1
|
Cai S, Su Y, Shi M, Wang D, Chen DDY, Yan B. Simultaneous quantification of six proteins related to liver injury using nano liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9754. [PMID: 38605420 DOI: 10.1002/rcm.9754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
RATIONALE In clinical diagnosis of liver injury, which is an important health concern, serum aminotransferase assays have been the go-to method used worldwide. However, the measurement of serum enzyme activity has limitations, including inadequate disease specificity and enzyme specificity. METHODS With the high selectivity and specificity provided by nano liquid chromatography-tandem mass spectrometry (LC/MS/MS), this work describes a method for the simultaneous determination of six proteins in liver that can be potentially used as biomarkers for liver injury: glutamic-pyruvic transaminase 1 (GPT1), glutamic oxaloacetic transaminase 1 (GOT1), methionine adenosyl transferase 1A (MAT1A), glutathione peroxidase 1 (GPX1), cytokeratin 18 (KRT18) and apolipoprotein E (APOE). RESULTS In validation, the method was shown to have good selectivity and sensitivity (limits of detection at pg/mL level). The analytical method revealed that, compared with normal mice, in carbon tetrachloride-induced acute liver injury mice, liver MAT1A and GPX1 were significantly lower (p < 0.01 and p < 0.05, respectively), KRT18 was significantly higher (p < 0.05) and APOE and GPT1 were marginally significantly lower (p between 0.05 and 0.1). This is the first work reporting the absolute contents of GPT1, GOT1, MAT1A, GPX1 and KRT18 proteins based on LC/MS. CONCLUSIONS The proposed method provides a basis for establishing more specific diagnostic indicators of liver injury.
Collapse
Affiliation(s)
- Siyu Cai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Yuan Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Mengtian Shi
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Dandan Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Binjun Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
2
|
Rais Y, Drabovich AP. Identification and Quantification of Human Relaxin Proteins by Immunoaffinity-Mass Spectrometry. J Proteome Res 2024; 23:2013-2027. [PMID: 38739617 DOI: 10.1021/acs.jproteome.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The human relaxins belong to the Insulin/IGF/Relaxin superfamily of peptide hormones, and their physiological function is primarily associated with reproduction. In this study, we focused on a prostate tissue-specific relaxin RLN1 (REL1_HUMAN protein) and a broader tissue specificity RLN2 (REL2_HUMAN protein). Due to their structural similarity, REL1 and REL2 proteins were collectively named a 'human relaxin protein' in previous studies and were exclusively measured by immunoassays. We hypothesized that the highly selective and sensitive immunoaffinity-selected reaction monitoring (IA-SRM) assays would reveal the identity and abundance of the endogenous REL1 and REL2 in biological samples and facilitate the evaluation of these proteins for diagnostic applications. High levels of RLN1 and RLN2 transcripts were found in prostate and breast cancer cell lines by RT-PCR. However, no endogenous prorelaxin-1 or mature REL1 were detected by IA-SRM in cell lines, seminal plasma, or blood serum. The IA-SRM assay of REL2 demonstrated its undetectable levels (<9.4 pg/mL) in healthy control female and male sera and relatively high levels of REL2 in maternal sera across different gestational weeks (median 331 pg/mL; N = 120). IA-SRM assays uncovered potential cross-reactivity and nonspecific binding for relaxin immunoassays. The developed IA-SRM assays will facilitate the investigation of the physiological and pathological roles of REL1 and REL2 proteins.
Collapse
Affiliation(s)
- Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
3
|
Qasrawi D, Al-Ghabkari A, Khan RM, Petrotchenko EV, Montero-Odasso M, Borchers CH. A Simplified Proteomics LC-MRM-MS Assay for Determination of apoE Genotypes in Plasma Samples. J Proteome Res 2024; 23:1144-1149. [PMID: 38412507 PMCID: PMC11002930 DOI: 10.1021/acs.jproteome.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Apolipoprotein E (apoE), a polymorphic plasma protein, plays a pivotal role in lipid transportation. The human apoE gene possesses three major alleles (ε2, ε3, and ε4), which differ by single amino acid (cysteine to arginine) substitutions. The ε4 allele represents the primary genetic risk factor for Alzheimer's disease (AD), whereas the ε2 allele protects against the disease. Knowledge of a patient's apoE genotype has high diagnostic value. A recent study has introduced an LC-MRM-MS-based proteomic approach for apoE isoform genotyping using stable isotope-labeled peptide internal standards (SIS). Here, our goal was to develop a simplified LC-MRM-MS assay for identifying apoE genotypes in plasma samples, eliminating the need for the use of SIS peptides. To determine the apoE genotypes, we monitored the chromatographic peak area ratios of isoform-specific peptides relative to a peptide that is common to all apoE isoforms. The assay results correlated well with the standard TaqMan allelic discrimination assay, and we observed a concordance between the two methods for all but three out of 172 samples. DNA sequencing of these three samples has confirmed that the results of the LC-MRM-MS method were correct. Thus, our simplified UPLC-MRM-MS assay is a feasible and reliable method for identifying apoE genotypes without using SIS internal standard peptides. The approach can be seamlessly incorporated into existing quantitative proteomics assays and kits, providing additional valuable apoE genotype information. The principle of using signal ratios of the protein isoform-specific peptides to the peptide common for all of the protein isoforms has the potential to be used for protein isoform determination in general.
Collapse
Affiliation(s)
- Deema
O. Qasrawi
- Segal
Cancer Proteomics Centre, Lady Davis Institute for Medical Research,
Jewish General Hospital, McGill University, Montreal, Québec H3T 1E2, Canada
| | - Abdulhameed Al-Ghabkari
- Rosalind
and Morris Goodman Cancer Institute, McGill
University, Montreal, Québec H3A 1A3, Canada
| | - Rania M. Khan
- Segal
Cancer Proteomics Centre, Lady Davis Institute for Medical Research,
Jewish General Hospital, McGill University, Montreal, Québec H3T 1E2, Canada
| | - Evgeniy V. Petrotchenko
- Segal
Cancer Proteomics Centre, Lady Davis Institute for Medical Research,
Jewish General Hospital, McGill University, Montreal, Québec H3T 1E2, Canada
| | - Manuel Montero-Odasso
- Gait
and Brain Lab, Parkwood Institute, Lawson
Health Research Institute, London, Ontario N6C 0A7, Canada
- Department
of Medicine, Division of Geriatric Medicine, Schulich School of Medicine
& Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department
of Epidemiology and Biostatistics, Schulich School of Medicine &
Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Christoph H. Borchers
- Segal
Cancer Proteomics Centre, Lady Davis Institute for Medical Research,
Jewish General Hospital, McGill University, Montreal, Québec H3T 1E2, Canada
- Segal
Cancer
Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Québec H3T 1E2, Canada
- Division
of Experimental Medicine, McGill University, Montreal, Québec H4A 3J1, Canada
- Gerald
Bronfman Department of Oncology, Lady Davis Institute for Medical
Research, Jewish General Hospital, Montreal, Québec H3T 1E2, Canada
- Department
of Pathology, McGill University, Montreal, Québec H3A 2B4, Canada
| |
Collapse
|
4
|
Chen YT, Liao WR, Wang HT, Chen HW, Chen SF. Targeted protein quantitation in human body fluids by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2379-2403. [PMID: 35702881 DOI: 10.1002/mas.21788] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Human body fluids (biofluids) contain various proteins, some of which reflect individuals' physiological conditions or predict diseases. Therefore, the analysis of biofluids can provide substantial information on novel biomarkers for clinical diagnosis and prognosis. In the past decades, mass spectrometry (MS)-based technologies have been developed as proteomic strategies not only for the identification of protein biomarkers but also for biomarker verification/validation in body fluids for clinical applications. The main advantage of targeted MS-based methodologies is the accurate and specific simultaneous quantitation of multiple biomarkers with high sensitivity. Here, we review MS-based methodologies that are currently used for the targeted quantitation of protein components in human body fluids, especially in plasma, urine, cerebrospinal fluid, and saliva. In addition, the currently used MS-based methodologies are summarized with a specific focus on applicable clinical sample types, MS configurations, and acquisition modes.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Rou Liao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Hsueh-Ting Wang
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiao-Wei Chen
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
- Instrumentation Center, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
5
|
Walter J, Eludin Z, Drabovich AP. Redefining serological diagnostics with immunoaffinity proteomics. Clin Proteomics 2023; 20:42. [PMID: 37821808 PMCID: PMC10568870 DOI: 10.1186/s12014-023-09431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Serological diagnostics is generally defined as the detection of specific human immunoglobulins developed against viral, bacterial, or parasitic diseases. Serological tests facilitate the detection of past infections, evaluate immune status, and provide prognostic information. Serological assays were traditionally implemented as indirect immunoassays, and their design has not changed for decades. The advantages of straightforward setup and manufacturing, analytical sensitivity and specificity, affordability, and high-throughput measurements were accompanied by limitations such as semi-quantitative measurements, lack of universal reference standards, potential cross-reactivity, and challenges with multiplexing the complete panel of human immunoglobulin isotypes and subclasses. Redesign of conventional serological tests to include multiplex quantification of immunoglobulin isotypes and subclasses, utilize universal reference standards, and minimize cross-reactivity and non-specific binding will facilitate the development of assays with higher diagnostic specificity. Improved serological assays with higher diagnostic specificity will enable screenings of asymptomatic populations and may provide earlier detection of infectious diseases, autoimmune disorders, and cancer. In this review, we present the major clinical needs for serological diagnostics, overview conventional immunoassay detection techniques, present the emerging immunoassay detection technologies, and discuss in detail the advantages and limitations of mass spectrometry and immunoaffinity proteomics for serological diagnostics. Finally, we explore the design of novel immunoaffinity-proteomic assays to evaluate cell-mediated immunity and advance the sequencing of clinically relevant immunoglobulins.
Collapse
Affiliation(s)
- Jonathan Walter
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Zicki Eludin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
6
|
Farkona S, Pastrello C, Konvalinka A. Proteomics: Its Promise and Pitfalls in Shaping Precision Medicine in Solid Organ Transplantation. Transplantation 2023; 107:2126-2142. [PMID: 36808112 DOI: 10.1097/tp.0000000000004539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Solid organ transplantation is an established treatment of choice for end-stage organ failure. However, all transplant patients are at risk of developing complications, including allograft rejection and death. Histological analysis of graft biopsy is still the gold standard for evaluation of allograft injury, but it is an invasive procedure and prone to sampling errors. The past decade has seen an increased number of efforts to develop minimally invasive procedures for monitoring allograft injury. Despite the recent progress, limitations such as the complexity of proteomics-based technology, the lack of standardization, and the heterogeneity of populations that have been included in different studies have hindered proteomic tools from reaching clinical transplantation. This review focuses on the role of proteomics-based platforms in biomarker discovery and validation in solid organ transplantation. We also emphasize the value of biomarkers that provide potential mechanistic insights into the pathophysiology of allograft injury, dysfunction, or rejection. Additionally, we forecast that the growth of publicly available data sets, combined with computational methods that effectively integrate them, will facilitate a generation of more informed hypotheses for potential subsequent evaluation in preclinical and clinical studies. Finally, we illustrate the value of combining data sets through the integration of 2 independent data sets that pinpointed hub proteins in antibody-mediated rejection.
Collapse
Affiliation(s)
- Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| |
Collapse
|
7
|
Teunissen CE, Kimble L, Bayoumy S, Bolsewig K, Burtscher F, Coppens S, Das S, Gogishvili D, Fernandes Gomes B, Gómez de San José N, Mavrina E, Meda FJ, Mohaupt P, Mravinacová S, Waury K, Wojdała AL, Abeln S, Chiasserini D, Hirtz C, Gaetani L, Vermunt L, Bellomo G, Halbgebauer S, Lehmann S, Månberg A, Nilsson P, Otto M, Vanmechelen E, Verberk IMW, Willemse E, Zetterberg H. Methods to Discover and Validate Biofluid-Based Biomarkers in Neurodegenerative Dementias. Mol Cell Proteomics 2023; 22:100629. [PMID: 37557955 PMCID: PMC10594029 DOI: 10.1016/j.mcpro.2023.100629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.
Collapse
Affiliation(s)
- Charlotte E Teunissen
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
| | - Leighann Kimble
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; KIN Center for Digital Innovation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sherif Bayoumy
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Katharina Bolsewig
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Felicia Burtscher
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Salomé Coppens
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; National Measurement Laboratory at LGC, Teddington, United Kingdom
| | - Shreyasee Das
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; ADx NeuroSciences, Gent, Belgium
| | - Dea Gogishvili
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bárbara Fernandes Gomes
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nerea Gómez de San José
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Neurology, University of Ulm, Ulm, Germany
| | - Ekaterina Mavrina
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; KIN Center for Digital Innovation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Francisco J Meda
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Pablo Mohaupt
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; LBPC-PPC, IRMB CHU Montpellier, INM INSERM, Université de Montpellier, Montpellier, France
| | - Sára Mravinacová
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Katharina Waury
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anna Lidia Wojdała
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sanne Abeln
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Davide Chiasserini
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christophe Hirtz
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; LBPC-PPC, IRMB CHU Montpellier, INM INSERM, Université de Montpellier, Montpellier, France
| | - Lorenzo Gaetani
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lisa Vermunt
- Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Giovanni Bellomo
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Steffen Halbgebauer
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Neurology, University of Ulm, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | - Sylvain Lehmann
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; LBPC-PPC, IRMB CHU Montpellier, INM INSERM, Université de Montpellier, Montpellier, France
| | - Anna Månberg
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Peter Nilsson
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Markus Otto
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Neurology, University of Ulm, Ulm, Germany; Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Eugeen Vanmechelen
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; ADx NeuroSciences, Gent, Belgium
| | - Inge M W Verberk
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Eline Willemse
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Henrik Zetterberg
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Giannisis A, Al-Grety A, Carlsson H, Howell JC, Hu WT, Kultima K, Nielsen HM. Plasma apolipoprotein E levels, isoform composition, and dimer profile in relation to plasma lipids in racially diverse patients with Alzheimer's disease and mild cognitive impairment. Alzheimers Res Ther 2023; 15:119. [PMID: 37400888 PMCID: PMC10316569 DOI: 10.1186/s13195-023-01262-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND The APOEε4-promoted risk of Alzheimer's disease (AD) is lower in Black/African-Americans (B/AAs), compared to non-Hispanic whites (NHWs). Previous studies reported lower plasma apolipoprotein E (apoE) levels in NHW APOEε4-carriers compared to non-carriers, and low plasma apoE levels were directly associated with an increased risk of AD and all dementia. We further showed that APOEε3/ε3 AD patients exhibited reduced plasma apoE dimers compared to corresponding control subjects. Whether plasma apoE levels and apoE dimer formation differ between races/ethnicities and therefore may help explain AD risk racial disparity remains to be elucidated. METHODS Using mass spectrometry, we determined total plasma apoE and apoE isoform levels in a cohort of B/AAs (n = 58) and NHWs (n = 67) including subjects with normal cognition (B/AA: n = 25, NHW: n = 28), mild cognitive impairment (MCI) (B/AA: n = 24, NHW: n = 24), or AD dementia (B/AA: n = 9, NHW: n = 15). Additionally, we used non-reducing western blot analysis to assess the distribution of plasma apoE into monomers/disulfide-linked dimers. Plasma total apoE, apoE isoform levels, and % apoE monomers/dimers were assessed for correlations with cognition, cerebrospinal fluid (CSF) AD biomarkers, sTREM2, neurofilament light protein (NfL), and plasma lipids. RESULTS Plasma apoE was predominantly monomeric in both racial groups and the monomer/dimer distribution was not affected by disease status, or correlated with CSF AD biomarkers, but associated with plasma lipids. Plasma total apoE levels were not related to disease status and only in the NHW subjects we observed lower plasma apoE levels in the APOEε4/ε4-carriers. Total plasma apoE levels were 13% higher in B/AA compared to NHW APOEε4/ε4 subjects and associated with plasma high-density lipoprotein (HDL) in NHW subjects but with low-density lipoprotein levels (LDL) in the B/AA subjects. Higher plasma apoE4 levels, exclusively in APOEε3/ε4 B/AA subjects, were linked to higher plasma total cholesterol and LDL levels. In the controls, NHWs and B/AAs exhibited opposite associations between plasma apoE and CSF t-tau. CONCLUSIONS The previously reported lower APOEε4-promoted risk of AD in B/AA subjects may be associated with differences in plasma apoE levels and lipoprotein association. Whether differences in plasma apoE levels between races/ethnicities result from altered APOEε4 expression or turnover, needs further elucidation.
Collapse
Affiliation(s)
- Andreas Giannisis
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius Väg 16B, 114 18, Stockholm, Sweden
| | - Asma Al-Grety
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Henrik Carlsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | | | - William T Hu
- Department of Neurology, Emory University, Atlanta, GA, USA
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, and Institute for Health, Health Care Policy, and Aging Research, New Brunswick, NJ, USA
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius Väg 16B, 114 18, Stockholm, Sweden.
| |
Collapse
|
9
|
Zhang J, Kanoatov M, Jarvi K, Gauthier-Fisher A, Moskovtsev SI, Librach C, Drabovich AP. Germ cell-specific proteins AKAP4 and ASPX facilitate identification of rare spermatozoa in non-obstructive azoospermia. Mol Cell Proteomics 2023; 22:100556. [PMID: 37087050 DOI: 10.1016/j.mcpro.2023.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023] Open
Abstract
Non-obstructive azoospermia (NOA), the most severe form of male infertility, could be treated with intra-cytoplasmic sperm injection, providing spermatozoa were retrieved with the microdissection testicular sperm extraction (mTESE). We hypothesized that testis- and germ cell-specific proteins would facilitate flow cytometry-assisted identification of rare spermatozoa in semen cell pellets of NOA patients, thus enabling non-invasive diagnostics prior to mTESE. Data mining, targeted proteomics, and immunofluorescent microscopy identified and verified a panel of highly testis-specific proteins expressed at the continuum of germ cell differentiation. Late germ cell-specific proteins AKAP4_HUMAN and ASPX_HUMAN (ACRV1 gene) revealed exclusive localization in spermatozoa tails and acrosomes, respectively. A multiplex imaging flow cytometry assay facilitated fast and unambiguous identification of rare but morphologically intact AKAP4+/ASPX+/Hoechst+ spermatozoa within debris-laden semen pellets of NOA patients. While the previously suggested markers for spermatozoa retrieval suffered from low diagnostic specificity, the multi-step gating strategy and visualization of AKAP4+/ASPX+/Hoechst+ cells with elongated tails and acrosome-capped nuclei facilitated fast and unambiguous identification of the mature intact spermatozoa. AKAP4+/ASPX+/Hoechst+ assay may emerge as a non-invasive test to predict retrieval of morphologically intact spermatozoa by mTESE, thus improving diagnostics and treatment of severe forms of male infertility.
Collapse
Affiliation(s)
| | - Mirzo Kanoatov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada; Department of Surgery, Division of Urology, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Sergey I Moskovtsev
- CReATe Fertility Centre, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Clifford Librach
- CReATe Fertility Centre, Toronto, ON, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Arora D, Hackenberg Y, Li J, Winter D. Updates on the study of lysosomal protein dynamics: possibilities for the clinic. Expert Rev Proteomics 2023; 20:47-55. [PMID: 36919490 DOI: 10.1080/14789450.2023.2190515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION The lysosome is the main degradative organelle of almost all mammalian cells, fulfilling important functions in macromolecule recycling, metabolism, and signaling. Lysosomal dysfunction is connected to a continuously growing number of pathologic conditions, and lysosomal proteins present potential biomarkers for a variety of diseases. Therefore, there is an increasing interest in their analysis in patient samples. AREAS COVERED We provide an overview of OMICs studies which identified lysosomal proteins as potential biomarkers for pathological conditions, covering proteomics, genomics, and transcriptomics approaches, identified through PubMed searches. With respect to discovery proteomics analyses, mainly lysosomal luminal and associated proteins were detected, while membrane proteins were found less frequently. Comprehensive coverage of the lysosomal proteome was only achieved by ultra-deep-coverage studies, but targeted approaches allowed for the reproducible quantification of lysosomal proteins in diverse sample types. EXPERT OPINION The low abundance of lysosomal proteins complicates their reproducible analysis in patient samples. Whole proteome shotgun analyses fail in many instances to cover the lysosomal proteome, which is due to under-sampling and/or a lack of sensitivity. With the current state of the art, targeted proteomics assays provide the best performance for the characterization of lysosomal proteins in patient samples.
Collapse
Affiliation(s)
- Dhriti Arora
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Yannic Hackenberg
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jiaran Li
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Nakamura T, Kawarabayashi T, Ueda T, Shimomura S, Hoshino M, Itoh K, Ihara K, Nakaji S, Takatama M, Ikeda Y, Shoji M. Plasma ApoE4 Levels Are Lower than ApoE2 and ApoE3 Levels, and Not Associated with Plasma Aβ40/42 Ratio as a Biomarker of Amyloid-β Amyloidosis in Alzheimer's Disease. J Alzheimers Dis 2023; 93:333-348. [PMID: 36970894 DOI: 10.3233/jad-220996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND APOE4 is the strongest risk factor for Alzheimer's disease (AD). However, limited information is currently available on APOE4 and the pathological role of plasma apolipoprotein E (ApoE) 4 remains unclear. OBJECTIVE The aims of the present study were to measure plasma levels of total ApoE (tE), ApoE2, ApoE3, and ApoE4 using mass spectrometry and elucidate the relationships between plasma ApoE and blood test items. METHODS We herein examined plasma levels of tE, ApoE2, ApoE3, and ApoE4 in 498 subjects using liquid chromatograph-mass spectrometry (LC-MS/MS). RESULTS Among 498 subjects, mean age was 60 years and 309 were female. tE levels were distributed as ApoE2/E3 = ApoE2/E4 >ApoE3/E3 = ApoE3/E4 >ApoE4/E4. In the heterozygous group, ApoE isoform levels were distributed as ApoE2 >ApoE3 >ApoE4. ApoE levels were not associated with aging, the plasma amyloid-β (Aβ) 40/42 ratio, or the clinical diagnosis of AD. Total cholesterol levels correlated with the level of each ApoE isoform. ApoE2 levels were associated with renal function, ApoE3 levels with low-density lipoprotein cholesterol and liver function, and ApoE4 levels with triglycerides, high-density lipoprotein cholesterol, body weight, erythropoiesis, and insulin metabolism. CONCLUSION The present results suggest the potential of LC-MS/MS for the phenotyping and quantitation of plasma ApoE. Plasma ApoE levels are regulated in the order of ApoE2 >ApoE3 >ApoE4 and are associated with lipids and multiple metabolic pathways, but not directly with aging or AD biomarkers. The present results provide insights into the multiple pathways by which peripheral ApoE4 influences the progression of AD and atherosclerosis.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Takeshi Kawarabayashi
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Tetsuya Ueda
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Sachiko Shimomura
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Masaki Hoshino
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazushige Ihara
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Masamitsu Takatama
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mikio Shoji
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| |
Collapse
|
12
|
Fu Z, Rais Y, Dara D, Jackson D, Drabovich AP. Rational Design and Development of SARS-CoV-2 Serological Diagnostics by Immunoprecipitation-Targeted Proteomics. Anal Chem 2022; 94:12990-12999. [PMID: 36095284 PMCID: PMC9523617 DOI: 10.1021/acs.analchem.2c01325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Current design of serological tests utilizes conservative
immunoassay
approaches and is focused on fast and convenient assay development,
throughput, straightforward measurements, and affordability. Limitations
of common serological assays include semiquantitative measurements,
cross-reactivity, lack of reference standards, and no differentiation
between human immunoglobulin subclasses. In this study, we suggested
that a combination of immunoaffinity enrichments with targeted proteomics
would enable rational design and development of serological assays
of infectious diseases, such as COVID-19. Immunoprecipitation-targeted
proteomic assays allowed for sensitive and specific measurements of
NCAP_SARS2 protein with a limit of detection of 313 pg/mL in serum
and enabled differential quantification of anti-SARS-CoV-2 antibody
isotypes (IgG, IgA, IgM, IgD, and IgE) and individual subclasses (IgG1-4
and IgA1-2) in plasma and saliva. Simultaneous evaluation of the numerous
antigen–antibody subclass combinations revealed a receptor-binding
domain (RBD)-IgG1 as a combination with the highest diagnostic performance.
Further validation revealed that anti-RBD IgG1, IgG3, IgM, and IgA1
levels were significantly elevated in convalescent plasma, while IgG2,
IgG4, and IgA2 were not informative. Anti-RBD IgG1 levels in convalescent
(2138 ng/mL) vs negative (95 ng/mL) plasma revealed 385 ng/mL as a
cutoff to detect COVID-19 convalescent plasma. Immunoprecipitation-targeted
proteomic assays will facilitate improvement and standardization of
the existing serological tests, enable rational design of novel tests,
and offer tools for the comprehensive investigation of immunoglobulin
subclass cooperation in immune response.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yasmine Rais
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Delaram Dara
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Dana Jackson
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
13
|
Giannisis A, Al-Grety A, Carlsson H, Patra K, Twohig D, Sando SB, Lauridsen C, Berge G, Grøntvedt GR, Bråthen G, White LR, Kultima K, Nielsen HM. Plasma apolipoprotein E levels in longitudinally followed patients with mild cognitive impairment and Alzheimer’s disease. Alzheimers Res Ther 2022; 14:115. [PMID: 36002891 PMCID: PMC9400269 DOI: 10.1186/s13195-022-01058-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Low levels of plasma apolipoprotein E (apoE) and presence of the APOE ε4 allele are associated with an increased risk of Alzheimer’s disease (AD). Although the increased risk of AD in APOE ε4-carriers is well-established, the protein levels have received limited attention.
Methods
We here report the total plasma apoE and apoE isoform levels at baseline from a longitudinally (24 months) followed cohort including controls (n = 39), patients with stable amnestic mild cognitive impairment during 24 months follow up (MCI-MCI, n = 30), patients with amnestic MCI (aMCI) that during follow-up were clinically diagnosed with AD with dementia (ADD) (MCI-ADD, n = 28), and patients with AD with dementia (ADD) at baseline (ADD, n = 28). We furthermore assessed associations between plasma apoE levels with cerebrospinal fluid (CSF) AD biomarkers and α-synuclein, as well as both CSF and plasma neurofilament light chain (NfL), YKL-40 and kallikrein 6.
Results
Irrespective of clinical diagnosis, the highest versus the lowest apoE levels were found in APOE ε2/ε3 versus APOE ε4/ε4 subjects, with the most prominent differences exhibited in females. Total plasma apoE levels were 32% and 21% higher in the controls versus MCI-ADD and ADD patients, respectively. Interestingly, MCI-ADD patients exhibited a 30% reduction in plasma apoE compared to MCI-MCI patients. This decrease appeared to be associated with brain amyloid-β (Aβ42) pathology regardless of disease status as assessed using the Amyloid, Tau, and Neurodegeneration (A/T/N) classification. In addition to the association between low plasma apoE and low levels of CSF Aβ42, lower apoE levels were also related to higher levels of CSF total tau (t-tau) and tau phosphorylated at Threonine 181 residue (p-tau) and NfL as well as a worse performance on the mini-mental-state-examination. In MCI-ADD patients, low levels of plasma apoE were associated with higher levels of CSF α-synuclein and kallikrein 6. No significant correlations between plasma apoE and the astrocytic inflammatory marker YKL40 were observed.
Conclusions
Our results demonstrate important associations between low plasma apoE levels, Aβ pathology, and progression from aMCI to a clinical ADD diagnosis.
Collapse
|
14
|
Abstract
The brain, as one of the most lipid-rich organs, heavily relies on lipid transport and distribution to maintain homeostasis and neuronal function. Lipid transport mediated by lipoprotein particles, which are complex structures composed of apolipoproteins and lipids, has been thoroughly characterized in the periphery. Although lipoproteins in the central nervous system (CNS) were reported over half a century ago, the identification of APOE4 as the strongest genetic risk factor for Alzheimer's disease has accelerated investigation of the biology and pathobiology of lipoproteins in the CNS. This review provides an overview of the different components of lipoprotein particles, in particular apolipoproteins, and their involvements in both physiological functions and pathological mechanisms in the CNS.
Collapse
Affiliation(s)
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| |
Collapse
|
15
|
Simultaneous Mass Spectrometry-Based Apolipoprotein Profiling and Apolipoprotein E Phenotyping in Patients with ASCVD and Mild Cognitive Impairment. Nutrients 2022; 14:nu14122474. [PMID: 35745204 PMCID: PMC9230692 DOI: 10.3390/nu14122474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023] Open
Abstract
Apolipoprotein E (apoE) occurs on the majority of plasma lipoproteins and plays a major role in the lipid metabolism in the periphery and in the central nervous system. ApoE is a polymorphic protein with three common isoforms, apoE2, apoE3 and apoE4, derived from respective alleles ε2, ε3 and ε4. The aim of this study was to develop a sample pretreatment protocol combined with rapid mass spectrometry (MS)-based assay for simultaneous apolipoprotein profiling and apoE phenotype identification. This assay was validated in 481 samples from patients with stable atherosclerotic cardiovascular disease (ASCVD) and applied to study association with mild cognitive impairment (MCI) in the LIFE Adult study, including overall 690 study subjects. Simultaneous quantification of 8−12 major apolipoproteins including apoA-I, apoB-100 and apoE could be performed within 6.5 min. Phenotyping determined with the developed MS assay had good agreement with the genotyping by real-time fluorescence PCR (97.5%). ApoE2 isoform was associated with the highest total apoE concentration compared to apoE3 and apoE4 (p < 0.001). In the subgroup of diabetic atherosclerotic cardiovascular disease (ASCVD) patients, apoE2 isoform was related to higher apoC-I levels (apoE2 vs. apoE3, p < 0.05), while in the subgroup of ASCVD patients under statin therapy apoE2 was related to lower apoB-100 levels (apoE2 vs. apoE3/apoE4, p < 0.05). A significant difference in apoE concentration observed between mild cognitive impairment (MCI) subjects and controls was confirmed for each apoE phenotype. In conclusion, this study provides evidence for the successful implementation of an MS-based apoE phenotyping assay, which can be used to assess phenotype effects on plasma lipid and apolipoprotein levels.
Collapse
|
16
|
Mass Spectrometry-Based Analysis of Lipid Involvement in Alzheimer’s Disease Pathology—A Review. Metabolites 2022; 12:metabo12060510. [PMID: 35736443 PMCID: PMC9228715 DOI: 10.3390/metabo12060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Irregularities in lipid metabolism have been linked to numerous neurodegenerative diseases. The roles of abnormal brain, plasma, and cerebrospinal fluid (CSF) lipid levels in Alzheimer’s disease (AD) onset and progression specifically have been described to a great extent in the literature. Apparent hallmarks of AD include, but are not limited to, genetic predisposition involving the APOE Ɛ4 allele, oxidative stress, and inflammation. A common culprit tied to many of these hallmarks is disruption in brain lipid homeostasis. Therefore, it is important to understand the roles of lipids, under normal and abnormal conditions, in each process. Lipid influences in processes such as inflammation and blood–brain barrier (BBB) disturbance have been primarily studied via biochemical-based methods. There is a need, however, for studies focused on uncovering the relationship between lipid irregularities and AD by molecular-based quantitative analysis in transgenic animal models and human samples alike. In this review, mass spectrometry as it has been used as an analytical tool to address the convoluted relationships mentioned above is discussed. Additionally, molecular-based mass spectrometry strategies that should be used going forward to further relate structure and function relationships of lipid irregularities and hallmark AD pathology are outlined.
Collapse
|
17
|
Rzagalinski I, Bogdanova A, Raghuraman BK, Geertsma ER, Hersemann L, Ziemssen T, Shevchenko A. FastCAT Accelerates Absolute Quantification of Proteins Using Multiple Short Nonpurified Chimeric Standards. J Proteome Res 2022; 21:1408-1417. [PMID: 35561006 PMCID: PMC9171895 DOI: 10.1021/acs.jproteome.2c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Absolute (molar)
quantification of clinically relevant proteins
determines their reference values in liquid and solid biopsies. The
FastCAT (for Fast-track QconCAT) method employs multiple short (<50
kDa), stable-isotope labeled chimeric proteins (CPs) composed of concatenated
quantotypic (Q)-peptides representing the quantified proteins. Each
CP also comprises scrambled sequences of reference (R)-peptides that
relate its abundance to a single protein standard (bovine serum albumin,
BSA). FastCAT not only alleviates the need to purify CP or use sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) but
also improves the accuracy, precision, and dynamic range of the absolute
quantification by grouping Q-peptides according to the expected abundance
of the target proteins. We benchmarked FastCAT against the reference
method of MS Western and tested it in the direct molar quantification
of neurological markers in human cerebrospinal fluid at the low ng/mL
level.
Collapse
Affiliation(s)
- Ignacy Rzagalinski
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Aliona Bogdanova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Lena Hersemann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
18
|
Liu Y, Zhang H, Zhong X, Li Z, Zetterberg H, Li L. Isotopic N,N-dimethyl leucine tags for absolute quantification of clusterin and apolipoprotein E in Alzheimer's disease. J Proteomics 2022; 257:104507. [PMID: 35124278 PMCID: PMC8916911 DOI: 10.1016/j.jprot.2022.104507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and one of the leading causes of death in the United States. In the past decades, extensive efforts have been devoted to biomarker discovery for early diagnosis and treatment of AD. Herein, this study aims to quantify clusterin (CLU) and apolipoprotein E (APOE) in blood samples from AD patients and evaluate these two proteins as potential biomarkers in AD diagnosis. In-house synthesized 5-plex isotopic N,N-dimethyl leucine (iDiLeu) tags were used to label target peptide standards at different concentrations to construct standard curves. Our study revealed that the levels of CLU and APOE exhibited clear differences in male vs. female AD groups but not in male vs. female non-AD groups. In contrast, the levels of serum CLU and APOE did not show statistically significant differences in the AD groups and non-AD groups. Principal component analysis (PCA) with CLU and APOE showed some separation between the AD and non-AD participants. Significance: Dissecting CLU and APOE heterogeneity in AD pathogenesis may therefore facilitate delineating the pathological relevance for sex-related pathways, leading to personalized medicine in the future. Collectively, this study introduces a cost-effective absolute quantitative proteomics strategy for target protein quantitation and lays the foundation for future investigation of CLU and APOE as potential biomarkers for AD. SIGNIFICANCE STATEMENT: As blood-based biomarkers for AD diagnosis are cost-effective and introduce less invasiveness, discovery and validation of biomarkers in the blood samples of AD patients have become a hot topic in Alzheimer's and dementia research. Thus far, amyloid β (Aβ), total-tau and phosphorylated tau (p-tau) in blood show great accuracy and specificity in diagnosis of AD. However, the underlying mechanism of AD pathology remains to be elusive and complex. Besides these well studied proteins, many other proteins, such as clusterin (CLU) and apolipoprotein E (APOE) have also been found to be related to AD development. It has been implicated that these two proteins are involved in Aβ clearance and deposition. In this study, we measure the absolute concentrations of these two proteins in blood and shed some light on the potential roles of CLU and APOE in AD pathology. Dissecting CLU and APOE heterogeneity in AD pathogenesis may therefore facilitate delineating the pathological relevance for specific pathways between different genders, leading to personalized medicine in the future. Collectively, this study introduces a cost-effective absolute quantitative proteomics strategy for target protein quantitation and lays the foundation for future investigation of CLU and APOE as potential biomarkers for AD.
Collapse
Affiliation(s)
- Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
19
|
Forgrave LM, Wang M, Yang D, DeMarco ML. Proteoforms and their expanding role in laboratory medicine. Pract Lab Med 2022; 28:e00260. [PMID: 34950758 PMCID: PMC8672040 DOI: 10.1016/j.plabm.2021.e00260] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
The term “proteoforms” describes the range of different structures of a protein product of a single gene, including variations in amino acid sequence and post-translational modifications. This diversity in protein structure contributes to the biological complexity observed in living organisms. As the concentration of a particular proteoform may increase or decrease in abnormal physiological states, proteoforms have long been used in medicine as biomarkers of health and disease. Notably, the analytical approaches used to analyze proteoforms have evolved considerably over the years. While ligand binding methods continue to play a large role in proteoform measurement in the clinical laboratory, unanticipated or unknown post-translational modifications and sequence variants can upend even extensively tested and vetted assays that have successfully made it through the medical regulatory process. As an alternate approach, mass spectrometry—with its high molecular selectivity—has become an essential tool in detection, characterization, and quantification of proteoforms in biological fluids and tissues. This review explores the analytical techniques used for proteoform detection and quantification, with an emphasis on mass spectrometry and its various applications in clinical research and patient care including, revealing new biomarker targets, helping improve the design of contemporary ligand binding in vitro diagnostics, and as mass spectrometric laboratory developed tests used in routine patient care.
Collapse
Affiliation(s)
- Lauren M. Forgrave
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Meng Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - David Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, 1081 Burrard St, Vancouver, V6Z 1Y6, Canada
- Corresponding author. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
20
|
Deutsch EW, Omenn GS, Sun Z, Maes M, Pernemalm M, Palaniappan KK, Letunica N, Vandenbrouck Y, Brun V, Tao SC, Yu X, Geyer PE, Ignjatovic V, Moritz RL, Schwenk JM. Advances and Utility of the Human Plasma Proteome. J Proteome Res 2021; 20:5241-5263. [PMID: 34672606 PMCID: PMC9469506 DOI: 10.1021/acs.jproteome.1c00657] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID-19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods. We discuss examples where plasma proteomics contributed valuable insights into SARS-CoV-2 infections, aging, and hemostasis and the opportunities offered by combining proteomics with genetic data. As a contribution to the Human Proteome Organization (HUPO) Human Plasma Proteome Project (HPPP), we present the Human Plasma PeptideAtlas build 2021-07 that comprises 4395 canonical and 1482 additional nonredundant human proteins detected in 240 MS-based experiments. In addition, we report the new Human Extracellular Vesicle PeptideAtlas 2021-06, which comprises five studies and 2757 canonical proteins detected in extracellular vesicles circulating in blood, of which 74% (2047) are in common with the plasma PeptideAtlas. Our overview summarizes the recent advances, impactful applications, and ongoing challenges for translating plasma proteomics into utility for precision medicine.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Gilbert S Omenn
- Institute for Systems Biology, Seattle, Washington 98109, United States.,Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Michal Maes
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Maria Pernemalm
- Department of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | | | - Natasha Letunica
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Yves Vandenbrouck
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, B207 SCSB Building, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Philipp E Geyer
- OmicEra Diagnostics GmbH, Behringstr. 6, 82152 Planegg, Germany
| | - Vera Ignjatovic
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M Schwenk
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23, SE-171 65 Solna, Sweden
| |
Collapse
|
21
|
Korecka M, Shaw LM. Mass spectrometry-based methods for robust measurement of Alzheimer's disease biomarkers in biological fluids. J Neurochem 2021; 159:211-233. [PMID: 34244999 PMCID: PMC9057379 DOI: 10.1111/jnc.15465] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting 60%-70% of people afflicted with this disease. Accurate antemortem diagnosis is urgently needed for early detection of AD to enable reliable estimation of prognosis, intervention, and monitoring of the disease. The National Institute on Aging/Alzheimer's Association sponsored the 'Research Framework: towards a biological definition of AD', which recommends using different biomarkers in living persons for a biomarker-based definition of AD regardless of clinical status. Fluid biomarkers represent one of key groups of them. Since cerebrospinal fluid (CSF) is in direct contact with brain and many proteins present in the brain can be detected in CSF, this fluid has been regarded as the best biofluid in which to measure AD biomarkers. Recently, technological advancements in protein detection made possible the effective study of plasma AD biomarkers despite their significantly lower concentrations versus to that in CSF. This and other challenges that face plasma-based biomarker measurements can be overcome by using mass spectrometry. In this review, we discuss AD biomarkers which can be reliably measured in CSF and plasma using targeted mass spectrometry coupled to liquid chromatography (LC/MS/MS). We describe progress in LC/MS/MS methods' development, emphasize the challenges, and summarize major findings. We also highlight the role of mass spectrometry and progress made in the process of global standardization of the measurement of Aβ42/Aβ40. Finally, we briefly describe exploratory proteomics which seek to identify new biomarkers that can contribute to detection of co-pathological processes that are common in sporadic AD.
Collapse
Affiliation(s)
- Magdalena Korecka
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine Perlman School of Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
22
|
Edlund AK, Chen K, Lee W, Protas H, Su Y, Reiman E, Caselli R, Nielsen HM. Plasma Apolipoprotein E3 and Glucose Levels Are Associated in APOE ɛ3/ɛ4 Carriers. J Alzheimers Dis 2021; 81:339-354. [PMID: 33814450 PMCID: PMC8203224 DOI: 10.3233/jad-210065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Altered cerebral glucose metabolism, especially prominent in APOE ɛ4 carriers, occurs years prior to symptoms in Alzheimer's disease (AD). We recently found an association between a higher ratio of plasma apolipoprotein E4 (apoE4) over apoE3, and cerebral glucose hypometabolism in cognitively healthy APOE ɛ3/ɛ4 subjects. Plasma apoE does not cross the blood-brain barrier, hence we speculate that apoE is linked to peripheral glucose metabolism which is known to affect glucose metabolism in the brain. OBJECTIVE Explore potential associations between levels of plasma insulin and glucose with previously acquired plasma apoE, cerebral metabolic rate of glucose (CMRgl), gray matter volume, and neuropsychological test scores. METHODS Plasma insulin and glucose levels were determined by ELISA and a glucose oxidase assay whereas apoE levels were earlier quantified by mass-spectrometry in 128 cognitively healthy APOE ɛ3/ɛ4 subjects. Twenty-five study subjects had previously undergone FDG-PET and structural MRI. RESULTS Lower plasma apoE3 associated with higher plasma glucose but not insulin in male subjects and subjects with a body mass index above 25. Negative correlations were found between plasma glucose and CMRgl in the left prefrontal and bilateral occipital regions. These associations may have functional implications since glucose levels in turn were negatively associated with neuropsychological test scores. CONCLUSION Plasma apoE3 but not apoE4 may be involved in insulin-independent processes governing plasma glucose levels. Higher plasma glucose, which negatively affects brain glucose metabolism, was associated with lower plasma apoE levels in APOE ɛ3/ɛ4 subjects. High plasma glucose and low apoE levels may be a hazardous combination leading to an increased risk of AD.
Collapse
Affiliation(s)
- Anna K Edlund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Wendy Lee
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Hillary Protas
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Eric Reiman
- Department of Mathematics and Statistics, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Department of Psychiatry, University of Arizona, Tucson, AZ, USA.,Division of Neurogenomics, Translational Genomics Research Institute, Phoenix, AZ, USA.,Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Richard Caselli
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA.,Department of Psychiatry, University of Arizona, Tucson, AZ, USA.,Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
23
|
Batruch I, Lim B, Soosaipillai A, Brinc D, Fiala C, Diamandis EP. Mass Spectrometry-Based Assay for Targeting Fifty-Two Proteins of Brain Origin in Cerebrospinal Fluid. J Proteome Res 2020; 19:3060-3071. [PMID: 32315192 DOI: 10.1021/acs.jproteome.0c00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cerebrospinal fluid (CSF) is a circulatory fluid of the central nervous system and it can reflect the biochemical changes occurring in the brain. Although CSF retrieval through lumbar puncture is invasive, it remains the most commonly used fluid in exploring brain pathology as it is less complex and contains a higher concentration of brain-derived proteins than plasma (Reiber, H. Clin. Chim. Acta 2001, 310, 173-186; Macron et al. J. Proteome Res. 2018, 17, 4315-4319). We hypothesize that proteins produced by the brain will have diagnostic significance for brain pathologies. Hence, we expanded the previously in-house-developed 31-protein panel with more proteins classified as brain-specific by the Human Protein Atlas (HPA). Using the HPA, we selected 76 protein coding genes and screened CSF using liquid chromatography-mass spectrometry (LC-MS) and narrowed the protein list to candidates identified endogenously in CSF. Next, we developed a parallel reaction monitoring (PRM) assay for the 21 new proteins and merged it with the 31-protein assay developed earlier. In the process, we evaluated different screening strategies and optimized MS collision energies and ion isolation windows to achieve the highest possible analyte signal resulting in the PRM assay with an average linear dynamic range of 4.3 × 103. We also assessed the extent of Asn (N)-Gln (Q) deamidation, N-terminal pyro-Glu (E) conversion, and Met (M) oxidation and found that deamidation can be misassigned without high mass accuracy and high-resolution settings. We also assessed how many of these proteins could be reliably measured in 10 individual patient CSF samples. Our approach allows us to measure the relative levels of 52 brain-derived proteins in CSF by a single LC-MS method. This new assay may have important applications in discovering CSF biomarkers for various neurological diseases.
Collapse
Affiliation(s)
- Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5T 3L9, Canada
| | - Bryant Lim
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Davor Brinc
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto M5G 2C4, Canada
| | - Clare Fiala
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto M5G 1X5, Canada
| | - Eleftherios P Diamandis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto M5T 3L9, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto M5G 1X5, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto M5G 2C4, Canada
| |
Collapse
|
24
|
Blanchard V, Garçon D, Jaunet C, Chemello K, Billon-Crossouard S, Aguesse A, Garfa A, Famchon G, Torres A, Le May C, Pichelin M, Bigot-Corbel E, Lambert G, Cariou B, Hadjadj S, Krempf M, Bach-Ngohou K, Croyal M. A high-throughput mass spectrometry-based assay for large-scale profiling of circulating human apolipoproteins. J Lipid Res 2020; 61:1128-1139. [PMID: 32404332 DOI: 10.1194/jlr.d120000835] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Indexed: 12/20/2022] Open
Abstract
Apolipoproteins govern lipoprotein metabolism and are promising biomarkers of metabolic and cardiovascular diseases. Unlike immunoassays, MS enables the quantification and phenotyping of multiple apolipoproteins. Hence, here, we aimed to develop a LC-MS/MS assay that can simultaneously quantitate 18 human apolipoproteins [A-I, A-II, A-IV, A-V, B48, B100, C-I, C-II, C-III, C-IV, D, E, F, H, J, L1, M, and (a)] and determined apoE, apoL1, and apo(a) phenotypes in human plasma and serum samples. The plasma and serum apolipoproteins were trypsin digested through an optimized procedure and peptides were extracted and analyzed by LC-MS/MS. The method was validated according to standard guidelines in samples spiked with known peptide amounts. The LC-MS/MS results were compared with those obtained with other techniques, and reproducibility, dilution effects, and stabilities were also assessed. Peptide markers were successfully selected for targeted apolipoprotein quantification and phenotyping. After optimization, the assay was validated for linearity, lower limits of quantification, accuracy (biases: -14.8% to 12.1%), intra-assay variability [coefficients of variation (CVs): 1.5-14.2%], and inter-assay repeatability (CVs: 4.1-14.3%). Bland-Altman plots indicated no major statistically significant differences between LC-MS/MS and other techniques. The LC-MS/MS results were reproducible over five repeated experiments (CVs: 1.8-13.7%), and we identified marked differences among the plasma and serum samples. The LC-MS/MS assay developed here is rapid, requires only small sampling volumes, and incurs reasonable costs, thus making it amenable for a wide range of studies of apolipoprotein metabolism. We also highlight how this assay can be implemented in laboratories.
Collapse
Affiliation(s)
- Valentin Blanchard
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de La Réunion, France. mailto:
| | - Damien Garçon
- L'Institut du Thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | | | - Kevin Chemello
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de La Réunion, France
| | - Stéphanie Billon-Crossouard
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France; CRNH-O Mass Spectrometry Core Facility, Nantes, France
| | - Audrey Aguesse
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France; CRNH-O Mass Spectrometry Core Facility, Nantes, France
| | - Aya Garfa
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
| | | | - Amada Torres
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France
| | - Cédric Le May
- L'Institut du Thorax, INSERM, CNRS, University of Nantes, Nantes, France
| | - Matthieu Pichelin
- L'Institut du Thorax, INSERM, CNRS, University of Nantes, CHU Nantes, Nantes, France
| | | | - Gilles Lambert
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de La Réunion, France
| | - Bertrand Cariou
- L'Institut du Thorax, INSERM, CNRS, University of Nantes, CHU Nantes, Nantes, France
| | - Samy Hadjadj
- CRNH-O Mass Spectrometry Core Facility, Nantes, France; L'Institut du Thorax, INSERM, CNRS, University of Nantes, CHU Nantes, Nantes, France
| | - Michel Krempf
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France; CRNH-O Mass Spectrometry Core Facility, Nantes, France; ELSAN, Clinique Bretéché, Nantes, France
| | - Kalyane Bach-Ngohou
- Department of Biochemistry, CHU de Nantes, France; INSERM U1235, University of Nantes, Nantes, France
| | - Mikaël Croyal
- NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, Nantes, France; CRNH-O Mass Spectrometry Core Facility, Nantes, France
| |
Collapse
|
25
|
Rodriguez-Vieitez E, Nielsen HM. Associations Between APOE Variants, Tau and α-Synuclein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1184:177-186. [PMID: 32096038 DOI: 10.1007/978-981-32-9358-8_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neurodegenerative diseases are characterized by the aggregation and deposition of misfolded proteins in the brain, most prominently amyloid-β (Aβ), tau and α-synuclein (α-syn), and are thus referred to as proteinopathies. While tau is a hallmark of Alzheimer's disease (AD) and other non-AD tauopathies, and α-synuclein is the pathological feature of the spectrum of synucleinopathies including Parkinson's disease (PD), Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB), the presence of co-pathologies is very frequent in all these diseases. Positive and synergistic associations between the different types of protein deposits have been reported, leading to worse prognosis and cognitive decline. A large variation in phenotypic clinical presentation of these diseases, largely due to the frequent presence of co-pathologies, makes differential diagnosis challenging. The observed clinico-pathological overlaps suggest common underlying mechanisms, in part due to shared genetic risk factors. The ε4 allele of the apolipoprotein (APOE) gene is one of the major genetic risk factors for the sporadic forms of proteinopathies, but the biological mechanisms linking APOE, tau and α-syn are not fully understood. This chapter describes current experimental evidence on the relationships between APOE variants, tau and α-syn, from clinical studies on fluid biomarkers and positron emission tomography (PET) imaging, and from basic experimental studies in cellular/molecular biology and animal models. The chapter focuses on recent advances and identifies knowledge gaps. In particular, no PET tracer for assessment of brain α-syn deposits is yet available, although it is subject of intense research and development, therefore experimental evidence on in vivo α-syn levels is based on measures in the cerebrospinal fluid (CSF) and plasma. Moreover, tau PET imaging studies comparing the patterns of tracer retention in synucleinopathies versus in other proteinopathies are scarce and much is still unknown regarding the relationships between APOE variants and fluid and/or imaging biomarkers of tau and α-syn. Further research incorporating multimodal imaging, fluid biomarkers and genetic factors will help elucidate the biological mechanisms underlying these proteinopathies, and contribute to differential diagnosis and patient stratification for clinical trials.
Collapse
Affiliation(s)
- Elena Rodriguez-Vieitez
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
26
|
Iacono D, Feltis GC. Impact of Apolipoprotein E gene polymorphism during normal and pathological conditions of the brain across the lifespan. Aging (Albany NY) 2020; 11:787-816. [PMID: 30677746 PMCID: PMC6366964 DOI: 10.18632/aging.101757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is the cellular substrate for the integration of complex, dynamic, constant, and simultaneous interactions among endogenous and exogenous stimuli across the entire human lifespan. Numerous studies on aging-related brain diseases show that some genes identified as risk factors for some of the most common neurodegenerative diseases - such as the allele 4 of APOE gene (APOE4) for Alzheimer's disease (AD) - have a much earlier neuro-anatomical and neuro-physiological impact. The impact of APOE polymorphism appears in fact to start as early as youth and early-adult life. Intriguingly, though, those same genes associated with aging-related brain diseases seem to influence different aspects of the brain functioning much earlier actually, that is, even from the neonatal periods and earlier. The APOE4, an allele classically associated with later-life neurodegenerative disorders as AD, seems in fact to exert a series of very early effects on phenomena of neuroplasticity and synaptogenesis that begin from the earliest periods of life such as the fetal ones.We reviewed some of the findings supporting the hypothesis that APOE polymorphism is an early modifier of various neurobiological aspects across the entire human lifespan - from the in-utero to the centenarian life - during both normal and pathological conditions of the brain.
Collapse
Affiliation(s)
- Diego Iacono
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA.,MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA.,Atlantic Neuroscience Institute, Atlantic Health System (AHS), Overlook Medical Center, Summit, NJ 07901, USA
| | - Gloria C Feltis
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA
| |
Collapse
|
27
|
Drabovich AP, Saraon P, Drabovich M, Karakosta TD, Dimitromanolakis A, Hyndman ME, Jarvi K, Diamandis EP. Multi-omics Biomarker Pipeline Reveals Elevated Levels of Protein-glutamine Gamma-glutamyltransferase 4 in Seminal Plasma of Prostate Cancer Patients. Mol Cell Proteomics 2019; 18:1807-1823. [PMID: 31249104 PMCID: PMC6731075 DOI: 10.1074/mcp.ra119.001612] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 11/06/2022] Open
Abstract
Seminal plasma, because of its proximity to prostate, is a promising fluid for biomarker discovery and noninvasive diagnostics. In this study, we investigated if seminal plasma proteins could increase diagnostic specificity of detecting primary prostate cancer and discriminate between high- and low-grade cancers. To select 147 most promising biomarker candidates, we combined proteins identified through five independent experimental or data mining approaches: tissue transcriptomics, seminal plasma proteomics, cell line secretomics, tissue specificity, and androgen regulation. A rigorous biomarker development pipeline based on selected reaction monitoring assays was designed to evaluate the most promising candidates. As a result, we qualified 76, and verified 19 proteins in seminal plasma of 67 negative biopsy and 152 prostate cancer patients. Verification revealed a prostate-specific, secreted and androgen-regulated protein-glutamine gamma-glutamyltransferase 4 (TGM4), which predicted prostate cancer on biopsy and outperformed age and serum Prostate-Specific Antigen (PSA). A machine-learning approach for data analysis provided improved multi-marker combinations for diagnosis and prognosis. In the independent verification set measured by an in-house immunoassay, TGM4 protein was upregulated 3.7-fold (p = 0.006) and revealed AUC = 0.66 for detecting prostate cancer on biopsy for patients with serum PSA ≥4 ng/ml and age ≥50. Very low levels of TGM4 (120 pg/ml) were detected in blood serum. Collectively, our study demonstrated rigorous evaluation of one of the remaining and not well-explored prostate-specific proteins within the medium-abundance proteome of seminal plasma. Performance of TGM4 warrants its further investigation within the distinct genomic subtypes and evaluation for the inclusion into emerging multi-biomarker panels.
Collapse
Affiliation(s)
- Andrei P Drabovich
- ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5T 3L9 Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, M5T 3L9 Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5T 3L9 Canada.
| | - Punit Saraon
- ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5T 3L9 Canada
| | | | - Theano D Karakosta
- §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, M5T 3L9 Canada
| | | | - M Eric Hyndman
- **Department of Surgery, Division of Urology, Southern Alberta Institute of Urology, University of Calgary, Calgary, AB T2V 1P9, Canada
| | - Keith Jarvi
- ‡‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5T 3L9 Canada; §§Department of Surgery, Division of Urology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, M5T 3L9 Canada.
| | - Eleftherios P Diamandis
- ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5T 3L9 Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, M5T 3L9 Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5T 3L9 Canada; ‡‡Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5T 3L9 Canada.
| |
Collapse
|
28
|
Belloy ME, Napolioni V, Greicius MD. A Quarter Century of APOE and Alzheimer's Disease: Progress to Date and the Path Forward. Neuron 2019; 101:820-838. [PMID: 30844401 PMCID: PMC6407643 DOI: 10.1016/j.neuron.2019.01.056] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/08/2019] [Accepted: 01/27/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is considered a polygenic disorder. This view is clouded, however, by lingering uncertainty over how to treat the quasi "monogenic" role of apolipoprotein E (APOE). The APOE4 allele is not only the strongest genetic risk factor for AD, it also affects risk for cardiovascular disease, stroke, and other neurodegenerative disorders. This review, based mostly on data from human studies, ranges across a variety of APOE-related pathologies, touching on evolutionary genetics and risk mitigation by ethnicity and sex. The authors also address one of the most fundamental question pertaining to APOE4 and AD: does APOE4 increase AD risk via a loss or gain of function? The answer will be of the utmost importance in guiding future research in AD.
Collapse
Affiliation(s)
- Michaël E Belloy
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA
| | - Valerio Napolioni
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, FIND Lab, Stanford University, Stanford, CA 94304, USA.
| |
Collapse
|
29
|
Schiza C, Korbakis D, Jarvi K, Diamandis EP, Drabovich AP. Identification of TEX101-associated Proteins Through Proteomic Measurement of Human Spermatozoa Homozygous for the Missense Variant rs35033974. Mol Cell Proteomics 2019; 18:338-351. [PMID: 30429210 PMCID: PMC6356071 DOI: 10.1074/mcp.ra118.001170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 01/19/2023] Open
Abstract
TEX101 is a germ-cell-specific protein and a validated biomarker of male infertility. Mouse TEX101 was found essential for male fertility and was suggested to function as a cell surface chaperone involved in maturation of proteins required for sperm migration and sperm-oocyte interaction. However, the precise functional role of human TEX101 is not known and cannot be studied in vitro due to the lack of human germ cell lines. Here, we genotyped 386 men for a common missense variant rs35033974 of TEX101 and identified 52 heterozygous and 4 homozygous men. We then discovered by targeted proteomics that the variant allele rs35033974 was associated with the near-complete degradation (>97%) of the corresponding G99V TEX101 form and suggested that spermatozoa of homozygous men could serve as a knockdown model to study TEX101 function in humans. Differential proteomic profiling with label-free quantification measured 8,046 proteins in spermatozoa of eight men and identified eight cell-surface and nine secreted testis-specific proteins significantly down-regulated in four patients homozygous for rs35033974. Substantially reduced levels of testis-specific cell-surface proteins potentially involved in sperm migration and sperm-oocyte interaction (including LY6K and ADAM29) were confirmed by targeted proteomics and Western blotting assays. Because recent population-scale genomic data revealed homozygous fathers with biological children, rs35033974 is not a monogenic factor of male infertility in humans. However, median TEX101 levels in seminal plasma were found fivefold lower (p = 0.0005) in heterozygous than in wild-type men of European ancestry. We conclude that spermatozoa of rs35033974 homozygous men have substantially reduced levels of TEX101 and could be used as a model to elucidate the precise TEX101 function, which will advance biology of human reproduction.
Collapse
Affiliation(s)
- Christina Schiza
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada;; Department of Pathology and Laboratory Medicine
| | - Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada;; Lunenfeld-Tanenbaum Research Institute
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute,; Department of Surgery, Division of Urology, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada;; Department of Pathology and Laboratory Medicine,; Lunenfeld-Tanenbaum Research Institute,; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada;; Department of Pathology and Laboratory Medicine,; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
30
|
Boersema PJ, Melnik A, Hazenberg BPC, Rezeli M, Marko-Varga G, Kamiie J, Portelius E, Blennow K, Zubarev RA, Polymenidou M, Picotti P. Biology/Disease-Driven Initiative on Protein-Aggregation Diseases of the Human Proteome Project: Goals and Progress to Date. J Proteome Res 2018; 17:4072-4084. [PMID: 30137990 DOI: 10.1021/acs.jproteome.8b00401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Biology/Disease-driven (B/D) working groups of the Human Proteome Project are alliances of research groups aimed at developing or improving proteomic tools to support specific biological or disease-related research areas. Here, we describe the activities and progress to date of the B/D working group focused on protein aggregation diseases (PADs). PADs are characterized by the intra- or extracellular accumulation of aggregated proteins and include devastating diseases such as Parkinson's and Alzheimer's disease and systemic amyloidosis. The PAD B/D working group aims for the development of proteomic assays for the quantification of aggregation-prone proteins involved in PADs to support basic and clinical research on PADs. Because the proteins in PADs undergo aberrant conformational changes, a goal is to quantitatively resolve altered protein structures and aggregation states in complex biological specimens. We have developed protein-extraction protocols and a set of mass spectrometric (MS) methods that enable the detection and quantification of proteins involved in the systemic and localized amyloidosis and the probing of aberrant protein conformational transitions in cell and tissue extracts. In several studies, we have demonstrated the potential of MS-based proteomics approaches for specific and sensitive clinical diagnoses and for the subtyping of PADs. The developed methods have been detailed in both protocol papers and manuscripts describing applications to facilitate implementation by nonspecialized laboratories, and assay coordinates are shared through public repositories and databases. Clinicians actively involved in the PAD working group support the transfer to clinical practice of the developed methods, such as assays to quantify specific disease-related proteins and their fragments in biofluids and multiplexed MS-based methods for the diagnosis and typing of systemic amyloidosis. We believe that the increasing availability of tools to precisely measure proteins involved in PADs will positively impact research on the molecular bases of these diseases and support early disease diagnosis and a more-confident subtyping.
Collapse
Affiliation(s)
- Paul J Boersema
- Institute of Molecular Systems Biology, Department of Biology , ETH Zurich , Otto-Stern-Weg 3 , 8093 Zurich , Switzerland
| | - Andre Melnik
- Institute of Molecular Systems Biology, Department of Biology , ETH Zurich , Otto-Stern-Weg 3 , 8093 Zurich , Switzerland
| | - Bouke P C Hazenberg
- Department of Rheumatology & Clinical Immunology , University of Groningen, University Medical Center Groningen , Hanzeplein 1 , 9713 GZ Groningen , The Netherlands
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Department of Biomedical Engineering , Lund University, BMC D13 , 221 84 Lund , Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Department of Biomedical Engineering , Lund University, BMC D13 , 221 84 Lund , Sweden
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology , Azabu University , 1-17-71 Fuchinobe , Chuo-ku, Sagamihara , Kanagawa 252-5201 , Japan
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at University of Gothenburg , S-431 80 Mölndal , Sweden.,Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal S-431 80 , Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at University of Gothenburg , S-431 80 Mölndal , Sweden.,Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal S-431 80 , Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics , Karolinska Institute , 17177 Stockholm , Sweden
| | - Magdalini Polymenidou
- Institute of Molecular Life Sciences, University of Zürich , Winterthurerstrasse 190 , Zürich , Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology , ETH Zurich , Otto-Stern-Weg 3 , 8093 Zurich , Switzerland
| |
Collapse
|
31
|
Schiza C, Korbakis D, Panteleli E, Jarvi K, Drabovich AP, Diamandis EP. Discovery of a Human Testis-specific Protein Complex TEX101-DPEP3 and Selection of Its Disrupting Antibodies. Mol Cell Proteomics 2018; 17:2480-2495. [PMID: 30097533 DOI: 10.1074/mcp.ra118.000749] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/11/2018] [Indexed: 01/01/2023] Open
Abstract
TEX101 is a testis-specific protein expressed exclusively in male germ cells and is a validated biomarker of male infertility. Studies in mice suggest that TEX101 is a cell-surface chaperone which regulates, through protein-protein interactions, the maturation of proteins involved in spermatozoa transit and oocyte binding. Male TEX101-null mice are sterile. Here, we identified by co-immunoprecipitation-mass spectrometry the interactome of human TEX101 in testicular tissues and spermatozoa. The testis-specific cell-surface dipeptidase 3 (DPEP3) emerged as the top hit. We further validated the TEX101-DPEP3 complex by using hybrid immunoassays. Combinations of antibodies recognizing different epitopes of TEX101 and DPEP3 facilitated development of a simple immunoassay to screen for disruptors of TEX101-DPEP3 complex. As a proof-of-a-concept, we demonstrated that anti-TEX101 antibody T4 disrupted the native TEX101-DPEP3 complex. Disrupting antibodies may be used to study the human TEX101-DPEP3 complex, and to develop modulators for male fertility.
Collapse
Affiliation(s)
- Christina Schiza
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Efstratia Panteleli
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Surgery, Division of Urology, Mount Sinai Hospital, Toronto, Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
32
|
Begcevic I, Tsolaki M, Brinc D, Brown M, Martinez-Morillo E, Lazarou I, Kozori M, Tagaraki F, Nenopoulou S, Gkioka M, Lazarou E, Lim B, Batruch I, Diamandis EP. Neuronal pentraxin receptor-1 is a new cerebrospinal fluid biomarker of Alzheimer's disease progression. F1000Res 2018; 7:1012. [PMID: 30191060 PMCID: PMC6081984 DOI: 10.12688/f1000research.15095.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the most common type of dementia, with progressive onset of clinical symptoms. The main pathological hallmarks are brain deposits of extracellular amyloid beta plaques and intracellular neurofibrillary tangles (NFT). Cerebrospinal fluid reflects pathological changes in the brain; amyloid beta 1-42 is a marker of amyloid plaques, while total and phosphorylated tau are markers of NFT formation. Additional biomarkers associated with disease pathogenesis are needed, for better prognosis, more specific diagnosis, prediction of disease severity and progression and for improved patient classification in clinical trials. The aim of the present study was to evaluate brain-specific proteins as potential biomarkers of progression of AD. Methods: Overall, 30 candidate proteins were quantified in cerebrospinal fluid (CSF) samples from patients with mild cognitive impairment (MCI) and mild, moderate and severe AD dementia (n=101) using mass spectrometry-based selected reaction monitoring assays. ELISA was used for neuronal pentraxin receptor-1 (NPTXR) confirmation. Results: The best discrimination between MCI and more advanced AD stages (moderate and severe dementia) was observed for protein NPTXR (area under the curve, AUC=0.799). A statistically different abundance of this protein was observed between the two groups, with severe AD patients having progressively lower levels (p<0.05). ELISA confirmed lower levels in AD, in a separate cohort that included controls, MCI and AD patients. Conclusions: We conclude that NPTXR protein in CSF is a novel potential biomarker of AD progression and could have important utility in assessing treatment success in clinical trials.
Collapse
Affiliation(s)
- Ilijana Begcevic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Magda Tsolaki
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Davor Brinc
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Marshall Brown
- Department of Biostatistics, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Eduardo Martinez-Morillo
- Laboratory of Medicine, Department of Clinical Biochemistry, Hospital Universitario Central, Oviedo, Spain
| | - Ioulietta Lazarou
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mahi Kozori
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fani Tagaraki
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stella Nenopoulou
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mara Gkioka
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eutichia Lazarou
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Bryant Lim
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Ihor Batruch
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P. Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| |
Collapse
|
33
|
Begcevic I, Brinc D, Dukic L, Simundic AM, Zavoreo I, Basic Kes V, Martinez-Morillo E, Batruch I, Drabovich AP, Diamandis EP. Targeted Mass Spectrometry-Based Assays for Relative Quantification of 30 Brain-Related Proteins and Their Clinical Applications. J Proteome Res 2018; 17:2282-2292. [PMID: 29708756 DOI: 10.1021/acs.jproteome.7b00768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cerebrospinal fluid (CSF) is a promising clinical sample for identification of novel biomarkers for various neurological disorders. Considering its direct contact with brain tissue, CSF represents a valuable source of brain-related and brain-specific proteins. Multiple sclerosis is an inflammatory, demyelinating neurological disease affecting the central nervous system, and so far there are no diagnostic or prognostic disease specific biomarkers available in the clinic. The primary aim of the present study was to develop a targeted mass spectrometry assay for simultaneous quantification of 30 brain-related proteins in CSF and subsequently to demonstrate assay feasibility in neurological samples derived from multiple sclerosis patients. Our multiplex selected reaction monitoring assay had wide dynamic range (median fold range across peptides = 8.16 × 103) and high assay reproducibility (median across peptides CV = 4%). Candidate biomarkers were quantified in CSF samples from neurologically healthy individuals (n = 9) and patients diagnosed with clinically isolated syndrome (n = 29) or early multiple sclerosis (n = 15).
Collapse
Affiliation(s)
- Ilijana Begcevic
- Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Ontario M5S 1A8 , Canada.,Department of Pathology & Laboratory Medicine , Mount Sinai Hospital , Toronto , Ontario M5T 3L9 , Canada
| | - Davor Brinc
- Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Ontario M5S 1A8 , Canada.,Department of Pathology & Laboratory Medicine , Mount Sinai Hospital , Toronto , Ontario M5T 3L9 , Canada.,Department of Clinical Biochemistry , University Health Network , Toronto , Ontario M5G 2C4 , Canada
| | - Lora Dukic
- Department of Medical Laboratory Diagnostics , University Hospital "Sveti Duh" , 10000 Zagreb , Croatia
| | - Ana-Maria Simundic
- Department of Medical Laboratory Diagnostics , University Hospital "Sveti Duh" , 10000 Zagreb , Croatia
| | - Iris Zavoreo
- University Department of Neurology , Medical School University Hospital "Sestre milosrdnice" , 10000 Zagreb , Croatia
| | - Vanja Basic Kes
- University Department of Neurology , Medical School University Hospital "Sestre milosrdnice" , 10000 Zagreb , Croatia
| | - Eduardo Martinez-Morillo
- Laboratory of Medicine, Department of Clinical Biochemistry , Hospital Universitario Central de Asturias , 33011 Oviedo , Spain
| | - Ihor Batruch
- Department of Pathology & Laboratory Medicine , Mount Sinai Hospital , Toronto , Ontario M5T 3L9 , Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Ontario M5S 1A8 , Canada.,Department of Clinical Biochemistry , University Health Network , Toronto , Ontario M5G 2C4 , Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Ontario M5S 1A8 , Canada.,Department of Pathology & Laboratory Medicine , Mount Sinai Hospital , Toronto , Ontario M5T 3L9 , Canada.,Department of Clinical Biochemistry , University Health Network , Toronto , Ontario M5G 2C4 , Canada
| |
Collapse
|
34
|
Begcevic I, Brinc D, Brown M, Martinez-Morillo E, Goldhardt O, Grimmer T, Magdolen V, Batruch I, Diamandis EP. Brain-related proteins as potential CSF biomarkers of Alzheimer's disease: A targeted mass spectrometry approach. J Proteomics 2018; 182:12-20. [PMID: 29684683 DOI: 10.1016/j.jprot.2018.04.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/15/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterized by progressive cognitive decline. The main disease hallmarks include amyloid beta aggregates and neurofibrillary tangles. Brain pathology is reflected in cerebrospinal fluid (CSF); the core biomarkers amyloid beta 1-42, total and phosphorylated tau protein levels are changed, relative to cognitively normal elderly. Still, there is a need for additional biomarkers which could identify disease more accurately and at an earlier stage, predict severity and be used in research settings. Here we evaluated 30 brain-related proteins as candidate biomarkers of AD. Proteins were quantified in CSF samples from cognitively healthy individuals (n = 23) and patients with mild cognitive impairment (MCI) due to AD (n = 20) or dementia due to AD (n = 10) using selected reaction monitoring mass spectrometry assays. APLP1 protein was increased in MCI relative to control (p < 0.001). The best discrimination between MCI vs. controls was observed with a model combining APLP1 and SPP1 proteins (area under the curve, AUC = 0.84). The strongest associations between protein abundance and disease severity were found for APLP1, CNTN2 and SPP1 proteins, which had a significant correlation with MMSE and CDR tests (p < 0.05). This study identifies new proteins with biomarker potential at various stages of AD severity. SIGNIFICANCE The current study evaluated 30 brain-related, highly specific proteins as candidate biomarkers of AD diagnosis. Protein APLP1 showed promise as early AD biomarker; protein panel APLP1 and SPP1 had the best diagnostic potential in discriminating MCI from control group, while proteins APLP1, SPP1 and CNTN2 may be indicators of disease progression, demonstrating weak to moderate correlation with cognitive tests. This study therefore identifies new proteins with biomarker potential at early AD stage. If the performance of proposed biomarkers is further confirmed, these proteins may add value in the clinic or clinical trial settings as diagnostic biomarkers (alone or in combination with the existing biomarkers) of the prodromal AD stage, and in monitoring disease progression.
Collapse
Affiliation(s)
- Ilijana Begcevic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Davor Brinc
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Marshall Brown
- Department of Biostatistics, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Eduardo Martinez-Morillo
- Laboratory of Medicine, Department of Clinical Biochemistry, Hospital Universitario Central, Oviedo, Spain
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ihor Batruch
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
35
|
Blanchard V, Ramin-Mangata S, Billon-Crossouard S, Aguesse A, Durand M, Chemello K, Nativel B, Flet L, Chétiveaux M, Jacobi D, Bard JM, Ouguerram K, Lambert G, Krempf M, Croyal M. Kinetics of plasma apolipoprotein E isoforms by LC-MS/MS: a pilot study. J Lipid Res 2018. [PMID: 29540575 DOI: 10.1194/jlr.p083576] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human apoE exhibits three major isoforms (apoE2, apoE3, and apoE4) corresponding to polymorphism in the APOE gene. Total plasma apoE concentrations are closely related to these isoforms, but the underlying mechanisms are unknown. We aimed to describe the kinetics of apoE individual isoforms to explore the mechanisms for variable total apoE plasma concentrations. We used LC-MS/MS to discriminate between isoforms by identifying specific peptide sequences in subjects (three E2/E3, three E3/E3, and three E3/E4 phenotypes) who received a primed constant infusion of 2H3-leucine for 14 h. apoE concentrations and leucine enrichments were measured hourly in plasma. Concentrations of apoE2 were higher than apoE3, and concentrations of apoE4 were lower than apoE3. There was no difference between apoE3 and apoE4 catabolic rates and between apoE2 and apoE3 production rates (PRs), but apoE2 catabolic rates and apoE4 PRs were lower. The mechanisms leading to the difference in total plasma apoE concentrations are therefore related to contrasted kinetics of the isoforms. Production or catabolic rates are differently affected according to the specific isoforms. On these grounds, studies on the regulation of the involved biochemical pathways and the impact of pathological environments are now warranted.
Collapse
Affiliation(s)
- Valentin Blanchard
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,INSERM, UMR 1188 DéTROI, University of La Réunion, F-97490 Sainte Clotilde, France
| | | | - Stéphanie Billon-Crossouard
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,INRA, UMR 1280 PhAN, F-44000 Nantes, France
| | - Audrey Aguesse
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,INRA, UMR 1280 PhAN, F-44000 Nantes, France
| | - Manon Durand
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,L'institut du Thorax, INSERM, CNRS, UNIV Nantes, F-44000 Nantes, France
| | - Kevin Chemello
- INSERM, UMR 1188 DéTROI, University of La Réunion, F-97490 Sainte Clotilde, France
| | - Brice Nativel
- INSERM, UMR 1188 DéTROI, University of La Réunion, F-97490 Sainte Clotilde, France
| | - Laurent Flet
- Pharmacy Department, Nantes University Hospital, F-44093 Nantes, France
| | - Maud Chétiveaux
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France
| | - David Jacobi
- L'institut du Thorax, INSERM, CNRS, UNIV Nantes, F-44000 Nantes, France.,L'institut du Thorax, CHU Nantes, F-44093 Nantes, France
| | - Jean-Marie Bard
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,University of Nantes, Mer, Molécules, Santé (MMS) - EA 2160 and Institut Universitaire Mer et Littoral (IUML) - FR3473 CNRS, F-44000 Nantes, France, and Department of Biopathology, Institute of Cancer and Oncology, F-44800 Saint-Herblain, France
| | - Khadija Ouguerram
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,INRA, UMR 1280 PhAN, F-44000 Nantes, France
| | - Gilles Lambert
- INSERM, UMR 1188 DéTROI, University of La Réunion, F-97490 Sainte Clotilde, France
| | - Michel Krempf
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France.,INRA, UMR 1280 PhAN, F-44000 Nantes, France.,L'institut du Thorax, CHU Nantes, F-44093 Nantes, France
| | - Mikaël Croyal
- CRNHO, West Human Nutrition Research Center, F-44000 Nantes, France .,INRA, UMR 1280 PhAN, F-44000 Nantes, France
| |
Collapse
|
36
|
Portelius E, Brinkmalm G, Pannee J, Zetterberg H, Blennow K, Dahlén R, Brinkmalm A, Gobom J. Proteomic studies of cerebrospinal fluid biomarkers of Alzheimer's disease: an update. Expert Rev Proteomics 2017; 14:1007-1020. [PMID: 28942688 DOI: 10.1080/14789450.2017.1384697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease affecting the brain. Today there are three cerebrospinal fluid (CSF) biomarkers, amyloid-β consisting of 42 amino acids (Aβ42), total-tau (t-tau) and phosphorylated-tau (p-tau), which combined have sensitivity and specificity figures around 80%. However, pathological studies have shown that comorbidity is a common feature in AD and that the three currently used CSF biomarkers do not optimally reflect the activity of the disease process. Thus, additional markers are needed. Areas covered: In the present review, we screened PubMed for articles published the last five years (2012-2017) for proteomic studies in CSF with the criteria that AD had to be included as one of the diagnostic groups. Based on inclusion criteria, 28 papers were included reporting in total 224 biomarker-data that were altered in AD compared to control. Both mass spectrometry and multi-panel immunoassays were considered as proteomic studies. Expert commentary: A large number of pilot studies have been reported but so far there is a lack of replicated findings and to date no CSF biomarker discovered in proteomic studies has reached the clinic to aid in the diagnostic work-up of patients with cognitive impairment.
Collapse
Affiliation(s)
- Erik Portelius
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Gunnar Brinkmalm
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Josef Pannee
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Henrik Zetterberg
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden.,c Department of Molecular Neuroscience , UCL Institute of Neurology , London , UK
| | - Kaj Blennow
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Rahil Dahlén
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Ann Brinkmalm
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| | - Johan Gobom
- a Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , The Sahlgrenska Academy at the University of Gothenburg , Mölndal , Sweden.,b Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Mölndal , Sweden
| |
Collapse
|
37
|
Korbakis D, Schiza C, Brinc D, Soosaipillai A, Karakosta TD, Légaré C, Sullivan R, Mullen B, Jarvi K, Diamandis EP, Drabovich AP. Preclinical evaluation of a TEX101 protein ELISA test for the differential diagnosis of male infertility. BMC Med 2017; 15:60. [PMID: 28330469 PMCID: PMC5363040 DOI: 10.1186/s12916-017-0817-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/13/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND TEX101 is a cell membrane protein exclusively expressed by testicular germ cells and shed into seminal plasma. We previously verified human TEX101 as a biomarker for the differential diagnosis of azoospermia, and developed a first-of-its-kind TEX101 ELISA. To demonstrate the clinical utility of TEX101, in this work we aimed at evaluating ELISA performance in a large population of fertile, subfertile, and infertile men. METHODS Mass spectrometry, size-exclusion chromatography, ultracentrifugation, and immunohistochemistry were used to characterize TEX101 protein as an analyte in seminal plasma. Using the optimized protocol for seminal plasma pretreatment, TEX101 was measured by ELISA in 805 seminal plasma samples. RESULTS We demonstrated that TEX101 was present in seminal plasma mostly in a free soluble form and that its small fraction was associated with seminal microvesicles. TEX101 median values were estimated in healthy, fertile pre-vasectomy men (5436 ng/mL, N = 64) and in patients with unexplained infertility (4967 ng/mL, N = 277), oligospermia (450 ng/mL, N = 270), and azoospermia (0.5 ng/mL, N = 137). Fertile post-vasectomy men (N = 57) and patients with Sertoli cell-only syndrome (N = 13) and obstructive azoospermia (N = 36) had undetectable levels of TEX101 (≤0.5 ng/mL). A cut-off value of 0.9 ng/mL provided 100% sensitivity at 100% specificity for distinguishing pre- and post-vasectomy men. The combination of a concentration of TEX101 > 0.9 ng/mL and epididymis-specific protein ECM1 > 2.3 μg/mL provided 81% sensitivity at 100% specificity for differentiating between non-obstructive and obstructive azoospermia, thus eliminating the majority of diagnostic testicular biopsies. In addition, a cut-off value of ≥0.6 ng/mL provided 73% sensitivity at 64% specificity for predicting sperm or spermatid retrieval in patients with non-obstructive azoospermia. CONCLUSIONS We demonstrated the clinical utility of TEX101 ELISA as a test to evaluate vasectomy success, to stratify azoospermia forms, and to better select patients for sperm retrieval.
Collapse
Affiliation(s)
- Dimitrios Korbakis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Christina Schiza
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Davor Brinc
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Theano D Karakosta
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Christine Légaré
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Département d'Obstétrique, Gynécologie et Reproduction, Faculté de Medicine, Université Laval, Québec, Canada
| | - Robert Sullivan
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Département d'Obstétrique, Gynécologie et Reproduction, Faculté de Medicine, Université Laval, Québec, Canada
| | - Brendan Mullen
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - Keith Jarvi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada.,Division of Urology, Department of Surgery, Mount Sinai Hospital, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada. .,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 3L9, Canada. .,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada. .,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
38
|
Nielsen HM, Chen K, Lee W, Chen Y, Bauer RJ, Reiman E, Caselli R, Bu G. Peripheral apoE isoform levels in cognitively normal APOE ε3/ε4 individuals are associated with regional gray matter volume and cerebral glucose metabolism. Alzheimers Res Ther 2017; 9:5. [PMID: 28137305 PMCID: PMC5282900 DOI: 10.1186/s13195-016-0231-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/21/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Carriers of the APOE ε4 allele are at increased risk of developing Alzheimer's disease (AD), and have been shown to have reduced cerebral metabolic rate of glucose (CMRgl) in the same brain areas frequently affected in AD. These individuals also exhibit reduced plasma levels of apolipoprotein E (apoE) attributed to a specific decrease in the apoE4 isoform as determined by quantification of individual apoE isoforms in APOE ε4 heterozygotes. Whether low plasma apoE levels are associated with structural and functional brain measurements and cognitive performance remains to be investigated. METHODS Using quantitative mass spectrometry we quantified the plasma levels of total apoE and the individual apoE3 and apoE4 isoforms in 128 cognitively normal APOE ε3/ε4 individuals included in the Arizona APOE cohort. All included individuals had undergone extensive neuropsychological testing and 25 had in addition undergone FDG-PET and MRI to determine CMRgl and regional gray matter volume (GMV). RESULTS Our results demonstrated higher apoE4 levels in females versus males and an age-dependent increase in the apoE3 isoform levels in females only. Importantly, a higher relative ratio of apoE4 over apoE3 was associated with GMV loss in the right posterior cingulate and with reduced CMRgl bilaterally in the anterior cingulate and in the right hippocampal area. Additional exploratory analysis revealed several negative associations between total plasma apoE, individual apoE isoform levels, GMV and CMRgl predominantly in the frontal, occipital and temporal areas. Finally, our results indicated only weak associations between apoE plasma levels and cognitive performance which further appear to be affected by sex. CONCLUSIONS Our study proposes a sex-dependent and age-dependent variation in plasma apoE isoform levels and concludes that peripheral apoE levels are associated with GMV, CMRgl and possibly cognitive performance in cognitively healthy individuals with a genetic predisposition to AD.
Collapse
Affiliation(s)
- Henrietta M. Nielsen
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
- Department of Neurochemistry, Stockholm University, Svante Arrheniusväg 16B, SE-10691 Stockholm, Sweden
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ 85012 USA
- Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85281 USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85012 USA
| | - Wendy Lee
- Banner Alzheimer’s Institute, Phoenix, AZ 85012 USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85012 USA
| | - Yinghua Chen
- Banner Alzheimer’s Institute, Phoenix, AZ 85012 USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85012 USA
| | - Robert J. Bauer
- Banner Alzheimer’s Institute, Phoenix, AZ 85012 USA
- Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85281 USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85012 USA
| | - Eric Reiman
- Banner Alzheimer’s Institute, Phoenix, AZ 85012 USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85012 USA
- Department of Psychiatry, University of Arizona, Tucson, AZ 85721 USA
- Division of Neurogenomics, Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Richard Caselli
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85012 USA
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ 85259 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic College of Medicine, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
| |
Collapse
|
39
|
Baker-Nigh AT, Mawuenyega KG, Bollinger JG, Ovod V, Kasten T, Franklin EE, Liao F, Jiang H, Holtzman D, Cairns NJ, Morris JC, Bateman RJ. Human Central Nervous System (CNS) ApoE Isoforms Are Increased by Age, Differentially Altered by Amyloidosis, and Relative Amounts Reversed in the CNS Compared with Plasma. J Biol Chem 2016; 291:27204-27218. [PMID: 27793990 DOI: 10.1074/jbc.m116.721779] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/22/2016] [Indexed: 11/06/2022] Open
Abstract
The risk of Alzheimer's disease (AD) is highly dependent on apolipoprotein-E (apoE) genotype. The reasons for apoE isoform-selective risk are uncertain; however, both the amounts and structure of human apoE isoforms have been hypothesized to lead to amyloidosis increasing the risk for AD. To address the hypothesis that amounts of apoE isoforms are different in the human CNS, we developed a novel isoform-specific method to accurately quantify apoE isoforms in clinically relevant samples. The method utilizes an antibody-free enrichment step and isotope-labeled physiologically relevant lipoprotein particle standards produced by immortalized astrocytes. We applied this method to a cohort of well characterized clinical samples and observed the following findings. The apoE isoform amounts are not different in cerebrospinal fluid (CSF) from young normal controls, suggesting that the amount of apoE isoforms is not the reason for risk of amyloidosis prior to the onset of advanced age. We did, however, observe an age-related increase in both apoE isoforms. In contrast to normal aging, the presence of amyloid increased apoE3, whereas apoE4 was unchanged or decreased. Importantly, for heterozygotes, the apoE4/apoE3 isoform ratio was increased in the CNS, although the reverse was true in the periphery. Finally, CSF apoE levels, but not plasma apoE levels, correlated with CSF β-amyloid levels. Collectively, these findings support the hypothesis that CNS and peripheral apoE are separate pools and differentially regulated. Furthermore, these results suggest that apoE mechanisms for the risk of amyloidosis and AD are related to an interaction between apoE, aging, and the amount of amyloid burden.
Collapse
Affiliation(s)
| | | | | | | | | | - Erin E Franklin
- Pathology and Immunology.,Knight Alzheimer's Disease Research Center, and
| | - Fan Liao
- From the Departments of Neurology and
| | | | - David Holtzman
- From the Departments of Neurology and.,Knight Alzheimer's Disease Research Center, and.,Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri 63110
| | - Nigel J Cairns
- From the Departments of Neurology and.,Pathology and Immunology.,Knight Alzheimer's Disease Research Center, and.,Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri 63110
| | - John C Morris
- From the Departments of Neurology and.,Knight Alzheimer's Disease Research Center, and.,Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri 63110
| | - Randall J Bateman
- From the Departments of Neurology and .,Knight Alzheimer's Disease Research Center, and.,Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
40
|
Meo AD, Pasic MD, Yousef GM. Proteomics and peptidomics: moving toward precision medicine in urological malignancies. Oncotarget 2016; 7:52460-52474. [PMID: 27119500 PMCID: PMC5239567 DOI: 10.18632/oncotarget.8931] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/16/2016] [Indexed: 12/31/2022] Open
Abstract
Urological malignancies are a major cause of morbidity and mortality worldwide. Advances in early detection, diagnosis, prognosis and prediction of treatment response can significantly improve patient care. Proteomic and peptidomic profiling studies are at the center of kidney, prostate and bladder cancer biomarker discovery and have shown great promise for improved clinical assessment. Mass spectrometry (MS) is the most widely employed method for proteomic and peptidomic analyses. A number of MS platforms have been developed to facilitate accurate identification of clinically relevant markers in various complex biological samples including tissue, urine and blood. Furthermore, protein profiling studies have been instrumental in the successful introduction of several diagnostic multimarker tests into the clinic. In this review, we will provide a brief overview of high-throughput technologies for protein and peptide based biomarker discovery. We will also examine the current state of kidney, prostate and bladder cancer biomarker research as well as review the journey toward successful clinical implementation.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Laboratory Medicine, and The Keenan Research Centre for Biomedical Science at The Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Maria D. Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, St. Joseph's Health Centre, Toronto, Ontario, Canada
| | - George M. Yousef
- Department of Laboratory Medicine, and The Keenan Research Centre for Biomedical Science at The Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Konvalinka A, Batruch I, Tokar T, Dimitromanolakis A, Reid S, Song X, Pei Y, Drabovich AP, Diamandis EP, Jurisica I, Scholey JW. Quantification of angiotensin II-regulated proteins in urine of patients with polycystic and other chronic kidney diseases by selected reaction monitoring. Clin Proteomics 2016; 13:16. [PMID: 27499720 PMCID: PMC4974759 DOI: 10.1186/s12014-016-9117-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/23/2016] [Indexed: 12/24/2022] Open
Abstract
Background Angiotensin-II (Ang II) mediates progression of autosomal-dominant polycystic kidney disease (ADPKD) and other chronic kidney diseases (CKD). However, markers of kidney Ang II activity are lacking. We previously defined 83 Ang II-regulated proteins in vitro, which reflected kidney Ang II activity in vivo. Methods In this study, we developed selected reaction monitoring (SRM) assays for quantification of Ang II-regulated proteins in urine of ADPKD and CKD patients. We demonstrated that 47 of 83 Ang II-regulated transcripts were differentially expressed in cystic compared to normal kidney tissue. We then developed SRM assays for 18 Ang II-regulated proteins overexpressed in cysts and/or secreted in urine. Methods that yielded CV ≤ 6 % for control proteins, and recovery ~100 % were selected. Heavy-labeled peptides corresponding to 13 identified Ang II-regulated peptides were spiked into urine samples of 17 ADPKD patients, 9 patients with CKD predicted to have high kidney Ang II activity and 11 healthy subjects. Samples were then digested and analyzed on triple-quadrupole mass spectrometer in duplicates. Resluts Calibration curves demonstrated linearity (R2 > 0.99) and within-run CVs < 9 % in the concentration range of 7/13 peptides. Peptide concentrations were normalized by urine creatinine. Deamidated peptide forms were monitored, and accounted for <15 % of the final concentrations. Urine excretion rates of proteins BST1, LAMB2, LYPA1, RHOB and TSP1 were significantly different (p < 0.05, one-way ANOVA) between patients with CKD, those with ADPKD and healthy controls. Urine protein excretion rates were highest in CKD patients and lowest in ADPKD patients. Univariate analysis demonstrated significant association between urine protein excretion rates of most proteins and disease group (p < 0.05, ANOVA) as well as sex (p < 0.05, unpaired t test). Multivariate analysis across protein concentration, age and sex demonstrated good separation between ADPKD and CKD patients. Conclusions We have optimized methods for quantification of Ang II-regulated proteins, and we demonstrated that they reflected differences in underlying kidney disease in this pilot study. High urine excretion of Ang II-regulated proteins in CKD patients likely reflects high kidney Ang II activity. Low excretion in ADPKD appears related to lack of communication between cysts and tubules. Future studies will determine whether urine excretion rate of Ang II-regulated proteins correlates with kidney Ang II activity in larger cohorts of chronic kidney disease patients. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9117-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ana Konvalinka
- Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, 11-PMB-189, 585 University Avenue, Toronto, ON M5G 2N2 Canada ; Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Tomas Tokar
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | - Apostolos Dimitromanolakis
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Shelby Reid
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Xuewen Song
- Division of Genomic Medicine, University Health Network, University of Toronto, Toronto, Canada
| | - York Pei
- Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, 11-PMB-189, 585 University Avenue, Toronto, ON M5G 2N2 Canada ; Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Andrei P Drabovich
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada ; Department of Clinical Biochemistry, University Health Network, University of Toronto, Toronto, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada ; Departments of Medical Biophysics and Computer Science, University Health Network, University of Toronto, Toronto, Canada
| | - James W Scholey
- Division of Nephrology, Department of Medicine, Toronto General Hospital, University Health Network, University of Toronto, 11-PMB-189, 585 University Avenue, Toronto, ON M5G 2N2 Canada ; Toronto General Research Institute, University Health Network, Toronto, Canada
| |
Collapse
|
42
|
Shi T, Song E, Nie S, Rodland KD, Liu T, Qian WJ, Smith RD. Advances in targeted proteomics and applications to biomedical research. Proteomics 2016; 16:2160-82. [PMID: 27302376 PMCID: PMC5051956 DOI: 10.1002/pmic.201500449] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/09/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074-1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.
Collapse
Affiliation(s)
- Tujin Shi
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ehwang Song
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Song Nie
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karin D Rodland
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
43
|
Sabbagh B, Mindt S, Neumaier M, Findeisen P. Clinical applications of MS-based protein quantification. Proteomics Clin Appl 2016; 10:323-45. [DOI: 10.1002/prca.201500116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Bassel Sabbagh
- Institute for Clinical Chemistry; Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Sonani Mindt
- Institute for Clinical Chemistry; Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Michael Neumaier
- Institute for Clinical Chemistry; Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
| | - Peter Findeisen
- Institute for Clinical Chemistry; Medical Faculty Mannheim of the University of Heidelberg; University Hospital Mannheim; Mannheim Germany
- MVZ Labor Dr. Limbach und Kollegen; Heidelberg Germany
- Working Group Proteomics of the German United Society for Clinical Chemistry and Laboratory Medicine e.V. (DGKL); Bonn Germany
| |
Collapse
|
44
|
Geyer P, Kulak N, Pichler G, Holdt L, Teupser D, Mann M. Plasma Proteome Profiling to Assess Human Health and Disease. Cell Syst 2016; 2:185-95. [DOI: 10.1016/j.cels.2016.02.015] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/19/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
|
45
|
van den Broek I, Romijn FPHTM, Nouta J, van der Laarse A, Drijfhout JW, Smit NPM, van der Burgt YEM, Cobbaert CM. Automated Multiplex LC-MS/MS Assay for Quantifying Serum Apolipoproteins A-I, B, C-I, C-II, C-III, and E with Qualitative Apolipoprotein E Phenotyping. Clin Chem 2016; 62:188-97. [DOI: 10.1373/clinchem.2015.246702] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/03/2015] [Indexed: 12/31/2022]
Abstract
Abstract
BACKGROUND
Direct and calculated measures of lipoprotein fractions for cardiovascular risk assessment suffer from analytical inaccuracy in certain dyslipidemic and pathological states, most commonly hypertriglyceridemia. LC-MS/MS has proven suitable for multiplexed quantification and phenotyping of apolipoproteins. We developed and provisionally validated an automated assay for quantification of apolipoprotein (apo) A-I, B, C-I, C-II, C-III, and E and simultaneous qualitative assessment of apoE phenotypes.
METHODS
We used 5 value-assigned human serum pools for external calibration. Serum proteins were denatured, reduced, and alkylated according to standard mass spectrometry–based proteomics procedures. After trypsin digestion, peptides were analyzed by LC-MS/MS. For each peptide, we measured 2 transitions. We compared LC-MS/MS results to those obtained by an immunoturbidimetric assay or ELISA.
RESULTS
Intraassay CVs were 2.3%–5.5%, and total CVs were 2.5%–5.9%. The LC-MS/MS assay correlated (R = 0.975–0.995) with immunoturbidimetric assays with Conformité Européenne marking for apoA-I, apoB, apoC-II, apoC-III, and apoE in normotriglyceridemic (n = 54) and hypertriglyceridemic (n = 46) sera. Results were interchangeable for apoA-I ≤3.0 g/L (Deming slope 1.014) and for apoB-100 ≤1.8 g/L (Deming slope 1.016) and were traceable to higher-order standards.
CONCLUSIONS
The multiplex format provides an opportunity for new diagnostic and pathophysiologic insights into types of dyslipidemia and allows a more personalized approach for diagnosis and treatment of lipid abnormalities.
Collapse
Affiliation(s)
| | | | - Jan Nouta
- Department of Clinical Chemistry and Laboratory Medicine
| | | | | | - Nico P M Smit
- Department of Clinical Chemistry and Laboratory Medicine
| | - Yuri E M van der Burgt
- Department of Clinical Chemistry and Laboratory Medicine
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|
46
|
Ebhardt HA, Root A, Sander C, Aebersold R. Applications of targeted proteomics in systems biology and translational medicine. Proteomics 2015; 15:3193-208. [PMID: 26097198 PMCID: PMC4758406 DOI: 10.1002/pmic.201500004] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/27/2015] [Accepted: 06/09/2015] [Indexed: 01/28/2023]
Abstract
Biological systems are composed of numerous components of which proteins are of particularly high functional significance. Network models are useful abstractions for studying these components in context. Network representations display molecules as nodes and their interactions as edges. Because they are difficult to directly measure, functional edges are frequently inferred from suitably structured datasets consisting of the accurate and consistent quantification of network nodes under a multitude of perturbed conditions. For the precise quantification of a finite list of proteins across a wide range of samples, targeted proteomics exemplified by selected/multiple reaction monitoring (SRM, MRM) mass spectrometry has proven useful and has been applied to a variety of questions in systems biology and clinical studies. Here, we survey the literature of studies using SRM-MS in systems biology and clinical proteomics. Systems biology studies frequently examine fundamental questions in network biology, whereas clinical studies frequently focus on biomarker discovery and validation in a variety of diseases including cardiovascular disease and cancer. Targeted proteomics promises to advance our understanding of biological networks and the phenotypic significance of specific network states and to advance biomarkers into clinical use.
Collapse
Affiliation(s)
- H Alexander Ebhardt
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Alex Root
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medical College, New York, NY, USA
| | - Chris Sander
- Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenossische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Quantification of total apolipoprotein E and its specific isoforms in cerebrospinal fluid and blood in Alzheimer’s disease and other neurodegenerative diseases. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Liu Y, Xu LP, Wang S, Yang W, Wen Y, Zhang X. An ultrasensitive electrochemical immunosensor for apolipoprotein E4 based on fractal nanostructures and enzyme amplification. Biosens Bioelectron 2015; 71:396-400. [DOI: 10.1016/j.bios.2015.04.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 12/28/2022]
|
49
|
Bults P, van de Merbel NC, Bischoff R. Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays. Expert Rev Proteomics 2015; 12:355-74. [DOI: 10.1586/14789450.2015.1050384] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Foster MW, Thompson JW, Ledford JG, Dubois LG, Hollingsworth JW, Francisco D, Tanyaratsrisakul S, Voelker DR, Kraft M, Moseley MA, Foster WM. Identification and Quantitation of Coding Variants and Isoforms of Pulmonary Surfactant Protein A. J Proteome Res 2014; 13:3722-32. [PMID: 25025725 PMCID: PMC4123939 DOI: 10.1021/pr500307f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulmonary surfactant protein A (SP-A), a heterooligomer of SP-A1 and SP-A2, is an important regulator of innate immunity of the lung. Nonsynonymous single nucleotide variants of SP-A have been linked to respiratory diseases, but the expressed repertoire of SP-A protein in human airway has not been investigated. Here, we used parallel trypsin and Glu-C digestion, followed by LC-MS/MS, to obtain sequence coverage of common SP-A variants and isoform-determining peptides. We further developed a SDS-PAGE-based, multiple reaction monitoring (GeLC-MRM) assay for enrichment and targeted quantitation of total SP-A, the SP-A2 isoform, and the Gln223 and Lys223 variants of SP-A, from as little as one milliliter of bronchoalveolar lavage fluid. This assay identified individuals with the three genotypes at the 223 position of SP-A2: homozygous major (Gln223/Gln223), homozygous minor (Lys223/Lys223), or heterozygous (Gln223/Lys223). More generally, our studies demonstrate the challenges inherent in distinguishing highly homologous, copurifying protein isoforms by MS and show the applicability of MRM mass spectrometry for identification and quantitation of nonsynonymous single nucleotide variants and other proteoforms in airway lining fluid.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dennis R Voelker
- ‡Department of Medicine, National Jewish Health, Denver, Colorado 80206, United States
| | | | | | | |
Collapse
|