1
|
Allen NR, Huson KM, Prchal L, Robinson MW, Brophy PM, Morphew RM. Detoxome Capacity of the Adult Rumen Fluke Calicophoron daubneyi Extends into Its Secreted Extracellular Vesicles. J Proteome Res 2025; 24:624-638. [PMID: 39829022 DOI: 10.1021/acs.jproteome.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Helminth parasites have long adapted to survive hostile host environments and can likely adapt against the chemical anthelmintic challenge. One proposed adaptation route is via Phase I and II xenobiotic metabolizing enzymes (XMEs). For successful Helminth pharmacotherapy discovery programs, a working understanding of Helminth-derived chemical detoxification, the Helminth detoxome, is a must. At present, the detoxome of a newly emerging Helminth parasite, the rumen fluke Calicophoron daubneyi, remains unexplored. Thus, a combined bioinformatics, sub-, and global-proteomic approach has been employed to examine the detoxome of adult C. daubneyi. Transcriptome analysis revealed a complement of Phase I (cytochrome P450s and monoamine oxygenases) and Phase II (glutathione transferases [GSTs] and sulfotransferases) XMEs. Affinity-led subproteomic exploration of the GSTs revealed six GST isoforms in adult rumen fluke (CdGST-Mu1-2, S1, and S3-5), with global approaches identifying additional GSTs (CdGST-O1-2, Z1, and S2) and a unique egg-specific variant (CdGST-S6). Examination of C. daubneyi extracellular vesicles revealed a GST profile replicating that of the adult with the absence of two isoforms (CdGST-S2 and S4), with an additional identification of a sulfotransferase. These data represent the first exploration into the complete rumen fluke detoxification capacity and will provide direction for future anthelmintic discovery programs.
Collapse
Affiliation(s)
- Nathan Rhys Allen
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DA, U.K
| | - Kathryn M Huson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland BT9 5BY, U.K
| | - Lukas Prchal
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DA, U.K
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland BT9 5BY, U.K
| | - Peter M Brophy
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DA, U.K
| | - Russell M Morphew
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DA, U.K
| |
Collapse
|
2
|
Gramberg S, Puckelwaldt O, Schmitt T, Lu Z, Haeberlein S. Spatial transcriptomics of a parasitic flatworm provides a molecular map of drug targets and drug resistance genes. Nat Commun 2024; 15:8918. [PMID: 39414795 PMCID: PMC11484910 DOI: 10.1038/s41467-024-53215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The spatial organization of gene expression dictates tissue functions in multicellular parasites. Here, we present the spatial transcriptome of a parasitic flatworm, the common liver fluke Fasciola hepatica. We identify gene expression profiles and marker genes for eight distinct tissues and validate the latter by in situ hybridization. To demonstrate the power of our spatial atlas, we focus on genes with substantial medical importance, including vaccine candidates (Ly6 proteins) and drug resistance genes (glutathione S-transferases, ABC transporters). Several of these genes exhibit unique expression patterns, indicating tissue-specific biological functions. Notably, the prioritization of tegumental protein kinases identifies a PKCβ, for which small-molecule targeting causes parasite death. Our comprehensive gene expression map provides unprecedented molecular insights into the organ systems of this complex parasitic organism, serving as a valuable tool for both basic and applied research.
Collapse
Affiliation(s)
- Svenja Gramberg
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Tobias Schmitt
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Zhigang Lu
- Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
3
|
Kim J, Sohn WM, Bae YA. Prostaglandin synthase activity of sigma- and mu-class glutathione transferases in a parasitic trematode, Clonorchis sinensis. PARASITES, HOSTS AND DISEASES 2024; 62:205-216. [PMID: 38835261 PMCID: PMC11150925 DOI: 10.3347/phd.24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 06/06/2024]
Abstract
Sigma-class glutathione transferase (GST) proteins with dual GST and prostaglandin synthase (PGS) activities play a crucial role in the establishment of Clonorchis sinensis infection. Herein, we analyzed the structural and enzymatic properties of sigma-class GST (CsGST-σ) proteins to obtain insight into their antioxidant and immunomodulatory functions in comparison with mu-class GST (CsGST-μ) proteins. CsGST-σ proteins conserved characteristic structures, which had been described in mammalian hematopoietic prostaglandin D2 synthases. Recombinant forms of these CsGST-σ and CsGST-μ proteins expressed in Escherichia coli exhibited considerable degrees of GST and PGS activities with substantially different specific activities. All recombinant proteins displayed higher affinities toward prostaglandin H2 (PGS substrate; average Km of 30.7 and 3.0 μm for prostaglandin D2 [PGDS] and E2 synthase [PGES], respectively) than those toward CDNB (GST substrate; average Km of 1,205.1 μm). Furthermore, the catalytic efficiency (Kcat/Km) of the PGDS/PGES activity was higher than that of GST activity (average Kcat/Km of 3.1, 0.7, and 7.0×10-3 s-1μm-1 for PGDS, PGES, and GST, respectively). Our data strongly suggest that the C. sinensis sigma- and mu-class GST proteins are deeply involved in regulating host immune responses by generating PGD2 and PGE2 in addition to their roles in general detoxification.
Collapse
Affiliation(s)
- Jiyoung Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999,
Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Young-An Bae
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999,
Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999,
Korea
| |
Collapse
|
4
|
Northcote HM, Wititkornkul B, Cutress DJ, Allen ND, Brophy PM, Wonfor RE, Morphew RM. A dominance of Mu class glutathione transferases within the equine tapeworm Anoplocephala perfoliata. Parasitology 2024; 151:282-294. [PMID: 38200699 PMCID: PMC11007280 DOI: 10.1017/s0031182024000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
The most common equine tapeworm, Anoplocephala perfoliata, has often been neglected amongst molecular investigations and has been faced with limited treatment options. However, the recent release of a transcriptome dataset has now provided opportunities for in-depth analysis of A. perfoliata protein expression. Here, global, and sub-proteomic approaches were utilized to provide a comprehensive characterization of the A. perfoliata soluble glutathione transferases (GST) (ApGST). Utilizing both bioinformatics and gel-based proteomics, GeLC and 2D-SDS PAGE, the A. perfoliata ‘GST-ome’ was observed to be dominated with Mu class GST representatives. In addition, both Sigma and Omega class GSTs were identified, albeit to a lesser extent and absent from affinity chromatography approaches. Moreover, 51 ApGSTs were localized across somatic (47 GSTs), extracellular vesicles (EVs) (Whole: 1 GST, Surface: 2 GSTs) and EV depleted excretory secretory product (ESP) (9 GSTs) proteomes. In related helminths, GSTs have shown promise as novel anthelmintic or vaccine targets for improved helminth control. Thus, provides potential targets for understanding A. perfoliata novel infection mechanisms, host–parasite relationships and anthelmintic treatments.
Collapse
Affiliation(s)
- Holly M. Northcote
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - Boontarikaan Wititkornkul
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 80240, Thailand
| | - David J. Cutress
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - Nathan D. Allen
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - Peter M. Brophy
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - Ruth E. Wonfor
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - Russell M. Morphew
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| |
Collapse
|
5
|
Lalrinkima H, Jacob SS, Raina OK, Chandra D, Lalawmpuii K, Lalchhandama C, Behera P, Tolenkhomba TC. Superoxide dismutase inhibits cytotoxic killing of Fasciola gigantica newly excysted juveniles expressed by sheep invitro. Exp Parasitol 2022; 242:108369. [PMID: 36058254 DOI: 10.1016/j.exppara.2022.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/04/2022]
Abstract
Fasciola gigantica faces a series of threats from various free radicals produced by the host immune system during its invasion through the abdominal cavity and establishment in the bile duct of ruminants, limiting the fluke viability. The role of the superoxide radical produced by Muzaffarnagari sheep immune effector cells against F. gigantica newly excysted juveniles (NEJs) is highlighted in this study, as is the critical role of superoxide dismutase enzyme (SOD) in dismutation of superoxide radicals derived from host immune effector cells in vitro. Three concentrations of the ovine immune effector cells viz. 2.5, 5, and 10 × 106 cells were tested for their ability to induced cytotoxic killing of the parasite. All the three cell concentrations caused significant (p < 0.01) cytotoxic killing of NEJs in comparison to the control groups. Also, reduction of the immune effector cell concentration directly correlates with the NEJs killing. Attachment of immune effector cells to the parasite tegument in the presence of anti-F. gigantica antibodies was found to be critical in inducing NEJs killing via antibody-dependent cell-mediated cytotoxicity (ADCC). However, the addition of SOD greatly inhibits cytotoxic killing of NEJs, demonstrating the importance of SOD enzyme in fluke survival and parasite evasion of the host immunity. Thus, F. gigantica SOD warrants a promising candidate for immunoprophylactic studies in ruminants against the tropical liver fluke.
Collapse
Affiliation(s)
- H Lalrinkima
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India; ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - S S Jacob
- ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India; ICAR-NIVEDI, Bengaluru, Karnataka, India
| | - O K Raina
- ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India
| | - D Chandra
- ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India
| | - K Lalawmpuii
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - C Lalchhandama
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - P Behera
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| | - T C Tolenkhomba
- College of Veterinary Sciences and Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, India
| |
Collapse
|
6
|
Abdalla AM, Abdel Karim GSA. Biochemical characterization and peptide mass fingerprinting of two glutathione transferases from Biomphalaria alexandrina snails (Gastropoda: Planorbidae). J Genet Eng Biotechnol 2022; 20:99. [PMID: 35792934 PMCID: PMC9259769 DOI: 10.1186/s43141-022-00372-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/08/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The freshwater snails Biomphalaria alexandrina (Gastropoda: Planorbidae) has public health importance of being an intermediate host of Schistosoma mansoni, the parasite species that causes intestinal schistosomiasis in humans. Glutathione transferases (GSTs) play an important role in detoxification of a broad range of compounds including secondary metabolites and exogenous compounds. Studying GSTs in snails may clarify their role in detoxification of molluscicides. RESULTS Two glutathione transferases (BaGST2 and BaGST3) were purified and characterized from B. alexandrina snails. BaGST2 and BaGST3 were electrophoretically homogeneous preparations with subunit molecular weight of 23.6 kDa and molecular weight of 45 kDa. Isoelectric focusing of BaGST2 revealed the presence of two components at pI 4.47 and 4.67, while BaGST3 showed one band at pI 4.17. The specific activity of BaGST2 and BaGST3 toward 1-chloro-2,4-dinitrobenzene (CDNB) was 19.0 and 45.2 μmol/min/mg protein following 146- and 346-fold purification, respectively. The catalytic pH optima, km values, and the activation energies for BaGST2 and BaGST3 were determined. BaGST2 and BaGST3 were significantly inhibited by hematin and Cibacron Blue and to a less extent by bromosulfophthalein, S-butyl-GSH, S-hexyl-GSH, and S-P-bromobenzyl-GSH. BaGST2 and BaGST3 showed high activity against ethacrynic acid as substrate, and they also exhibited peroxidase activity on cumene hydroperoxide. The two enzymes showed identical patterns of lysine-C digestion after high-performance liquid chromatography. The amino acid sequences of three peptide fragments and peptide mass fingerprinting of fourteen peptides were used to predict the primary structure of BaGST2. A polypeptide of 206 amino acids (with 7 gaps, 3 of which could not identified) was predicted for BaGST2. The theoretical subunit molecular weight of BaGST2 is 22.6 kDa, with pI of 8.58. BaGST2 has 65% sequence identity and 78% positive with Biomphalaria glabrata GST7. The overall structure of BaGST2 at the N-terminal domain is identical to the canonical GST N-terminal domain, having the typical thioredoxin-like fold with a βαβ-α-ββα motif, whereas the C-terminal domain is made from 6 α-helices. A conservative GST-N-domain includes glutathione binding sites Y11, L17, Q53, M54, Q65, and S66, while a variable GST-C domain contains electrophilic substrate binding site H99, R102, A103, F106, K107, L161, and Y167. Phylogenetic tree showed that BaGST2 was clustered in the sigma group with GSTs sigma class from invertebrates and vertebrates. CONCLUSIONS We have purified and characterized two GSTs from B. alexandrina snails. Our study broadens the biochemical information on freshwater snail GSTs by demonstrating the role of BaGSTs in defense mechanisms against structurally different electrophilic compounds. BaGST2 and BaGST3 have Se-independent peroxidase activity, which indicates their role in cellular antioxidant defense by reducing organic hydroperoxides in B. alexandrina. A polypeptide chain of 206 amino acids was predicted. The primary structure of BaGST2 showed 65% sequence identity with Biomphalaria glabrata GST7. Sequence analysis indicates that BaGST2 is a GST-N-sigma-like with a thioredoxin-like superfamily. Phylogenetic tree confirms that BaGST2 belongs to the sigma class of GSTs superfamily.
Collapse
Affiliation(s)
- Abdel-Monem Abdalla
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. Box: 12622, Giza, Egypt.
| | - Ghada S A Abdel Karim
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. Box: 12622, Giza, Egypt
| |
Collapse
|
7
|
Wang X, Zhao C, Zhang G, Zhang K, Li Z, Shang Y, Ning C, Ji C, Xia X, Cai X, Qiao J, Meng Q. Molecular characterization of a novel GSTO2 of Fasciola hepatica and its roles in modulating murine macrophages. Parasite 2022; 29:16. [PMID: 35315767 PMCID: PMC8939299 DOI: 10.1051/parasite/2022016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Fascioliasis is an important zoonotic helminthic disease caused by Fasciola hepatica and poses a serious threat to global public health. To evade the immune response of its host (humans or animals), F. hepatica secretes various antioxidant enzymes such as glutathione transferase (GST) to facilitate its invasion, migration and parasitism in vivo. To investigate the biological functions of a novel omega-class GST (GSTO), the molecular features of GSTO2 of F. hepatica were analyzed by online software, and the biochemical properties in vitro of recombinant GSTO2 (rGSTO2) were dissected. Then, the regulatory roles of rGSTO2 protein in murine macrophages in vitro were further explored. The results revealed that the GSTO2 gene encodes 254 amino acids, which harbor the characteristic N-terminal domain (βαβαββα) and C-terminal domain (α-helical) of the cytoplasmic GST superfamily. GSTO2 was mainly expressed in F. hepatica vitelline follicles, intestinal tract, excretory pores and vitelline cells, with thioltransferase and dehydroascorbate reductase activities. Moreover, rGSTO2 protein could be taken up by murine macrophages and significantly inhibit the viability of macrophages. In addition, rGSTO2 protein could significantly promote apoptosis and modulate the expression of cytokines in macrophages. These findings suggested that F. hepatica GSTO2 plays an important role in modulating the physiological functions of macrophages, whereby this protein might be involved in immunomodulatory and anti-inflammatory roles during infection. This study provided new insights into the immune-evasion mechanism of F. hepatica and may contribute to the development of a potential anti-inflammatory agent.
Collapse
Affiliation(s)
- Xifeng Wang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chunguang Zhao
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Guowu Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kai Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhiyuan Li
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yunxia Shang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chengcheng Ning
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chunhui Ji
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xianzhu Xia
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Jun Qiao
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Qingling Meng
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
8
|
Ruiz-Jiménez C, Celias D, Valdés B, Ramos-Pérez WD, Cervi L, Espino AM. Fasciola hepatica fatty acid binding protein (Fh12) induces apoptosis and tolerogenic properties in murine bone marrow derived dendritic cells. Exp Parasitol 2021; 231:108174. [PMID: 34752732 DOI: 10.1016/j.exppara.2021.108174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/11/2021] [Accepted: 10/31/2021] [Indexed: 11/29/2022]
Abstract
In a previous study we demonstrated that Fasciola hepatica fatty acid binding protein (Fh12) significantly suppress macrophage function by inhibiting IL-6, IL-1β, tumor necrosis factor (TNF)-α and IL-12 production in TLR4-stimulated murine macrophages, an effect mediated through the signaling of CD14 co-receptor without affecting the viability of these cells. Given that dendritic cells (DCs) are immune cells that play a central role in the initiation of primary immune responses and that are the only antigen-presenting cells capable of stimulating naïve T-cells, in the present study we investigated the effect of Fh12 on DCs. We found that Fh12 exerts a strong suppressive effect on activation and function of DCs. However, in contrast to the effect observed on macrophages, Fh12 induces early and late apoptosis of DCs being this phenomenon dose-dependent and CD14-coreceptor independent. At low concentration Fh12 modulates the LPS-induced DCs maturation status by suppressing the MHC-II, and co-stimulatory molecules CD40 and CD80 surface expression together with the pro-inflammatory cytokines IL-12p70 and IL-6 production whereas increase the IL-10 levels. Besides, Fh12 decreased the ability of LPS-activated DCs to induce IFN-γ production against allogeneic splenocytes, while increasing IL-4 production. We have described for the first time the ability of Fh12 to modify selectively the viability of DCs by apoptosis induction. The selective diminution in DCs survival could be a F. hepatica strategy in order to prevent a host immune response during the earliest phases of infection.
Collapse
Affiliation(s)
- Caleb Ruiz-Jiménez
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, University of Puerto Rico, School of Medicine, San Juan, PR, USA
| | - Daiana Celias
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, National University of Cordoba, Argentina
| | - Bianca Valdés
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Willy D Ramos-Pérez
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, University of Puerto Rico, School of Medicine, San Juan, PR, USA
| | - Laura Cervi
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, National University of Cordoba, Argentina
| | - Ana M Espino
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, University of Puerto Rico, School of Medicine, San Juan, PR, USA.
| |
Collapse
|
9
|
Wititkornkul B, Hulme BJ, Tomes JJ, Allen NR, Davis CN, Davey SD, Cookson AR, Phillips HC, Hegarty MJ, Swain MT, Brophy PM, Wonfor RE, Morphew RM. Evidence of Immune Modulators in the Secretome of the Equine Tapeworm Anoplocephala perfoliata. Pathogens 2021; 10:pathogens10070912. [PMID: 34358062 PMCID: PMC8308605 DOI: 10.3390/pathogens10070912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Anoplocephala perfoliata is a neglected gastro-intestinal tapeworm, commonly infecting horses worldwide. Molecular investigation of A. perfoliata is hampered by a lack of tools to better understand the host-parasite interface. This interface is likely influenced by parasite derived immune modulators released in the secretome as free proteins or components of extracellular vesicles (EVs). Therefore, adult RNA was sequenced and de novo assembled to generate the first A. perfoliata transcriptome. In addition, excretory secretory products (ESP) from adult A. perfoliata were collected and EVs isolated using size exclusion chromatography, prior to proteomic analysis of the EVs, the EV surface and EV depleted ESP. Transcriptome analysis revealed 454 sequences homologous to known helminth immune modulators including two novel Sigma class GSTs, five α-HSP90s, and three α-enolases with isoforms of all three observed within the proteomic analysis of the secretome. Furthermore, secretome proteomics identified common helminth proteins across each sample with known EV markers, such as annexins and tetraspanins, observed in EV fractions. Importantly, 49 of the 454 putative immune modulators were identified across the secretome proteomics contained within and on the surface of EVs in addition to those identified in free ESP. This work provides the molecular tools for A. perfoliata to reveal key players in the host-parasite interaction within the horse host.
Collapse
Affiliation(s)
- Boontarikaan Wititkornkul
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 80240, Thailand
| | - Benjamin J. Hulme
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - John J. Tomes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Nathan R. Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Chelsea N. Davis
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Sarah D. Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Alan R. Cookson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Helen C. Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Matthew J. Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Martin T. Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Peter M. Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
| | - Ruth E. Wonfor
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Correspondence: (R.E.W.); (R.M.M.)
| | - Russell M. Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (B.W.); (B.J.H.); (J.J.T.); (N.R.A.); (C.N.D.); (S.D.D.); (A.R.C.); (H.C.P.); (M.J.H.); (M.T.S.); (P.M.B.)
- Correspondence: (R.E.W.); (R.M.M.)
| |
Collapse
|
10
|
Stuart RB, Zwaanswijk S, MacKintosh ND, Witikornkul B, Brophy PM, Morphew RM. The soluble glutathione transferase superfamily: role of Mu class in triclabendazole sulphoxide challenge in Fasciola hepatica. Parasitol Res 2021; 120:979-991. [PMID: 33501588 PMCID: PMC7889535 DOI: 10.1007/s00436-021-07055-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
Fasciola hepatica (liver fluke), a significant threat to food security, causes global economic loss for the livestock industry and is re-emerging as a foodborne disease of humans. In the absence of vaccines, treatment control is by anthelmintics; with only triclabendazole (TCBZ) currently effective against all stages of F. hepatica in livestock and humans. There is widespread resistance to TCBZ and its detoxification by flukes might contribute to the mechanism. However, there is limited phase I capacity in adult parasitic helminths with the phase II detoxification system dominated by the soluble glutathione transferase (GST) superfamily. Previous proteomic studies have demonstrated that the levels of Mu class GST from pooled F. hepatica parasites respond under TCBZ-sulphoxide (TCBZ-SO) challenge during in vitro culture ex-host. We have extended this finding by exploiting a sub-proteomic lead strategy to measure the change in the total soluble GST profile (GST-ome) of individual TCBZ-susceptible F. hepatica on TCBZ-SO-exposure in vitro culture. TCBZ-SO exposure demonstrated differential abundance of FhGST-Mu29 and FhGST-Mu26 following affinity purification using both GSH and S-hexyl GSH affinity. Furthermore, a low or weak affinity matrix interacting Mu class GST (FhGST-Mu5) has been identified and recombinantly expressed and represents a new low-affinity Mu class GST. Low-affinity GST isoforms within the GST-ome was not restricted to FhGST-Mu5 with a second likely low-affinity sigma class GST (FhGST-S2) uncovered. This study represents the most complete Fasciola GST-ome generated to date and has supported the potential of subproteomic analyses on individual adult flukes.
Collapse
Affiliation(s)
- Rebekah B Stuart
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, Wales
| | - Suzanne Zwaanswijk
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, Wales
| | - Neil D MacKintosh
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, Wales
| | - Boontarikaan Witikornkul
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, Wales
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, Wales
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, Wales.
| |
Collapse
|
11
|
Stryiński R, Łopieńska-Biernat E, Carrera M. Proteomic Insights into the Biology of the Most Important Foodborne Parasites in Europe. Foods 2020; 9:E1403. [PMID: 33022912 PMCID: PMC7601233 DOI: 10.3390/foods9101403] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
Foodborne parasitoses compared with bacterial and viral-caused diseases seem to be neglected, and their unrecognition is a serious issue. Parasitic diseases transmitted by food are currently becoming more common. Constantly changing eating habits, new culinary trends, and easier access to food make foodborne parasites' transmission effortless, and the increase in the diagnosis of foodborne parasitic diseases in noted worldwide. This work presents the applications of numerous proteomic methods into the studies on foodborne parasites and their possible use in targeted diagnostics. Potential directions for the future are also provided.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
| |
Collapse
|
12
|
Collett CF, Morphew RM, Timson D, Phillips HC, Brophy PM. Pilot Evaluation of Two Fasciola hepatica Biomarkers for Supporting Triclabendazole (TCBZ) Efficacy Diagnostics. Molecules 2020; 25:molecules25153477. [PMID: 32751696 PMCID: PMC7435721 DOI: 10.3390/molecules25153477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022] Open
Abstract
Fasciola hepatica, the causative agent of fasciolosis, is a global threat to public health, animal welfare, agricultural productivity, and food security. In the ongoing absence of a commercial vaccine, independent emergences of anthelmintic-resistant parasite populations worldwide are threatening the sustainability of the few flukicides presently available, and particularly triclabendazole (TCBZ) as the drug of choice. Consequently, prognoses for future fasciolosis control and sustained TCBZ application necessitate improvements in diagnostic tools to identify anthelmintic efficacy. Previously, we have shown that proteomic fingerprinting of F. hepatica excretory/secretory (ES) products offered new biomarkers associated with in vitro TCBZ-sulfoxide (SO) recovery or death. In the current paper, two of these biomarkers (calreticulin (CRT) and triose phosphate isomerase (TPI)) were recombinantly expressed and evaluated to measure TCBZ efficacy via a novel approach to decipher fluke molecular phenotypes independently of molecular parasite resistance mechanism(s), which are still not fully characterised or understood. Our findings confirmed the immunoreactivity and diagnostic potential of the present target antigens by sera from TCBZ-susceptible (TCBZ-S) and TCBZ-resistant (TCBZ-R) F. hepatica experimentally infected sheep.
Collapse
Affiliation(s)
- Clare F. Collett
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (R.M.M.); (H.C.P.); (P.M.B.)
- Correspondence:
| | - Russell M. Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (R.M.M.); (H.C.P.); (P.M.B.)
| | - David Timson
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK;
| | - Helen C. Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (R.M.M.); (H.C.P.); (P.M.B.)
| | - Peter M. Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (R.M.M.); (H.C.P.); (P.M.B.)
| |
Collapse
|
13
|
Rehman A, Ullah R, Khan MAH, Abidi SMA. Glutathione-S-transferase: an important diagnostic antigen of liver amphistome Gigantocotyle explanatum, infecting the Indian water buffalo. Acta Trop 2020; 205:105400. [PMID: 32081660 DOI: 10.1016/j.actatropica.2020.105400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/01/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
The foodborne trematodiases pose a significant health problem to the animals as well as the human population living in close proximities with the livestock and are still considered as the neglected tropical diseases by the World Health Organisation. The digenetic trematode, Gigantocotyle explanatum infecting the liver of Indian water buffalo, Bubalus bubalis, has been identified as one of the most common helminth parasite responsible for the disease, amphistomosis, in livestock. Despite huge abattoir prevalence, the epidemiological data and the actual economic losses incurred due to this parasite alone are yet to be established probably due to the limitations of routinely used diagnostic tests. The gold standard for the confirmation of such infections under field conditions is still the fecal egg count (FEC). However, the poor sensitivity and cumbersome nature of these tests necessitates the development of a more sensitive, reliable and easy to perform workflow/method. Immunological diagnosis of helminthic infections is still considered as an alternative to the FEC. Therefore, efforts have been made to utilize glutathione-S-transferase (GST), a vitally significant molecule of the adult G. explanatum, for the serodiagnosis of amphistomosis under both laboratory and field conditions. The GST antigen was first affinity purified from the somatic extract of the adult worms since its highest level was recorded in the somatic extracts followed by eggs and the excretory/secretory products. A five-fold affinity purified native GST antigen of about 25 kDa was found to be highly immunogenic as evident from high titre (1:25,600) of the polyclonal antibodies raised in the rabbits. The immunoblotting results revealed differential presence of GST in the adult worms, their eggs and excretory/secretory products. The immunolocalization studies revealed that the vitelline glands are the major source of GST in liver amphistome. Further, we were able to successfully screen animals naturally infected with G. explanatum using anti GST polyclonal antibodies in dot blot assay. High levels of both circulating GST antigen and anti GST antibodies were detected in the serum of the animals naturally infected with G. explanatum, while no cross reactivity was observed with the tropical liver fluke, F. gigantica which often infects the buffalo liver concurrently. The findings of the present study indicate that GST could be used as an important antigen for the diagnosis of G. explanatum infection in Indian water buffaloes.
Collapse
Affiliation(s)
- Abdur Rehman
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India.
| | - Rizwan Ullah
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - M A Hannan Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India; Department of Zoology, School of Biosciences and Biotechnology, BGSB University, Jammu and Kashmir, India
| | - S M A Abidi
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
14
|
Zhang J, Bai Y, Li B, Zhou X, Si H, Zhang J. Determination and pharmacokinetics study of oxyclozanide suspension in cattle by LC-MS/MS. BMC Vet Res 2019; 15:210. [PMID: 31234851 PMCID: PMC6591842 DOI: 10.1186/s12917-019-1963-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/16/2019] [Indexed: 11/19/2022] Open
Abstract
Background Oxyclozanide is an anthelmintic drug that is widely used to treat fasciolosis. However, the pharmacokinetics of oxyclozanide in cattle are not yet clearly understood. The present study was designed to develop a sensitive method to determine oxyclozanide levels in cattle plasma using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and to study its pharmacokinetics for application in cattle. Results A simple and rapid HPLC-MS/MS analytical method was established and validated to quantify oxyclozanide levels in cattle plasma using niclosamide as the internal standard (IS) in negative ion mode. Chromatographic separation of the analytes was achieved using a C18 analytical column (75 × 4.6 mm, 2.7 μm) at 30 °C. The mobile phase comprised 0.01% v/v acetic acid (HOAc) diluted in water:acetonitrile (MeCN) (90:10% v/v) and 5 mM ammonium formate in methanol (MeOH):MeCN (75:25, v/v) at a 10:90 ratio (v/v) and was delivered at a flow rate of 0.4 mL min− 1. A good linear response across the concentration range of 0.02048–25.600 μg/mL was achieved (r2 = 0.994). The method was validated with respect to linearity, matrix effect, accuracy, precision, recovery and stability. The lower limit of quantification (LLOQ) was 0.020 μg/mL, and the extraction recovery was > 98% for oxyclozanide. The inter- and intra-day accuracy and precision of the method showed the relative standard deviation (RSD) less than 10%. The method was successfully applied to an assessment of the pharmacokinetics of oxyclozanide in cattle plasma. In healthy cattle, a single oral dose of an oxyclozanide suspension followed the one-compartment model, with a half-life (T1/2) of 64.40 ± 30.18 h, a plasma clearance rate (CL/F) of 11.426 ± 2.442 mL/h/kg, and an average area under the curve (AUC) of 965.608 ± 220.097 h*μg/mL. The peak concentration (Cmax) was 15.870 ± 2.855 μg/mL, which occurred at a peak time (Tmax) = 22.032 ± 3.343 h. Conclusions A reliable, accurate HPLC-MS/MS analytical method was established in our study and successful applied to study the pharmacokinetics of oxyclozanide in cattle plasma. These results will be useful for further evaluations of the pharmacokinetic properties of oxyclozanide or for monitoring therapeutic drugs in animals.
Collapse
Affiliation(s)
- Jili Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, People's Republic of China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Yubin Bai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, People's Republic of China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Bing Li
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, People's Republic of China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Xuzheng Zhou
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, People's Republic of China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Hongfei Si
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China.,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, People's Republic of China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, People's Republic of China. .,Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province, People's Republic of China. .,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People's Republic of China.
| |
Collapse
|
15
|
Zhang JL, Si HF, Zhou XZ, Shang XF, Li B, Zhang JY. High prevalence of fasciolosis and evaluation of the efficacy of anthelmintics against Fasciola hepatica in buffaloes in Guangxi, China. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 8:82-87. [PMID: 30671343 PMCID: PMC6330380 DOI: 10.1016/j.ijppaw.2018.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 11/18/2022]
Abstract
Fasciola hepatica is a common parasite of grazing livestock in Guangxi Zhuang Autonomous Region in China, but its prevalence has not been studied. While triclabendazole is commonly used to treat F. hepatica infection in China, oxyclozanide has never been used. This study investigated the prevalence of F. hepatica infections in buffaloes in the Guangxi and evaluated the efficacy of oxyclozanide and triclabendazole as treatments. In the prevalence study, a total of 767 individual faecal samples were obtained from 58 farms in Guangxi to detect the prevalence of F. hepatica, and the total rate of infection was 87.35%. A subset of 277 infected buffaloes from these farms were randomly divided into 3 groups. Group 1 (n = 101) was treated with oxyclozanide at 10 mg/kg.bw; group 2 (n = 94) was treated with triclabendazole (12 mg/kg.bw); and group 3 (n = 82) was untreated. Faecal samples were taken on days 0, 7, 14, 21 and 28. Whole blood and serum were collected on days 0 and 14. Anthelmintic efficacy was assessed using faecal egg count reduction (FECR), buffaloes positive by coprology reduction (BPCR) as well as post-treatment improvement in biochemical and haematological indicators. After 28 days treatment, group 1 and 2 showed FECR% values above 98%, and BPCR% values of 97.03% and 77.66%, respectively. In addition, the biochemical indicators and haematological parameters were improved at 14 days post-treatment compared with those before treatment. These results indicate a high prevalence of F. hepatica in Guangxi, demonstrate that oxyclozanide and triclabendazole are effective against F. hepatica infection in buffaloes, and indicate that oxyclozanide could be used in China as an alternative drug. The prevalence of F. hepatica infections in 767 buffaloes was 87.35% on 58 farms from 8 districts in Guangxi Zhuang Autonomous Region in China. Oxyclozanide and triclabendazole effectively restored the health of infected buffaloes and reduced the EPG of F. hepatica.
Collapse
Key Words
- A, albumin
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BPCR, buffaloes positive by coprology reduction
- Buffaloes
- EDTA, ethylenediaminetetraacetic acid
- EOS, eosinophils
- EPG, eggs per gram
- Efficacy
- F. gigantica, Fasciola gigantica
- F. hepatica, Fasciola hepatica
- FECR, faecal egg count reduction
- Fasciola hepatica
- GGT, γ-glutamyl transpeptidase
- GLU, glucose
- Hb, haemoglobin
- LDH, lactate dehydrogenase
- Oxyclozanide
- PCV, packed cell volume
- Prevalence
- RBCs, red blood cells
- TP, total protein
- Triclabendazole
- WBCs, white blood cells
Collapse
Affiliation(s)
- Ji-Li Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, PR China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730050, PR China
| | - Hong-Fei Si
- College of Pharmacy, Jinan University, Guangzhou, Guangdong Province, 510632, PR China
| | - Xu-Zheng Zhou
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, PR China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730050, PR China
| | - Xiao-Fei Shang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, PR China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730050, PR China
| | - Bing Li
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, PR China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730050, PR China
| | - Ji-Yu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province, 730050, PR China.,Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730050, PR China
| |
Collapse
|
16
|
Huson KM, Morphew RM, Allen NR, Hegarty MJ, Worgan HJ, Girdwood SE, Jones EL, Phillips HC, Vickers M, Swain M, Smith D, Kingston-Smith AH, Brophy PM. Polyomic tools for an emerging livestock parasite, the rumen fluke Calicophoron daubneyi; identifying shifts in rumen functionality. Parasit Vectors 2018; 11:617. [PMID: 30509301 PMCID: PMC6278170 DOI: 10.1186/s13071-018-3225-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diseases caused by parasitic flatworms of rumen tissues (paramphistomosis) are a significant threat to global food security as a cause of morbidity and mortality in ruminant livestock in subtropical and tropical climates. Calicophoron daubneyi is currently the only paramphistome species commonly infecting ruminant livestock in temperate European climates. However, recorded incidences of C. daubneyi infection in European livestock have been increasing over the last decade. Whilst clinical paramphistomosis caused by adult worms has not been confirmed in Europe, fatalities have been attributed to severe haemorrhagic enteritis of the small intestine resulting from the migration of immature paramphistomes. Large numbers of mature adults can reside in the rumen, yet to date, the impact on rumen fermentation, and consequently on productivity and economic management of infected livestock, have not been resolved. Limited publicly available nucleotide and protein sequences for C. daubneyi underpin this lack of biological and economic understanding. Here we present for the first time a de novo assembled transcriptome, with functional annotations, for adult C. daubneyi, which provides a reference database for protein and nucleotide sequence identification to facilitate fundamental biology, anthelmintic, vaccine and diagnostics discoveries. RESULTS This dataset identifies a number of genes potentially unique to C. daubneyi and, by comparison to an existing transcriptome for the related Paramphistomum cervi, identifies novel genes which may be unique to the paramphistome group of platyhelminthes. Additionally, we present the first coverage of the excretory/secretory and soluble somatic proteome profiles for adult C. daubneyi and identify the release of extracellular vesicles from adult C. daubneyi parasites during in vitro, ex-host culture. Finally, we have performed the first analysis of rumen fluke impacting upon rumen fermentation parameters using an in vitro gas production study resulting in a significant increase in propionate production. CONCLUSIONS The resulting data provide a discovery platform (transcriptome, proteomes, EV isolation pipeline and in vitro fermentation system) to further study C. daubneyi-host interaction. In addition, the acetate: propionate ratio has been demonstrated to decrease with rumen fluke infection suggesting that acidotic conditions in the rumen may occur.
Collapse
Affiliation(s)
- Kathryn M Huson
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Russell M Morphew
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK.
| | - Nathan R Allen
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Matthew J Hegarty
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Hillary J Worgan
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Susan E Girdwood
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Eleanor L Jones
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Helen C Phillips
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Martin Vickers
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Martin Swain
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Daniel Smith
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| | - Peter M Brophy
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Ceredigion, Aberystwyth, SY23 3DA, UK
| |
Collapse
|
17
|
Duncan J, Cutress D, Morphew RM, Brophy PM. Purification of native Sigma class glutathione transferase from Fasciola hepatica. Mol Biochem Parasitol 2018; 222:45-50. [DOI: 10.1016/j.molbiopara.2018.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
|
18
|
Perner J, Kotál J, Hatalová T, Urbanová V, Bartošová-Sojková P, Brophy PM, Kopáček P. Inducible glutathione S-transferase (IrGST1) from the tick Ixodes ricinus is a haem-binding protein. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018. [PMID: 29526768 DOI: 10.1016/j.ibmb.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Blood-feeding parasites are inadvertently exposed to high doses of potentially cytotoxic haem liberated upon host blood digestion. Detoxification of free haem is a special challenge for ticks, which digest haemoglobin intracellularly. Ticks lack a haem catabolic mechanism, mediated by haem oxygenase, and need to dispose of vast majority of acquired haem via its accumulation in haemosomes. The knowledge of individual molecules involved in the maintenance of haem homeostasis in ticks is still rather limited. RNA-seq analyses of the Ixodes ricinus midguts from blood- and serum-fed females identified an abundant transcript of glutathione S-transferase (gst) to be substantially up-regulated in the presence of red blood cells in the diet. Here, we have determined the full sequence of this encoding gene, ir-gst1, and found that it is homologous to the delta-/epsilon-class of GSTs. Phylogenetic analyses across related chelicerates revealed that only one clear IrGST1 orthologue could be found in each available transcriptome from hard and soft ticks. These orthologues create a well-supported clade clearly separated from other ticks' or mites' delta-/epsilon-class GSTs and most likely evolved as an adaptation to tick blood-feeding life style. We have confirmed that IrGST1 expression is induced by dietary haem(oglobin), and not by iron or other components of host blood. Kinetic properties of recombinant IrGST1 were evaluated by model and natural GST substrates. The enzyme was also shown to bind haemin in vitro as evidenced by inhibition assay, VIS spectrophotometry, gel filtration, and affinity chromatography. In the native state, IrGST1 forms a dimer which further polymerises upon binding of excessive amount of haemin molecules. Due to susceptibility of ticks to haem as a signalling molecule, we speculate that the expression of IrGST1 in tick midgut functions as intracellular buffer of labile haem pool to ameliorate its cytotoxic effects upon haemoglobin intracellular hydrolysis.
Collapse
Affiliation(s)
- Jan Perner
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Jan Kotál
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Tereza Hatalová
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Veronika Urbanová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
19
|
Cwiklinski K, Dalton JP. Advances in Fasciola hepatica research using 'omics' technologies. Int J Parasitol 2018; 48:321-331. [PMID: 29476869 DOI: 10.1016/j.ijpara.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
The liver fluke Fasciola hepatica is an economically important pathogen of livestock worldwide, as well as being an important neglected zoonosis. Parasite control is reliant on the use of drugs, particularly triclabendazole, which is effective against multiple parasite stages. However, the spread of parasites resistant to triclabendazole has intensified the pursuit for novel control strategies. Emerging 'omics' technologies are helping advance our understanding of liver fluke biology, specifically the molecules that act at the host-parasite interface and are central to infection, virulence and long-term survival within the definitive host. This review discusses the technological sequencing advances that have facilitated the unbiased analysis of liver fluke biology, resulting in an extensive range of 'omics' datasets. In addition, we highlight the 'omics' studies of host responses to F. hepatica infection that, when combined with the parasite datasets, provide the opportunity for integrated analyses of host-parasite interactions. These extensive datasets will form the foundation for future in-depth analysis of F. hepatica biology and development, and the search for new drug or vaccine interventions.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK.
| | - John P Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University Belfast, Belfast, Northern Ireland, UK; Institute for Global Food Security (IGFS), Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
20
|
Khan MAH, Ullah R, Rehman A, Rehman L, P. A. AS, Abidi SMA. Immunolocalization and immunodetection of the excretory/secretory (ES) antigens of Fasciola gigantica. PLoS One 2017; 12:e0185870. [PMID: 28973017 PMCID: PMC5626522 DOI: 10.1371/journal.pone.0185870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022] Open
Abstract
The digenetic trematode Fasciola gigantica is a parasite of great agricultural and economic importance. Along with Fasciola hepatica, F. gigantica incurs huge economic losses to the agricultural sector. Because of unavailability of an effective and commercial vaccine, the earliest diagnosis of the disease is the only way to control the disease. The conventional coprological techniques are able to detect the disease only after the parasites get matured and starts releasing their eggs with the faeces of host, therefore prepatent infection remain undiagnosed. The alternative method is by serological tests that uses circulatory antigens. Despite high sensitivity, their reliability is quite low because of the common antigens shared between different helminth parasites. To overcome this, investigation was shifted to identify the copro-antigens which could be more sensitive and reliable. In the present study, we tried to identify some of the immunodominant proteins from the Excretory Secretory (ES) product of F. gigantica which can be further characterized and used for early detection of infection and also as drug and vaccine candidates. The ES products of F. gigantica were collected and used for raising the polyclonal antibody in rabbit. The polypeptide profile was generated as well as immunogenic polypeptides were identified. The Source of ES antigen was immunolocalized using confocal microscopy and dot blot assay was performed to diagnose field infection. The polypeptide profile of ES products revealed a total of 24 polypeptides out of which 12 immunogenic polypeptides were identified by western blotting. Confocal micrographs showed the immunolocalization of antigens in the intestinal caecae, vitalline glands, gonads as well as in the tegument of the worm. The dot blot assay confirmed the utility of ES products for the detection of field infection. Subsequently, cross reactivity was found negative with Gigantocotyle explanatum; an amphitome parasite of same habitat. However, the cross reactivity with other helminths needs to be worked out.
Collapse
Affiliation(s)
- M. A. Hannan Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Rizwan Ullah
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Abdur Rehman
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Lubna Rehman
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Ahammed Shareef P. A.
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - S. M. A. Abidi
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
21
|
Saprotrophic proteomes of biotypes of the witches' broom pathogen Moniliophthora perniciosa. Fungal Biol 2017; 121:743-753. [PMID: 28800846 DOI: 10.1016/j.funbio.2017.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 11/23/2022]
Abstract
Nine geographically diverse Moniliophthora perniciosa (witches' broom disease pathogen) isolates were cultured in vitro. They included six C-biotypes differing in virulence on cacao (Theobroma cacao), two S-biotypes (solanaceous hosts), and an L-biotype (liana hosts). Mycelial growth rates and morphologies differed considerably, but no characters were observed to correlate with virulence or biotype. In plant inoculations using basidiospores, one C-biotype caused symptoms on tomato (an S-biotype host), adding to evidence of limited host adaptation in these biotypes. Mycelial proteomes were analysed by two-dimensional gel electrophoresis (2-DE), and 619 gel spots were indexed on all replicate gels of at least one strain. Multivariate analysis of gel spots discriminated the L-biotype, but not the S-biotypes, from the remaining strains. The proteomic similarity of the S- and C-biotypes is consistent with their reported lack of phylogenetic distinction. Sequences from tandem mass spectrometry of tryptic peptides from major 2-DE spots were matched with Moniliophthora genome and transcript sequences on NCBI and WBD Transcriptome Atlas databases. Protein-spot identifications indicated that M. perniciosa saprotrophic mycelial proteomes expressed functions potentially connected with a 'virulence life-style', including peroxiredoxin, heat-shock proteins, nitrilase, formate dehydrogenase, a prominent complement of aldo-keto reductases, mannitol-1-phosphate dehydrogenase, and central metabolism enzymes with proposed pathogenesis functions.
Collapse
|
22
|
Ullah R, Rehman A, Zafeer MF, Rehman L, Khan YA, Khan MAH, Khan SN, Khan AU, Abidi SMA. Anthelmintic Potential of Thymoquinone and Curcumin on Fasciola gigantica. PLoS One 2017; 12:e0171267. [PMID: 28152102 PMCID: PMC5289557 DOI: 10.1371/journal.pone.0171267] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/17/2017] [Indexed: 01/12/2023] Open
Abstract
Fasciolosis an economically important global disease of ruminants in the temperate and tropical regions, caused by Fasciola hepatica and F. gigantica, respectively, also poses a potential zoonotic threat. In India alone it causes huge losses to stakeholders. Anthelmintics including triclabendazole have been used to control this menace but the emerging resistance against the available compounds necessitates identification of novel and alternative therapeutic measures involving plant derived natural compounds for their anthelmintic potential. Thymoquinone (T) and curcumin (C), the active ingredients of Nigella sativa and Curcuma longa respectively have been used as antiparasitic agents but the information on their flukicidal effect is very limited. Adult flukes of F. gigantica were in vitro exposed to different concentrations of thymoquinone and curcumin separately for 3h at 37+ 1°C. A significant (p<0.05) reduction in the worm motility at 60 μM concentration of both T and C was observed though all the worms remained alive after 3h exposure, whereas the effect on egg shedding was statistically insignificant. Pronounced tegumental disruptions and erosion of spines in the posterior region and around the acetabulum was evident. A significant (p<0.05) decrease in glutathione-S-transferase and superoxide dismutase activity and reduced glutathione (GSH) level was observed, while protein carbonylation increased differentially. A significant inhibition of CathepsinL (CatL) gene expression in thymoquinone treated worms was also evident. Further, in silico molecular docking of T and C with CatL revealed a stronger interaction of curcumin with the involvement of higher number of amino acids as compared to thymoquinone that could be more effective in inhibiting the antioxidant enzymes of F. gigantica. It is concluded that both the compounds understudy will decrease the detoxification ability of F. gigantica, while inhibition of CatL will significantly affect their virulence potential. Thus, both thymoquinone and curcumin appeared to be promising anthelmintic compounds for further investigations.
Collapse
Affiliation(s)
- Rizwan Ullah
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
- * E-mail:
| | - Abdur Rehman
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Mohd Faraz Zafeer
- Interdisciplinary Brain Research Centre (IBRC), J. N. Medical College, Aligarh Muslim University, Aligarh, India
| | - Lubna Rehman
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Yasir A. Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - M. A. Hannan Khan
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Shahper N. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Asad U. Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - S. M. A. Abidi
- Section of Parasitology, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
23
|
Morphew RM, Wilkinson TJ, Mackintosh N, Jahndel V, Paterson S, McVeigh P, Abbas Abidi SM, Saifullah K, Raman M, Ravikumar G, LaCourse J, Maule A, Brophy PM. Exploring and Expanding the Fatty-Acid-Binding Protein Superfamily in Fasciola Species. J Proteome Res 2016; 15:3308-21. [PMID: 27495901 DOI: 10.1021/acs.jproteome.6b00331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The liver flukes Fasciola hepatica and F. gigantica infect livestock worldwide and threaten food security with climate change and problematic control measures spreading disease. Fascioliasis is also a foodborne disease with up to 17 million humans infected. In the absence of vaccines, treatment depends on triclabendazole (TCBZ), and overuse has led to widespread resistance, compromising future TCBZ control. Reductionist biology from many laboratories has predicted new therapeutic targets. To this end, the fatty-acid-binding protein (FABP) superfamily has proposed multifunctional roles, including functions intersecting vaccine and drug therapy, such as immune modulation and anthelmintic sequestration. Research is hindered by a lack of understanding of the full FABP superfamily complement. Although discovery studies predicted FABPs as promising vaccine candidates, it is unclear if uncharacterized FABPs are more relevant for vaccine formulations. We have coupled genome, transcriptome, and EST data mining with proteomics and phylogenetics to reveal a liver fluke FABP superfamily of seven clades: previously identified clades I-III and newly identified clades IV-VII. All new clade FABPs were analyzed using bioinformatics and cloned from both liver flukes. The extended FABP data set will provide new study tools to research the role of FABPs in parasite biology and as therapy targets.
Collapse
Affiliation(s)
- Russell M Morphew
- Aberystwyth University , Institute of Biological, Environmental and Rural Sciences, Aberystwyth SY23 3DA, United Kingdom
| | - Toby J Wilkinson
- Aberystwyth University , Institute of Biological, Environmental and Rural Sciences, Aberystwyth SY23 3DA, United Kingdom
| | - Neil Mackintosh
- Aberystwyth University , Institute of Biological, Environmental and Rural Sciences, Aberystwyth SY23 3DA, United Kingdom
| | - Veronika Jahndel
- University of Leipzig , Institute of Biochemistry, D-04103 Leipzig, Germany
| | - Steve Paterson
- University of Liverpool , School of Biological Sciences, Liverpool L69 7ZB, United Kingdom
| | - Paul McVeigh
- Queen's University Belfast , School of Biological Sciences, Belfast BT7 1NN, United Kingdom
| | | | - Khalid Saifullah
- Aligarh Muslim University , Aligarh, Uttar Pradesh 202002, India
| | - Muthusamy Raman
- Tamil Nadu Veterinary and Animal Sciences University , Chennai 600-051, India
| | | | - James LaCourse
- Liverpool School of Tropical Medicine , Liverpool L3 5QA, United Kingdom
| | - Aaron Maule
- Queen's University Belfast , School of Biological Sciences, Belfast BT7 1NN, United Kingdom
| | - Peter M Brophy
- Aberystwyth University , Institute of Biological, Environmental and Rural Sciences, Aberystwyth SY23 3DA, United Kingdom
| |
Collapse
|
24
|
Cwiklinski K, O'Neill SM, Donnelly S, Dalton JP. A prospective view of animal and human Fasciolosis. Parasite Immunol 2016; 38:558-68. [PMID: 27314903 PMCID: PMC5053257 DOI: 10.1111/pim.12343] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/09/2016] [Indexed: 12/17/2022]
Abstract
Fasciolosis, a food-borne trematodiasis, results following infection with the parasites, Fasciola hepatica and Fasciola gigantica. These trematodes greatly affect the global agricultural community, infecting millions of ruminants worldwide and causing annual economic losses in excess of US $3 billion. Fasciolosis, an important zoonosis, is classified by WHO as a neglected tropical disease with an estimated 17 million people infected and a further 180 million people at risk of infection. The significant impact on agriculture and human health together with the increasing demand for animal-derived food products to support global population growth demonstrate that fasciolosis is a major One Health problem. This review details the problematic issues surrounding fasciolosis control, including drug resistance, lack of diagnosis and the threat that hybridization of the Fasciola species poses to future animal and human health. We discuss how these parasites may mediate their long-term survival through regulation and modulation of the host immune system, by altering the host immune homeostasis and/or by influencing the intestinal microbiome particularly in respect to concurrent infections with other pathogens. Large genome, transcriptome and proteomic data sets are now available to support an integrated One Health approach to develop novel diagnostic and control strategies for both animal and human disease.
Collapse
Affiliation(s)
- K Cwiklinski
- School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | - S M O'Neill
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | - S Donnelly
- The i3 Institute & School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australia
| | - J P Dalton
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
25
|
Kim JG, Ahn CS, Kim SH, Bae YA, Kwon NY, Kang I, Yang HJ, Sohn WM, Kong Y. Clonorchis sinensis omega-class glutathione transferases play major roles in the protection of the reproductive system during maturation and the response to oxidative stress. Parasit Vectors 2016; 9:337. [PMID: 27296469 PMCID: PMC4906895 DOI: 10.1186/s13071-016-1622-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clonorchis sinensis causes a major food-borne helminthic infection. This species locates in mammalian hepatobiliary ducts, where oxidative stressors and hydrophobic substances are profuse. To adapt to the hostile micromilieu and to ensure its long-term survival, the parasite continuously produces a diverse repertoire of antioxidant enzymes including several species of glutathione transferases (GSTs). Helminth GSTs play pertinent roles during sequestration of harmful xenobiotics since most helminths lack the cytochrome P-450 detoxifying enzyme. METHODS We isolated and analyzed the biochemical properties of two omega-class GSTs of C. sinensis (CsGSTo1 and CsGSTo2). We observed spatiotemporal expression patterns in accordance with the maturation of the worm's reproductive system. Possible biological protective roles of CsGSTos in these organs under oxidative stress were investigated. RESULTS The full-length cDNAs of CsGSTo1 and 2 constituted 965 bp and 1,061 bp with open reading frames of 737 bp (246 amino acids) and 669 bp (223 amino acids). They harbored characteristic N-terminal thioredoxin-like and C-terminal α-helical domains. A cysteine residue, which constituted omega-class specific active site, and the glutathione-binding amino acids, were recognized in appropriate positions. They shared 44 % sequence identity with each other and 14.8-44.8 % with orthologues/homologues from other organisms. Bacterially expressed recombinant proteins (rCsGSTo1 and 2) exhibited dehydroascorbate reductase (DHAR) and thioltransferase activities. DHAR activity was higher than thioltransferase activity. They showed weak canonical GST activity toward 1-chloro-2,4-dinitrobenzene. S-hexylglutathione potently and competitively inhibited the active-site at nanomolar concentrations (0.63 and 0.58 nM for rCsGSTo1 and 2). Interestingly, rCsGSTos exhibited high enzyme activity toward mu- and theta-class GST specific substrate, 4-nitrobenzyl chloride. Expression of CsGSTo transcripts and proteins increased beginning in 2-week-old juveniles and reached their highest levels in 4-week-old adults. The proteins were mainly expressed in the elements of the reproductive system, such as vitelline follicles, testes, seminal receptacle, sperm and eggs. Oxidative stressors induced upregulated expression of CsGSTos in these organs. Regardless of oxidative stresses, CsGSTos continued to be highly expressed in eggs. CsGSTo1 or 2 overexpressing bacteria demonstrated high resistance under oxidative killing. CONCLUSIONS CsGSTos might be critically involved in protection of the reproductive system during maturation of C. sinensis worms and in response to oxidative conditions, thereby contributing to maintenance of parasite fecundity.
Collapse
Affiliation(s)
- Jeong-Geun Kim
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Korea
| | - Chun-Seob Ahn
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Korea
| | - Seon-Hee Kim
- Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, Korea
| | - Young-An Bae
- Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, Korea
| | - Na-Young Kwon
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Korea
| | - Insug Kang
- Department of Molecular Biology and Biochemistry, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Jong Yang
- Department of Parasitology, Ewha Womans University, School of Medicine, Seoul, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Korea.
| |
Collapse
|
26
|
The omic approach to parasitic trematode research—a review of techniques and developments within the past 5 years. Parasitol Res 2016; 115:2523-43. [DOI: 10.1007/s00436-016-5079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/26/2022]
|
27
|
The Role of Xenobiotic-Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths. Trends Parasitol 2016; 32:481-491. [PMID: 26968642 DOI: 10.1016/j.pt.2016.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/24/2022]
Abstract
Xenobiotic-metabolizing enzymes (XMEs) modulate the biological activity and behavior of many drugs, including anthelmintics. The effects of anthelmintics can often be abolished by XMEs when the drugs are metabolized to an inefficient compound. XMEs therefore play a significant role in anthelmintic efficacy. Moreover, differences in XMEs between helminths are reflected by differences in anthelmintic metabolism between target species. Taking advantage of the newly sequenced genomes of many helminth species, progress in this field has been remarkable. The present review collects up to date information regarding the most important XMEs (phase I and phase II biotransformation enzymes; efflux transporters) in helminths. The participation of these XMEs in anthelmintic metabolism and their possible roles in drug resistance are evaluated.
Collapse
|
28
|
Bae YA, Kim JG, Kong Y. Phylogenetic characterization of Clonorchis sinensis proteins homologous to the sigma-class glutathione transferase and their differential expression profiles. Mol Biochem Parasitol 2016; 206:46-55. [PMID: 26792248 DOI: 10.1016/j.molbiopara.2016.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/11/2022]
Abstract
Glutathione transferase (GST) is one of the major antioxidant proteins with diverse supplemental activities including peroxidase, isomerase, and thiol transferase. GSTs are classified into multiple classes on the basis of their primary structures and substrate/inhibitor specificity. However, the evolutionary routes and physiological environments specific to each of the closely related bioactive enzymes remain elusive. The sigma-like GSTs exhibit amino acid conservation patterns similar to the prostaglandin D synthases (PGDSs). In this study, we analyzed the phylogenetic position of the GSTs of the biocarcinogenic liver fluke, Clonorchis sinensis. We also observed induction profile of the GSTs in association with the parasite's maturation and in response to exogenous oxidative stresses, with special attention to sigma-class GSTs and PGDSs. The C. sinensis genome encoded 12 GST protein species, which were separately assigned to cytosolic (two omega-, one zeta-, two mu-, and five sigma-class), mitochondrial (one kappa-class), and microsomal (one membrane-associated proteins in eicosanoid and glutathione metabolism-like protein) GST families. Multiple sigma GST (or PGDS) orthologs were also detected in Opisthorchis viverrini. Other trematode species possessed only a single sigma-like GST gene. A phylogenetic analysis demonstrated that one of the sigma GST lineages duplicated in the common ancestor of trematodes were specifically expanded in the opisthorchiids, but deleted in other trematodes. The induction profiles of these sigma GST genes along with the development and aging of C. sinensis, and against various exogenous chemical stimuli strongly suggest that the paralogous sigma GST genes might be undergone specialized evolution to cope with the diverse hostile biochemical environments within the mammalian hepatobiliary ductal system.
Collapse
Affiliation(s)
- Young-An Bae
- Department of Microbiology, Gachon University Graduate School of Medicine, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
29
|
Haçarız O, Akgün M, Kavak P, Yüksel B, Sağıroğlu MŞ. Comparative transcriptome profiling approach to glean virulence and immunomodulation-related genes of Fasciola hepatica. BMC Genomics 2015; 16:366. [PMID: 25956885 PMCID: PMC4429430 DOI: 10.1186/s12864-015-1539-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Fasciola hepatica causes chronic liver disease, fasciolosis, leading to significant losses in the livestock economy and concerns for human health in many countries. The identification of F. hepatica genes involved in the parasite's virulence through modulation of host immune system is utmost important to comprehend evasion mechanisms of the parasite and develop more effective strategies against fasciolosis. In this study, to identify the parasite's putative virulence genes which are associated with host immunomodulation, we explored whole transcriptome of an adult F. hepatica using current transcriptome profiling approaches integrated with detailed in silico analyses. In brief, the comparison of the parasite transcripts with the specialised public databases containing sequence data of non-parasitic organisms (Dugesiidae species and Caenorhabditis elegans) or of numerous pathogens and investigation of the sequences in terms of nucleotide evolution (directional selection) and cytokine signaling relation were conducted. RESULTS NGS of the whole transcriptome resulted in 19,534,766 sequence reads, yielding a total of 40,260 transcripts (N₅₀ = 522 bp). A number of the parasite transcripts (n = 1,671) were predicted to be virulence-related on the basis of the exclusive homology with the pathogen-associated data, positive selection or relationship with cytokine signaling. Of these, a group of the virulence-related genes (n = 62), not previously described, were found likely to be associated with immunomodulation based on in silico functional categorisation, showing significant sequence similarities with various immune receptors (i.e. MHC I class, TGF-β receptor, toll/interleukin-1 receptor, T-cell receptor, TNF receptor, and IL-18 receptor accessory protein), cytokines (i.e. TGF-β, interleukin-4/interleukin-13 and TNF-α), cluster of differentiations (e.g. CD48 and CD147) or molecules associated with other immunomodulatory mechanisms (such as regulation of macrophage activation). Some of the genes (n = 5) appeared to be under positive selection (Ka/Ks > 1), imitating proteins associated with cytokine signaling (through sequence homologies with thrombospondin type 1, toll/interleukin-1 receptor, TGF-β receptor and CD147). CONCLUSIONS With a comparative transcriptome profiling approach, we have identified a number of potential immunomodulator genes of F. hepatica (n = 62), which are firstly described here, could be employed for the development of better strategies (including RNAi) in the battle against both zoonotically and economically important disease, fasciolosis.
Collapse
Affiliation(s)
- Orçun Haçarız
- TÜBİTAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, P.O. Box 21, 41470, Gebze, Kocaeli, Turkey.
| | - Mete Akgün
- TÜBİTAK Marmara Research Center, Information Technologies Institute, Gebze, Kocaeli, Turkey.
| | - Pınar Kavak
- TÜBİTAK Marmara Research Center, Information Technologies Institute, Gebze, Kocaeli, Turkey.
| | - Bayram Yüksel
- TÜBİTAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, P.O. Box 21, 41470, Gebze, Kocaeli, Turkey.
| | - Mahmut Şamil Sağıroğlu
- TÜBİTAK Marmara Research Center, Information Technologies Institute, Gebze, Kocaeli, Turkey.
| |
Collapse
|
30
|
Cwiklinski K, Dalton JP, Dufresne PJ, La Course J, Williams DJ, Hodgkinson J, Paterson S. The Fasciola hepatica genome: gene duplication and polymorphism reveals adaptation to the host environment and the capacity for rapid evolution. Genome Biol 2015; 16:71. [PMID: 25887684 PMCID: PMC4404566 DOI: 10.1186/s13059-015-0632-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/13/2015] [Indexed: 12/30/2022] Open
Abstract
Background The liver fluke Fasciola hepatica is a major pathogen of livestock worldwide, causing huge economic losses to agriculture, as well as 2.4 million human infections annually. Results Here we provide a draft genome for F. hepatica, which we find to be among the largest known pathogen genomes at 1.3 Gb. This size cannot be explained by genome duplication or expansion of a single repeat element, and remains a paradox given the burden it may impose on egg production necessary to transmit infection. Despite the potential for inbreeding by facultative self-fertilisation, substantial levels of polymorphism were found, which highlights the evolutionary potential for rapid adaptation to changes in host availability, climate change or to drug or vaccine interventions. Non-synonymous polymorphisms were elevated in genes shared with parasitic taxa, which may be particularly relevant for the ability of the parasite to adapt to a broad range of definitive mammalian and intermediate molluscan hosts. Large-scale transcriptional changes, particularly within expanded protease and tubulin families, were found as the parasite migrated from the gut, across the peritoneum and through the liver to mature in the bile ducts. We identify novel members of anti-oxidant and detoxification pathways and defined their differential expression through infection, which may explain the stage-specific efficacy of different anthelmintic drugs. Conclusions The genome analysis described here provides new insights into the evolution of this important pathogen, its adaptation to the host environment and external selection pressures. This analysis also provides a platform for research into novel drugs and vaccines. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0632-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK. .,School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK.
| | - John Pius Dalton
- School of Biological Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK. .,Institute of Parasitology, McGill University, Montreal, Quebec, Canada.
| | - Philippe J Dufresne
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada. .,Institut National de Santé Publique du Québec, Montreal, Quebec, Canada.
| | | | - Diana Jl Williams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Jane Hodgkinson
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
31
|
In vitro biomarker discovery in the parasitic flatworm Fasciola hepatica for monitoring chemotherapeutic treatment. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Identification of putative markers of triclabendazole resistance by a genome-wide analysis of genetically recombinant Fasciola hepatica. Parasitology 2013; 140:1523-33. [PMID: 23721579 DOI: 10.1017/s0031182013000528] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite years of investigation into triclabendazole (TCBZ) resistance in Fasciola hepatica, the genetic mechanisms responsible remain unknown. Extensive analysis of multiple triclabendazole-susceptible and -resistant isolates using a combination of experimental in vivo and in vitro approaches has been carried out, yet few, if any, genes have been demonstrated experimentally to be associated with resistance phenotypes in the field. In this review we summarize the current understanding of TCBZ resistance from the approaches employed to date. We report the current genomic and genetic resources for F. hepatica that are available to facilitate novel functional genomics and genetic experiments for this parasite in the future. Finally, we describe our own non-biased approach to mapping the major genetic loci involved in conferring TCBZ resistance in F. hepatica.
Collapse
|