 2.5 µM) acids. Interestingly, extracellular vesicles (EVs) isolated from the CFS of Lg. salivarius UO.C249 were found to inhibit C. jejuni ATCC BAA-1153. Proteome profiling of these EVs revealed the presence of unique proteins distinct from bacteriocins identified in CFS. The majority of the identified proteins in EVs are located in the membrane and play roles in transmembrane transport and peptidoglycan degradation, peptidase, proteolysis, and hydrolysis. These findings suggest that although bacteriocins are a primary antimicrobial mechanism, EV production also contributes to the inhibitory activity of Lg. salivarius UO.C249 against C. jejuni. IMPORTANCE Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and a global public health concern. The increasing antibiotic resistance and lack of effective alternatives in livestock production pose serious challenges for controlling C. jejuni infections. Therefore, alternative strategies are needed to control this pathogen, especially in the poultry industry where it is prevalent and can be transmitted to humans through contaminated food products. In this study, Ligilactobacillus salivarius UO.C249 isolated from broiler intestinal mucosa inhibited C. jejuni and exhibited important probiotic features. Beyond bacteriocins, Lg. salivarius UO.C249 secretes antimicrobial extracellular vesicles (EVs) with a unique protein set distinct from bacteriocins that are involved in transmembrane transport and peptidoglycan degradation. Our findings suggest that beyond bacteriocins, EV production is also a distinct inhibitory signaling mechanism used by Lg. salivarius UO.C249 to control C. jejuni. These findings hold promise for the application of probiotic EVs for pathogen control.
Collapse
Affiliation(s)
- Mariem Chiba
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Basit Yousuf
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Galal Ali Esmail
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Luana Leao
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Yingxi Li
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Kessler E. The Secreted Aminopeptidase of Pseudomonas aeruginosa (PaAP). Int J Mol Sci 2024; 25:8444. [PMID: 39126017 PMCID: PMC11313473 DOI: 10.3390/ijms25158444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in compromised hosts. P. aeruginosa infections are difficult to treat because of the inherent ability of the bacteria to develop antibiotic resistance, secrete a variety of virulence factors, and form biofilms. The secreted aminopeptidase (PaAP) is an emerging virulence factor, key in providing essential low molecular weight nutrients and a cardinal modulator of biofilm development. PaAP is therefore a new potential target for therapy of P. aeruginosa infections. The present review summarizes the current knowledge of PaAP, with special emphasis on its biochemical and enzymatic properties, activation mechanism, biological roles, regulation, and structure. Recently developed specific inhibitors and their potential as adjuncts in the treatment of P. aeruginosa infections are also described.
Collapse
Affiliation(s)
- Efrat Kessler
- Maurice and Gabriela Goldschleger Eye Research Institute, Faculty of Medicine and Health Sciences, Sheba Medical Center, Tel Aviv University, Ramat-Gan 5262000, Israel
| |
Collapse
|
7
|
Goltermann L, Shahryari S, Rybtke M, Tolker-Nielsen T. Microbial Primer: The catalytic biofilm matrix. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001497. [PMID: 39212539 PMCID: PMC11363952 DOI: 10.1099/mic.0.001497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix of microbial biofilms has traditionally been viewed as a structural scaffold that retains the resident bacteria in the biofilm. Moreover, a role of the matrix in the tolerance of biofilms to antimicrobials and environmental stressors was recognized early in biofilm research. However, as research progressed it became apparent that the biofilm matrix can also be involved in processes such as bacterial migration, genetic exchange, ion capture and signalling. More recently, evidence has accumulated that the biofilm matrix can also have catalytic functions. Here we review foundational research on this fascinating catalytic role of the biofilm matrix.
Collapse
Affiliation(s)
- Lise Goltermann
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Shahab Shahryari
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, DK-2200, Copenhagen, Denmark
| |
Collapse
|
8
|
David A, Tahrioui A, Tareau AS, Forge A, Gonzalez M, Bouffartigues E, Lesouhaitier O, Chevalier S. Pseudomonas aeruginosa Biofilm Lifecycle: Involvement of Mechanical Constraints and Timeline of Matrix Production. Antibiotics (Basel) 2024; 13:688. [PMID: 39199987 PMCID: PMC11350761 DOI: 10.3390/antibiotics13080688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections, especially in immunocompromised patients. Its remarkable adaptability and resistance to various antimicrobial treatments make it difficult to eradicate. Its persistence is enabled by its ability to form a biofilm. Biofilm is a community of sessile micro-organisms in a self-produced extracellular matrix, which forms a scaffold facilitating cohesion, cell attachment, and micro- and macro-colony formation. This lifestyle provides protection against environmental stresses, the immune system, and antimicrobial treatments, and confers the capacity for colonization and long-term persistence, often characterizing chronic infections. In this review, we retrace the events of the life cycle of P. aeruginosa biofilm, from surface perception/contact to cell spreading. We focus on the importance of extracellular appendages, mechanical constraints, and the kinetics of matrix component production in each step of the biofilm life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000 Rouen, France
| |
Collapse
|
9
|
Takahara M, Hirayama S, Futamata H, Nakao R, Tashiro Y. Biofilm-derived membrane vesicles exhibit potent immunomodulatory activity in Pseudomonas aeruginosa PAO1. Microbiol Immunol 2024; 68:224-236. [PMID: 38797913 DOI: 10.1111/1348-0421.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/15/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Pathogenic bacteria form biofilms on epithelial cells, and most bacterial biofilms show increased production of membrane vesicles (MVs), also known as outer membrane vesicles in Gram-negative bacteria. Numerous studies have investigated the MVs released under planktonic conditions; however, the impact of MVs released from biofilms on immune responses remains unclear. This study aimed to investigate the characteristics and immunomodulatory activity of MVs obtained from both planktonic and biofilm cultures of Pseudomonas aeruginosa PAO1. The innate immune responses of macrophages to planktonic-derived MVs (p-MVs) and biofilm-derived MVs (b-MVs) were investigated by measuring the mRNA expression of proinflammatory cytokines. Our results showed that b-MVs induced a higher expression of inflammatory cytokines, including Il1b, Il6, and Il12p40, than p-MVs. The mRNA expression levels of Toll-like receptor 4 (Tlr4) differed between the two types of MVs, but not Tlr2. Polymyxin B significantly neutralized b-MV-mediated cytokine induction, suggesting that lipopolysaccharide of native b-MVs is the origin of the immune response. In addition, heat-treated or homogenized b-MVs induced the mRNA expression of cytokines, including Tnfa, Il1b, Il6, and Il12p40. Heat treatment of MVs led to increased expression of Tlr2 but not Tlr4, suggesting that TLR2 ligands play a role in detecting the pathogen-associated molecular patterns in lysed MVs. Taken together, our data indicate that potent immunomodulatory MVs are produced in P. aeruginosa biofilms and that this behavior could be a strategy for the bacteria to infect host cells. Furthermore, our findings would contribute to developing novel vaccines using MVs.
Collapse
Affiliation(s)
- Minato Takahara
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Satoru Hirayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Futamata
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yosuke Tashiro
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- JST PRESTO, Kawaguchi, Japan
| |
Collapse
|
10
|
Puca V, Marinacci B, Pellegrini B, Campanile F, Santagati M, Grande R. Biofilm and bacterial membrane vesicles: recent advances. Expert Opin Ther Pat 2024; 34:475-491. [PMID: 38578180 DOI: 10.1080/13543776.2024.2338101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
INTRODUCTION Bacterial Membrane Vesicles (MVs) play important roles in cell-to-cell communication and transport of several molecules. Such structures are essential components of Extracellular Polymeric Substances (EPS) biofilm matrix of many bacterial species displaying a structural function and a role in virulence and pathogenesis. AREAS COVERED In this review were included original articles from the last ten years by searching the keywords 'biofilm' and 'vesicles' on PUBMED and Scopus databases. The articles available in literature mainly describe a positive correlation between bacterial MVs and biofilms formation. The research on Espacenet and Google Patent databases underlines the available patents related to the application of both biofilm MVs and planktonic MVs in inhibiting biofilm formation. EXPERT OPINION This review covers and analyzes recent advances in the study of the relationship between bacterial vesicles and biofilm. The huge number of papers discussing the role of MVs confirms the interest aimed at developing new applications in the medical field. The study of the MVs composition and biogenesis may contribute to the identification of components which could be (i) the target for the development of new drugs inhibiting the biofilm establishment; (ii) candidates for the development of vaccines; (iii) biomarkers for the diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Valentina Puca
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Benedetta Pellegrini
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences (BIOMETEC) - Microbiology Section, University of Catania, Catania, Italy
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences (BIOMETEC) - Microbiology Section, University of Catania, Catania, Italy
| | - Rossella Grande
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
11
|
Yaeger LN, Ranieri MRM, Chee J, Karabelas-Pittman S, Rudolph M, Giovannoni AM, Harvey H, Burrows LL. A genetic screen identifies a role for oprF in Pseudomonas aeruginosa biofilm stimulation by subinhibitory antibiotics. NPJ Biofilms Microbiomes 2024; 10:30. [PMID: 38521769 PMCID: PMC10960818 DOI: 10.1038/s41522-024-00496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
Biofilms are surface-associated communities of bacteria that grow in a self-produced matrix of polysaccharides, proteins, and extracellular DNA (eDNA). Sub-minimal inhibitory concentrations (sub-MIC) of antibiotics induce biofilm formation, potentially as a defensive response to antibiotic stress. However, the mechanisms behind sub-MIC antibiotic-induced biofilm formation are unclear. We show that treatment of Pseudomonas aeruginosa with multiple classes of sub-MIC antibiotics with distinct targets induces biofilm formation. Further, addition of exogenous eDNA or cell lysate failed to increase biofilm formation to the same extent as antibiotics, suggesting that the release of cellular contents by antibiotic-driven bacteriolysis is insufficient. Using a genetic screen for stimulation-deficient mutants, we identified the outer membrane porin OprF and the ECF sigma factor SigX as important. Similarly, loss of OmpA - the Escherichia coli OprF homolog - prevented sub-MIC antibiotic stimulation of E. coli biofilms. Our screen also identified the periplasmic disulfide bond-forming enzyme DsbA and a predicted cyclic-di-GMP phosphodiesterase encoded by PA2200 as essential for biofilm stimulation. The phosphodiesterase activity of PA2200 is likely controlled by a disulfide bond in its regulatory domain, and folding of OprF is influenced by disulfide bond formation, connecting the mutant phenotypes. Addition of reducing agent dithiothreitol prevented sub-MIC antibiotic biofilm stimulation. Finally, activation of a c-di-GMP-responsive promoter follows treatment with sub-MIC antibiotics in the wild-type but not an oprF mutant. Together, these results show that antibiotic-induced biofilm formation is likely driven by a signaling pathway that translates changes in periplasmic redox state into elevated biofilm formation through increases in c-di-GMP.
Collapse
Affiliation(s)
- Luke N Yaeger
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michael R M Ranieri
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jessica Chee
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Sawyer Karabelas-Pittman
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Madeleine Rudolph
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Alessio M Giovannoni
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Hanjeong Harvey
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Lori L Burrows
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
12
|
Joseph A, Anton L, Guan Y, Ferguson B, Mirro I, Meng N, France M, Ravel J, Elovitz MA. Extracellular vesicles from vaginal Gardnerella vaginalis and Mobiluncus mulieris contain distinct proteomic cargo and induce inflammatory pathways. NPJ Biofilms Microbiomes 2024; 10:28. [PMID: 38514622 PMCID: PMC10957959 DOI: 10.1038/s41522-024-00502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Colonization of the vaginal space with bacteria such as Gardnerella vaginalis and Mobiluncus mulieris is associated with increased risk for STIs, bacterial vaginosis, and preterm birth, while Lactobacillus crispatus is associated with optimal reproductive health. Although host-microbe interactions are hypothesized to contribute to reproductive health and disease, the bacterial mediators that are critical to this response remain unclear. Bacterial extracellular vesicles (bEVs) are proposed to participate in host-microbe communication by providing protection of bacterial cargo, delivery to intracellular targets, and ultimately induction of immune responses from the host. We evaluated the proteome of bEVs produced in vitro from G. vaginalis, M. mulieris, and L. crispatus, identifying specific proteins of immunologic interest. We found that bEVs from each bacterial species internalize within cervical and vaginal epithelial cells, and that epithelial and immune cells express a multi-cytokine response when exposed to bEVs from G. vaginalis and M. mulieris but not L. crispatus. Further, we demonstrate that the inflammatory response induced by G. vaginalis and M. mulieris bEVs is TLR2-specific. Our results provide evidence that vaginal bacteria communicate with host cells through secreted bEVs, revealing a mechanism by which bacteria lead to adverse reproductive outcomes associated with inflammation. Elucidating host-microbe interactions in the cervicovaginal space will provide further insight into the mechanisms contributing to microbiome-mediated adverse outcomes and may reveal new therapeutic targets.
Collapse
Affiliation(s)
- Andrea Joseph
- Women's Biomedical Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
| | - Lauren Anton
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuxia Guan
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Briana Ferguson
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isabella Mirro
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nova Meng
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael France
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michal A Elovitz
- Women's Biomedical Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| |
Collapse
|
13
|
Cheng JH, Du R, Sun DW. Regulating bacterial biofilms in food and biomedicine: unraveling mechanisms and Innovating strategies. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 38384205 DOI: 10.1080/10408398.2024.2312539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Bacterial biofilm has brought a lot of intractable problems in food and biomedicine areas. Conventional biofilm control mainly focuses on inactivation and removal of biofilm. However, with robust construction and enhanced resistance, the established biofilm is extremely difficult to eradicate. According to the mechanism of biofilm development, biofilm formation can be modulated by intervening in the key factors and regulatory systems. Therefore, regulation of biofilm formation has been proposed as an alternative way for effective biofilm control. This review aims to provide insights into the regulation of biofilm formation in food and biomedicine. The underlying mechanisms for early-stage biofilm establishment are summarized based on the key factors and correlated regulatory networks. Recent developments and applications of novel regulatory strategies such as anti/pro-biofilm agents, nanomaterials, functionalized surface materials and physical strategies are also discussed. The current review indicates that these innovative methods have contributed to effective biofilm control in a smart, safe and eco-friendly way. However, standard methodology for regulating biofilm formation in practical use is still missing. As biofilm formation in real-world systems could be far more complicated, further studies and interdisciplinary collaboration are still needed for simulation and experiments in the industry and other open systems.
Collapse
Affiliation(s)
- Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Rong Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin 4, Ireland
| |
Collapse
|
14
|
Dsouza FP, Dinesh S, Sharma S. Understanding the intricacies of microbial biofilm formation and its endurance in chronic infections: a key to advancing biofilm-targeted therapeutic strategies. Arch Microbiol 2024; 206:85. [PMID: 38300317 DOI: 10.1007/s00203-023-03802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 02/02/2024]
Abstract
Bacterial biofilms can adhere to various surfaces in the environment with human beings being no exception. Enclosed in a self-secreted matrix which contains extracellular polymeric substances, biofilms are intricate communities of bacteria that play a significant role across various sectors and raise concerns for public health, medicine and industries. These complex structures allow free-floating planktonic cells to adopt multicellular mode of growth which leads to persistent infections. This is of great concern as biofilms can withstand external attacks which include antibiotics and immune responses. A more comprehensive and innovative approach to therapy is needed in view of the increasing issue of bacterial resistance brought on by the overuse of conventional antimicrobial medications. Thus, to oppose the challenges posed by biofilm-related infections, innovative therapeutic strategies are being explored which include targeting extracellular polymeric substances, quorum sensing, and persister cells. Biofilm-responsive nanoparticles show promising results by improving drug delivery and reducing the side effects. This review comprehensively examines the factors influencing biofilm formation, host immune defence mechanisms, infections caused by biofilms, diagnostic approaches, and biofilm-targeted therapies.
Collapse
Affiliation(s)
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India.
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| |
Collapse
|
15
|
Vohra M, Kour A, Kalia NP, Kumar M, Sharma S, Jaglan S, Kamath N, Sharma S. A comprehensive review of genomics, transcriptomics, proteomics, and metabolomic insights into the differentiation of Pseudomonas aeruginosa from the planktonic to biofilm state: A multi-omics approach. Int J Biol Macromol 2024; 257:128563. [PMID: 38070800 DOI: 10.1016/j.ijbiomac.2023.128563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Biofilm formation by Pseudomonas aeruginosa is primarily responsible for chronic wound and lung infections in humans. These infections are persistent owing to the biofilm's high tolerance to antimicrobials and constantly changing environmental factors. Understanding the mechanism governing biofilm formation can help to develop therapeutics explicitly directed against the molecular markers responsible for this process. After numerous years of research, many genes responsible for both in vitro and in vivo biofilm development remain unidentified. However, there is no "all in one" complete in vivo or in vitro biofilm model. Recent findings imply that the shift from planktonic bacteria to biofilms is a complicated and interrelated differentiation process. Research on the applications of omics technologies in P. aeruginosa biofilm development is ongoing, and these approaches hold great promise for expanding our knowledge of the mechanisms of biofilm formation. This review discusses the different factors that affect biofilm formation and compares P. aeruginosa biofilm formation using the omics approaches targeting essential biological macromolecules, such as DNA, RNA, Protein, and metabolome. Furthermore, we have outlined the application of currently available omics tools, such as genomics, proteomics, metabolomics, transcriptomics, and integrated multi-omics methodologies, to understand the differential gene expression (biofilm vs. planktonic bacteria) of P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Mustafa Vohra
- Department of Medical Laboratory Science, Lovely Professional University, Punjab 144411, India; Department of Microbiology, Shri Vinoba Bhave Civil Hospital, Silvassa 396230, India
| | - Avleen Kour
- Department of Medical Laboratory Science, Lovely Professional University, Punjab 144411, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology & Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Manoj Kumar
- Maternal and Child Health Program, Research Department, Sidra Medicine, Doha 122104, Qatar
| | - Sarika Sharma
- Department of Sponsored Research, Division of Research & Development, Lovely Professional University, India
| | - Sundeep Jaglan
- Fermentation & Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180016, J&K, India
| | - Narayan Kamath
- Department of Microbiology, Shri Vinoba Bhave Civil Hospital, Silvassa 396230, India; Department of Microbiology, NAMO Medical Education and Research Institute, Silvassa 396230, India
| | - Sandeep Sharma
- Department of Medical Laboratory Science, Lovely Professional University, Punjab 144411, India.
| |
Collapse
|
16
|
Ahmed AAQ, McKay TJM. Environmental and ecological importance of bacterial extracellular vesicles (BEVs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168098. [PMID: 37884154 DOI: 10.1016/j.scitotenv.2023.168098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/24/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Extracellular vesicles are unique structures released by the cells of all life forms. Bacterial extracellular vesicles (BEVs) were found in various ecosystems and natural habitats. They are associated with bacterial-bacterial interactions as well as host-bacterial interactions in the environment. Moreover, BEVs facilitate bacterial adaptation to a variety of environmental conditions. BEVs were found to be abundant in the environment, and therefore they can regulate a broad range of environmental processes. In the environment, BEVs can serve as tools for cell-to-cell interaction, secreting mechanism of unwanted materials, transportation, genetic materials exchange and storage, defense and protection, growth support, electron transfer, and cell-surface interplay regulation. Thus, BEVs have a great potential to be used in a variety of environmental applications such as serving as bioremediating reagents for environmental disaster mitigation as well as removing problematic biofilms and waste treatment. This research area needs to be investigated further to disclose the full environmental and ecological importance of BEVs as well as to investigate how to harness BEVs as effective tools in a variety of environmental applications.
Collapse
Affiliation(s)
- Abeer Ahmed Qaed Ahmed
- Department of Environmental Sciences, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg 1710, South Africa.
| | - Tracey Jill Morton McKay
- Department of Environmental Sciences, School of Ecological and Human Sustainability, College of Agriculture and Environmental Sciences, University of South Africa, P.O. Box 392, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
17
|
Kanno M, Shiota T, Ueno S, Takahara M, Haneda K, Tahara YO, Shintani M, Nakao R, Miyata M, Kimbara K, Futamata H, Tashiro Y. Identification of genes involved in enhanced membrane vesicle formation in Pseudomonas aeruginosa biofilms: surface sensing facilitates vesiculation. Front Microbiol 2023; 14:1252155. [PMID: 38107868 PMCID: PMC10722149 DOI: 10.3389/fmicb.2023.1252155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Membrane vesicles (MVs) are small spherical structures (20-400 nm) produced by most bacteria and have important biological functions including toxin delivery, signal transfer, biofilm formation, and immunomodulation of the host. Although MV formation is enhanced in biofilms of a wide range of bacterial species, the underlying mechanisms are not fully understood. An opportunistic pathogen, Pseudomonas aeruginosa, causes chronic infections that can be difficult to treat due to biofilm formation. Since MVs are abundant in biofilms, can transport virulence factors to the host, and have inflammation-inducing functions, the mechanisms of enhanced MV formation in biofilms needs to be elucidated to effectively treat infections. In this study, we evaluated the characteristics of MVs in P. aeruginosa PAO1 biofilms, and identified factors that contribute to enhanced MV formation. Vesiculation was significantly enhanced in the static culture; MVs were connected to filamentous substances in the biofilm, and separation between the outer and inner membranes and curvature of the membrane were observed in biofilm cells. By screening a transposon mutant library (8,023 mutants) for alterations in MV formation in biofilms, 66 mutants were identified as low-vesiculation strains (2/3 decrease relative to wild type), whereas no mutant was obtained that produced more MVs (twofold increase). Some transposons were inserted into genes related to biofilm formation, including flagellar motility (flg, fli, and mot) and extracellular polysaccharide synthesis (psl). ΔpelAΔpslA, which does not synthesize the extracellular polysaccharides Pel and Psl, showed reduced MV production in biofilms but not in planktonic conditions, suggesting that enhanced vesiculation is closely related to the synthesis of biofilm matrices in P. aeruginosa. Additionally, we found that blebbing occurred during bacterial attachment. Our findings indicate that biofilm-related factors are closely involved in enhanced MV formation in biofilms and that surface sensing facilitates vesiculation. Furthermore, this work expands the understanding of the infection strategy in P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Mizuki Kanno
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Takuya Shiota
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - So Ueno
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Minato Takahara
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Keisuke Haneda
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
| | - Yuhei O. Tahara
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Masaki Shintani
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Ryoma Nakao
- Department of Bacteriology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhide Kimbara
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
| | - Hiroyuki Futamata
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Yosuke Tashiro
- Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu, Japan
- JST PRESTO, Kawaguchi, Japan
| |
Collapse
|
18
|
Nazeer RR, Wang M, Welch M. More than just a gel: the extracellular matrixome of Pseudomonas aeruginosa. Front Mol Biosci 2023; 10:1307857. [PMID: 38028553 PMCID: PMC10679415 DOI: 10.3389/fmolb.2023.1307857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Armed with an arsenal of protein secretion systems, antibiotic efflux pumps, and the occasional proclivity for explosive self-destruction, Pseudomonas aeruginosa has become a model for the study of bacterial pathogenesis and biofilm formation. There is accruing evidence to suggest that the biofilm matrix-the bioglue that holds the structure together-acts not only in a structural capacity, but is also a molecular "net" whose function is to capture and retain certain secreted products (including proteins and small molecules). In this perspective, we argue that the biofilm matrixome is a distinct extracellular compartment, and one that is differentiated from the bulk secretome. Some of the points we raise are deliberately speculative, but are becoming increasingly accessible to experimental investigation.
Collapse
Affiliation(s)
| | | | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Avila‐Cobian LF, Hoshino H, Horsman ME, Nguyen VT, Qian Y, Feltzer R, Kim C, Hu DD, Champion MM, Fisher JF, Mobashery S. Amber-codon suppression for spatial localization and in vivo photoaffinity capture of the interactome of the Pseudomonas aeruginosa rare lipoprotein A lytic transglycosylase. Protein Sci 2023; 32:e4781. [PMID: 37703013 PMCID: PMC10536563 DOI: 10.1002/pro.4781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
The 11 lytic transglycosylases of Pseudomonas aeruginosa have overlapping activities in the turnover of the cell-wall peptidoglycan. Rare lipoprotein A (RlpA) is distinct among the 11 by its use of only peptidoglycan lacking peptide stems. The spatial localization of RlpA and its interactome within P. aeruginosa are unknown. We employed suppression of introduced amber codons at sites in the rlpA gene for the introduction of the unnatural-amino-acids Νζ -[(2-azidoethoxy)carbonyl]-l-lysine (compound 1) and Nζ -[[[3-(3-methyl-3H-diazirin-3-yl)propyl]amino]carbonyl]-l-lysine (compound 2). In live P. aeruginosa, full-length RlpA incorporating compound 1 into its sequence was fluorescently tagged using strained-promoted alkyne-azide cycloaddition and examined by fluorescence microscopy. RlpA is present at low levels along the sidewall length of the bacterium, and at higher levels at the nascent septa of replicating bacteria. In intact P. aeruginosa, UV photolysis of full-length RlpA having compound 2 within its sequence generated a transient reactive carbene, which engaged in photoaffinity capture of neighboring proteins. Thirteen proteins were identified. Three of these proteins-PBP1a, PBP5, and MreB-are members of the bacterial divisome. The use of the complementary methodologies of non-canonical amino-acid incorporation, photoaffinity proximity analysis, and fluorescent microscopy confirm a dominant septal location for the RlpA enzyme of P. aeruginosa, as a divisome-associated activity. This accomplishment adds to the emerging recognition of the value of these methodologies for identification of the intracellular localization of bacterial proteins.
Collapse
Affiliation(s)
- Luis F. Avila‐Cobian
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Hidekazu Hoshino
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Mark E. Horsman
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Van T. Nguyen
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Yuanyuan Qian
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Rhona Feltzer
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Choon Kim
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Daniel D. Hu
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Matthew M. Champion
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Jed F. Fisher
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| | - Shahriar Mobashery
- Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
20
|
Harding CJ, Bischoff M, Bergkessel M, Czekster CM. An anti-biofilm cyclic peptide targets a secreted aminopeptidase from P. aeruginosa. Nat Chem Biol 2023; 19:1158-1166. [PMID: 37386135 PMCID: PMC10449631 DOI: 10.1038/s41589-023-01373-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/26/2023] [Indexed: 07/01/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes serious illness, especially in immunocompromised individuals. P. aeruginosa forms biofilms that contribute to growth and persistence in a wide range of environments. Here we investigated the aminopeptidase, P. aeruginosa aminopeptidase (PaAP) from P. aeruginosa, which is highly abundant in the biofilm matrix. PaAP is associated with biofilm development and contributes to nutrient recycling. We confirmed that post-translational processing was required for activation and PaAP is a promiscuous aminopeptidase acting on unstructured regions of peptides and proteins. Crystal structures of wild-type enzymes and variants revealed the mechanism of autoinhibition, whereby the C-terminal propeptide locks the protease-associated domain and the catalytic peptidase domain into a self-inhibited conformation. Inspired by this, we designed a highly potent small cyclic-peptide inhibitor that recapitulates the deleterious phenotype observed with a PaAP deletion variant in biofilm assays and present a path toward targeting secreted proteins in a biofilm context.
Collapse
Affiliation(s)
- Christopher John Harding
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK
| | - Marcus Bischoff
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK
- Centre of Biophotonics, University of St Andrews, St Andrews, UK
| | | | - Clarissa Melo Czekster
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK.
| |
Collapse
|
21
|
Janda M, Rybak K, Krassini L, Meng C, Feitosa-Junior O, Stigliano E, Szulc B, Sklenar J, Menke FL, Malone JG, Brachmann A, Klingl A, Ludwig C, Robatzek S. Biophysical and proteomic analyses of Pseudomonas syringae pv. tomato DC3000 extracellular vesicles suggest adaptive functions during plant infection. mBio 2023; 14:e0358922. [PMID: 37366628 PMCID: PMC10470744 DOI: 10.1128/mbio.03589-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023] Open
Abstract
Vesiculation is a process employed by Gram-negative bacteria to release extracellular vesicles (EVs) into the environment. EVs from pathogenic bacteria play functions in host immune modulation, elimination of host defenses, and acquisition of nutrients from the host. Here, we observed EV production of the bacterial speck disease causal agent, Pseudomonas syringae pv. tomato (Pto) DC3000, as outer membrane vesicle release. Mass spectrometry identified 369 proteins enriched in Pto DC3000 EVs. The EV samples contained known immunomodulatory proteins and could induce plant immune responses mediated by bacterial flagellin. Having identified two biomarkers for EV detection, we provide evidence for Pto DC3000 releasing EVs during plant infection. Bioinformatic analysis of the EV-enriched proteins suggests a role for EVs in antibiotic defense and iron acquisition. Thus, our data provide insights into the strategies this pathogen may use to develop in a plant environment. IMPORTANCE The release of extracellular vesicles (EVs) into the environment is ubiquitous among bacteria. Vesiculation has been recognized as an important mechanism of bacterial pathogenesis and human disease but is poorly understood in phytopathogenic bacteria. Our research addresses the role of bacterial EVs in plant infection. In this work, we show that the causal agent of bacterial speck disease, Pseudomonas syringae pv. tomato, produces EVs during plant infection. Our data suggest that EVs may help the bacteria to adapt to environments, e.g., when iron could be limiting such as the plant apoplast, laying the foundation for studying the factors that phytopathogenic bacteria use to thrive in the plant environment.
Collapse
Affiliation(s)
- Martin Janda
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Katarzyna Rybak
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Laura Krassini
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Gregor-Mendel-Strasse, Freising, United Kingdom
| | | | - Egidio Stigliano
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Beata Szulc
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Frank L.H. Menke
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Jacob G. Malone
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andreas Brachmann
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Andreas Klingl
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Gregor-Mendel-Strasse, Freising, United Kingdom
| | - Silke Robatzek
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
22
|
Charpentier LA, Dolben EF, Hendricks MR, Hogan DA, Bomberger JM, Stanton BA. Bacterial Outer Membrane Vesicles and Immune Modulation of the Host. MEMBRANES 2023; 13:752. [PMID: 37755174 PMCID: PMC10536716 DOI: 10.3390/membranes13090752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
This article reviews the role of outer membrane vesicles (OMVs) in mediating the interaction between Gram-negative bacteria and their human hosts. OMVs are produced by a diverse range of Gram-negative bacteria during infection and play a critical role in facilitating host-pathogen interactions without requiring direct cell-to-cell contact. This article describes the mechanisms by which OMVs are formed and subsequently interact with host cells, leading to the transport of microbial protein virulence factors and short interfering RNAs (sRNA) to their host targets, exerting their immunomodulatory effects by targeting specific host signaling pathways. Specifically, this review highlights mechanisms by which OMVs facilitate chronic infection through epigenetic modification of the host immune response. Finally, this review identifies critical knowledge gaps in the field and offers potential avenues for future OMV research, specifically regarding rigor and reproducibility in OMV isolation and characterization methods.
Collapse
Affiliation(s)
- Lily A. Charpentier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Emily F. Dolben
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Matthew R. Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| |
Collapse
|
23
|
Gonçalves D, Pinto SN, Fernandes F. Extracellular Vesicles and Infection: From Hijacked Machinery to Therapeutic Tools. Pharmaceutics 2023; 15:1738. [PMID: 37376186 DOI: 10.3390/pharmaceutics15061738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Extracellular vesicles (EVs) comprise a broad range of secreted cell-derived membrane vesicles. Beyond their more well-characterized role in cell communication, in recent years, EVs have also been shown to play important roles during infection. Viruses can hijack the biogenesis of exosomes (which are small EVs) to promote viral spreading. Additionally, these exosomes are also important mediators in inflammation and immune responses during both bacterial and viral infections. This review summarizes these mechanisms while also describing the impact of bacterial EVs in regulating immune responses. Finally, the review also focuses on the potential and challenges of using EVs, in particular, to tackle infectious diseases.
Collapse
Affiliation(s)
- Diogo Gonçalves
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N Pinto
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio Fernandes
- iBB-Institute for Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
24
|
Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol 2023:10.1038/s41579-023-00875-5. [PMID: 36932221 DOI: 10.1038/s41579-023-00875-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/19/2023]
Abstract
Extracellular vesicles are produced by species across all domains of life, suggesting that vesiculation represents a fundamental principle of living matter. In Gram-negative bacteria, membrane vesicles (MVs) can originate either from blebs of the outer membrane or from endolysin-triggered explosive cell lysis, which is often induced by genotoxic stress. Although less is known about the mechanisms of vesiculation in Gram-positive and Gram-neutral bacteria, recent research has shown that both lysis and blebbing mechanisms also exist in these organisms. Evidence has accumulated over the past years that different biogenesis routes lead to distinct types of MV with varied structure and composition. In this Review, we discuss the different types of MV and their potential cargo packaging mechanisms. We summarize current knowledge regarding how MV composition determines their various functions including support of bacterial growth via the disposal of waste material, nutrient scavenging, export of bioactive molecules, DNA transfer, neutralization of phages, antibiotics and bactericidal functions, delivery of virulence factors and toxins to host cells and inflammatory and immunomodulatory effects. We also discuss the advantages of MV-mediated secretion compared with classic bacterial secretion systems and we introduce the concept of quantal secretion.
Collapse
|
25
|
Cassin EK, Araujo-Hernandez SA, Baughn DS, Londono MC, Rodriguez DQ, Tseng BS. OprF impacts Pseudomonas aeruginosa biofilm matrix eDNA levels in a nutrient-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530729. [PMID: 36909500 PMCID: PMC10002741 DOI: 10.1101/2023.03.01.530729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The biofilm matrix is composed of exopolysaccharides, eDNA, membrane vesicles, and proteins. While proteomic analyses have identified numerous matrix proteins, their functions in the biofilm remain understudied compared to the other biofilm components. In the Pseudomonas aeruginosa biofilm, several studies have identified OprF as an abundant matrix protein and, more specifically, as a component of biofilm membrane vesicles. OprF is a major outer membrane porin of P. aeruginosa cells. However, current data describing the effects of OprF in the P. aeruginosa biofilm is limited. Here we identify a nutrient-dependent effect of OprF in static biofilms, whereby Δ oprF cells form significantly less biofilm than wild type when grown in media containing glucose or low sodium chloride concentrations. Interestingly, this biofilm defect occurs during late static biofilm formation and is not dependent on the production of PQS, which is responsible for outer membrane vesicle production. Furthermore, while biofilms lacking OprF contain approximately 60% less total biomass than those of wild type, the number of cells in these two biofilms is equivalent. We demonstrate that P. aeruginosa Δ oprF biofilms with reduced biofilm biomass contain less eDNA than wild-type biofilms. These results suggest that the nutrient-dependent effect of OprF is involved in the maintenance of mature P. aeruginosa biofilms by retaining eDNA in the matrix. IMPORTANCE Many pathogens form biofilms, which are bacterial communities encased in an extracellular matrix that protects them against antibacterial treatments. The roles of several matrix components of the opportunistic pathogen Pseudomonas aeruginosa have been characterized. However, the effects of P. aeruginosa matrix proteins remain understudied and are untapped potential targets for antibiofilm treatments. Here we describe a conditional effect of the abundant matrix protein OprF on late-stage P. aeruginosa biofilms. A Δ oprF strain formed significantly less biofilm in low sodium chloride or with glucose. Interestingly, the defective Δ oprF biofilms did not exhibit fewer resident cells but contained significantly less extracellular DNA (eDNA) than wild type. These results suggest that OprF is involved in matrix eDNA retention in mature biofilms.
Collapse
Affiliation(s)
- Erin K. Cassin
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Dena S. Baughn
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Melissa C. Londono
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- Corresponding author: Boo Shan Tseng ()
| |
Collapse
|
26
|
da Silva Barreira D, Laurent J, Lourenço J, Novion Ducassou J, Couté Y, Guzzo J, Rieu A. Membrane vesicles released by Lacticaseibacillus casei BL23 inhibit the biofilm formation of Salmonella Enteritidis. Sci Rep 2023; 13:1163. [PMID: 36670157 PMCID: PMC9859808 DOI: 10.1038/s41598-023-27959-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Biofilms represent a major concern in the food industry and healthcare. The use of probiotic bacteria and their derivatives as an alternative to conventional treatments to fight biofilm development is a promising option that has provided convincing results in the last decades. Recently, membrane vesicles (MVs) produced by probiotics have generated considerable interest due to the diversity of roles they have been associated with. However, the antimicrobial activity of probiotic MVs remains to be studied. In this work, we showed that membrane vesicles produced by Lacticaseibacillus casei BL23 (LC-MVs) exhibited strong antibiofilm activity against Salmonella enterica serovar Enteritidis (S. Enteritidis) without affecting bacterial growth. Furthermore, we found that LC-MVs affected the early stages of S. Enteritidis biofilm development and prevented attachment of bacteria to polystyrene surfaces. Importantly, LC-MVs did not impact the biomass of already established biofilms. We also demonstrated that the antibiofilm activity depended on the proteins associated with the LC-MV fraction. Finally, two peptidoglycan hydrolases (PGHs) were found to be associated with the antibiofilm activity of LC-MVs. Overall, this work allowed to identify the antibiofilm properties of LC-MVs and paved the way for the use of probiotic MVs against the development of negative biofilms.
Collapse
Affiliation(s)
- David da Silva Barreira
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Julie Laurent
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Jessica Lourenço
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Julia Novion Ducassou
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, R2048, 38000, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, R2048, 38000, Grenoble, France
| | - Jean Guzzo
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France
| | - Aurélie Rieu
- Université de Bourgogne Franche-Comté (UBFC), AgroSup Dijon, UMR PAM A 02.102, 21000, Dijon, France.
| |
Collapse
|
27
|
Pepsin and Trypsin Treatment Combined with Carvacrol: An Efficient Strategy to Fight Pseudomonas aeruginosa and Enterococcus faecalis Biofilms. Microorganisms 2023; 11:microorganisms11010143. [PMID: 36677435 PMCID: PMC9863883 DOI: 10.3390/microorganisms11010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/08/2023] Open
Abstract
Biofilms consist of microbial communities enclosed in a self-produced extracellular matrix which is mainly responsible of biofilm virulence. Targeting this matrix could be an effective strategy to control biofilms. In this work, we examined the efficacy of two proteolytic enzymes, pepsin and trypsin, to degrade P. aeruginosa and E. faecalis biofilms and their synergistic effect when combined with carvacrol. The minimum dispersive concentrations (MDCs) and the contact times of enzymes, as well as the minimal inhibitory concentrations (MICs) and contact times of carvacrol, were determined against biofilms grown on polystyrene surfaces. For biofilms grown on stainless steel surfaces, the combined pepsin or trypsin with carvacrol treatment showed more significant reduction of both biofilms compared with carvacrol treatment alone. This reduction was more substantial after sequential treatment of both enzymes, followed by carvacrol with the greatest reduction of 4.7 log CFU mL−1 (p < 0.05) for P. aeruginosa biofilm and 3.3 log CFU mL−1 (p < 0.05) for E. faecalis biofilm. Such improved efficiency was also obvious in the epifluorescence microscopy analysis. These findings demonstrate that the combined effect of the protease-dispersing activity and the carvacrol antimicrobial activity could be a prospective approach for controlling P. aeruginosa and E. faecalis biofilms.
Collapse
|
28
|
Lorite MJ, Casas-Román A, Girard L, Encarnación S, Díaz-Garrido N, Badía J, Baldomá L, Pérez-Mendoza D, Sanjuán J. Impact of c-di-GMP on the Extracellular Proteome of Rhizobium etli. BIOLOGY 2022; 12:44. [PMID: 36671740 PMCID: PMC9855851 DOI: 10.3390/biology12010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Extracellular matrix components of bacterial biofilms include biopolymers such as polysaccharides, nucleic acids and proteins. Similar to polysaccharides, the secretion of adhesins and other matrix proteins can be regulated by the second messenger cyclic diguanylate (cdG). We have performed quantitative proteomics to determine the extracellular protein contents of a Rhizobium etli strain expressing high cdG intracellular levels. cdG promoted the exportation of proteins that likely participate in adhesion and biofilm formation: the rhizobial adhesion protein RapA and two previously undescribed likely adhesins, along with flagellins. Unexpectedly, cdG also promoted the selective exportation of cytoplasmic proteins. Nearly 50% of these cytoplasmic proteins have been previously described as moonlighting or candidate moonlighting proteins in other organisms, often found extracellularly. Western blot assays confirmed cdG-promoted export of two of these cytoplasmic proteins, the translation elongation factor (EF-Tu) and glyceraldehyde 3-phosphate dehydrogenase (Gap). Transmission Electron Microscopy immunolabeling located the Gap protein in the cytoplasm but was also associated with cell membranes and extracellularly, indicative of an active process of exportation that would be enhanced by cdG. We also obtained evidence that cdG increases the number of extracellular Gap proteoforms, suggesting a link between cdG, the post-translational modification and the export of cytoplasmic proteins.
Collapse
Affiliation(s)
- María J. Lorite
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Ariana Casas-Román
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Lourdes Girard
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Natalia Díaz-Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefa Badía
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08028 Barcelona, Spain
| | - Laura Baldomá
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Daniel Pérez-Mendoza
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
29
|
Moshynets OV, Pokholenko I, Iungin O, Potters G, Spiers AJ. eDNA, Amyloid Fibers and Membrane Vesicles Identified in Pseudomonas fluorescens SBW25 Biofilms. Int J Mol Sci 2022; 23:ijms232315096. [PMID: 36499433 PMCID: PMC9738004 DOI: 10.3390/ijms232315096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudomonas fluorescens SBW25 is a model soil- and plant-associated bacterium capable of forming a variety of air-liquid interface biofilms in experimental microcosms and on plant surfaces. Previous investigations have shown that cellulose is the primary structural matrix component in the robust and well-attached Wrinkly Spreader biofilm, as well as in the fragile Viscous Mass biofilm. Here, we demonstrate that both biofilms include extracellular DNA (eDNA) which can be visualized using confocal laser scanning microscopy (CLSM), quantified by absorbance measurements, and degraded by DNase I treatment. This eDNA plays an important role in cell attachment and biofilm development. However, exogenous high-molecular-weight DNA appears to decrease the strength and attachment levels of mature Wrinkly Spreader biofilms, whereas low-molecular-weight DNA appears to have little effect. Further investigation with CLSM using an amyloid-specific fluorophore suggests that the Wrinkly Spreader biofilm might also include Fap fibers, which might be involved in attachment and contribute to biofilm strength. The robust nature of the Wrinkly Spreader biofilm also allowed us, using MALDI-TOF mass spectrometry, to identify matrix-associated proteins unable to diffuse out of the structure, as well as membrane vesicles which had a different protein profile compared to the matrix-associated proteins. CLSM and DNase I treatment suggest that some vesicles were also associated with eDNA. These findings add to our understanding of the matrix components in this model pseudomonad, and, as found in other biofilms, biofilm-specific products and material from lysed cells contribute to these structures through a range of complex interactions.
Collapse
Affiliation(s)
- Olena V. Moshynets
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Ianina Pokholenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Olga Iungin
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
- Department of Biotechnology, Leather and Fur, Kyiv National University of Technologies and Design, 01011 Kyiv, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, 2030 Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, 2000 Antwerp, Belgium
- Correspondence:
| | - Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| |
Collapse
|
30
|
A PQS-Cleaving Quorum Quenching Enzyme Targets Extracellular Membrane Vesicles of Pseudomonas aeruginosa. Biomolecules 2022; 12:biom12111656. [DOI: 10.3390/biom12111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa uses quorum sensing to control its virulence. One of its major signal molecules, the Pseudomonas quinolone signal PQS, has high affinity to membranes and is known to be trafficked mainly via outer membrane vesicles (OMVs). We previously reported that several 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases (HQDs) catalyze the cleavage of PQS and thus act as quorum quenching enzymes. Further analysis showed that, in contrast to other HQDs, the activity of HQD from Streptomyces bingchenggensis (HQDS.b.) was unexpectedly stabilized by culture supernatants of P. aeruginosa. Interestingly, the stabilizing effect was higher with supernatants from the strain PA14 than with supernatants from the strain PAO1. Heat treatment and lyophilization hardly affected the stabilizing effect; however, fractionation of the supernatant excluded small molecules as stabilizing agents. In a pull-down assay, HQDS.b. appeared to interact with several P. aeruginosa proteins previously found in the OMV proteome. This prompted us to probe the physical interaction of HQDS.b. with prepared extracellular membrane vesicles. Homo-FRET of fluorescently labeled HQDS.b. indeed indicated a spatial clustering of the protein on the vesicles. Binding of a PQS-cleaving enzyme to the OMVs of P. aeruginosa may enhance PQS degradation and is highly reconcilable with its function as a quorum quenching enzyme.
Collapse
|
31
|
Mechmechani S, Gharsallaoui A, El Omari K, Fadel A, Hamze M, Chihib NE. Hurdle technology based on the use of microencapsulated pepsin, trypsin and carvacrol to eradicate Pseudomonas aeruginosa and Enterococcus faecalis biofilms. BIOFOULING 2022; 38:903-915. [PMID: 36451605 DOI: 10.1080/08927014.2022.2151361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The biofilm lifestyle plays a major role in the resistance and virulence of Pseudomonas aeruginosa and Enterococcus faecalis. In this study, two microencapsulated proteases (pepsin ME-PEP and trypsin ME-TRYP) were evaluated for their biofilm dispersal activity and their synergistic effect with microencapsulated carvacrol (ME-CARV). Spray-drying was used to protect enzymes and essential oil and enhance their activities. Cell count analysis proved the synergistic activity of enzymes and carvacrol treatment as biofilms were further reduced after combined treatment in comparison to ME-CARV or enzymes alone. Furthermore, results showed that sequential treatment in the order ME-TRYP - ME-PEP - ME-CARV resulted in more efficient biofilm removal with a maximum reduction of 5 log CFU mL-1 for P. aeruginosa and 4 log CFU mL-1 for E. faecalis. This study proposes that the combination of microencapsulated proteases with ME-CARV could be useful for the effective control of P. aeruginosa and E. faecalis biofilms.
Collapse
Affiliation(s)
- Samah Mechmechani
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Univ. Lille, Lille, France
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Adem Gharsallaoui
- Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Univ Lyon, Villeurbanne, France
| | - Khaled El Omari
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
- Quality Control Center Laboratories at the Chamber of Commerce, Industry & Agriculture of Tripoli & North Lebanon, Tripoli, Lebanon
| | - Alexandre Fadel
- CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC -Institut Michel-Eugene Chevreul, Univ Lille, Lille, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Nour-Eddine Chihib
- CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Univ. Lille, Lille, France
| |
Collapse
|
32
|
Egorova DA, Solovyev AI, Polyakov NB, Danilova KV, Scherbakova AA, Kravtsov IN, Dmitrieva MA, Rykova VS, Tutykhina IL, Romanova YM, Gintsburg AL. Biofilm matrix proteome of clinical strain of P. aeruginosa isolated from bronchoalveolar lavage of patient in intensive care unit. Microb Pathog 2022; 170:105714. [PMID: 35973647 DOI: 10.1016/j.micpath.2022.105714] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/30/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Extracellular matrix plays a pivotal role in biofilm biology and proposed as a potential target for therapeutics development. As matrix is responsible for some extracellular functions and influence bacterial cytotoxicity against eukaryotic cells, it must have unique protein composition. P. aeruginosa is one of the most important pathogens with emerging antibiotic resistance, but only a few studies were devoted to matrix proteomes and there are no studies describing matrix proteome for any clinical isolates except reference strains PAO1 and ATCC27853. Here we report the first biofilm matrix proteome of P. aeruginosa isolated from bronchoalveolar lavage of patient in intensive care unit. We have identified the largest number of proteins in the matrix among all published studies devoted to P. aeruginosa biofilms. Comparison of matrix proteome with proteome from embedded cells let us to identify several enriched bioprocess groups. Bioprocess groups with the largest number of overrepresented in matrix proteins were oxidation-reduction processes, proteolysis, and transmembrane transport. The top three represented in matrix bioprocesses concerning the size of the GO annotated database were cell redox homeostasis, nucleoside metabolism, and fatty acid synthesis. Finally, we discuss the obtained data in a prism of antibiofilm therapeutics development.
Collapse
Affiliation(s)
- Daria A Egorova
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia(1).
| | - Andrey I Solovyev
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia(1)
| | - Nikita B Polyakov
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia(1)
| | - Ksenya V Danilova
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia(1)
| | - Anastasya A Scherbakova
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia(1)
| | - Ivan N Kravtsov
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia(1)
| | - Maria A Dmitrieva
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia(1)
| | - Valentina S Rykova
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia(1)
| | - Irina L Tutykhina
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia(1)
| | - Yulia M Romanova
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia(1); I.M. Sechenov First Moscow State Medical University, Moscow, 119992, Russia(2)
| | - Alexander L Gintsburg
- National Research Center of Epidemiology and Microbiology n. a. N.F. Gamaleya, Russian Ministry of Health, Moscow, 123098, Russia(1); I.M. Sechenov First Moscow State Medical University, Moscow, 119992, Russia(2)
| |
Collapse
|
33
|
Shariff M, Chatterjee M, Morris SD, Paul V, Anil Kumar V, Mohan CG, Paul-Prasanth B, Biswas R. Enhanced inhibition of Pseudomonas aeruginosa virulence factor production and biofilm development by sublethal concentrations of eugenol and phenyllactic acid. Lett Appl Microbiol 2022; 75:1336-1345. [PMID: 35962588 DOI: 10.1111/lam.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022]
Abstract
Biofilm development in P. aeruginosa is regulated by its quorum sensing (QS) systems. It has three major QS systems: LasI/R, RhlI/R, and PQS/MvfR. Previous studies showed that phenyllactic acid (PLA) binds to RhlR and PqsR and inhibits the Rhl and PQS QS; and eugenol at sublethal concentration inhibits Las and PQS QS systems. Here, we have demonstrated that a combination of sublethal doses of eugenol and PLA enhanced the inhibition of the QS mediated production of the virulence factors and biofilm development of this pathogen. A combination of 50 μM eugenol and 0.3 mM PLA significantly inhibited the pyocyanin production, protease activity, swarming motility and cytotoxic activities of P. aeruginosa strain PAO1, whereas eugenol and PLA when added individually to PAO1 cultures were less effective in inhibiting its virulence factor expression. Biofilm formation of PAO1 was reduced by 32, 19 and 87% on glass surfaces; and 54%, 49% and 93% on catheter surfaces when treated using 50 μM eugenol or 0.3 mM PLA and their combinations, respectively. The in vitro finding in the reduction of biofilm development was further validated in vivo using a catheter associated medaka fish biofilm model. Our results indicate that a combination of QS inhibitors targeting different QS pathways should be selected while designing therapeutic molecules to achieve maximum QS mediated biofilm inhibition and clinical outcome against P. aeruginosa.
Collapse
Affiliation(s)
- Mohammad Shariff
- Centre for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, Kerala, 682041, India
| | - Maitrayee Chatterjee
- Centre for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, Kerala, 682041, India
| | - Sharon D Morris
- Centre for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, Kerala, 682041, India
| | - Vinod Paul
- Centre for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, Kerala, 682041, India
| | - V Anil Kumar
- Centre for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, Kerala, 682041, India
| | - C Gopi Mohan
- Centre for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, Kerala, 682041, India
| | - Bindhu Paul-Prasanth
- Centre for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, Kerala, 682041, India
| | - Raja Biswas
- Centre for Nanosciences and Molecular medicine, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, Kerala, 682041, India
| |
Collapse
|
34
|
Yamabe K, Arakawa Y, Shoji M, Miyamoto K, Tsuchiya T, Minoura K, Akeda Y, Tomono K, Onda M. Enhancement ofAcinetobacterbaumanniibiofilm growth by cephem antibiotics via enrichment of protein and extracellular DNAin thebiofilm matrices. J Appl Microbiol 2022; 133:2002-2013. [PMID: 35818769 PMCID: PMC9539989 DOI: 10.1111/jam.15712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
AIMS To determine the effects of subinhibitory concentrations of eight cephem and carbapenem antibiotics on thebiofilm formation ofAcinetobacterbaumanniicells and examine itseffect on pre-established biofilms. METHODS AND RESULTS Effects of antibiotics on biofilm formation were assayed using microtiter plates with polystyrene peg-lids.Cefmetazole, ceftriaxone, ceftazidime, and cefpirome increased the biomass of pre-established biofilms on pegs in the range of their sub-minimum inhibitory concentrations, whereas none increased biofilm formation by planktonic cells. Carbapenems had a negative effect.The constituents of antibiotic-induced biofilms were analyzed. Ceftriaxoneor ceftazidimetreatment markedly increased the matrix constituent amounts in the biofilms (carbohydrate, 2.7-fold; protein, 8.9-12.7-fold; lipid, 3.3-3.6-fold; DNA, 9.1-12.2-fold; outer membrane vesicles, 2.7-3.8-fold; and viable cells,6.8-10.1-fold).The antibiotic-enhanced biofilmshad increased outer membrane protein A and were resistant to the anti-biofilm effect of azithromycin. CONCLUSIONS Some cephems increased the biomass of pre-established biofilms in the ranges of their sub-minimum inhibitory concentrations.The antibiotic-enhanced biofilmspossessed more virulent characteristics than normal biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY Incomplete administration of certain cephems followingbiofilm-related Ac.baumannii infectionscould adversely cause exacerbated and chronic clinical results.
Collapse
Affiliation(s)
- K Yamabe
- Department of Social and Administrative Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Y Arakawa
- Department of Social and Administrative Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - M Shoji
- Department of Social and Administrative Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - K Miyamoto
- Department of Microbiology and Infection Control, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - T Tsuchiya
- Department of Microbiology and Infection Control, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - K Minoura
- Joint Research Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Y Akeda
- National Institute of Infectious Diseases, Tokyo, Japan
| | - K Tomono
- Osaka Institute of Public Health, Osaka, Japan
| | - M Onda
- Department of Social and Administrative Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|
35
|
Characterization of Distinct Biofilm Cell Subpopulations and Implications in Quorum Sensing and Antibiotic Resistance. mBio 2022; 13:e0019122. [PMID: 35695457 PMCID: PMC9239111 DOI: 10.1128/mbio.00191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacteria change phenotypically in response to their environment. Free swimming cells transition to biofilm communities that promote cellular cooperativity and resistance to stressors and antibiotics. We uncovered three subpopulations of cells with diverse phenotypes from a single-species Pseudomonas aeruginosa PA14 biofilm, and used a series of steps to isolate, characterize, and map these cell subpopulations in a biofilm. The subpopulations were distinguishable by size and morphology using dynamic light scattering (DLS) and scanning electron microscopy (SEM). Additionally, growth and dispersal of biofilms originating from each cell subpopulation exhibited contrasting responses to antibiotic challenge. Cell subpopulation surface charges were distinctly different, which led us to examine the ionizable surface molecules associated with each subpopulation using mass spectrometry. Matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of cell subpopulations revealed ions unique to each subpopulation of cells that significantly co-localized with ions associated with quorum sensing. Transcript levels of algR, lasR, and rhlI in subpopulations isolated from biofilms differed from levels in planktonic stationary and mid-log cell subpopulations. These studies provide insight into diverse phenotypes, morphologies, and biochemistries of PA14 cell subpopulations for potential applications in combating bacterial pathogenesis, with medical, industrial, and environmental complications.
Collapse
|
36
|
Contribution of Membrane Vesicle to Reprogramming of Bacterial Membrane Fluidity in Pseudomonas aeruginosa. mSphere 2022; 7:e0018722. [PMID: 35603537 PMCID: PMC9241526 DOI: 10.1128/msphere.00187-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of resisting environmental insults by applying various strategies, including regulating membrane fluidity and producing membrane vesicles (MVs). This study examined the difference in membrane fluidity between planktonic and biofilm modes of growth in P. aeruginosa and whether the ability to alter membrane rigidity in P. aeruginosa could be transferred via MVs. To this end, planktonic and biofilm P. aeruginosa were compared with respect to the lipid composition of their membranes and their MVs and the expression of genes contributing to alteration of membrane fluidity. Additionally, viscosity maps of the bacterial membrane in planktonic and biofilm lifestyles and under the effect of incubation with bacterial MVs were obtained. Further, the growth rate and biofilm formation capability of P. aeruginosa in the presence of MVs were compared. Results showed that the membrane of the biofilm bacteria is significantly less fluid than the membrane of the planktonic bacteria and is enriched with saturated fatty acids. Moreover, the enzymes involved in altering the structure of existing lipids and favoring membrane rigidification are overexpressed in the biofilm bacteria. MVs of biofilm P. aeruginosa elicit membrane rigidification and delay the bacterial growth in the planktonic lifestyle; conversely, they enhance biofilm development in P. aeruginosa. Overall, the study describes the interplay between the planktonic and biofilm bacteria by shedding light on the role of MVs in altering membrane fluidity. IMPORTANCE Membrane rigidification is a survival strategy in Pseudomonas aeruginosa exposed to stress. Despite various studies dedicated to the mechanism behind this phenomenon, not much attention has been paid to the contribution of the bacterial membrane vesicles (MVs) in this regard. This study revealed that P. aeruginosa rigidifies its membrane in the biofilm mode of growth. Additionally, the capability of decreasing membrane fluidity is transferable to the bacterial population via the bacterial MVs, resulting in reprogramming of bacterial membrane fluidity. Given the importance of membrane rigidification for decreasing the pathogen’s susceptibility to antimicrobials, elucidation of the conditions leading to such biophysicochemical modulation of the P. aeruginosa membrane should be considered for the purpose of developing therapeutic approaches against this resistant pathogen.
Collapse
|
37
|
Du B, Wang S, Chen G, Wang G, Liu L. Nutrient starvation intensifies chlorine disinfection-stressed biofilm formation. CHEMOSPHERE 2022; 295:133827. [PMID: 35122818 DOI: 10.1016/j.chemosphere.2022.133827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/09/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Bacterial surface attachment and subsequent biofilm expansion represent an essential adaptation to environmental signals and stresses, which are of great concern for many natural and engineered ecosystems. Yet the underlying mechanisms and driving forces of biofilm formation in a chlorinated and nutrient-restricted system remain sketchy. In this study, we coupled an experimental investigation and modeling simulation to understand how chlorination and nutrient limitation conspire to form biofilm using Pseudomonas aeruginosa as a model bacterium. Experimental results showed that moderate chlorination at 1.0 mg/L led to biofilm development amplified to 2.6 times of those without chlorine, while additional nutrient limitation (of 1/50-diluted or 0.4 g/L LB broth culture) achieved 4.6 times increment as compared to those of undiluted scenarios (of 20 g/L LB broth culture) with absence of chlorination after 24 h exposure. Meanwhile, intermediate chlorination stimulated instant flagellar motility and subsequently extracellular polymeric substances (EPS) secretion, particularly under limited nutrient condition (of 1/50-diluted or 0.4 g/L LB broth culture) that retarded chlorine consumption and provoked bacterial nutrient-limitation response. From our simulations, chlorine and resource levels along with associated spatio-temporal variations collectively drove bacterial cell movement and EPS excretion. Our results demonstrated that restraining nutrient intensified chlorination-excited cell movement and EPS production that reinforced biological and cell-surface interactions, thereby encouraging bacterial surface attachment and subsequent biofilm development. The findings provide the insights into the linkage of disinfectant and nutrient-regulated bacterial functional responses with consequent micro-habitats and biofilm dynamics.
Collapse
Affiliation(s)
- Bang Du
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shudong Wang
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guowei Chen
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Liu
- School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
38
|
Caldara M, Belgiovine C, Secchi E, Rusconi R. Environmental, Microbiological, and Immunological Features of Bacterial Biofilms Associated with Implanted Medical Devices. Clin Microbiol Rev 2022; 35:e0022120. [PMID: 35044203 PMCID: PMC8768833 DOI: 10.1128/cmr.00221-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spread of biofilms on medical implants represents one of the principal triggers of persistent and chronic infections in clinical settings, and it has been the subject of many studies in the past few years, with most of them focused on prosthetic joint infections. We review here recent works on biofilm formation and microbial colonization on a large variety of indwelling devices, ranging from heart valves and pacemakers to urological and breast implants and from biliary stents and endoscopic tubes to contact lenses and neurosurgical implants. We focus on bacterial abundance and distribution across different devices and body sites and on the role of environmental features, such as the presence of fluid flow and properties of the implant surface, as well as on the interplay between bacterial colonization and the response of the human immune system.
Collapse
Affiliation(s)
- Marina Caldara
- Interdepartmental Center on Safety, Technologies, and Agri-food Innovation (SITEIA.PARMA), University of Parma, Parma, Italy
| | - Cristina Belgiovine
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Scuola di Specializzazione in Microbiologia e Virologia, Università degli Studi di Pavia, Pavia, Italy
| | - Eleonora Secchi
- Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Roberto Rusconi
- IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele–Milan, Italy
| |
Collapse
|
39
|
Katharios-Lanwermeyer S, O’Toole GA. Biofilm Maintenance as an Active Process: Evidence that Biofilms Work Hard to Stay Put. J Bacteriol 2022; 204:e0058721. [PMID: 35311557 PMCID: PMC9017327 DOI: 10.1128/jb.00587-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Biofilm formation represents a critical strategy whereby bacteria can tolerate otherwise damaging environmental stressors and antimicrobial insults. While the mechanisms bacteria use to establish a biofilm and disperse from these communities have been well-studied, we have only a limited understanding of the mechanisms required to maintain these multicellular communities. Indeed, until relatively recently, it was not clear that maintaining a mature biofilm could be considered an active, regulated process with dedicated machinery. Using Pseudomonas aeruginosa as a model system, we review evidence from recent studies that support the model that maintenance of these persistent, surface-attached communities is indeed an active process. Biofilm maintenance mechanisms include transcriptional regulation and second messenger signaling (including the production of extracellular polymeric substances). We also discuss energy-conserving pathways that play a key role in the maintenance of these communities. We hope to highlight the need for further investigation to uncover novel biofilm maintenance pathways and suggest the possibility that such pathways can serve as novel antibiofilm targets.
Collapse
Affiliation(s)
| | - G. A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
40
|
Paquete CM, Rosenbaum MA, Bañeras L, Rotaru AE, Puig S. Let's chat: Communication between electroactive microorganisms. BIORESOURCE TECHNOLOGY 2022; 347:126705. [PMID: 35065228 DOI: 10.1016/j.biortech.2022.126705] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Electroactive microorganisms can exchange electrons with other cells or conductive interfaces in their extracellular environment. This property opens the way to a broad range of practical biotechnological applications, from manufacturing sustainable chemicals via electrosynthesis, to bioenergy, bioelectronics or improved, low-energy demanding wastewater treatments. Besides, electroactive microorganisms play key roles in environmental bioremediation, significantly impacting process efficiencies. This review highlights our present knowledge on microbial interactions promoting the communication between electroactive microorganisms in a biofilm on an electrode in bioelectrochemical systems (BES). Furthermore, the immediate knowledge gaps that must be closed to develop novel technologies will also be acknowledged.
Collapse
Affiliation(s)
- Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-156 Oeiras, Portugal
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Lluís Bañeras
- Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, C/ Maria Aurèlia Capmany, 40, E-17003 Girona, Spain
| | - Amelia-Elena Rotaru
- Faculty of Natural Sciences, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Carrer Maria Aurelia Capmany, 69, E-17003 Girona, Spain.
| |
Collapse
|
41
|
Zhao Z, Wang L, Miao J, Zhang Z, Ruan J, Xu L, Guo H, Zhang M, Qiao W. Regulation of the formation and structure of biofilms by quorum sensing signal molecules packaged in outer membrane vesicles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151403. [PMID: 34742801 DOI: 10.1016/j.scitotenv.2021.151403] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Quorum sensing signal molecules can be used to regulate the formation of biofilm, but it has not been reported that outer membrane vesicles (OMVs) can package and mediate signal molecules to regulate biofilm. We isolated and purified OMVs packaged with Pseudomonas quinolone signal (PQS) released by Pseudomonas aeruginosa and studied the effects of OMV-mediated PQS on the formation and structure of biofilms. OMV-mediated PQS promoted the growth of biofilm, and the cells in the biofilm were stretched, deformed and "bridged" with the surrounding cells. Raman spectrometry showed that the structure and components of the extracellular polymeric substances of P. aeruginosa changed; moreover extracellular proteins rather than polysaccharides played the dominant role in the formation of P. aeruginosa biofilms when regulated by OMV-mediated PQS. In the combination biofilm formed by P. aeruginosa and Staphylococcus aureus, the mediation of OMVs enhanced the inhibitory effect of PQS to the growth of S. aureus, resulting a decrease in EPS produced by the two bacteria. OMV-mediated PQS led to changes in the biodiversity, richness and structure of the microbial community in biofilms formed by active sludge. This work reveals the mechanism of OMVs mediated signal molecules regulating biofilm, which lays a new theoretical and practical foundation for guiding the operation of low-level of biofouling MBRs.
Collapse
Affiliation(s)
- Zhenqing Zhao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lianjie Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahui Miao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ziyan Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jingqi Ruan
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lijie Xu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - He Guo
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
42
|
Yasuda M, Yamamoto T, Nagakubo T, Morinaga K, Obana N, Nomura N, Toyofuku M. Phage Genes Induce Quorum Sensing Signal Release through Membrane Vesicle Formation. Microbes Environ 2022; 37. [PMID: 35082176 PMCID: PMC8958291 DOI: 10.1264/jsme2.me21067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Membrane vesicles (MVs) released from the bacterium Paracoccus denitrificans Pd1222 are enriched with the quorum sensing (QS) signaling molecule N-hexadecanoyl-l-homoserine lactone (C16-HSL). However, the biogenesis of MVs in Pd1222 remains unclear. Investigations on MV formation are crucial for obtaining a more detailed understanding of the dynamics of MV-assisted signaling. In the present study, live-cell imaging showed that P. denitrificans Pd1222 produced MVs through cell lysis under DNA-damaging conditions. DNA sequencing of MVs and a transcriptome ana-lysis of cells indicated that the expression of a prophage region was up-regulated at the onset of MV formation under DNA-damaging conditions. A further sequence ana-lysis identified a putative endolysin (Pden_0381) and holin (Pden_0382) in the prophage region. The expression of these genes was regulated by RecA. Using gene knockout mutants, we showed that prophage-encoded endolysin was critical for MV formation by P. denitrificans Pd1222 under DNA-damaging conditions. MV triggering by endolysin was dependent on the putative holin, which presumably transported endolysin to the periplasmic space. C16-HSL quantification revealed that more signals were released into the milieu as a consequence of the effects of endolysin. Using a QS reporter strain, we found that the QS response in P. denitrificans was stimulated by inducing the expression of endolysin. Collectively, these results provide novel insights into the mechanisms by which a bacterial cell-to-cell communication system is manipulated by phage genes.
Collapse
Affiliation(s)
- Marina Yasuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Toshiki Nagakubo
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Kana Morinaga
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Nozomu Obana
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba.,Microbiology Research Center for Sustainability, University of Tsukuba
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability, University of Tsukuba
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Microbiology Research Center for Sustainability, University of Tsukuba.,Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE)
| |
Collapse
|
43
|
Heredia M, Andes D. Contributions of Extracellular Vesicles to Fungal Biofilm Pathogenesis. Curr Top Microbiol Immunol 2022; 432:67-79. [PMID: 34972879 DOI: 10.1007/978-3-030-83391-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are produced by all kingdoms of life and have been increasingly recognized as a key aspect of microbial pathogenicity. These membrane-bound compartments serve as secretory vehicles for the delivery of macromolecules to the extracellular environment. Studies over the past several decades have revealed that microbial EVs are highly suited to the biology and environmental context of the organism secreting them. Fungal EVs have been described in at least 12 species and have diverse functions. These functions include, but are not limited to, molecular transport across the cell wall, immunomodulation, cell-cell communication, export of virulence factors and nucleic acids, extracellular matrix (ECM) production, and induction of drug resistance. This chapter will explore the contributions of EVs to fungal pathogenesis and virulence, with a detailed focus on the role of C. albicans biofilm EVs in matrix biogenesis and antifungal resistance. Brief commentary on EV function in bacterial biofilms will also be provided for comparison, and suggestions for areas of future investigation in this field will be discussed.
Collapse
Affiliation(s)
- Marienela Heredia
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - David Andes
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
44
|
Antimicrobial Weapons of Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:223-256. [DOI: 10.1007/978-3-031-08491-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Gut Microbiota Extracellular Vesicles as Signaling Molecules Mediating Host-Microbiota Communications. Int J Mol Sci 2021; 22:ijms222313166. [PMID: 34884969 PMCID: PMC8658398 DOI: 10.3390/ijms222313166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past decade, gut microbiota dysbiosis has been linked to many health disorders; however, the detailed mechanism of this correlation remains unclear. Gut microbiota can communicate with the host through immunological or metabolic signalling. Recently, microbiota-released extracellular vesicles (MEVs) have emerged as significant mediators in the intercellular signalling mechanism that could be an integral part of microbiota-host communications. MEVs are small membrane-bound vesicles that encase a broad spectrum of biologically active compounds (i.e., proteins, mRNA, miRNA, DNA, carbohydrates, and lipids), thus mediating the horizontal transfer of their cargo across intra- and intercellular space. In this study, we provide a comprehensive and in-depth discussion of the biogenesis of microbial-derived EVs, their classification and routes of production, as well as their role in inter-bacterial and inter-kingdom signaling.
Collapse
|
46
|
Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 2021; 52:1701-1718. [PMID: 34558029 PMCID: PMC8578483 DOI: 10.1007/s42770-021-00624-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/19/2021] [Indexed: 01/08/2023] Open
Abstract
The assembly of microorganisms over a surface and their ability to develop resistance against available antibiotics are major concerns of interest. To survive against harsh environmental conditions including known antibiotics, the microorganisms form a unique structure, referred to as biofilm. The mechanism of biofilm formation is triggered and regulated by quorum sensing, hostile environmental conditions, nutrient availability, hydrodynamic conditions, cell-to-cell communication, signaling cascades, and secondary messengers. Antibiotic resistance, escape of microbes from the body's immune system, recalcitrant infections, biofilm-associated deaths, and food spoilage are some of the problems associated with microbial biofilms which pose a threat to humans, veterinary, and food processing sectors. In this review, we focus in detail on biofilm formation, its architecture, composition, genes and signaling cascades involved, and multifold antibiotic resistance exhibited by microorganisms dwelling within biofilms. We also highlight different physical, chemical, and biological biofilm control strategies including those based on plant products. So, this review aims at providing researchers the knowledge regarding recent advances on the mechanisms involved in biofilm formation at the molecular level as well as the emergent method used to get rid of antibiotic-resistant and life-threatening biofilms.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India.
| |
Collapse
|
47
|
Lahiri D, Nag M, Dey A, Sarkar T, Pattnaik S, Ghosh S, Edinur HA, Pati S, Kari ZA, Ray RR. Exosome-associated host–pathogen interaction: a potential effect of biofilm formation. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractExosomes being non-ionized micro-vesicles with a size range of 30–100 nm possess the ability to bring about intracellular communication and intercellular transport of various types of cellular components like miRNA, mRNA, DNA, and proteins. This is achieved through the targeted transmission of various inclusions to nearby or distant tissues. This is associated with the effective communication of information to bring about changes in physiological properties and functional attributes. The extracellular vesicles (EVs), produced by fungi, parasites, and bacteria, are responsible to bring about modulation/alteration of the immune responses exerted by the host body. The lipids, nucleic acids, proteins, and glycans of EVs derived from the pathogens act as the ligands of different families of pattern recognition receptors of the host body. The bacterial membrane vesicles (BMVs) are responsible for the transfer of small RNA species, along with other types of noncoding RNA thereby playing a key role in the regulation of the host immune system. Apart from immunomodulation, the BMVs are also responsible for bacterial colonization in the host tissue, biofilm formation, and survival therein showing antibiotic resistance, leading to pathogenesis and virulence. This mini-review would focus on the role of exosomes in the development of biofilm and consequent immunological responses within the host body along with an analysis of the mechanism associated with the development of resistance.
Collapse
|
48
|
Baeza N, Delgado L, Comas J, Mercade E. Phage-Mediated Explosive Cell Lysis Induces the Formation of a Different Type of O-IMV in Shewanella vesiculosa M7 T. Front Microbiol 2021; 12:713669. [PMID: 34690958 PMCID: PMC8529241 DOI: 10.3389/fmicb.2021.713669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Shewanella vesiculosa M7T is a cold-adapted Antarctic bacterium that has a great capacity to secrete membrane vesicles (MVs), making it a potentially excellent model for studying the vesiculation process. S. vesiculosa M7T undergoes a blebbing mechanism to produce different types of MVs, including outer membrane vesicles and outer-inner membrane vesicles (O-IMVs). More recently, other mechanisms have been considered that could lead to the formation of O-IMVs derived from prophage-mediated explosive cell lysis in other bacteria, but it is not clear if they are of the same type. The bacterial growth phase could also have a great impact on the type of MVs, although there are few studies on the subject. In this study, we used high-resolution flow cytometry, transmission electron microscopy, and cryo-electron microscopy (Cryo-EM) analysis to determine the amount and types of MVs S. vesiculosa M7T secreted during different growth phases. We show that MV secretion increases during the transition from the late exponential to the stationary phase. Moreover, prophage-mediated explosive cell lysis is activated in S. vesiculosa M7T, increasing the heterogeneity of both single- and double-layer MVs. The sequenced DNA fragments from the MVs covered the entire genome, confirming this explosive cell lysis mechanism. A different structure and biogenesis mechanisms for the explosive cell lysis-derived double-layered MVs was observed, and we propose to name them explosive O-IMVs, distinguishing them from the blebbing O-IMVs; their separation is a first step to elucidate their different functions. In our study, we used for the first time sorting by flow cytometry and Cryo-EM analyses to isolate bacterial MVs based on their nucleic acid content. Further improvements and implementation of bacterial MV separation techniques is essential to develop more in-depth knowledge of MVs.
Collapse
Affiliation(s)
- Nicolás Baeza
- Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Universitat de Barcelona, Barcelona, Spain
| | - Lidia Delgado
- Crio-Microscòpia Electrònica, Centres Científics i Tecnològics, Universitat de Barcelona (CCiTUB), Barcelona, Spain
| | - Jaume Comas
- Citometria, Centres Científics i Tecnològics, Universitat de Barcelona (CCiTUB), Barcelona, Spain
| | - Elena Mercade
- Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Hong Q, Huo S, Tang H, Qu X, Yue B. Smart Nanomaterials for Treatment of Biofilm in Orthopedic Implants. Front Bioeng Biotechnol 2021; 9:694635. [PMID: 34589470 PMCID: PMC8473796 DOI: 10.3389/fbioe.2021.694635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023] Open
Abstract
Biofilms refer to complex bacterial communities that are attached to the surface of animate or inanimate objects, which highly resist the antibiotics or the host immune defense mechanisms. Pathogenic biofilms in medicine are general, chronic, and even costly, especially on medical devices and orthopedic implants. Bacteria within biofilms are the cause of many persistent infections, which are almost impossible to eradicate. Though some progress has been made in comprehending the mechanisms of biofilm formation and persistence, novel alternative compounds or strategies and effective anti-biofilm antibiotics are still lacking. Smart materials of nano size which are able to respond to an external stimulus or internal environment have a great range of applications in clinic. Recently, smart nanomaterials with or without carriage of antibiotics, targeting specific bacteria and biofilm under some stimuli, have shown great potential for pathogenic biofilm and resident bacteria eradication. First, this review briefly summarizes and describes the significance of biofilms and the process of biofilm formation. Then, we focus on some of the latest research studies involving biofilm elimination, which probably could be applied in orthopedic implants. Finally, some outstanding challenges and limitations that need to be settled urgently in order to make smart nanomaterials effectively target and treat implant biofilms are also discussed. It is hoped that there will be more novel anti-biofilm strategies for biofilm infection in the prospective future.
Collapse
Affiliation(s)
| | | | | | - Xinhua Qu
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Within-Host Adaptation of Staphylococcus aureus in a Bovine Mastitis Infection Is Associated with Increased Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168840. [PMID: 34445550 PMCID: PMC8396210 DOI: 10.3390/ijms22168840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Within-host adaptation is a typical feature of chronic, persistent Staphylococcus aureus infections. Research projects addressing adaptive changes due to bacterial in-host evolution increase our understanding of the pathogen’s strategies to survive and persist for a long time in various hosts such as human and bovine. In this study, we investigated the adaptive processes of S. aureus during chronic, persistent bovine mastitis using a previously isolated isogenic strain pair from a dairy cow with chronic, subclinical mastitis, in which the last variant (host-adapted, Sigma factor SigB-deficient) quickly replaced the initial, dominant variant. The strain pair was cultivated under specific in vitro infection-relevant growth-limiting conditions (iron-depleted RPMI under oxygen limitation). We used a combinatory approach of surfaceomics, molecular spectroscopic fingerprinting and in vitro phenotypic assays. Cellular cytotoxicity assays using red blood cells and bovine mammary epithelial cells (MAC-T) revealed changes towards a more cytotoxic phenotype in the host-adapted isolate with an increased alpha-hemolysin (α-toxin) secretion, suggesting an improved capacity to penetrate and disseminate the udder tissue. Our results foster the hypothesis that within-host evolved SigB-deficiency favours extracellular persistence in S. aureus infections. Here, we provide new insights into one possible adaptive strategy employed by S. aureus during chronic, bovine mastitis, and we emphasise the need to analyse genotype–phenotype associations under different infection-relevant growth conditions.
Collapse
|