1
|
Alreshidi M, Dunstan H, Roberts T, Alreshidi F, Hossain A, Bardakci F, Snoussi M, Badraoui R, Adnan M, Alouffi S, Saeed M. Cytoplasmic amino acid profiles of clinical and ATCC 29213 strains of Staphylococcus aureus harvested at different growth phases. BIOMOLECULES & BIOMEDICINE 2023; 23:1038-1050. [PMID: 37270805 PMCID: PMC10655876 DOI: 10.17305/bb.2023.9246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Staphylococcus aureus strains are a great contributor to both hospital acquired infections as well as community acquired infections. The objective of the present investigation was to compare potential differences in cytoplasmic amino acid levels between clinical and ATCC 29213 strains of S. aureus. The two strains were grown under ideal conditions to mid-exponential and stationary growth phases, after which they were harvested to analyze their amino acid profiles. Initially, the amino acid patterns of both strains were compared at the mid-exponential phase when grown in controlled conditions. At the mid-exponential phase, both strains shared common features in cytoplasmic amino acid levels, with glutamic acid, aspartic acid, proline, and alanine identified as key amino acids. However, the concentration profiles of seven amino acids exhibited major variances between the strains, even though the total cytoplasmic levels of amino acids did not alter significantly. At the stationary phase, the magnitudes of the amino acids abundant in the mid-exponential phase were altered. Aspartic acid became the most abundant amino acid in both strains accounting for 44% and 59% of the total amino acids in the clinical and ATCC 29213 strains, respectively. Lysine was the second most abundant amino acid in both strains, accounting for 16% of the total cytoplasmic amino acids, followed by glutamic acid, the concentration of which was significantly higher in the clinical strain than in the ATCC 29213 strain. Interestingly, histidine was clearly present in the clinical strain but was virtually lacking in the ATCC 29213 strain. This study reveals the dynamic diversity of amino acid levels among strains, which is an essential step toward illustrating the variability in S. aureus cytoplasmic amino acid profiles and could be significant in explaining variances among strains of S. aureus.
Collapse
Affiliation(s)
- Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Tim Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| | - Fayez Alreshidi
- Department of Family and Community Medicine, College of Medicine, University of Ha’il, Ha’il, Saudi Arabia
| | - Ashfaque Hossain
- Department of Medical Microbiology and Immunology, RAK Medical and Health Sciences University, RAK Hospital, Al Qusaidat, Ras Al Khaimah, United Arab Emirates
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Sultan Alouffi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
2
|
Seravalli J, Portugal F. Putrescine Detected in Strains of Staphylococcus aureus. Pathogens 2023; 12:881. [PMID: 37513728 PMCID: PMC10386481 DOI: 10.3390/pathogens12070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Most forms of life, including the archaea, bacteria, and eukaryotes synthesize the polyamine putrescine. Although putrescine is widely distributed, several Gram-positive bacteria, including Staphylococcus aureus (S. aureus), appear to be the exceptions. We report here that strains of S. aureus can produce the polyamine putrescine, as well as the derivative N-acetyl-putrescine. Three strains of S. aureus from the American Type Culture Collection (ATCC), one strain listed in the National Center for Biotechnology Information (NCBI) database, whose genomic sequence is well defined, and well as eight strains from S. aureus-induced brain abscesses of individual patients from multiple geographic locations were evaluated. Each strain was grown in complete chemically defined medium (CDM) under stringent conditions, after which the partially purified conditioned medium (CM) was analyzed by mass spectroscopy (MS), and the data were reported as the ratio of experimental results to controls. We confirmed the synthesis of putrescine by S. aureus by using 13C/15N-labeled arginine as a tracer. We found that agmatine, N-acetyl-putrescine, ornithine, citrulline, proline, and NH3 were all labeled with heavy isotope derived from 13C/15N-labeled arginine. None of the strains examined produced spermine or spermidine, but strains from either ATCC or human brain abscesses produced putrescine and/or its derivative N-acetyl-putrescine.
Collapse
Affiliation(s)
- Javier Seravalli
- Redox Biology Center and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Frank Portugal
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
3
|
Malviya J, Alameri AA, Al-Janabi SS, Fawzi OF, Azzawi AL, Obaid RF, Alsudani AA, Alkhayyat AS, Gupta J, Mustafa YF, Karampoor S, Mirzaei R. Metabolomic profiling of bacterial biofilm: trends, challenges, and an emerging antibiofilm target. World J Microbiol Biotechnol 2023; 39:212. [PMID: 37256458 DOI: 10.1007/s11274-023-03651-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Biofilm-related infections substantially contribute to bacterial illnesses, with estimates indicating that at least 80% of such diseases are linked to biofilms. Biofilms exhibit unique metabolic patterns that set them apart from their planktonic counterparts, resulting in significant metabolic reprogramming during biofilm formation. Differential glycolytic enzymes suggest that central metabolic processes are markedly different in biofilms and planktonic cells. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is highly expressed in Staphylococcus aureus biofilm progenitors, indicating that changes in glycolysis activity play a role in biofilm development. Notably, an important consideration is a correlation between elevated cyclic di-guanylate monophosphate (c-di-GMP) activity and biofilm formation in various bacteria. C-di-GMP plays a critical role in maintaining the persistence of Pseudomonas aeruginosa biofilms by regulating alginate production, a significant biofilm matrix component. Furthermore, it has been demonstrated that S. aureus biofilm development is initiated by several tricarboxylic acid (TCA) intermediates in a FnbA-dependent manner. Finally, Glucose 6-phosphatase (G6P) boosts the phosphorylation of histidine-containing protein (HPr) by increasing the activity of HPr kinase, enhancing its interaction with CcpA, and resulting in biofilm development through polysaccharide intercellular adhesion (PIA) accumulation and icaADBC transcription. Therefore, studying the metabolic changes associated with biofilm development is crucial for understanding the complex mechanisms involved in biofilm formation and identifying potential targets for intervention. Accordingly, this review aims to provide a comprehensive overview of recent advances in metabolomic profiling of biofilms, including emerging trends, prevailing challenges, and the identification of potential targets for anti-biofilm strategies.
Collapse
Affiliation(s)
- Jitendra Malviya
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | - Saif S Al-Janabi
- Medical Laboratory Techniques Department, Al-Maarif University College, Ramadi, Iraq
| | | | | | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Ali A Alsudani
- College of Science, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Ameer S Alkhayyat
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U. P., India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Singh R, Thakur L, Kumar A, Singh S, Kumar S, Kumar M, Kumar Y, Kumar N. Comparison of freeze-thaw and sonication cycle-based methods for extracting AMR-associated metabolites from Staphylococcus aureus. Front Microbiol 2023; 14:1152162. [PMID: 37180233 PMCID: PMC10174324 DOI: 10.3389/fmicb.2023.1152162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Emerging antimicrobial resistance (AMR) among Gram-positive pathogens, specifically in Staphylococcus aureus (S. aureus), is becoming a leading public health concern demanding effective therapeutics. Metabolite modulation can improve the efficacy of existing antibiotics and facilitate the development of effective therapeutics. However, it remained unexplored for drug-resistant S. aureus (gentamicin and methicillin-resistant), primarily due to the dearth of optimal metabolite extraction protocols including a protocol for AMR-associated metabolites. Therefore, in this investigation, we have compared the performance of the two most widely used methods, i.e., freeze-thaw cycle (FTC) and sonication cycle (SC), alone and in combination (FTC + SC), and identified the optimal method for this purpose. A total of 116, 119, and 99 metabolites were identified using the FTC, SC, and FTC + SC methods, respectively, leading to the identification of 163 metabolites cumulatively. Out of 163, 69 metabolites were found to be associated with AMR in published literature consisting of the highest number of metabolites identified by FTC (57) followed by SC (54) and FTC + SC (40). Thus, the performances of FTC and SC methods were comparable with no additional benefits of combining both. Moreover, each method showed biasness toward specific metabolite(s) or class of metabolites, suggesting that the choice of metabolite extraction method shall be decided based on the metabolites of interest in the investigation.
Collapse
Affiliation(s)
- Rita Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Lovnish Thakur
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Ashok Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Shailesh Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Manoj Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- *Correspondence: Yashwant Kumar,
| | - Niraj Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Niraj Kumar,
| |
Collapse
|
5
|
Metabolomic approaches for the detection of Listeria monocytogenes and Staphylococcus aureus in culture media. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Xiu W, Wan L, Yang K, Li X, Yuwen L, Dong H, Mou Y, Yang D, Wang L. Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nat Commun 2022; 13:3875. [PMID: 35790729 PMCID: PMC9256606 DOI: 10.1038/s41467-022-31479-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/20/2022] [Indexed: 12/20/2022] Open
Abstract
Traditional antibiotic treatment has limited efficacy for the drug-tolerant bacteria present in biofilms because of their unique metabolic conditions in the biofilm infection microenvironment. Modulating the biofilm infection microenvironment may influence the metabolic state of the bacteria and provide alternative therapeutic routes. In this study, photodynamic therapy is used not only to eradicate methicillin-resistant Staphylococcus aureus biofilms in the normoxic condition, but also to potentiate the hypoxic microenvironment, which induces the anaerobic metabolism of methicillin-resistant Staphylococcus aureus and activates the antibacterial activity of metronidazole. Moreover, the photodynamic therapy-activated chemotherapy can polarize the macrophages to a M2-like phenotype and promote the repair of the biofilm infected wounds in mice. This biofilm infection microenvironment modulation strategy, whereby the hypoxic microenvironment is potentiated to synergize photodynamic therapy with chemotherapy, provides an alternative pathway for efficient treatment of biofilm-associated infections. Bacteria in biofilms present unique metabolic conditions that limit the traditional antibiotic treatment. Here, the authors show a photodynamic therapy-activated chemotherapy potentiating the hypoxia of biofilms of methicillin-resistant Staphylococcus aureus, by developing hyaluronic acid nanoparticles functionalized with chlorin e6 and metronidazole.
Collapse
Affiliation(s)
- Weijun Xiu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ling Wan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Kaili Yang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiao Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lihui Yuwen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Heng Dong
- Nanjing Stomatological Hospital, Medicine School of Nanjing University, Nanjing, 210008, China
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Medicine School of Nanjing University, Nanjing, 210008, China
| | - Dongliang Yang
- School of Physical and Mathematical Sciences & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
7
|
Garcia Mendez DF, Rengifo Herrera JA, Sanabria J, Wist J. Analysis of the Metabolic Response of Planktonic Cells and Biofilms of Klebsiella pneumoniae to Sublethal Disinfection with Sodium Hypochlorite Measured by NMR. Microorganisms 2022; 10:1323. [PMID: 35889041 PMCID: PMC9323045 DOI: 10.3390/microorganisms10071323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is a pathogenic agent able to form biofilms on water storage tanks and pipe walls. This opportunistic pathogen can generate a thick layer as one of its essential virulence factors, enabling the bacteria to survive disinfection processes and thus develop drug resistance. Understanding the metabolic differences between biofilm and planktonic cells of the K. pneumoniae response to NaClO is key to developing strategies to control its spread. In this study, we performed an NMR metabolic profile analysis to compare the response to a sublethal concentration of sodium hypochlorite of biofilm and planktonic cells of K. pneumoniae cultured inside silicone tubing. Metabolic profiles revealed changes in the metabolism of planktonic cells after a contact time of 10 min with 7 mg L-1 of sodium hypochlorite. A decrease in the production of metabolites such as lactate, acetate, ethanol, and succinate in this cell type was observed, thus indicating a disruption of glucose intake. In contrast, the biofilms displayed a high metabolic heterogeneity, and the treatment did not affect their metabolic signature.
Collapse
Affiliation(s)
- David Felipe Garcia Mendez
- Chemistry Department, Universidad del Valle—Sede Meléndez, Cali 13 # 100-00, Colombia; (D.F.G.M.); (J.W.)
- Australian National Phenome Center, Murdoch University, Perth, WA 6150, Australia
| | - Julián Andrés Rengifo Herrera
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. J.J. Ronco” (CINDECA), Departamento de Química, Facultad de Ciencias Exactas, UNLP-CCT La Plata, CONICET, 47 No. 257, La Plata 1900, Argentina;
| | - Janeth Sanabria
- Australian National Phenome Center, Murdoch University, Perth, WA 6150, Australia
- Environmental Microbiology and Biotechnology Laboratory, Engineering Faculty, Engineering School of Environmental & Natural Resources, Universidad del Valle—Meléndez Campus, Cali 13 # 100-00, Colombia
| | - Julien Wist
- Chemistry Department, Universidad del Valle—Sede Meléndez, Cali 13 # 100-00, Colombia; (D.F.G.M.); (J.W.)
- Australian National Phenome Center, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
8
|
Weaver AJ, Borgogna TR, O’Shea-Stone G, Peters TR, Copié V, Voyich J, Teintze M. 18β-Glycyrrhetinic Acid Induces Metabolic Changes and Reduces Staphylococcus aureus Bacterial Cell-to-Cell Interactions. Antibiotics (Basel) 2022; 11:antibiotics11060781. [PMID: 35740189 PMCID: PMC9220049 DOI: 10.3390/antibiotics11060781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
The rise in bacterial resistance to common antibiotics has raised an increased need for alternative treatment strategies. The natural antibacterial product, 18β-glycyrrhetinic acid (GRA) has shown efficacy against community-associated methicillin-resistant Staphylococcus aureus (MRSA), although its interactions against planktonic and biofilm modes of growth remain poorly understood. This investigation utilized biochemical and metabolic approaches to further elucidate the effects of GRA on MRSA. Prolonged exposure of planktonic MRSA cell cultures to GRA resulted in increased production of staphyloxanthin, a pigment known to exhibit antioxidant and membrane-stabilizing functions. Then, 1D 1H NMR analyses of intracellular metabolite extracts from MRSA treated with GRA revealed significant changes in intracellular polar metabolite profiles, including increased levels of succinate and citrate, and significant reductions in several amino acids, including branch chain amino acids. These changes reflect the MRSA response to GRA exposure, including potentially altering its membrane composition, which consumes branched chain amino acids and leads to significant energy expenditure. Although GRA itself had no significant effect of biofilm viability, it seems to be an effective biofilm disruptor. This may be related to interference with cell–cell aggregation, as treatment of planktonic MRSA cultures with GRA leads to a significant reduction in micro-aggregation. The dispersive nature of GRA on MRSA biofilms may prove valuable for treatment of such infections and could be used to increase susceptibility to complementary antibiotic therapeutics.
Collapse
Affiliation(s)
- Alan J. Weaver
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.J.W.J.); (G.O.-S.); (T.R.P.)
| | - Timothy R. Borgogna
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Galen O’Shea-Stone
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.J.W.J.); (G.O.-S.); (T.R.P.)
| | - Tami R. Peters
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.J.W.J.); (G.O.-S.); (T.R.P.)
| | - Valérie Copié
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.J.W.J.); (G.O.-S.); (T.R.P.)
- Correspondence: (V.C.); (J.V.); (M.T.); Tel.: +406-994-7244 (V.C.); +406-994-7184 (J.V.); +406-994-6515 (M.T.)
| | - Jovanka Voyich
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence: (V.C.); (J.V.); (M.T.); Tel.: +406-994-7244 (V.C.); +406-994-7184 (J.V.); +406-994-6515 (M.T.)
| | - Martin Teintze
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.J.W.J.); (G.O.-S.); (T.R.P.)
- Correspondence: (V.C.); (J.V.); (M.T.); Tel.: +406-994-7244 (V.C.); +406-994-7184 (J.V.); +406-994-6515 (M.T.)
| |
Collapse
|
9
|
Rahman MA, Amirkhani A, Chowdhury D, Mempin M, Molloy MP, Deva AK, Vickery K, Hu H. Proteome of Staphylococcus aureus Biofilm Changes Significantly with Aging. Int J Mol Sci 2022; 23:6415. [PMID: 35742863 PMCID: PMC9223533 DOI: 10.3390/ijms23126415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 01/15/2023] Open
Abstract
Staphylococcus aureus is a notorious biofilm-producing pathogen that is frequently isolated from implantable medical device infections. As biofilm ages, it becomes more tolerant to antimicrobial treatment leading to treatment failure and necessitating the costly removal of infected devices. In this study, we performed in-solution digestion followed by TMT-based high-throughput mass spectrometry and investigated what changes occur in the proteome of S. aureus biofilm grown for 3-days and 12-days in comparison with 24 h planktonic. It showed that proteins associated with biosynthetic processes, ABC transporter pathway, virulence proteins, and shikimate kinase pathway were significantly upregulated in a 3-day biofilm, while proteins associated with sugar transporter, degradation, and stress response were downregulated. Interestingly, in a 3-day biofilm, we observed numerous proteins involved in the central metabolism pathways which could lead to biofilm growth under diverse environments by providing an alternative metabolic route to utilize energy. In 12-day biofilms, proteins associated with peptidoglycan biosynthesis, sugar transporters, and stress responses were upregulated, whereas proteins associated with ABC transporters, DNA replication, and adhesion proteins were downregulated. Gene Ontology analysis revealed that more proteins are involved in metabolic processes in 3dwb compared with 12dwb. Furthermore, we observed significant variations in the formation of biofilms resulting from changes in the level of metabolic activity in the different growth modes of biofilms that could be a significant factor in S. aureus biofilm maturation and persistence. Collectively, potential marker proteins were identified and further characterized to understand their exact role in S. aureus biofilm development, which may shed light on possible new therapeutic regimes in the treatment of biofilm-related implant-associated infections.
Collapse
Affiliation(s)
- Md. Arifur Rahman
- Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia; (D.C.); (M.M.); (A.K.D.); (K.V.)
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, Sydney 2109, Australia; (A.A.); (M.P.M.)
| | - Durdana Chowdhury
- Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia; (D.C.); (M.M.); (A.K.D.); (K.V.)
| | - Maria Mempin
- Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia; (D.C.); (M.M.); (A.K.D.); (K.V.)
| | - Mark P. Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney 2109, Australia; (A.A.); (M.P.M.)
| | - Anand Kumar Deva
- Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia; (D.C.); (M.M.); (A.K.D.); (K.V.)
| | - Karen Vickery
- Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia; (D.C.); (M.M.); (A.K.D.); (K.V.)
| | - Honghua Hu
- Surgical Infection Research Group, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney 2109, Australia; (D.C.); (M.M.); (A.K.D.); (K.V.)
| |
Collapse
|
10
|
Leggett A, Li DW, Sindeldecker D, Staats A, Rigel N, Bruschweiler-Li L, Brüschweiler R, Stoodley P. Cadaverine Is a Switch in the Lysine Degradation Pathway in Pseudomonas aeruginosa Biofilm Identified by Untargeted Metabolomics. Front Cell Infect Microbiol 2022; 12:833269. [PMID: 35237533 PMCID: PMC8884266 DOI: 10.3389/fcimb.2022.833269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
There is a critical need to accurately diagnose, prevent, and treat biofilms in humans. The biofilm forming P. aeruginosa bacteria can cause acute and chronic infections, which are difficult to treat due to their ability to evade host defenses along with an inherent antibiotic-tolerance. Using an untargeted NMR-based metabolomics approach, we identified statistically significant differences in 52 metabolites between P. aeruginosa grown in the planktonic and lawn biofilm states. Among them, the metabolites of the cadaverine branch of the lysine degradation pathway were systematically decreased in biofilm. Exogenous supplementation of cadaverine caused significantly increased planktonic growth, decreased biofilm accumulation by 49% and led to altered biofilm morphology, converting to a pellicle biofilm at the air-liquid interface. Our findings show how metabolic pathway differences directly affect the growth mode in P. aeruginosa and could support interventional strategies to control biofilm formation.
Collapse
Affiliation(s)
- Abigail Leggett
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Da-Wei Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, United States
| | - Devin Sindeldecker
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Amelia Staats
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Nicholas Rigel
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, United States
| | - Rafael Brüschweiler
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, United States
- *Correspondence: Rafael Brüschweiler, ; Paul Stoodley,
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
- Department of Orthopaedics, The Ohio State University, Columbus, OH, United States
- National Biofilm Innovation Centre (NBIC) and National Centre for Advanced Tribology at Southampton (nCATS), Mechanical Engineering, University of Southampton, Southampton, United Kingdom
- *Correspondence: Rafael Brüschweiler, ; Paul Stoodley,
| |
Collapse
|
11
|
Zhang L, Yang W, Chu Y, Wen B, Cheng Y, Mahmood T, Bao M, Ge F, Li L, Yi J, Du C, Lu C, Tan Y. The Inhibition Effect of Linezolid With Reyanning Mixture on MRSA and its Biofilm is More Significant than That of Linezolid Alone. Front Pharmacol 2022; 12:766309. [PMID: 35046807 PMCID: PMC8762264 DOI: 10.3389/fphar.2021.766309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a superbacterium, and when it forms biofilms, it is difficult to treat even with the first-line of antibiotic linezolid (LNZ). Reyanning mixture (RYN), a compound-based Chinese medicine formula, has been found to have inhibitory effects on biofilms. This study aims to explore the synergistic inhibitory effect and corresponding mechanisms of their (LNZ&RYN) combination on the planktonic as well as biofilm cells of MRSA. Broth microdilution and chessboard methods were employed for the determination of minimum inhibitory concentrations (MICs) and synergistic concentration of LNZ&RYN, respectively. The effect of the combined medication on biofilm and mature biofilm of MRSA were observed by biofilm morphology and permeability experiments, respectively. To unveil the molecular mechanism of action of the synergistic combination of LNZ and RYN, RT-PCR based biofilm-related gene expression analysis and ultra-high pressure liquid chromatography-time-of-flight mass spectrometry based endogenous metabonomic analysis were deployed. The results indicated that 1/16RYN as the best combined dose reduced LNZ (4 μg/ml) to 2 μg/ml. The combined treatment inhibited living MRSA before and after biofilm formation, removed the residual structure of dead bacteria in MRSA biofilms and affected the shape and size of bacteria, resulting in the improvement of biofilm permeability. The mechanism was that biofilm-related genes such as agrC, atlA, and sarA, as well as amino acid uptake associated with the metabolism of 3-dehydrocarnitine, kynurenine, L-leucine, L-lysine and sebacic acid were inhibited. This study provides evidence for the treatment of MRSA and its biofilms with LNZ combined with RYN.
Collapse
Affiliation(s)
- Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Weifeng Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajun Chu
- Tsing Hua De Ren Xi an Happiness Pharmaceutical Co., Ltd., Xi'an, China
| | - Bo Wen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yungchi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mei Bao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Chengqiang Du
- Tsing Hua De Ren Xi an Happiness Pharmaceutical Co., Ltd., Xi'an, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
The de novo Purine Biosynthesis Pathway Is the Only Commonly Regulated Cellular Pathway during Biofilm Formation in TSB-Based Medium in Staphylococcus aureus and Enterococcus faecalis. Microbiol Spectr 2021; 9:e0080421. [PMID: 34935415 PMCID: PMC8693917 DOI: 10.1128/spectrum.00804-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms are involved in chronic infections and confer 10 to 1,000 times more resistance to antibiotics compared with planktonic growth, leading to complications and treatment failure. When transitioning from a planktonic lifestyle to biofilms, some Gram-positive bacteria are likely to modulate several cellular pathways, including central carbon metabolism, biosynthesis pathways, and production of secondary metabolites. These metabolic adaptations might play a crucial role in biofilm formation by Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis. Here, we performed a transcriptomic approach to identify cellular pathways that might be similarly regulated during biofilm formation in these bacteria. Different strains and biofilm-inducing media were used to identify a set of regulated genes that are common and independent of the environment or accessory genomes analyzed. Our approach highlighted that the de novo purine biosynthesis pathway was upregulated in biofilms of both species when using a tryptone soy broth-based medium but not so when a brain heart infusion-based medium was used. We did not identify other pathways commonly regulated between both pathogens. Gene deletions and usage of a drug targeting a key enzyme showed the importance of this pathway in biofilm formation of S. aureus. The importance of the de novo purine biosynthesis pathway might reflect an important need for purine during biofilm establishment, and thus could constitute a promising drug target. IMPORTANCE Biofilms are often involved in nosocomial infections and can cause serious chronic infections if not treated properly. Current anti-biofilm strategies rely on antibiotic usage, but they have a limited impact because of the biofilm intrinsic tolerance to drugs. Metabolism remodeling likely plays a central role during biofilm formation. Using comparative transcriptomics of different strains of Staphylococcus aureus and Enterococcus faecalis, we determined that almost all cellular adaptations are not shared between strains and species. Interestingly, we observed that the de novo purine biosynthesis pathway was upregulated during biofilm formation by both species in a specific medium. The requirement for purine could constitute an interesting new anti-biofilm target with a wide spectrum that could also prevent resistance evolution. These results are also relevant to a better understanding of the physiology of biofilm formation.
Collapse
|
13
|
Aries ML, Cloninger MJ. NMR Hydrophilic Metabolomic Analysis of Bacterial Resistance Pathways Using Multivalent Antimicrobials with Challenged and Unchallenged Wild Type and Mutated Gram-Positive Bacteria. Int J Mol Sci 2021; 22:ijms222413606. [PMID: 34948402 PMCID: PMC8715671 DOI: 10.3390/ijms222413606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Multivalent membrane disruptors are a relatively new antimicrobial scaffold that are difficult for bacteria to develop resistance to and can act on both Gram-positive and Gram-negative bacteria. Proton Nuclear Magnetic Resonance (1H NMR) metabolomics is an important method for studying resistance development in bacteria, since this is both a quantitative and qualitative method to study and identify phenotypes by changes in metabolic pathways. In this project, the metabolic differences between wild type Bacillus cereus (B. cereus) samples and B. cereus that was mutated through 33 growth cycles in a nonlethal dose of a multivalent antimicrobial agent were identified. For additional comparison, samples for analysis of the wild type and mutated strains of B. cereus were prepared in both challenged and unchallenged conditions. A C16-DABCO (1,4-diazabicyclo-2,2,2-octane) and mannose functionalized poly(amidoamine) dendrimer (DABCOMD) were used as the multivalent quaternary ammonium antimicrobial for this hydrophilic metabolic analysis. Overall, the study reported here indicates that B. cereus likely change their peptidoglycan layer to protect themselves from the highly positively charged DABCOMD. This membrane fortification most likely leads to the slow growth curve of the mutated, and especially the challenged mutant samples. The association of these sample types with metabolites associated with energy expenditure is attributed to the increased energy required for the membrane fortifications to occur as well as to the decreased diffusion of nutrients across the mutated membrane.
Collapse
|
14
|
Bapat RA, Parolia A, Chaubal T, Dharamadhikari S, Abdulla AM, Sakkir N, Arora S, Bapat P, Sindi AM, Kesharwani P. Recent update on potential cytotoxicity, biocompatibility and preventive measures of biomaterials used in dentistry. Biomater Sci 2021; 9:3244-3283. [PMID: 33949464 DOI: 10.1039/d1bm00233c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dental treatment is provided for a wide variety of oral health problems like dental caries, periodontal diseases, periapical infections, replacement of missing teeth and orthodontic problems. Various biomaterials, like composite resins, amalgam, glass ionomer cement, acrylic resins, metal alloys, impression materials, bone grafts, membranes, local anaesthetics, etc., are used for dental applications. The physical and chemical characteristics of these materials influence the outcome of dental treatment. It also impacts on the biological, allergic and toxic potential of biomaterials. With innovations in science and their positive results, there is also a need for awareness about the biological risks of these biomaterials. The aim of dental treatment is to have effective, yet safe, and long-lasting results for the benefit of patients. For this, it is important to have a thorough understanding of biomaterials and their effects on local and systemic health. Materials used in dentistry undergo a series of analyses before their oral applications. To the best of our knowledge, this is the first and original review that discusses the reasons for and studies on the toxicity of commonly used biomaterials for applications in dentistry. It will help clinicians to formulate a methodical approach for the selection of dental biomaterials, thus providing an awareness for forecasting their risk of toxic reactions.
Collapse
Affiliation(s)
- Ranjeet Ajit Bapat
- Faculty, Division of Clinical Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Abhishek Parolia
- Faculty, Division of Clinical Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Tanay Chaubal
- Faculty, Division of Clinical Dentistry, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | | | - Anshad Mohamed Abdulla
- Faculty, Department of Pediatric Dentistry and Orthodontic Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Nasil Sakkir
- Registrar Endodontist, Central Security Hospital, Abha, Kingdom of Saudi Arabia
| | - Suraj Arora
- Faculty, Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Prachi Bapat
- Dentist, Modern Dental College, Indore 453112, Madhya Pradesh, India
| | - Amal M Sindi
- Faculty, Oral Diagnostic Sciences Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant Kesharwani
- Faculty, Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
15
|
Comparative Metabolomics Revealing the Metabolic Responses of Pathogenic Bacteria to Different Antibiotics. Methods Mol Biol 2021. [PMID: 33977459 DOI: 10.1007/978-1-0716-1358-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This protocol describes the extraction and analysis of bacterial metabolites to determine the metabolic changes pertaining to their responses to different types of antibiotics. Polar metabolites are extracted using a methanol-based extraction. Sensitive, specific, and semi-quantitative metabolite analysis was performed using a high-performance liquid chromatography coupled to a high-resolution quadrupole-Orbitrap mass spectrometry. Using our example bacteria as a demonstration, 14,528 metabolic features can be detected, and 1448 metabolites were putatively identified via basic database search. Additionally, 93 metabolites can be confidently identified via high-purity standards. Statistical analysis of these metabolites can pinpoint crucial changes in metabolic states of pathogens going through antibiotic treatment, which may assist our understanding of the antibiotic mechanism of actions from a metabolic perspective.
Collapse
|
16
|
Meccatti VM, Oliveira JRDE, Figueira LW, Lagareiro Netto AA, Zamarioli LS, Marcucci MC, Camargo SEA, Carvalho CAT, Oliveira LDDE. Rosmarinus officinalis L. (rosemary) extract has antibiofilm effect similar to the antifungal nystatin on Candida samples. AN ACAD BRAS CIENC 2021; 93:e20190366. [PMID: 33950151 DOI: 10.1590/0001-3765202120190366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/25/2019] [Indexed: 11/22/2022] Open
Abstract
Candida spp. are naturally opportunistic and can promote infections. These yeasts can form biofilm, after penetration and adhesion to the biotic or abiotic surfaces. Preexisting diseases, treatments with drugs and radiation therapy, medical procedures, and parafunctional habits favor the installation of a fungal infection. Increased resistance to the available antifungals has become a concern. Therefore, alternative methods to control them have been evaluated, including the use of plant substances. In this study, the antibiofilm effect of R. officinalis L. extract was analyzed on C. albicans, C. dubliniensis, C. glabrata, C. krusei, and C. tropicalis. A phytochemical analysis of the extract was performed. Biofilms were formed for 48 h and exposed to the different concentrations of the extract (50, 100, and 200 mg/mL) for 5 min or 24 h. The effect of the plant extract was compared to the antifungal nystatin. Rosmarinus officinalis L. extract was constituted of phenols and flavonoids, highlighting the presence of chlorogenic acid derivatives in its composition. Biofilm reductions were observed after exposure to the plant extract for both periods. The plant extract provided a reduction similar to the antifungal. Thus, R. officinalis L. extract showed antibiofilm effect on Candida spp. comparable to the nystatin.
Collapse
Affiliation(s)
- Vanessa M Meccatti
- Universidade Estadual Paulista(UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Jonatas R DE Oliveira
- Universidade Anhembi Morumbi, Escola de Medicina, Av. Dep. Benedito Matarazzo, 4050, 12230-002 São José dos Campos, SP, Brazil
| | - Leandro W Figueira
- Universidade Estadual Paulista(UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Amandio A Lagareiro Netto
- Universidade Anhanguera, Departamento de Farmácia, Av. Raimundo Pereira de Magalhães, 3305, 05145-200 São Paulo, SP, Brazil
| | - Lucas S Zamarioli
- Universidade Federal de São Paulo(UNIFESP), Instituto de Farmacologia e Biologia Molecular, Departamento de Modo de Ação de Drogas, Rua Três de Maio, 100, 04044-020 São Paulo, SP, Brazil
| | - Maria C Marcucci
- Universidade Estadual Paulista(UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Samira E A Camargo
- University of Florida, College of Dentistry, Department of Restorative Dental Sciences, Gainesville, FL, 32610, USA
| | - Cláudio A T Carvalho
- Universidade Estadual Paulista(UNESP), Instituto de Ciência e Tecnologia, Departamento de Odontologia Restauradora, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| | - Luciane D DE Oliveira
- Universidade Estadual Paulista(UNESP), Instituto de Ciência e Tecnologia, Departamento de Biociências e Diagnóstico Bucal, Av. Engenheiro Francisco José Longo, 777, 12245-000 São José dos Campos, SP, Brazil
| |
Collapse
|
17
|
Awadh AA, Le Gresley A, Forster-Wilkins G, Kelly AF, Fielder MD. Determination of metabolic activity in planktonic and biofilm cells of Mycoplasma fermentans and Mycoplasma pneumoniae by nuclear magnetic resonance. Sci Rep 2021; 11:5650. [PMID: 33707544 PMCID: PMC7952918 DOI: 10.1038/s41598-021-84326-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Mycoplasmas are fastidious microorganisms, typically characterised by their restricted metabolism and minimalist genome. Although there is reported evidence that some mycoplasmas can develop biofilms little is known about any differences in metabolism in these organisms between the growth states. A systematic metabolomics approach may help clarify differences associated between planktonic and biofilm associated mycoplasmas. In the current study, the metabolomics of two different mycoplasmas of clinical importance (Mycoplasma pneumoniae and Mycoplasma fermentans) were examined using a novel approach involving nuclear magnetic resonance spectroscopy and principle component analysis. Characterisation of metabolic changes was facilitated through the generation of high-density metabolite data and diffusion-ordered spectroscopy that provided the size and structural information of the molecules under examination. This enabled the discrimination between biofilms and planktonic states for the metabolomic profiles of both organisms. This work identified clear biofilm/planktonic differences in metabolite composition for both clinical mycoplasmas and the outcomes serve to establish a baseline understanding of the changes in metabolism observed in these pathogens in their different growth states. This may offer insight into how these organisms are capable of exploiting and persisting in different niches and so facilitate their survival in the clinical setting.
Collapse
Affiliation(s)
- Ammar A. Awadh
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Adam Le Gresley
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Gary Forster-Wilkins
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Alison F. Kelly
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| | - Mark D. Fielder
- grid.15538.3a0000 0001 0536 3773School of Life Sciences, Pharmacy and Chemistry, SEC Faculty, Kingston University London, Kingston Upon Thames, UK
| |
Collapse
|
18
|
Exploring amino acid and peptide transporters as therapeutic targets to attenuate virulence and antibiotic resistance in Staphylococcus aureus. PLoS Pathog 2021; 17:e1009093. [PMID: 33444418 PMCID: PMC7808641 DOI: 10.1371/journal.ppat.1009093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
19
|
Integrated meta-analysis and machine learning approach identifies acyl-CoA thioesterase with other novel genes responsible for biofilm development in Staphylococcus aureus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 88:104702. [PMID: 33388440 DOI: 10.1016/j.meegid.2020.104702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Biofilm forming Staphylococcus aureus is a major threat to the health-care industry. It is important to understand the differences between planktonic and biofilm growth forms in the pathogen since conventional treatments targeting the planktonic forms are not effective against biofilms. The current study conducts a meta-analysis of three public transcriptomic profiles to examine the differences in gene expression between the planktonic and biofilm states of S. aureus using random-effects modeling. Mean effect sizes were calculated for 2847 genes among which 726 differentially expressed genes were taken for further analysis. Major genes that are discriminatory between the two conditions were mined using supervised learning techniques and validated by high-accuracy classifiers. Ten different feature selection algorithms were applied and used to rank the most important genes in S. aureus biofilms. Finally, an optimal set of 36 genes are presented as candidate genes in biofilm formation or development while throwing light on the novel roles of an acyl-CoA thioesterase enzyme and 10 hypothetical proteins in biofilms. The relevance of the identified gene set was further validated by building five different classification models using SVM, RF, kNN, NB and DT algorithms that were compared with models built from other relevant gene sets and by reviewing the functional role of 25 previously known genes in biofilm development. The study combines meta-analysis of differential expression with supervised machine learning strategies and feature selection for the first time to identify and validate a discriminatory set of genes important in biofilms of S. aureus. The functional roles of the identified genes predicted to be important in biofilms are further scrutinized and can be considered as a signature target list to develop anti-biofilm therapeutics in S. aureus.
Collapse
|
20
|
Pseudomonas aeruginosa Planktonic- and Biofilm-Conditioned Media Elicit Discrete Metabolic Responses in Human Macrophages. Cells 2020; 9:cells9102260. [PMID: 33050176 PMCID: PMC7650675 DOI: 10.3390/cells9102260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Macrophages (MΦs) are prevalent innate immune cells, present throughout human bodily tissues where they orchestrate innate and adaptive immune responses to maintain cellular homeostasis. MΦs have the capacity to display a wide array of functional phenotypes due to different microenvironmental cues, particularly soluble bacterial secretory products. Recent evidence has emerged demonstrating that metabolism supports MΦ function and plasticity, in addition to energy and biomolecular precursor production. In this study, 1D 1H-NMR-based metabolomics was used to identify the metabolic pathways that are differentially altered following primary human monocyte-derived MΦ exposure to P. aeruginosa planktonic- and biofilm-conditioned media (PCM and BCM). Metabolic profiling of PCM- and BCM-exposed MΦs indicated a significant increase in glycolytic metabolism, purine biosynthesis, and inositol phosphate metabolism. In addition, these metabolic patterns suggested that BCM-exposed MΦs exhibit a hyperinflammatory metabolic profile with reduced glycerol metabolism and elevated catabolism of lactate and amino acids, relative to PCM-exposed MΦs. Altogether, our study reveals novel findings concerning the metabolic modulation of human MΦs after exposure to secretory microbial products and contributes additional knowledge to the field of immunometabolism in MΦs.
Collapse
|
21
|
Bhattacharya M, Berends ETM, Zheng X, Hill PJ, Chan R, Torres VJ, Wozniak DJ. Leukocidins and the Nuclease Nuc Prevent Neutrophil-Mediated Killing of Staphylococcus aureus Biofilms. Infect Immun 2020; 88:e00372-20. [PMID: 32719153 PMCID: PMC7504955 DOI: 10.1128/iai.00372-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Bacterial biofilms are linked with chronic infections and have properties distinct from those of planktonic, single-celled bacteria. The virulence mechanisms associated with Staphylococcus aureus biofilms are becoming better understood. Human neutrophils are critical for the innate immune response to S. aureus infection. Here, we describe two virulence strategies that converge to promote the ability of S. aureus biofilms to evade killing by neutrophils. Specifically, we show that while neutrophils exposed to S. aureus biofilms produce extracellular traps (NETs) and phagocytose bacteria, both mechanisms are inefficient in clearance of the biofilm biomass. This is attributed to the leukocidin LukAB, which promotes S. aureus survival during phagocytosis. We also show that the persistence of biofilm bacteria trapped in NETs is facilitated by S. aureus nuclease (Nuc)-mediated degradation of NET DNA. This study describes key aspects of the interaction between primary human neutrophils and S. aureus biofilms and provides insight into how S. aureus evades the neutrophil response to cause persistent infections.
Collapse
Affiliation(s)
| | - Evelien T M Berends
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Xuhui Zheng
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Preston J Hill
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio, USA
| | - Rita Chan
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Daniel J Wozniak
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020; 84:e00026-19. [PMID: 32792334 PMCID: PMC7430342 DOI: 10.1128/mmbr.00026-19] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
23
|
Schilcher K, Horswill AR. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol Mol Biol Rev 2020. [PMID: 32792334 DOI: 10.1128/mmbr.00026-19/asset/e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In many natural and clinical settings, bacteria are associated with some type of biotic or abiotic surface that enables them to form biofilms, a multicellular lifestyle with bacteria embedded in an extracellular matrix. Staphylococcus aureus and Staphylococcus epidermidis, the most frequent causes of biofilm-associated infections on indwelling medical devices, can switch between an existence as single free-floating cells and multicellular biofilms. During biofilm formation, cells first attach to a surface and then multiply to form microcolonies. They subsequently produce the extracellular matrix, a hallmark of biofilm formation, which consists of polysaccharides, proteins, and extracellular DNA. After biofilm maturation into three-dimensional structures, the biofilm community undergoes a disassembly process that leads to the dissemination of staphylococcal cells. As biofilms are dynamic and complex biological systems, staphylococci have evolved a vast network of regulatory mechanisms to modify and fine-tune biofilm development upon changes in environmental conditions. Thus, biofilm formation is used as a strategy for survival and persistence in the human host and can serve as a reservoir for spreading to new infection sites. Moreover, staphylococcal biofilms provide enhanced resilience toward antibiotics and the immune response and impose remarkable therapeutic challenges in clinics worldwide. This review provides an overview and an updated perspective on staphylococcal biofilms, describing the characteristic features of biofilm formation, the structural and functional properties of the biofilm matrix, and the most important mechanisms involved in the regulation of staphylococcal biofilm formation. Finally, we highlight promising strategies and technologies, including multitargeted or combinational therapies, to eradicate staphylococcal biofilms.
Collapse
Affiliation(s)
- Katrin Schilcher
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
24
|
Aries ML, Cloninger MJ. NMR metabolomic analysis of bacterial resistance pathways using multivalent quaternary ammonium functionalized macromolecules. Metabolomics 2020; 16:82. [PMID: 32705355 PMCID: PMC9389846 DOI: 10.1007/s11306-020-01702-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/09/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Multivalent antimicrobial dendrimers are an exciting new system that is being developed to address the growing problem of drug resistant bacteria. Nuclear Magnetic Resonance (NMR) metabolomics is a quantitative and reproducible method for the determination of bacterial response to environmental stressors and for visualization of perturbations to biochemical pathways. OBJECTIVES NMR metabolomics is used to elucidate metabolite differences between wild type and antimicrobially mutated Escherichia coli (E. coli) samples. METHODS Proton (1H) NMR hydrophilic metabolite analysis was conducted on samples of E. coli after 33 growth cycles of a minimum inhibitory challenge to E. coli by poly(amidoamine) dendrimers functionalized with mannose and with C16-DABCO quaternary ammonium endgroups and compared to the metabolic profile of wild type E. coli. RESULTS The wild type and mutated E. coli samples were separated into distinct sample sets by hierarchical clustering, principal component analysis (PCA) and sparse partial least squares discriminate analysis (sPLS-DA). Metabolite components of membrane fortification and energy related pathways had a significant p value and fold change between the wild type and mutated E. coli. Amino acids commonly associated with membrane fortification from cationic antimicrobials, such as lysine, were found to have a higher concentration in the mutated E. coli than in the wild type E. coli. N-acetylglucosamine, a major component of peptidoglycan synthesis, was found to have a 25-fold higher concentration in the mid log phase of the mutated E. coli than in the mid log phase of the wild type. CONCLUSION The metabolic profile suggests that E. coli change their peptidoglycan composition in order to garner protection from the highly positively charged and multivalent C16-DABCO and mannose functionalized dendrimer.
Collapse
Affiliation(s)
- Michelle L Aries
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
25
|
Afonso Camargo SE, Mohiuddeen AS, Fares C, Partain JL, Carey PH, Ren F, Hsu SM, Clark AE, Esquivel-Upshaw JF. Anti-Bacterial Properties and Biocompatibility of Novel SiC Coating for Dental Ceramic. J Funct Biomater 2020; 11:E33. [PMID: 32443691 PMCID: PMC7353563 DOI: 10.3390/jfb11020033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 11/16/2022] Open
Abstract
A 200 nm plasma-enhanced chemical vapor-deposited SiC was used as a coating on dental ceramics to improve anti-bacterial properties for the applications of dental prosthesis. A thin SiO2 (20 nm) in the same system was deposited first, prior to SiC deposition, to improve the adhesion between SiC to dental ceramic. Silane and methane were the precursors for SiC deposition, and the SiO2 deposition employed silane and nitrous oxide as the precursors. SiC antimicrobial activity was evaluated on the proliferation of biofilm, Streptococcus sanguinis, and Streptococcus mutans on SiC-coated and uncoated dental ceramics for 24 h. The ceramic coating with SiC exhibited a biofilm coverage of 16.9%, whereas uncoated samples demonstrated a significantly higher biofilm coverage of 91.8%, measured with fluorescence and scanning electron microscopic images. The cytotoxicity of the SiC coating was evaluated using human periodontal ligament fibroblasts (HPdLF) by CellTiter-BlueCell viability assay. After 24 h of HPdLF cultivation, no obvious cytotoxicity was observed on the SiC coating and control group; both sets of samples exhibited similar cell adhesion and proliferation. SiC coating on a ceramic demonstrated antimicrobial activity without inducing cytotoxic effects.
Collapse
Affiliation(s)
- Samira Esteves Afonso Camargo
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (A.S.M.); (S.-M.H.); (A.E.C.)
| | - Azeem S. Mohiuddeen
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (A.S.M.); (S.-M.H.); (A.E.C.)
| | - Chaker Fares
- Department of Chemical Engineering, University of Florida Herbert Wertheim College of Engineering, Gainesville, FL 32611, USA; (C.F.); (J.L.P.); (P.H.C.IV); (F.R.)
| | - Jessica L. Partain
- Department of Chemical Engineering, University of Florida Herbert Wertheim College of Engineering, Gainesville, FL 32611, USA; (C.F.); (J.L.P.); (P.H.C.IV); (F.R.)
| | - Patrick H. Carey
- Department of Chemical Engineering, University of Florida Herbert Wertheim College of Engineering, Gainesville, FL 32611, USA; (C.F.); (J.L.P.); (P.H.C.IV); (F.R.)
| | - Fan Ren
- Department of Chemical Engineering, University of Florida Herbert Wertheim College of Engineering, Gainesville, FL 32611, USA; (C.F.); (J.L.P.); (P.H.C.IV); (F.R.)
| | - Shu-Min Hsu
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (A.S.M.); (S.-M.H.); (A.E.C.)
| | - Arthur E. Clark
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (A.S.M.); (S.-M.H.); (A.E.C.)
| | - Josephine F. Esquivel-Upshaw
- Department of Restorative Dental Sciences, Division of Prosthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (S.E.A.C.); (A.S.M.); (S.-M.H.); (A.E.C.)
| |
Collapse
|
26
|
Alreshidi MM. Selected Metabolites Profiling of Staphylococcus aureus Following Exposure to Low Temperature and Elevated Sodium Chloride. Front Microbiol 2020; 11:834. [PMID: 32457719 PMCID: PMC7225588 DOI: 10.3389/fmicb.2020.00834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the main foodborne pathogens that can cause food poisoning. Due to this reason, one of the essential aspects of food safety focuses on bacterial adaptation and proliferation under preservative conditions. This study was aimed to determine the metabolic changes that can occur following the exposure of S. aureus to either low temperature conditions or elevated concentrations of sodium chloride (NaCl). The results revealed that most of the metabolites measured were reduced in cold-stressed cells, when compared to reference controls. The major reduction was observed in nucleotides and organic acids, whereas mannitol was significantly increased in response to low temperature. However, when S. aureus was exposed to elevated NaCl, a significant increase was observed in the metabolite levels, particularly purine and pyrimidine bases along with organic acids. The majority of carbohydrates remained constant in the cells grown under ideal conditions and those exposed to elevated NaCl concentrations. Partial least square discriminate analysis (PLS-DA) of the metabolomic data indicated that both, prolonged cold stress and osmotic stress conditions, generated cells with different metabolic profiles, in comparison to the reference controls. These results provide evidence that, when bacterial cells exposed to low temperatures or high concentrations of NaCl, experience in situ homeostatic alterations to adapt to new environmental conditions. These data supported the hypothesis that changes in metabolic homeostasis were critical to the adaptive processes required for survival under alterations in the environmental conditions.
Collapse
Affiliation(s)
- Mousa M Alreshidi
- Department of Biology, College of Science, University of Ha'il, Hail, Saudi Arabia
| |
Collapse
|
27
|
Hůlková M, Soukupová J, Carlson RP, Maršálek B. Interspecies interactions can enhance Pseudomonas aeruginosa tolerance to surfaces functionalized with silver nanoparticles. Colloids Surf B Biointerfaces 2020; 192:111027. [PMID: 32387859 DOI: 10.1016/j.colsurfb.2020.111027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Development of anti-fouling surfaces is a major challenge in materials research. Microorganisms growing as biofilms have enhanced tolerance to antimicrobial strategies including antibiotics and antiseptics complicating the design of anti-fouling surfaces. Silver nanoparticles (AgNPs) are a promising antimicrobial technology with broad spectrum efficacy with a reduced likelihood of microorganisms developing resistance to the technology. This study tested the efficacy of new immobilized AgNP-modified surface technology against three common opportunistic pathogens grown either as monocultures or as cocultures. The presented study fills a gap in the literature by quantifying the efficacy of immobilized AgNP particles against multispecies biofilms. Polyethylene (PE) surfaces functionalized with the AgNPs were highly effective against Pseudomonas aeruginosa biofilms reducing viable cell counts by 99.8 % as compared to controls. However, the efficacy of the AgNP-modified PE surface was compromised when P. aeruginosa was cocultured with Candida albicans. Interspecies interactions can strongly influence the efficacy of anti-fouling AgNP coatings highlighting the need to test surfaces not only against biofilm phenotypes but under conditions representative of applications including the presence of multispecies consortia.
Collapse
Affiliation(s)
- Markéta Hůlková
- Research Centre for Toxic Compounds in the Environment, Masaryk University Brnob, Kamenice, Brno, Czech Republic; Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, 602 00, Brno, Czech Republic; Department of Chemical and Biological Engineering, Center for Biofilm Engineering and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA.
| | - Jana Soukupová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA.
| | - Blahoslav Maršálek
- Research Centre for Toxic Compounds in the Environment, Masaryk University Brnob, Kamenice, Brno, Czech Republic; Institute of Botany, Academy of Sciences of the Czech Republic, Lidická 25/27, 602 00, Brno, Czech Republic.
| |
Collapse
|
28
|
Alreshidi MM, Dunstan RH, Macdonald MM, Gottfries J, Roberts TK. The Uptake and Release of Amino Acids by Staphylococcus aureus at Mid-Exponential and Stationary Phases and Their Corresponding Responses to Changes in Temperature, pH and Osmolality. Front Microbiol 2020; 10:3059. [PMID: 32038532 PMCID: PMC6990410 DOI: 10.3389/fmicb.2019.03059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that is associated with nosocomial infections, as well as food poisoning. This bacterium is resistant to antimicrobial agents and can survive in a wide range of environmental conditions. The aim of this study was to measure the uptake and release of amino acids by S. aureus at mid-exponential and stationary phases of growth following exposure to a combination of conditions including variations in temperature, pH and NaCl. Bacterial cells were grown up to mid-exponential and stationary phases in tryptic soy broth (TSB), where the supernatants were collected for analyses of amino acids to determine the uptake and release characteristics. The uptake/release of amino acids was estimated by subtracting the initial levels of the free amino acids in the media from those measured at mid-exponential and stationary phases of growth. When cells were grown at ideal conditions, the analyses revealed that significant uptake of amino acids had occurred by stationary phase compared with the mid-exponential phase. A substantial release of valine and tyrosine into the external media was observed by cells at stationary phase. At both phases, the uptake and release patterns were significantly different between cells grown under ideal control conditions, when compared with those grown under various combinations of sub-optimal environmental conditions. The analyses of the supernatants harvested from controls and treatment groups at exponential phase indicated that the total uptake of amino acids was reduced approximately five times by cells grown with addition of 2.5% NaCl or with pH6 at 35°C, and 2-fold by cells grown at pH8 at 35°C. However, the final quantities of amino acids taken up by cells grown to stationary phase did not significantly alter between control and treated samples. Valine was found to be the most abundant amino acid that was significantly released into the media at stationary phase by both control and treated samples. It was evident that diverse environmental conditions resulted in differential patterns of amino acid uptake and release during adaptation to designated conditions.
Collapse
Affiliation(s)
- Mousa M Alreshidi
- Department of Biology, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - R Hugh Dunstan
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| | - Margaret M Macdonald
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| | - Johan Gottfries
- Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Tim K Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, University Drive, Callaghan, NSW, Australia
| |
Collapse
|
29
|
Yung YP, McGill SL, Chen H, Park H, Carlson RP, Hanley L. Reverse diauxie phenotype in Pseudomonas aeruginosa biofilm revealed by exometabolomics and label-free proteomics. NPJ Biofilms Microbiomes 2019; 5:31. [PMID: 31666981 PMCID: PMC6814747 DOI: 10.1038/s41522-019-0104-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022] Open
Abstract
Microorganisms enhance fitness by prioritizing catabolism of available carbon sources using a process known as carbon catabolite repression (CCR). Planktonically grown Pseudomonas aeruginosa is known to prioritize the consumption of organic acids including lactic acid over catabolism of glucose using a CCR strategy termed "reverse diauxie." P. aeruginosa is an opportunistic pathogen with well-documented biofilm phenotypes that are distinct from its planktonic phenotypes. Reverse diauxie has been described in planktonic cultures, but it has not been documented explicitly in P. aeruginosa biofilms. Here a combination of exometabolomics and label-free proteomics was used to analyze planktonic and biofilm phenotypes for reverse diauxie. P. aeruginosa biofilm cultures preferentially consumed lactic acid over glucose, and in addition, the cultures catabolized the substrates completely and did not exhibit the acetate secreting "overflow" metabolism that is typical of many model microorganisms. The biofilm phenotype was enabled by changes in protein abundances, including lactate dehydrogenase, fumarate hydratase, GTP cyclohydrolase, L-ornithine N(5)-monooxygenase, and superoxide dismutase. These results are noteworthy because reverse diauxie-mediated catabolism of organic acids necessitates a terminal electron acceptor like O2, which is typically in low supply in biofilms due to diffusion limitation. Label-free proteomics identified dozens of proteins associated with biofilm formation including 16 that have not been previously reported, highlighting both the advantages of the methodology utilized here and the complexity of the proteomic adaptation for P. aeruginosa biofilms. Documenting the reverse diauxic phenotype in P. aeruginosa biofilms is foundational for understanding cellular nutrient and energy fluxes, which ultimately control growth and virulence.
Collapse
Affiliation(s)
- Yeni P. Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - S. Lee McGill
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Hui Chen
- Research Resources Center, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Heejoon Park
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Ross P. Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607 USA
| |
Collapse
|
30
|
Fuchs AL, Schiller SM, Keegan WJ, Ammons MCB, Eilers B, Tripet B, Copié V. Quantitative 1H NMR Metabolomics Reveal Distinct Metabolic Adaptations in Human Macrophages Following Differential Activation. Metabolites 2019; 9:metabo9110248. [PMID: 31652958 PMCID: PMC6918149 DOI: 10.3390/metabo9110248] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages (MΦs) are phagocytic immune cells that are found in nearly all human tissues, where they modulate innate and adaptive immune responses, thereby maintaining cellular homeostasis. MΦs display a spectrum of functional phenotypes as a result of microenvironmental and stress-induced stimuli. Evidence has emerged demonstrating that metabolism is not only crucial for the generation of energy and biomolecular precursors, but also contributes to the function and plasticity of MΦs. Here, 1D 1H NMR-based metabolomics was employed to identify metabolic pathways that are differentially modulated following primary human monocyte-derived MΦ activation with pro-inflammatory (M1) or anti-inflammatory (M2a) stimuli relative to resting (M0) MΦs. The metabolic profiling of M1 MΦs indicated a substantial increase in oxidative stress as well as a decrease in mitochondrial respiration. These metabolic profiles also provide compelling evidence that M1 MΦs divert metabolites from de novo glycerophospholipid synthesis to inhibit oxidative phosphorylation. Furthermore, glycolysis and lactic acid fermentation were significantly increased in both M1 and M2a MΦs. These metabolic patterns highlight robust metabolic activation markers of MΦ phenotypes. Overall, our study generates additional support to previous observations, presents novel findings regarding the metabolic modulation of human MΦs following activation, and contributes new knowledge to the rapidly evolving field of immunometabolism.
Collapse
Affiliation(s)
- Amanda L Fuchs
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Sage M Schiller
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Wyatt J Keegan
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Mary Cloud B Ammons
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Brian Eilers
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Brian Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
31
|
Haalboom M. Chronic Wounds: Innovations in Diagnostics and Therapeutics. Curr Med Chem 2019; 25:5772-5781. [PMID: 28699502 DOI: 10.2174/0929867324666170710120556] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 06/10/2017] [Accepted: 06/10/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND A major global health issue is the existence of chronic wounds. Appropriate diagnosis and treatment is essential to promote wound healing and prevent further complications. Traditional methods for treatment and diagnosis of chronic wounds have shown to be of limited effectiveness. Therefore, there is a need for the development of diagnostic and therapeutic innovations in chronic wound care. OBJECTIVE This mini-review aims to provide insight in the current knowledge of the wound healing process and the deficiencies encountered in chronic wounds, which provides a basis for the development of innovations in chronic wound care. Furthermore, promising diagnostic and therapeutic innovations will be highlighted. METHODS Literature was searched for recent articles (=<10 years) describing the current knowledge about the wound healing process and chronic wounds. The most promising diagnostic and therapeutic innovations were gathered from articles published in the past 5 years. RESULTS/CONCLUSION Wound healing is a well-organized process consisting of four phases: coagulation, inflammation, proliferation and wound remodelling. Chronic wounds often stagnate in the inflammatory phase and/or experience an impaired proliferative phase. This mini-review has demonstrated that increased knowledge about the processes involved in wound healing has paved the way for the development of new diagnostic tools and treatments for chronic wounds. Increased knowledge about bacterial invasion and infection in has encouraged researchers to develop diagnostic tools to help clinicians detect these phenomena appropriately and in time. Other researchers have shown that they are able to design/extract biochemical compounds that intervene in the disrupted healing processes in chronic wounds.
Collapse
Affiliation(s)
- Marieke Haalboom
- Department of Vascular Surgery/Medical School Twente, Medisch Spectrum Twente, Enschede, Netherlands
| |
Collapse
|
32
|
Kathawala MH, Ng WL, Liu D, Naing MW, Yeong WY, Spiller KL, Van Dyke M, Ng KW. Healing of Chronic Wounds: An Update of Recent Developments and Future Possibilities. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:429-444. [PMID: 31068101 DOI: 10.1089/ten.teb.2019.0019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic wounds are the result of disruptions in the body's usual process of healing. They are not only a source of significant pain and discomfort but also, more importantly, an unguarded port of entry for pathogens into the body. While our current understanding of this phenomenon is far from complete, findings in physiological patterns and advancements in wound healing technologies have helped develop wound management and healing solutions to this long-standing medical challenge. This review presents an overview of known wound healing mechanics, abnormalities that lead to chronic wounds, and a summary of established and new wound healing technologies. Various approaches to heal wounds are discussed, from dermal replacements to advanced biomaterial-based treatments, from cell-, synthetic-, and composite-based approaches to preclinical approaches, which make developing such products possible. While tested breakthrough products are described, the authors focused more on recently developed innovations, which are at varying stages of maturity. The review concludes with a note on future perspectives and opinions on where the field and industry are headed and where they should be. Impact Statement Wound healing is an important area of research and clinical practice, and has captured the attention of tissue engineers since the nascent beginnings of the discipline. Tissue-engineered skin was the first FDA-approved product, achieved in 1996. Despite this success, and the passage of time, healing wounds, particularly chronic wounds, remains a vexing challenge. This comprehensive review article will provide readers with a synopsis of current issues, research approaches, animal models, technologies, and products that span the continuum from early development to clinical studies, in the hope of fueling new interests and ideas to overcome this long-standing medical challenge.
Collapse
Affiliation(s)
| | - Wei Long Ng
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dan Liu
- Singapore Institute of Manufacturing Technology (SIMTECH), Singapore, Singapore
| | - May Win Naing
- Singapore Institute of Manufacturing Technology (SIMTECH), Singapore, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - Mark Van Dyke
- Department of Biomedical Engineering and Mechanics (BEAM), Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.,Skin Research Institute of Singapore (SRIS), Singapore, Singapore.,Environmental Chemistry & Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Singapore, Singapore
| |
Collapse
|
33
|
Fuochi V, Coniglio MA, Laghi L, Rescifina A, Caruso M, Stivala A, Furneri PM. Metabolic Characterization of Supernatants Produced by Lactobacillus spp. With in vitro Anti- Legionella Activity. Front Microbiol 2019; 10:1403. [PMID: 31293545 PMCID: PMC6606692 DOI: 10.3389/fmicb.2019.01403] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/04/2019] [Indexed: 12/28/2022] Open
Abstract
Legionella pneumophila is an organism of public health interest for its presence in water supply systems and other humid thermal habitats. In this study, ten cell-free supernatants produced by Lactobacillus strains were evaluated for their ability to inhibit L. pneumophila strains isolated from hot tap water. Production of antimicrobial substances by Lactobacillus strains were assessed by agar well diffusion test on BCYE agar plates pre-inoculated with L. pneumophila. Cell-free supernatants (CFS) showed antimicrobial activity against all Legionella strains tested: L. rhamnosus and L. salivarius showed the highest activity. By means of a proton-based nuclear magnetic resonance (1H-NMR) spectroscopy, we detected and quantified the Lactobacillus metabolites of these CFSs, so to gain information about which metabolic pathway was likely to be connected to the observed inhibition activity. A panel of metabolites with variations in concentration were revealed, but considerable differences among inter-species were not showed as reported in a similar work by Foschi et al. (2018). More than fifty molecules belonging mainly to the groups of amino acids, organic acids, monosaccharides, ketones, and alcohols were identified in the metabolome. Significant differences were recorded comparing the metabolites found in the supernatants of strains grown in MRS with glycerol and the same strains grown in MRS without supplements. Indeed, pathway analysis revealed that glycine, serine and threonine, pyruvate, and sulfur metabolic pathways had a higher impact when strains were grown in MRS medium with a supplement such as glycerol. Among the metabolites identified, many were amino acids, suggesting the possible presence of bacteriocins which could be linked to the anti-Legionella activity shown by cell-free supernatants.
Collapse
Affiliation(s)
- Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Maria Anna Coniglio
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Luca Laghi
- Centre of Foodomics, Department of Agro-Food Science and Technology, University of Bologna, Bologna, Italy
| | | | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy.,Department of Clinical and Experimental Medicine (MEDCLIN), University of Catania, Catania, Italy
| | - Aldo Stivala
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| |
Collapse
|
34
|
Graf AC, Leonard A, Schäuble M, Rieckmann LM, Hoyer J, Maass S, Lalk M, Becher D, Pané-Farré J, Riedel K. Virulence Factors Produced by Staphylococcus aureus Biofilms Have a Moonlighting Function Contributing to Biofilm Integrity. Mol Cell Proteomics 2019; 18:1036-1053. [PMID: 30850421 PMCID: PMC6553939 DOI: 10.1074/mcp.ra118.001120] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is the causative agent of various biofilm-associated infections in humans causing major healthcare problems worldwide. This type of infection is inherently difficult to treat because of a reduced metabolic activity of biofilm-embedded cells and the protective nature of a surrounding extracellular matrix (ECM). However, little is known about S. aureus biofilm physiology and the proteinaceous composition of the ECM. Thus, we cultivated S. aureus biofilms in a flow system and comprehensively profiled intracellular and extracellular (ECM and flow-through (FT)) biofilm proteomes, as well as the extracellular metabolome compared with planktonic cultures. Our analyses revealed the expression of many pathogenicity factors within S. aureus biofilms as indicated by a high abundance of capsule biosynthesis proteins along with various secreted virulence factors, including hemolysins, leukotoxins, and lipases as a part of the ECM. The activity of ECM virulence factors was confirmed in a hemolysis assay and a Galleria mellonella pathogenicity model. In addition, we uncovered a so far unacknowledged moonlighting function of secreted virulence factors and ribosomal proteins trapped in the ECM: namely their contribution to biofilm integrity. Mechanistically, it was revealed that this stabilizing effect is mediated by the strong positive charge of alkaline virulence factors and ribosomal proteins in an acidic ECM environment, which is caused by the release of fermentation products like formate, lactate, and acetate because of oxygen limitation in biofilms. The strong positive charge of these proteins most likely mediates electrostatic interactions with anionic cell surface components, eDNA, and anionic metabolites. In consequence, this leads to strong cell aggregation and biofilm stabilization. Collectively, our study identified a new molecular mechanism during S. aureus biofilm formation and thus significantly widens the understanding of biofilm-associated S. aureus infections - an essential prerequisite for the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Alexander C Graf
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Anne Leonard
- §Institute of Biochemistry, Department of Cellular Biochemistry and Metabolomics
| | - Manuel Schäuble
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Lisa M Rieckmann
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Juliane Hoyer
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Sandra Maass
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Michael Lalk
- §Institute of Biochemistry, Department of Cellular Biochemistry and Metabolomics
| | - Dörte Becher
- ¶Institute of Microbiology, Department of Microbial Proteomics; University of Greifswald, Germany
| | - Jan Pané-Farré
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology
| | - Katharina Riedel
- From the ‡Institute of Microbiology, Department of Microbial Physiology and Molecular Biology;
| |
Collapse
|
35
|
de Oliveira JR, Camargo SEA, de Oliveira LD. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J Biomed Sci 2019; 26:5. [PMID: 30621719 PMCID: PMC6325740 DOI: 10.1186/s12929-019-0499-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Rosmarinus officinalis L. (rosemary) is a medicinal plant native to the Mediterranean region and cultivated around the world. Besides the therapeutic purpose, it is commonly used as a condiment and food preservative. R. officinalis L. is constituted by bioactive molecules, the phytocompounds, responsible for implement several pharmacological activities, such as anti-inflammatory, antioxidant, antimicrobial, antiproliferative, antitumor and protective, inhibitory and attenuating activities. Thus, in vivo and in vitro studies were presented in this Review, approaching the therapeutic and prophylactic effects of R. officinalis L. on some physiological disorders caused by biochemical, chemical or biological agents. In this way, methodology, mechanisms, results, and conclusions were described. The main objective of this study was showing that plant products could be equivalent to the available medicines.
Collapse
Affiliation(s)
- Jonatas Rafael de Oliveira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777 - Jardim São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil.
| | | | - Luciane Dias de Oliveira
- Departamento de Biociências e Diagnóstico Bucal, Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Av. Engenheiro Francisco José Longo, 777 - Jardim São Dimas, São José dos Campos, SP, CEP 12245-000, Brazil
| |
Collapse
|
36
|
Metabolomic Investigation of Staphylococcus aureus Antibiotic Susceptibility by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Methods Mol Biol 2019; 1871:279-293. [PMID: 30276746 DOI: 10.1007/978-1-4939-8814-3_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a major human pathogen that can readily acquire antibiotic resistance. For instance, methicillin-resistant S. aureus represents a major cause of hospital- and community-acquired bacterial infections. In this chapter, we first provide a detailed protocol for obtaining unbiased and reproducible S. aureus metabolic profiles. The resulting intracellular metabolome is then analyzed in an untargeted manner by using both hydrophilic interaction liquid chromatography and pentafluorophenyl-propyl columns coupled to high-resolution mass spectrometry. Such analyses are done in conjunction with our in-house spectral database to identify with high confidence as many meaningful S. aureus metabolites as possible. Under these conditions, we can routinely monitor more than 200 annotated S. aureus metabolites. We also indicate how this protocol can be used to investigate the metabolic differences between methicillin-resistant and susceptible strains.
Collapse
|
37
|
Fanesi A, Zegeye A, Mustin C, Cébron A. Soil Particles and Phenanthrene Interact in Defining the Metabolic Profile of Pseudomonas putida G7: A Vibrational Spectroscopy Approach. Front Microbiol 2018; 9:2999. [PMID: 30564224 PMCID: PMC6288191 DOI: 10.3389/fmicb.2018.02999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/20/2018] [Indexed: 01/21/2023] Open
Abstract
In soil, organic matter and mineral particles (soil particles; SPs) strongly influence the bio-available fraction of organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), and the metabolic activity of bacteria. However, the effect of SPs as well as comparative approaches to discriminate the metabolic responses to PAHs from those to simple carbon sources are seldom considered in mineralization experiments, limiting our knowledge concerning the dynamics of contaminants in soil. In this study, the metabolic profile of a model PAH-degrading bacterium, Pseudomonas putida G7, grown in the absence and presence of different SPs (i.e., sand, clays and humic acids), using either phenanthrene or glucose as the sole carbon and energy source, was characterized using vibrational spectroscopy (i.e., FT-Raman and FT-IR spectroscopy) and multivariate classification analysis (i.e., PLS-DA). The different type of SPs specifically altered the metabolic profile of P. putida, especially in combination with phenanthrene. In comparison to the cells grown in the absence of SPs, sand induced no remarkable change in the metabolic profile of the cells, whereas clays and humic acids affected it the most, as revealed by the higher discriminative accuracy (R2, RMSEP and sensitivity) of the PLS-DA for those conditions. With respect to the carbon-source (phenanthrene vs. glucose), no effect on the metabolic profile was evident in the absence of SPs or in the presence of sand. On the other hand, with clays and humic acids, more pronounced spectral clusters between cells grown on glucose or on phenanthrene were evident, suggesting that these SPs modify the way cells access and metabolize PAHs. The macromolecular changes regarded mainly protein secondary structures (a shift from α-helices to β-sheets), amino acid levels, nucleic acid conformation and cell wall carbohydrates. Our results provide new interesting evidences that SPs specifically interact with PAHs in defining bacteria metabolic profiles and further emphasize the importance of studying the interaction of bacteria with their surrounding matrix to deeply understand PAHs degradation in soils.
Collapse
Affiliation(s)
- Andrea Fanesi
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France
| | - Asfaw Zegeye
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France
| | - Christian Mustin
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France
| | - Aurélie Cébron
- Laboratoire Interdisciplinaire des Environnements Continentaux, CNRS, Université de Lorraine, Nancy, France
| |
Collapse
|
38
|
Albayaty YN, Thomas N, Hasan S, Prestidge CA. Penetration of topically used antimicrobials through Staphylococcus aureus biofilms: A comparative study using different models. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Fuchs AL, Weaver AJ, Tripet BP, Ammons MCB, Teintze M, Copié V. Characterization of the antibacterial activity of Bald's eyesalve against drug resistant Staphylococcus aureus and Pseudomonas aeruginosa. PLoS One 2018; 13:e0208108. [PMID: 30485362 PMCID: PMC6261618 DOI: 10.1371/journal.pone.0208108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022] Open
Abstract
Bald's eyesalve is an Anglo-Saxon medicinal remedy that has been used through ancient times to treat eye sty infections and may represent a source of ancientbiotics. This study assessed the efficacy of Bald's eyesalve against several strains of Staphylococcus aureus and Pseudomonas aeruginosa, including a multi-drug resistant phenotype, and identified the principal compound conveying antibacterial activity. Bald's eyesalve formulations were produced by combining garlic, onion or leek, wine, bovine bile, and brass, with specific ingredient omissions in several formulations, followed by incubation at 4 °C for 9 days. Bald's eyesalve formulation ES-GBBr exhibited the greatest antibacterial activity against S. aureus and P. aeruginosa. Fractionation of ES-GBBr using molecular size exclusion and organic solvent partitioning isolated its antibacterial activity to the small molecule nonpolar fraction, and 1D 1H NMR revealed the identity of the antibacterial agent to be allicin. Depletion of allicin from this fraction by addition of exogenous cysteine established that all observable growth inhibition originated from allicin. Quantification of allicin demonstrated that its concentration was significantly greater in ES-GBBr compared to the ES-O formulation; however, this was not due to greater yield. The antibacterial activity of allicin against S. aureus was antagonized by other ingredients within Bald's eyesalve, whereas they were additive or synergistic against P. aeruginosa. These results suggest that neither leek nor onion is necessary for the antibacterial efficacy of Bald's eyesalve against S. aureus or P. aeruginosa, and while allicin was identified as the principal antibacterial agent present, its activity is influenced differentially in the presence of additional Bald's eyesalve ingredients when used against S. aureus compared to P. aeruginosa. Ancientbiotics may provide a source of promising antibacterials; however, identifying the source of activity and assessing distinct formulations for cooperative effects are essential to using ancient remedies, such as Bald's eyesalve, effectively against drug resistant pathogens.
Collapse
Affiliation(s)
- Amanda L. Fuchs
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Alan J. Weaver
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Brian P. Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Mary Cloud B. Ammons
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Martin Teintze
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
40
|
Abstract
The aim of this study was to analyze the metabolome of several Klebsiella pneumoniae strains characterized by different resistance patterns. A total of 59 bacterial strains (27 carbapenemase-negative and 32 carbapenemase-positive) were included and their metabolic features were assessed in basal conditions. Moreover, 8 isolates (4 wild-type and 4 KPC-producers) were randomly selected to evaluate the impact of sub-lethal concentrations of meropenem on bacterial metabolism. The metabolomic analysis was performed by 1H-NMR spectroscopy both on filtered supernatants and cell lysates. A total of 40 and 20 molecules were quantified in the intracellular and the extracellular metabolome, respectively. While in basal conditions only five metabolites showed significant differences between carbapenemase-positive and negative strains, the use of meropenem had a profound impact on the whole bacterial metabolism. In the intracellular compartment, a reduction of different overflow metabolites and organic acids (e.g. formate, acetate, isobutyrate) was noticed, whereas, in the extracellular metabolome, the levels of several organic acids (e.g. succinate, acetate, formate, lactate) and amino acids (aspartate, threonine, lysine, alanine) were modified by meropenem stimulation. Interestingly, carbapenemase-positive and negative strains reacted differently to meropenem in terms of number and type of perturbed metabolites. In wild-type strains, meropenem had great impact on the metabolic pathways related to methane metabolism and alanine, aspartate and glutamate metabolism, whereas in KPC-producers the effect was predominant on pyruvate metabolism. The knowledge about the bacterial metabolic profiles could help to set up innovative diagnostic methods and new antimicrobial strategies to fight the global crisis against carbapenemase-positive K. pneumoniae.
Collapse
|
41
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
42
|
Weaver AJ, Peters TR, Tripet B, Van Vuren A, Rakesh, Lee RE, Copié V, Teintze M. Exposure of Methicillin-Resistant Staphylococcus aureus to Low Levels of the Antibacterial THAM-3ΦG Generates a Small Colony Drug-Resistant Phenotype. Sci Rep 2018; 8:9850. [PMID: 29959441 PMCID: PMC6026174 DOI: 10.1038/s41598-018-28283-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
This study investigated resistance against trishexylaminomelamine trisphenylguanide (THAM-3ΦG), a novel antibacterial compound with selective microbicidal activity against Staphylococcus aureus. Resistance development was examined by culturing methicillin resistant S. aureus (MRSA) with sub-lethal doses of THAM-3ΦG. This quickly resulted in the formation of normal (WT) and small colonies (SC) of S. aureus exhibiting minimal inhibitory concentrations (MICs) 2× and 4× greater than the original MIC. Continuous cell passaging with increasing concentrations of THAM-3ΦG resulted in an exclusively SC phenotype with MIC >64 mg/L. Nuclear magnetic resonance (NMR)-based metabolomics and multivariate statistical analysis revealed three distinct metabolic profiles for THAM-3ΦG treated WT, untreated WT, and SC (both treated and untreated). The metabolome patterns of the SC sample groups match those reported for other small colony variants (SCV) of S. aureus. Supplementation of the SCV with menadione resulted in almost complete recovery of growth rate. This auxotrophism was corroborated by NMR analysis revealing the absence of menaquinone production in the SCV. In conclusion, MRSA rapidly acquires resistance to THAM-3ΦG through selection of a slow-growing menaquinone auxotroph. This study highlights the importance of evaluating and monitoring resistance to novel antibacterials during development.
Collapse
Affiliation(s)
- Alan J Weaver
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| | - Tami R Peters
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Brian Tripet
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Abigail Van Vuren
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Rakesh
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Valérie Copié
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Martin Teintze
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America.
| |
Collapse
|
43
|
Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front Microbiol 2018; 9:1299. [PMID: 29997579 PMCID: PMC6030385 DOI: 10.3389/fmicb.2018.01299] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Biofilm describes a microbially-derived sessile community in which microbial cells are firmly attached to the substratum and embedded in extracellular polymeric matrix. Microbial biofilms account for up to 80% of all bacterial and fungal infections in humans. Biofilm-associated pathogens are particularly resistant to antibiotic treatment, and thus novel antibiofilm approaches needed to be developed. Antimicrobial Photodynamic therapy (aPDT) had been recently proposed to combat clinically relevant biofilms such as dental biofilms, ventilator associated pneumonia, chronic wound infections, oral candidiasis, and chronic rhinosinusitis. aPDT uses non-toxic dyes called photosensitizers (PS), which can be excited by harmless visible light to produce reactive oxygen species (ROS). aPDT is a multi-stage process including topical PS administration, light irradiation, and interaction of the excited state with ambient oxygen. Numerous in vitro and in vivo aPDT studies have demonstrated biofilm-eradication or substantial reduction. ROS are produced upon photo-activation and attack adjacent targets, including proteins, lipids, and nucleic acids present within the biofilm matrix, on the cell surface and inside the microbial cells. Damage to non-specific targets leads to the destruction of both planktonic cells and biofilms. The review aims to summarize the progress of aPDT in destroying biofilms and the mechanisms mediated by ROS. Finally, a brief section provides suggestions for future research.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Ying-Ying Huang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Yuguang Wang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Michael R. Hamblin
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
44
|
Staphylococcus aureus biofilms release leukocidins to elicit extracellular trap formation and evade neutrophil-mediated killing. Proc Natl Acad Sci U S A 2018; 115:7416-7421. [PMID: 29941565 DOI: 10.1073/pnas.1721949115] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacterial biofilms efficiently evade immune defenses, greatly complicating the prognosis of chronic infections. How methicillin-resistant Staphylococcus aureus (MRSA) biofilms evade host immune defenses is largely unknown. This study describes some of the major mechanisms required for S. aureus biofilms to evade the innate immune response and provides evidence of key virulence factors required for survival and persistence of bacteria during chronic infections. Neutrophils are the most abundant white blood cells in circulation, playing crucial roles in the control and elimination of bacterial pathogens. Specifically, here we show that, unlike single-celled populations, S. aureus biofilms rapidly skew neutrophils toward neutrophil extracellular trap (NET) formation through the combined activity of leukocidins Panton-Valentine leukocidin and γ-hemolysin AB. By eliciting this response, S. aureus was able to persist, as the antimicrobial activity of released NETs was ineffective at clearing biofilm bacteria. Indeed, these studies suggest that NETs could inadvertently potentiate biofilm infections. Last, chronic infection in a porcine burn wound model clearly demonstrated that leukocidins are required for "NETosis" and facilitate bacterial survival in vivo.
Collapse
|
45
|
Favre L, Ortalo-Magné A, Pichereaux C, Gargaros A, Burlet-Schiltz O, Cotelle V, Culioli G. Metabolome and proteome changes between biofilm and planktonic phenotypes of the marine bacterium Pseudoalteromonas lipolytica TC8. BIOFOULING 2018; 34:132-148. [PMID: 29319346 DOI: 10.1080/08927014.2017.1413551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
A number of bacteria adopt various lifestyles such as planktonic free-living or sessile biofilm stages. This enables their survival and development in a wide range of contrasting environments. With the aim of highlighting specific metabolic shifts between these phenotypes and to improve the overall understanding of marine bacterial adhesion, a dual metabolomics/proteomics approach was applied to planktonic and biofilm cultures of the marine bacterium Pseudoalteromonas lipolytica TC8. The liquid chromatography mass spectrometry (LC-MS) based metabolomics study indicated that membrane lipid composition was highly affected by the culture mode: phosphatidylethanolamine (PEs) derivatives were over-produced in sessile cultures while ornithine lipids (OLs) were more specifically synthesized in planktonic samples. In parallel, differences between proteomes revealed that peptidases, oxidases, transcription factors, membrane proteins and the enzymes involved in histidine biosynthesis were over-expressed in biofilms while proteins involved in heme production, nutrient assimilation, cell division and arginine/ornithine biosynthesis were specifically up-regulated in free-living cells.
Collapse
Affiliation(s)
- Laurie Favre
- a MAPIEM EA 4323 , Université de Toulon , Toulon , France
| | | | - Carole Pichereaux
- b Fédération de Recherche FR3450 , CNRS , Toulouse , France
- c Institut de Pharmacologie et de Biologie Structurale, IPBS , Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Audrey Gargaros
- c Institut de Pharmacologie et de Biologie Structurale, IPBS , Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Odile Burlet-Schiltz
- c Institut de Pharmacologie et de Biologie Structurale, IPBS , Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Valérie Cotelle
- d Laboratoire de Recherche en Sciences Végétales , Université de Toulouse, CNRS, UPS , Castanet-Tolosan , France
| | - Gérald Culioli
- a MAPIEM EA 4323 , Université de Toulon , Toulon , France
| |
Collapse
|
46
|
Oliveira JRD, de Jesus Viegas D, Martins APR, Carvalho CAT, Soares CP, Camargo SEA, Jorge AOC, de Oliveira LD. Thymus vulgaris L. extract has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and genotoxicity. Arch Oral Biol 2017; 82:271-279. [PMID: 28683409 DOI: 10.1016/j.archoralbio.2017.06.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES This study evaluated the biological effects of the T. vulgaris L. extract., such as antimicrobial activity on planktonic cultures and mono- and polymicrobial biofilms, cytotoxicity, anti-inflammatory activity and genotoxicity. METHODS Monomicrobial biofilms of Candida albicans, Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans and Pseudomonas aeruginosa and polymicrobial biofilms composed by C. albicans with each bacterium were formed for 48h and exposed for 5min to the plant extract. Murine macrophages (RAW 264.7), human gingival fibroblasts (FMM-1), human breast carcinoma cells (MCF-7) and cervical carcinoma cells (HeLa) were also exposed to the plant extract for 5min and the cell viability were analyzed by MTT, neutral red (NR) and crystal violet (CV) assays. Interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) produced by RAW 264.7 was quantified by ELISA, after 24h exposure to the plant extract, both in the absence and presence of lipopolysaccharide (LPS) from Escherichia coli. Genotoxicity of the plant extract was evaluated by micronucleus formation (MN) in 1000 cells. The results were analyzed by T-Test or ANOVA and Tukey's Test (P≤0.05). RESULTS All biofilms showed significant reductions in CFU/mL (colony-forming units per milliliter). Cell viability was above 50% for all cell lines. Anti-inflammatory effect on the synthesis of IL-1β and TNF-α was observed. The MN was similar or lower than the control group in all cells. CONCLUSIONS T. vulgaris L. extract was effective against all biofilms, promoted high cell viability, anti-inflammatory effect and presented no genotoxicity.
Collapse
Affiliation(s)
- Jonatas Rafael de Oliveira
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil.
| | - Daiane de Jesus Viegas
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Ana Paula Réquia Martins
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Cláudio Antonio Talge Carvalho
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Restorative Dentistry. São José dos Campos, SP, Brazil
| | - Cristina Pacheco Soares
- Universidade do Vale do Paraíba (UNIVAP). Institute of Research and Development. São José dos Campos, SP, Brazil
| | - Samira Esteves Afonso Camargo
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Antonio Olavo Cardoso Jorge
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Luciane Dias de Oliveira
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| |
Collapse
|
47
|
Favre L, Ortalo-Magné A, Greff S, Pérez T, Thomas OP, Martin JC, Culioli G. Discrimination of Four Marine Biofilm-Forming Bacteria by LC-MS Metabolomics and Influence of Culture Parameters. J Proteome Res 2017; 16:1962-1975. [PMID: 28362105 DOI: 10.1021/acs.jproteome.6b01027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most marine bacteria can form biofilms, and they are the main components of biofilms observed on marine surfaces. Biofilms constitute a widespread life strategy, as growing in such structures offers many important biological benefits. The molecular compounds expressed in biofilms and, more generally, the metabolomes of marine bacteria remain poorly studied. In this context, a nontargeted LC-MS metabolomics approach of marine biofilm-forming bacterial strains was developed. Four marine bacteria, Persicivirga (Nonlabens) mediterranea TC4 and TC7, Pseudoalteromonas lipolytica TC8, and Shewanella sp. TC11, were used as model organisms. The main objective was to search for some strain-specific bacterial metabolites and to determine how culture parameters (culture medium, growth phase, and mode of culture) may affect the cellular metabolism of each strain and thus the global interstrain metabolic discrimination. LC-MS profiling and statistical partial least-squares discriminant analyses showed that the four strains could be differentiated at the species level whatever the medium, the growth phase, or the mode of culture (planktonic vs biofilm). A MS/MS molecular network was subsequently built and allowed the identification of putative bacterial biomarkers. TC8 was discriminated by a series of ornithine lipids, while the P. mediterranea strains produced hydroxylated ornithine and glycine lipids. Among the P. mediterranea strains, TC7 extracts were distinguished by the occurrence of diamine derivatives, such as putrescine amides.
Collapse
Affiliation(s)
- Laurie Favre
- Université de Toulon , MAPIEM, EA 4323, La Garde Cedex 83130, France
| | | | - Stéphane Greff
- CNRS, Aix Marseille Univ , IRD, Avignon Univ. Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station marine d'Endoume, Marseille 13007, France
| | - Thierry Pérez
- CNRS, Aix Marseille Univ , IRD, Avignon Univ. Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station marine d'Endoume, Marseille 13007, France
| | - Olivier P Thomas
- CNRS, Aix Marseille Univ , IRD, Avignon Univ. Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station marine d'Endoume, Marseille 13007, France.,National University of Ireland Galway , School of Chemistry, Marine Biodiscovery, Galway, Ireland
| | | | - Gérald Culioli
- Université de Toulon , MAPIEM, EA 4323, La Garde Cedex 83130, France
| |
Collapse
|
48
|
de Oliveira JR, de Jesus D, Figueira LW, de Oliveira FE, Pacheco Soares C, Camargo SEA, Jorge AOC, de Oliveira LD. Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells. Exp Biol Med (Maywood) 2017; 242:625-634. [PMID: 28093936 PMCID: PMC5685262 DOI: 10.1177/1535370216688571] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/17/2016] [Indexed: 01/21/2023] Open
Abstract
R. officinalis L. is an aromatic plant commonly used as condiment and for medicinal purposes. Biological activities of its extract were evaluated in this study, as antimicrobial effect on mono- and polymicrobial biofilms, cytotoxicity, anti-inflammatory capacity, and genotoxicity. Monomicrobial biofilms of Candida albicans, Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans and Pseudomonas aeruginosa and polymicrobial biofilms composed of C. albicans with each bacterium were formed in microplates during 48 h and exposed for 5 min to R. officinalis L. extract (200 mg/mL). Its cytotoxic effect was examined on murine macrophages (RAW 264.7), human gingival fibroblasts (FMM-1), human breast carcinoma cells (MCF-7), and cervical carcinoma cells (HeLa) after exposure to different concentrations of the extract, analyzed by MTT, neutral red (NR), and crystal violet (CV) assays. The anti-inflammatory activity was evaluated on RAW 264.7 non-stimulated or stimulated by lipopolysaccharide (LPS) from Escherichia coli and treated with different concentrations of the extract for 24 h. Interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) were quantified by ELISA. Genotoxicity was verified by the frequency of micronuclei (MN) at 1000 cells after exposure to concentrations of the extract for 24 h. Data were analyzed by T-Test or ANOVA and Tukey Test ( P ≤ 0.05). Thus, significant reductions in colony forming units per milliliter (CFU/mL) were observed in all biofilms. Regarding the cells, it was observed that concentrations ≤ 50 mg/mL provided cell viability of above 50%. Production of proinflammatory cytokines in the treated groups was similar or lower compared to the control group. The MN frequency in the groups exposed to extract was similar or less than the untreated group. It was shown that R. officinalis L. extract was effective on mono- and polymicrobial biofilms; it also provided cell viability of above 50% (at ≤ 50 mg/mL), showed anti-inflammatory effect, and was not genotoxic. Impact statement Rosmarinus officinalis L. extract effectively contributed to in vitro control of important species of microorganisms such as Candida albicans, Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans, and Pseudomonas aeruginosa in mono- and polymicrobial biofilms that are responsible for several infections in oral cavity as in other regions of the body. Furthermore, this extract promoted also cell viability above 50% at concentrations ≤ 50 mg/mL, excellent anti-inflammatory effect, showing inhibition or reduction of the synthesis of proinflammatory cytokines, being also non-genotoxic to cell lines studied. Thus, this extract may be a promising therapeutic agent that can be added in some medical and dental formulations such as toothpastes, mouthwashes, irrigating root canals, ointments, soaps, in order to control pathogenic microorganisms and biofilms, with anti-inflammatory effect and absence of cytotoxic and genotoxic.
Collapse
Affiliation(s)
- Jonatas Rafael de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Univ Estadual Paulista/UNESP, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Daiane de Jesus
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Univ Estadual Paulista/UNESP, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Leandro Wagner Figueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Univ Estadual Paulista/UNESP, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Felipe Eduardo de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Univ Estadual Paulista/UNESP, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Cristina Pacheco Soares
- Institute of Research and Development, Universidade do Vale do Paraíba/UNIVAP, São José dos Campos, SP, CEP 12244-000 Brazil
| | - Samira Estves Afonso Camargo
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Univ Estadual Paulista/UNESP, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Antonio Olavo Cardoso Jorge
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Univ Estadual Paulista/UNESP, São José dos Campos, SP, CEP 12245-000, Brazil
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Univ Estadual Paulista/UNESP, São José dos Campos, SP, CEP 12245-000, Brazil
| |
Collapse
|
49
|
Desroche N, Dropet C, Janod P, Guzzo J. Antibacterial properties and reduction of MRSA biofilm with a dressing combining polyabsorbent fibres and a silver matrix. J Wound Care 2016; 25:577-584. [DOI: 10.12968/jowc.2016.25.10.577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- N. Desroche
- Nexidia SAS, 15 Rue de Mayence, F-21000 DIJON
| | - C. Dropet
- Nexidia SAS, 15 Rue de Mayence, F-21000 DIJON
| | - P. Janod
- Urgo Recherche Innovation et Développement, 42 rue de Longvic, F-21300 CHENOVE
| | - J. Guzzo
- UMR A, Procédés Alimentaires et Microbiologiques, Université de Bourgogne, IUVV, rue Claude Ladrey, F-21000 DIJON
| |
Collapse
|
50
|
Gel-Entrapped Staphylococcus aureus Bacteria as Models of Biofilm Infection Exhibit Growth in Dense Aggregates, Oxygen Limitation, Antibiotic Tolerance, and Heterogeneous Gene Expression. Antimicrob Agents Chemother 2016; 60:6294-301. [PMID: 27503656 DOI: 10.1128/aac.01336-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/03/2016] [Indexed: 11/20/2022] Open
Abstract
An experimental model that mimicked the structure and characteristics of in vivo biofilm infections, such as those occurring in the lung or in dermal wounds where no biomaterial surface is present, was developed. In these infections, microbial biofilm forms as cell aggregates interspersed in a layer of mucus or host matrix material. This structure was modeled by filling glass capillary tubes with an agarose gel that had been seeded with Staphylococcus aureus bacteria and then incubating the gel biofilm in medium for up to 30 h. Confocal microscopy showed that the bacteria formed in discrete pockets distributed throughout the gel matrix. These aggregates enlarged over time and also developed a size gradient, with the clusters being larger near the nutrient- and oxygen-supplied interface and smaller at greater depths. Bacteria entrapped in gels for 24 h grew slowly (specific growth rate, 0.06 h(-1)) and were much less susceptible to oxacillin, minocycline, or ciprofloxacin than planktonic cells. Microelectrode measurements showed that the oxygen concentration decreased with depth into the gel biofilm, falling to values less than 3% of air saturation at depths of 500 μm. An anaerobiosis-responsive green fluorescent protein reporter gene for lactate dehydrogenase was induced in the region of the gel where the measured oxygen concentrations were low, confirming biologically relevant hypoxia. These results show that the gel biofilm model captures key features of biofilm infection in mucus or compromised tissue: formation of dense, distinct aggregates, reduced specific growth rates, local hypoxia, and antibiotic tolerance.
Collapse
|