1
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Tessmer I, Margison GP. The DNA Alkyltransferase Family of DNA Repair Proteins: Common Mechanisms, Diverse Functions. Int J Mol Sci 2023; 25:463. [PMID: 38203633 PMCID: PMC10779285 DOI: 10.3390/ijms25010463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
DNA alkyltransferase and alkyltransferase-like family proteins are responsible for the repair of highly mutagenic and cytotoxic O6-alkylguanine and O4-alkylthymine bases in DNA. Their mechanism involves binding to the damaged DNA and flipping the base out of the DNA helix into the active site pocket in the protein. Alkyltransferases then directly and irreversibly transfer the alkyl group from the base to the active site cysteine residue. In contrast, alkyltransferase-like proteins recruit nucleotide excision repair components for O6-alkylguanine elimination. One or more of these proteins are found in all kingdoms of life, and where this has been determined, their overall DNA repair mechanism is strictly conserved between organisms. Nevertheless, between species, subtle as well as more extensive differences that affect target lesion preferences and/or introduce additional protein functions have evolved. Examining these differences and their functional consequences is intricately entwined with understanding the details of their DNA repair mechanism(s) and their biological roles. In this review, we will present and discuss various aspects of the current status of knowledge on this intriguing protein family.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Rudolf Virchow Center, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Geoffrey P. Margison
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
3
|
Fahrer J, Christmann M. DNA Alkylation Damage by Nitrosamines and Relevant DNA Repair Pathways. Int J Mol Sci 2023; 24:ijms24054684. [PMID: 36902118 PMCID: PMC10003415 DOI: 10.3390/ijms24054684] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Nitrosamines occur widespread in food, drinking water, cosmetics, as well as tobacco smoke and can arise endogenously. More recently, nitrosamines have been detected as impurities in various drugs. This is of particular concern as nitrosamines are alkylating agents that are genotoxic and carcinogenic. We first summarize the current knowledge on the different sources and chemical nature of alkylating agents with a focus on relevant nitrosamines. Subsequently, we present the major DNA alkylation adducts induced by nitrosamines upon their metabolic activation by CYP450 monooxygenases. We then describe the DNA repair pathways engaged by the various DNA alkylation adducts, which include base excision repair, direct damage reversal by MGMT and ALKBH, as well as nucleotide excision repair. Their roles in the protection against the genotoxic and carcinogenic effects of nitrosamines are highlighted. Finally, we address DNA translesion synthesis as a DNA damage tolerance mechanism relevant to DNA alkylation adducts.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
- Correspondence: (J.F.); (M.C.); Tel.: +496312052974 (J.F.); Tel: +496131179066 (M.C.)
| |
Collapse
|
4
|
Guo S, Leng J, Tan Y, Price NE, Wang Y. Quantification of DNA Lesions Induced by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol in Mammalian Cells. Chem Res Toxicol 2019; 32:708-717. [PMID: 30714728 DOI: 10.1021/acs.chemrestox.8b00374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantitative measurement of DNA adducts in carcinogen-exposed cells provides the information about the frequency of formation and the rate of removal of DNA lesions in vivo, which yields insights into the initial events of mutagenesis. Metabolic activation of tobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its reduction product 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), leads to pyridyloxobutylation and pyridylhydroxybutylation of DNA. In this study, we employed a highly robust nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS) coupled with the isotope-dilution method for simultaneous quantification of O6-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-2'-deoxyguanosine ( O6-PHBdG) and O2- and O4-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-thymidine ( O2-PHBdT and O4-PHBdT). Cultured mammalian cells were exposed to a model pyridylhydroxybutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol (NNALOAc), followed by DNA extraction, enzymatic digestion, and sample enrichment prior to nLC-nESI-MS/MS quantification. Our results demonstrate, for the first time, that O4-PHBdT is quantifiable in cellular DNA and naked DNA upon NNALOAc exposure. We also show that nucleotide excision repair (NER) machinery may counteract the formation of O2-PHBdT and O4-PHBdT, and O6-alkylguanine DNA alkyltransferase (AGT) may be responsible for the repair of O6-PHBdG and O4-PHBdT in mammalian cells. Together, our study provides new knowledge about the occurrence and repair of NNAL-induced DNA lesions in mammalian cells.
Collapse
|
5
|
McKeague M, Otto C, Räz MH, Angelov T, Sturla SJ. The Base Pairing Partner Modulates Alkylguanine Alkyltransferase. ACS Chem Biol 2018; 13:2534-2541. [PMID: 30040894 DOI: 10.1021/acschembio.8b00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
O6-Alkylguanine DNA adducts are repaired by the suicide enzyme alkylguanine alkyltransferase (AGT). AGT facilitates repair by binding DNA in the minor groove, flipping out the damaged base, and transferring the O6-alkyl group to a cysteine residue in the enzyme's active site. Despite there being significant knowledge concerning the mechanism of AGT repair, there is limited insight regarding how altered interactions of the adduct with its complementary base in the DNA duplex influence its recognition and repair. In this study, the relationship of base pairing interactions and repair by human AGT (hAGT) was tested in the frequently mutated codon 12 of the KRAS gene with complementary sequences containing each canonical DNA base. The rate of O6-MeG repair decreased 2-fold when O6-MeG was paired with G, whereas all other canonical bases had no impact on the repair rate. We used a combination of biochemical studies, molecular modeling, and artificial nucleobases to elucidate the mechanism accounting for the 2-fold decrease. Our results suggest that the reduced rate of repair is due to O6-MeG adopting a syn conformation about the glycosidic bond precluding the formation of a repair-active complex. These data provide a novel chemical basis for how direct reversion repair may be impeded through modification of the base pair partner and support the use of artificial nucleobases as tools to probe the biochemistry of damage repair processes.
Collapse
Affiliation(s)
- Maureen McKeague
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Claudia Otto
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Michael H. Räz
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Todor Angelov
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Shana J. Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
6
|
Leng J, Wang Y. Liquid Chromatography-Tandem Mass Spectrometry for the Quantification of Tobacco-Specific Nitrosamine-Induced DNA Adducts in Mammalian Cells. Anal Chem 2017; 89:9124-9130. [PMID: 28749651 PMCID: PMC5620023 DOI: 10.1021/acs.analchem.7b01857] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantification of DNA lesions constitutes one of the main tasks in toxicology and in assessing health risks accompanied by exposure to carcinogens. Tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) can undergo metabolic transformation to give a reactive intermediate that pyridyloxobutylates nucleobases and phosphate backbone of DNA. Here, we reported a highly sensitive method, relying on the use of nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS), for the simultaneous quantifications of O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O6-POBdG) as well as O2- and O4-[4-(3-pyridyl)-4-oxobut-1-yl]-thymidine (O2-POBdT and O4-POBdT). By using this method, we measured the levels of the three DNA adducts with the use of 10 μg of DNA isolated from cultured mammalian cells exposed to a model pyridyloxobutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc). Our results demonstrated, for the first time, the formation of O4-POBdT in naked DNA and in genomic DNA of cultured mammalian cells exposed with NNKOAc. We also revealed that the levels of the three lesions increased with the dose of NNKOAc and that O2-POBdT and O4-POBdT could be subjected to repair by the nucleotide excision repair (NER) pathway. The method reported here will be useful for investigations about the involvement of other DNA repair pathways in the removal of these lesions and for human toxicological studies in the future.
Collapse
Affiliation(s)
- Jiapeng Leng
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Corresponding Author. Tel.: (951) 827-2700. Fax: (951) 827-4713.
| |
Collapse
|
7
|
Nilsson R. Use of rodent data for cancer risk assessment of smokeless tobacco in the regulatory context. Regul Toxicol Pharmacol 2017. [PMID: 28625913 DOI: 10.1016/j.yrtph.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To support risk management decisions, information from different fields has been integrated in this presentation to provide a realistic quantitative cancer risk assessment of smokeless tobacco. Smoking among Swedish men is currently below 10%, while about 20% use a special smokeless tobacco (snus) as a substitute for cigarettes. Epidemiological data and molecular biomarkers demonstrate that rodent bioassays with tobacco specific nitrosamines (TSNA) overestimate cancer risk from snus by more than one order of magnitude. The underlying reasons are discussed. DNA damage constitutes a necessary, although not sufficient prerequisite for cancer initiation. Individuals who have not used tobacco exhibit DNA lesions identical with those induced by TSNA. No increase above this adduct background can be shown from snus, and extensive epidemiological studies in Sweden have failed to demonstrate elevated cancer risks even in long term users. A "bench mark" for acceptable risk of 1/10(6) derived from rodent data has been suggested when regulating snus. By relating similarly derived estimates for some food contaminants, the implementation even of a limit of 1/10(4) may be unrealistic. The management of smokeless tobacco products has rarely been based on a scientifically sound risk assessment, where attention is given to the outstandingly higher hazards associated with smoking.
Collapse
Affiliation(s)
- Robert Nilsson
- Vinča Institute of Nuclear Sciences, Laboratory for Physical Chemistry, University of Belgrade, Vinča, Serbia.
| |
Collapse
|
8
|
Peterson LA. Context Matters: Contribution of Specific DNA Adducts to the Genotoxic Properties of the Tobacco-Specific Nitrosamine NNK. Chem Res Toxicol 2017; 30:420-433. [PMID: 28092943 PMCID: PMC5473167 DOI: 10.1021/acs.chemrestox.6b00386] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent pulmonary carcinogen in laboratory animals. It is classified as a Group 1 human carcinogen by the International Agency for Cancer Research. NNK is bioactivated upon cytochrome P450 catalyzed hydroxylation of the carbon atoms adjacent to the nitrosamino group to both methylating and pyridyloxobutylating agents. Both pathways generate a spectrum of DNA damage that contributes to the overall mutagenic and toxic properties of this compound. NNK is also reduced to form 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which is also carcinogenic. Like NNK, NNAL requires metabolic activation to DNA alkylating agents. Methyl hydroxylation of NNAL generates pyridylhydroxybutyl DNA adducts, and methylene hydroxylation leads to DNA methyl adducts. The consequence of this complex metabolism is that NNK generates a vast spectrum of DNA damage, any form of which can contribute to the overall carcinogenic properties of this potent pulmonary carcinogen. This Perspective reviews the chemistry and genotoxic properties of the collection of DNA adducts formed from NNK. In addition, it provides evidence that multiple adducts contribute to the overall carcinogenic properties of this chemical. The adduct that contributes to the genotoxic effects of NNK depends on the context, such as the relative amounts of each DNA alkylating pathway occurring in the model system, the levels and genetic variants of key repair enzymes, and the gene targeted for mutation.
Collapse
Affiliation(s)
- Lisa A Peterson
- Masonic Cancer Center and Division of Environmental Health Sciences, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Denisov AY, McManus FP, O'Flaherty DK, Noronha AM, Wilds CJ. Structural basis of interstrand cross-link repair by O6-alkylguanine DNA alkyltransferase. Org Biomol Chem 2017; 15:8361-8370. [DOI: 10.1039/c7ob02093g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conformation of the alkylene lesion may play a role in interstrand cross-link repair by O6-alkylguanine DNA alkyltransferases.
Collapse
Affiliation(s)
- Alexey Y. Denisov
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | - Francis P. McManus
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | | | - Anne M. Noronha
- Department of Chemistry and Biochemistry
- Concordia University
- Montréal
- Canada
| | | |
Collapse
|
10
|
Fahrer J, Kaina B. Impact of DNA repair on the dose-response of colorectal cancer formation induced by dietary carcinogens. Food Chem Toxicol 2016; 106:583-594. [PMID: 27693244 DOI: 10.1016/j.fct.2016.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/10/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers, which is causally linked to dietary habits, notably the intake of processed and red meat. Processed and red meat contain dietary carcinogens, including heterocyclic aromatic amines (HCAs) and N-nitroso compounds (NOC). NOC are agents that induce various N-methylated DNA adducts and O6-methylguanine (O6-MeG), which are removed by base excision repair (BER) and O6-methylguanine-DNA methyltransferase (MGMT), respectively. HCAs such as the highly mutagenic 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) cause bulky DNA adducts, which are removed from DNA by nucleotide excision repair (NER). Both O6-MeG and HCA-induced DNA adducts are linked to the occurrence of KRAS and APC mutations in colorectal tumors of rodents and humans, thereby driving CRC initiation and progression. In this review, we focus on DNA repair pathways removing DNA lesions induced by NOC and HCA and assess their role in protecting against mutagenicity and carcinogenicity in the large intestine. We further discuss the impact of DNA repair on the dose-response relationship in colorectal carcinogenesis in view of recent studies, demonstrating the existence of 'no effect' point of departures (PoDs), i.e. thresholds for genotoxicity and carcinogenicity. The available data support the threshold concept for NOC with DNA repair being causally involved.
Collapse
Affiliation(s)
- Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| |
Collapse
|
11
|
Gowda ASP, Spratt TE. DNA Polymerases η and ζ Combine to Bypass O(2)-[4-(3-Pyridyl)-4-oxobutyl]thymine, a DNA Adduct Formed from Tobacco Carcinogens. Chem Res Toxicol 2016; 29:303-16. [PMID: 26868090 PMCID: PMC5081176 DOI: 10.1021/acs.chemrestox.5b00468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are important human carcinogens in tobacco products. They are metabolized to produce a variety 4-(3-pyridyl)-4-oxobutyl (POB) DNA adducts including O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT), the most abundant POB adduct in NNK- and NNN-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past O(2)-POB-dT and O(2)-Me-dT by purified human DNA polymerases η, κ, ι, and yeast polymerase ζ in vitro. Under conditions of polymerase in excess, polymerase η was most effective at the insertion of dNTPs opposite O(2)-alkyl-dTs. The time courses were biphasic suggesting the formation of inactive DNA-polymerase complexes. The kpol parameter was reduced approximately 100-fold in the presence of the adduct for pol η, κ, and ι. Pol η was the most reactive polymerase for the adducts due to a higher burst amplitude. For all three polymerases, the nucleotide preference was dATP > dTTP ≫ dGTP and dCTP. Yeast pol ζ was most effective in bypassing the adducts; the kcat/Km values were reduced only 3-fold in the presence of the adducts. The identity of the nucleotide opposite the O(2)-alkyl-dT did not significantly affect the ability of pol ζ to bypass the adducts. The data support a model in which pol η inserts ATP or dTTP opposite O(2)-POB-dT, and then, pol ζ extends past the adduct.
Collapse
Affiliation(s)
- A. S. Prakasha Gowda
- Department of Biochemistry and Molecular Biology Penn State Hershey Cancer Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Thomas E. Spratt
- Department of Biochemistry and Molecular Biology Penn State Hershey Cancer Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
12
|
Yang J, Villalta PW, Upadhyaya P, Hecht SS. Analysis of O(6)-[4-(3-Pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine and Other DNA Adducts in Rats Treated with Enantiomeric or Racemic N'-Nitrosonornicotine. Chem Res Toxicol 2016; 29:87-95. [PMID: 26633576 PMCID: PMC5168933 DOI: 10.1021/acs.chemrestox.5b00425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(S)-N'-Nitrosonornicotine [(S)-NNN] and racemic NNN are powerful oral and esophageal carcinogens in the F344 rat, whereas (R)-NNN has only weak activity. Tumor formation in these tissues of rats treated with racemic NNN was far greater than the sum of the activities of the individual enantiomers. We hypothesized that metabolites of (R)-NNN enhanced levels of DNA adducts produced by (S)-NNN. A test of that hypothesis necessitated the development of a novel liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry method for the analysis of O(6)-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O(6)-POB-dGuo), a highly mutagenic DNA adduct not previously quantified in rats treated with NNN. The new method, with a limit of detection of 6.5 amol for diluted standard and 100 amol for DNA samples, was applied in this study. Groups of nine F344 rats were treated with doses as follows: 7 ppm (R)-NNN, 7 ppm (S)-NNN, and 14 ppm racemic NNN; 14 ppm (R)-NNN, 14 ppm (S)-NNN, and 28 ppm racemic NNN; or 28 ppm (R)-NNN, 28 ppm (S)-NNN, and 56 ppm racemic NNN for 5 weeks, and tissues were analyzed for DNA adducts. We found statistically significant, but modest, synergistic enhancement of levels of O(6)-POB-dGuo in the esophagus but not the oral cavity of rats treated with racemic NNN (low and median doses only) compared to the sum of the amounts formed in these tissues of rats treated with (S)-NNN or (R)-NNN. There was no synergy in the formation of other POB-DNA adducts of NNN in oral cavity and esophagus, nor was there any evidence for synergy in nasal respiratory and olfactory epithelium, lung, or liver. Our results provide the first quantitation of O(6)-POB-dGuo in DNA from tissues of rats treated with NNN and evidence for synergy in DNA adduct formation as one possible mechanism by which (R)-NNN enhances the carcinogenicity of (S)-NNN in rats.
Collapse
Affiliation(s)
- Jing Yang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Sun G, Zhao L, Fan T, Li S, Zhong R. Investigations on the Effect of O6-Benzylguanine on the Formation of dG-dC Interstrand Cross-Links Induced by Chloroethylnitrosoureas in Human Glioma Cells Using Stable Isotope Dilution High-Performance Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry. Chem Res Toxicol 2014; 27:1253-62. [PMID: 24914620 DOI: 10.1021/tx500143b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Tengjiao Fan
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Sisi Li
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|
14
|
Fahrer J, Kaina B. O6-methylguanine-DNA methyltransferase in the defense against N-nitroso compounds and colorectal cancer. Carcinogenesis 2013; 34:2435-42. [PMID: 23929436 DOI: 10.1093/carcin/bgt275] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the leading causes of cancer death worldwide, involving multiple dietary and non-dietary risk factors. A growing body of evidence suggests that N-nitroso compounds (NOC) play a pivotal role in the etiology of CRC. NOC are present in food and are also formed endogenously in the large intestine. Upon metabolic activation and also spontaneously, they form electrophilic species that methylate the DNA, producing N-methylated purines and O(6)-methylguanine, the latter of which bears high mutagenic and carcinogenic potential. Methylated DNA bases are removed by base excision repair initiated by the alkyladenine-DNA glycosylase, the family of AlkB homologs proteins, and the suicide enzyme O(6)-methylguanine-DNA methyltransferase (MGMT), which is the main focus of this review. We present animal models with a deficiency of MGMT that display a tremendously enhanced sensitivity toward alkylation-induced colorectal carcinogenesis, highlighting its role in the protection against the cytotoxic and mutagenic effects of alkylating agents. In line with these studies, MGMT was linked to the formation of human sporadic CRC. Colorectal tumors and precursor lesions frequently display epigenetic inactivation of MGMT resulting from promoter hypermethylation, which is tightly associated with the occurrence of G:C to A:T transition mutations in the KRAS oncogene. We also discuss clinical data, which identified the MGMT status of CRC patients as promising parameter for the treatment of metastasized CRC using alkylating anticancer drugs such as temozolomide.
Collapse
Affiliation(s)
- Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | | |
Collapse
|
15
|
Urban AM, Upadhyaya P, Cao Q, Peterson LA. Formation and repair of pyridyloxobutyl DNA adducts and their relationship to tumor yield in A/J mice. Chem Res Toxicol 2012; 25:2167-78. [PMID: 22928598 DOI: 10.1021/tx300245w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a known human carcinogen. It generates methyl and pyridyloxobutyl DNA adducts. The role of the methyl DNA adducts has been well-established in the tumorigenic properties of NNK. However, the role of the pyridyloxobutyl DNA adducts is unclear. Four pyridyloxobutyl DNA adducts have been characterized: 7-[4-3-(pyridyl)-4-oxobut-1-yl]guanine (7-pobG), O²-[4-3-(pyridyl)-4-oxobut-1-yl]-cytodine (O²-pobC), O²-[4-3-(pyridyl)-4-oxobut-1yl]thymidine (O²-pobdT), and O⁶-[4-3-(pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O⁶-pobdG). Mutagenic O⁶-pobdG is thought to contribute to the tumorigenic properties of the pyridyloxobutylation pathway. It is repaired by O⁶-alkylguanine-DNA alkyltransferase (AGT). To explore the role of O⁶-pobdG formation and repair in the tumorigenic properties of NNK, A/J mice were given single or multiple doses of the model pyridyloxobutylating agent 4-(acetoxymethyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc) in the presence or absence of the AGT depletor, O⁶-benzylguanine. Levels of the four pyridyloxobutyl DNA adducts were measured in the lung at 8, 48, or 96 h following treatment and compared to the lung tumorigenic activity of these treatments. AGT depletion had only a modest effect on the levels of O⁶-pobdG and did not increase tumor formation. Three pyridyloxobutyl DNA adducts, 7-pobG, O²-pobdT, and O⁶-pobdG, persisted in lung DNA at significant levels for up to 96 h post-treatment, suggesting that all three adducts may contribute to the tumorigenic properties of NNK.
Collapse
Affiliation(s)
- Anna M Urban
- Division of Environmental Health Sciences and ‡Masonic Cancer Center, University of Minnesota , Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
16
|
Christmann M, Kaina B. O(6)-methylguanine-DNA methyltransferase (MGMT): impact on cancer risk in response to tobacco smoke. Mutat Res 2012; 736:64-74. [PMID: 21708177 DOI: 10.1016/j.mrfmmm.2011.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/23/2011] [Accepted: 06/08/2011] [Indexed: 05/31/2023]
Abstract
Tobacco, smoked, snuffed and chewed, contains powerful mutagens and carcinogens. At least three of them, N-dimethylnitrosamine, N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, attack DNA at the O(6)-position of guanine. The resulting O(6)-alkylguanine adducts are repaired by the suicide enzyme O(6)-methylguanine-DNA methyltransferase (MGMT), which is known to protect against the mutagenic, genotoxic and carcinogenic effects of monofunctional alkylating agents. While in rat liver MGMT was shown to be subject to regulation by genotoxic stress leading to adaptive changes in its activity, in humans evidence of adaptive modulation of MGMT levels is still lacking. Several polymorphisms are known, which are suspected to impact on the risk of developing cancer. In this review we focus on three questions: (a) Has tobacco consumption by smoking or chewing an impact on MGMT expression and MGMT promoter methylation in normal and tumor tissue? (b) Is there an association between MGMT polymorphisms and cancer risk and is this risk related to smoking? (c) Does MGMT protect against tobacco-associated cancer? There are several lines of evidence for an increase of MGMT activity in the normal tissue of smokers compared to non-smokers. Furthermore, in tumors developed in smokers a tendency towards an increase of MGMT expression was found. The data points to the possibility that agents in tobacco smoke are able to trigger upregulation of MGMT in normal and tumor tissue. For MGMT promoter methylation data is conflicting. There is some evidence for an association between MGMT polymorphisms and smoking-induced cancer risk. The key question whether or not MGMT protects against tobacco smoke-induced cancer is difficult to answer since prospective studies on smokers versus non-smokers are lacking and appropriate animal studies with MGMT transgenic mice exposed to the complex mixture of tobacco smoke have not been performed, which indicates the need for further explorations.
Collapse
Affiliation(s)
- Markus Christmann
- Institute of Toxicology, University Medical Center Mainz, Mainz, Germany.
| | | |
Collapse
|
17
|
The cumulative effects of polymorphisms in the DNA mismatch repair genes and tobacco smoking in oesophageal cancer risk. PLoS One 2012; 7:e36962. [PMID: 22623965 PMCID: PMC3356375 DOI: 10.1371/journal.pone.0036962] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/11/2012] [Indexed: 12/15/2022] Open
Abstract
The DNA mismatch repair (MMR) enzymes repair errors in DNA that occur during normal DNA metabolism or are induced by certain cancer-contributing exposures. We assessed the association between 10 single-nucleotide polymorphisms (SNPs) in 5 MMR genes and oesophageal cancer risk in South Africans. Prior to genotyping, SNPs were selected from the HapMap database, based on their significantly different genotypic distributions between European ancestry populations and four HapMap populations of African origin. In the Mixed Ancestry group, the MSH3 rs26279 G/G versus A/A or A/G genotype was positively associated with cancer (OR = 2.71; 95% CI: 1.34–5.50). Similar associations were observed for PMS1 rs5742938 (GG versus AA or AG: OR = 1.73; 95% CI: 1.07–2.79) and MLH3 rs28756991 (AA or GA versus GG: OR = 2.07; 95% IC: 1.04–4.12). In Black individuals, however, no association between MMR polymorhisms and cancer risk was observed in individual SNP analysis. The interactions between MMR genes were evaluated using the model-based multifactor-dimensionality reduction approach, which showed a significant genetic interaction between SNPs in MSH2, MSH3 and PMS1 genes in Black and Mixed Ancestry subjects, respectively. The data also implies that pathogenesis of common polymorphisms in MMR genes is influenced by exposure to tobacco smoke. In conclusion, our findings suggest that common polymorphisms in MMR genes and/or their combined effects might be involved in the aetiology of oesophageal cancer.
Collapse
|
18
|
Pegg AE. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol 2011; 24:618-39. [PMID: 21466232 DOI: 10.1021/tx200031q] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a widely distributed, unique DNA repair protein that acts as a single agent to directly remove alkyl groups located on the O(6)-position of guanine from DNA restoring the DNA in one step. The protein acts only once, and its alkylated form is degraded rapidly. It is a major factor in counteracting the mutagenic, carcinogenic, and cytotoxic effects of agents that form such adducts including N-nitroso-compounds and a number of cancer chemotherapeutics. This review describes the structure, function, and mechanism of action of AGTs and of a family of related alkyltransferase-like proteins, which do not act alone to repair O(6)-alkylguanines in DNA but link repair to other pathways. The paradoxical ability of AGTs to stimulate the DNA-damaging ability of dihaloalkanes and other bis-electrophiles via the formation of AGT-DNA cross-links is also described. Other important properties of AGTs include the ability to provide resistance to cancer therapeutic alkylating agents, and the availability of AGT inhibitors such as O(6)-benzylguanine that might overcome this resistance is discussed. Finally, the properties of fusion proteins in which AGT sequences are linked to other proteins are outlined. Such proteins occur naturally, and synthetic variants engineered to react specifically with derivatives of O(6)-benzylguanine are the basis of a valuable research technique for tagging proteins with specific reagents.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Pennsylvania 17033, United States.
| |
Collapse
|
19
|
Hang B. Formation and repair of tobacco carcinogen-derived bulky DNA adducts. J Nucleic Acids 2010; 2010:709521. [PMID: 21234336 PMCID: PMC3017938 DOI: 10.4061/2010/709521] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/16/2010] [Accepted: 09/17/2010] [Indexed: 01/08/2023] Open
Abstract
DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N-nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O6-alkylguanine DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.
Collapse
Affiliation(s)
- Bo Hang
- Life Sciences Division, Department of Cancer and DNA Damage Responses, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
20
|
Georgiadis P, Kaila S, Makedonopoulou P, Fthenou E, Chatzi L, Pletsa V, Kyrtopoulos SA. Development and validation of a new, sensitive immunochemical assay for O⁶-methylguanine in DNA and its application in a population study. Cancer Epidemiol Biomarkers Prev 2010; 20:82-90. [PMID: 21081711 DOI: 10.1158/1055-9965.epi-10-0788] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Investigations of the presence of the precarcinogenic DNA adduct O⁶-methylguanine (O6-meG) in humans and its association with exposure or cancer risk have been hindered by the absence of analytic methods of adequate sensitivity and throughput. We report the development, validation, and application of an ELISA-type assay for O6-meG appropriate for large-scale population studies. METHODS In the new analytic method, restriction enzymes are used to digest DNA to fragments of size expected to contain no more than one O6-meG residue. Anti-adduct antisera are used to transfer O6-meG-containing fragments to a solid surface, where they are detected using anti-ssDNA antisera, the high ratio of normal nucleotides to adducts providing a strong signal enhancement. RESULTS An assay with a limit of detection of 1.5 adducts/10⁹ nucleotides using 10 μg of DNA, a dynamic range of approximately two orders of magnitude and satisfactory precision and accuracy characteristics was established and validated. Analysis of samples from 120 subjects from the Rhea mother-child cohort in Crete led to the detection of O6-meG in 70% of maternal and 50% of cord blood buffy coat samples at mean levels of 0.65 and 0.38 adducts/10⁸ nucleotides, respectively. CONCLUSIONS The frequent observation of O6-meG in human DNA is compatible with dietary compounds (e.g. N-nitroso compounds or their precursors), or endogenous processes being responsible for the formation of this adduct. IMPACT The new assay opens the way for large-scale population studies of O6-meG as a biomarker of exposure or risk. The approach used in this assay can, in principle, be extended to any DNA adduct for which suitable antisera are available.
Collapse
Affiliation(s)
- Panagiotis Georgiadis
- National Hellenic Research Foundation, Institute Of Biological Research and Biotechnology, 48 Vas. Constantinou Avenue, Athens 11635, Greece.
| | | | | | | | | | | | | |
Collapse
|
21
|
Peterson LA. Formation, repair, and genotoxic properties of bulky DNA adducts formed from tobacco-specific nitrosamines. J Nucleic Acids 2010; 2010. [PMID: 20871819 PMCID: PMC2943119 DOI: 10.4061/2010/284935] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/08/2010] [Indexed: 12/24/2022] Open
Abstract
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N′-nitrosonornicotine (NNN) are tobacco-specific nitrosamines present in tobacco products and smoke. Both compounds are carcinogenic in laboratory animals, generating tumors at sites comparable to those observed in smokers. These Group 1 human carcinogens are metabolized to reactive intermediates that alkylate DNA. This paper focuses on the DNA pyridyloxobutylation pathway which is common to both compounds. This DNA route generates 7-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxyguanosine, O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxycytosine, O2-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxythymidine, and O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2′-deoxyguanosine as well as unstable adducts which dealkylate to release 4-hydroxy-1-{3-pyridyl)-1-butanone or depyriminidate/depurinate to generate abasic sites. There are multiple repair pathways responsible for protecting against the genotoxic effects of these adducts, including adduct reversal as well as base and nucleotide excision repair pathways. Data indicate that several DNA adducts contribute to the overall mutagenic properties of pyridyloxobutylating agents. Which adducts contribute to the carcinogenic properties of this pathway are likely to depend on the biochemistry of the target tissue.
Collapse
Affiliation(s)
- Lisa A Peterson
- Division of Environmental Health Sciences, Masonic Cancer Center, Mayo Mail Code 806, 420 Delaware St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
22
|
Zink CN, Soissons N, Fishbein JC. Products of the Direct Reaction of the Diazonium Ion of a Metabolite of the Carcinogen N-Nitrosomorpholine with Purines of Nucleosides and DNA. Chem Res Toxicol 2010; 23:1223-33. [PMID: 20443589 DOI: 10.1021/tx100093a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Charles N. Zink
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21228
| | - Nicolas Soissons
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21228
| | - James C. Fishbein
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21228
| |
Collapse
|
23
|
Flipping of alkylated DNA damage bridges base and nucleotide excision repair. Nature 2009; 459:808-13. [PMID: 19516334 PMCID: PMC2729916 DOI: 10.1038/nature08076] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 04/17/2009] [Indexed: 01/01/2023]
Abstract
Alkyltransferase-like proteins (ATLs) share functional motifs with the cancer chemotherapy target O(6)-alkylguanine-DNA alkyltransferase (AGT) and paradoxically protect cells from the biological effects of DNA alkylation damage, despite lacking the reactive cysteine and alkyltransferase activity of AGT. Here we determine Schizosaccharomyces pombe ATL structures without and with damaged DNA containing the endogenous lesion O(6)-methylguanine or cigarette-smoke-derived O(6)-4-(3-pyridyl)-4-oxobutylguanine. These results reveal non-enzymatic DNA nucleotide flipping plus increased DNA distortion and binding pocket size compared to AGT. Our analysis of lesion-binding site conservation identifies new ATLs in sea anemone and ancestral archaea, indicating that ATL interactions are ancestral to present-day repair pathways in all domains of life. Genetic connections to mammalian XPG (also known as ERCC5) and ERCC1 in S. pombe homologues Rad13 and Swi10 and biochemical interactions with Escherichia coli UvrA and UvrC combined with structural results reveal that ATLs sculpt alkylated DNA to create a genetic and structural intersection of base damage processing with nucleotide excision repair.
Collapse
|
24
|
Li L, Perdigao J, Pegg AE, Lao Y, Hecht SS, Lindgren BR, Reardon JT, Sancar A, Wattenberg EV, Peterson LA. The influence of repair pathways on the cytotoxicity and mutagenicity induced by the pyridyloxobutylation pathway of tobacco-specific nitrosamines. Chem Res Toxicol 2009; 22:1464-72. [PMID: 19601657 PMCID: PMC2787827 DOI: 10.1021/tx9001572] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N'-nitrosonornicotine, are considered to be human carcinogens. Both compounds are metabolized to pyridyloxobutylating intermediates that react with DNA to form adducts such as 7-[4-(3-pyridyl)-4-oxobut-1-yl]guanine, O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]cytosine, O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxythymidine (O(2)-pobdT), O(6)-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O(6)-pobdG), and 4-hydroxy-1-(3-pyridyl)-1-butanone-releasing adducts. The role of specific DNA adducts in the overall genotoxic activity of the pyridyloxobutylation pathway is not known. One adduct, O(6)-pobdG, is mutagenic. To characterize the mutagenic and cytotoxic properties of pyridyloxobutyl DNA adducts, the impact of DNA repair pathways on the cytotoxic and mutagenic properties of the model pyridyloxobutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc), was investigated in Chinese hamster ovary cell lines proficient or deficient in O(6)-alkylguanine DNA alkyltransferase (AGT), deficient in both AGT and base excision repair (BER), or deficient in both AGT and nucleotide excision repair (NER). The repair of the four pyridyloxobutyl DNA adducts was determined in the same cell lines via sensitive LC-MS/MS methods. NNKOAc was more cytotoxic in the cell lines lacking AGT, BER, and NER repair pathways. It also induced more mutations in the hprt gene in the BER- and NER-deficient cell lines. However, AGT expression did not influence NNKOAc's mutagenicity despite efficient repair of O(6)-pobdG. Analysis of the hprt mutational spectra indicated that NNKOAc primarily caused point mutations at AT base pairs. GC to AT transition mutations were a minor contributor to the overall mutation spectrum, providing a rationale for the observation that AGT does not protect against the overall mutagenic properties of NNKOAc in this model system. The only adduct affected by the absence of effective NER was O(2)-pobdT. Slower repair of O(2)-pobdT in NER-deficient cells was associated with increased AT to TA transversion mutations, supporting the hypothesis that these mutations are caused by O(2)-pobdT. Together, these data support a hypothesis that the pyridyloxobutylation pathway generates multiple mutagenic and toxic adducts.
Collapse
Affiliation(s)
- Li Li
- Division of Environmental Health Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shukla PK, Mishra PC. Repair of O6-methylguanine to guanine by cysteine in the absence and presence of histidine and by cysteine thiolate anion: a quantum chemical study. Phys Chem Chem Phys 2009; 11:8191-202. [PMID: 19756275 DOI: 10.1039/b908295f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O6-methylguanine (O6mG) is known to be a potential mutagenic modification of guanine as it mispairs with thymine in DNA and causes GC to AT transversion mutation. It is experimentally known that O6mG can be repaired to guanine by the protein O6-alkylguanine-DNA alkyltransferase (AGT), a cysteine residue being the main active site. In the present work, the mechanisms of repair of cis-O6-methylguanine (O6mG) to guanine due to its reaction with cysteine in the absence and presence of histidine and with cysteine thiolate anion were investigated theoretically using the B3LYP hybrid functional of density functional theory and the second order Møller-Plesset perturbation (MP2) theory. Reactant, intermediate and product complexes as well as transition states involved in these reactions were fully optimized at the B3LYP/6-31 + G* level of theory in the gas phase. The solvent effect of water was treated using the polarizable continuum model (PCM). Single point energy calculations were performed at the B3LYP/AUG-cc-pVDZ and MP2/6-31 + G* levels of theory in the gas phase and aqueous media. It is found that cysteine alone can repair the cis-O6mG to guanine, but the involvement of histidine along with cysteine lowers down the barrier energy significantly. However, when cysteine thiolate anion is used in place of cysteine, the barrier energy is strongly reduced. These results broadly support the suggestions based on experimental studies.
Collapse
Affiliation(s)
- P K Shukla
- Department of Physics, Banaras Hindu University, Varanasi - 221005, India
| | | |
Collapse
|
26
|
Guza R, Ma L, Fang Q, Pegg AE, Tretyakova N. Cytosine methylation effects on the repair of O6-methylguanines within CG dinucleotides. J Biol Chem 2009; 284:22601-10. [PMID: 19531487 DOI: 10.1074/jbc.m109.000919] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
O(6)-alkyldeoxyguanine adducts induced by tobacco-specific nitrosamines are repaired by O(6)-alkylguanine DNA alkyltransferase (AGT), which transfers the O(6)-alkyl group from the damaged base to a cysteine residue within the protein. In the present study, a mass spectrometry-based approach was used to analyze the effects of cytosine methylation on the kinetics of AGT repair of O(6)-methyldeoxyguanosine (O(6)-Me-dG) adducts placed within frequently mutated 5'-CG-3' dinucleotides of the p53 tumor suppressor gene. O(6)-Me-dG-containing DNA duplexes were incubated with human recombinant AGT protein, followed by rapid quenching, acid hydrolysis, and isotope dilution high pressure liquid chromatography-electrospray ionization tandem mass spectrometry analysis of unrepaired O(6)-methylguanine. Second-order rate constants were calculated in the absence or presence of the C-5 methyl group at neighboring cytosine residues. We found that the kinetics of AGT-mediated repair of O(6)-Me-dG were affected by neighboring 5-methylcytosine ((Me)C) in a sequence-dependent manner. AGT repair of O(6)-Me-dG adducts placed within 5'-CG-3' dinucleotides of p53 codons 245 and 248 was hindered when (Me)C was present in both DNA strands. In contrast, cytosine methylation within p53 codon 158 slightly increased the rate of O(6)-Me-dG repair by AGT. The effects of (Me)C located immediately 5' and in the base paired position to O(6)-Me-dG were not additive as revealed by experiments with hypomethylated sequences. Furthermore, differences in dealkylation rates did not correlate with AGT protein affinity for cytosine-methylated and unmethylated DNA duplexes or with the rates of AGT-mediated nucleotide flipping, suggesting that (Me)C influences other kinetic steps involved in repair, e.g. the rate of alkyl transfer from DNA to AGT.
Collapse
Affiliation(s)
- Rebecca Guza
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
27
|
Upadhyaya P, Lindgren BR, Hecht SS. Comparative levels of O6-methylguanine, pyridyloxobutyl-, and pyridylhydroxybutyl-DNA adducts in lung and liver of rats treated chronically with the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Drug Metab Dispos 2009; 37:1147-51. [PMID: 19324941 PMCID: PMC2683686 DOI: 10.1124/dmd.109.027078] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 03/23/2009] [Indexed: 11/22/2022] Open
Abstract
The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a lung carcinogen in rats and may be a cause of lung cancer in smokers. NNK is metabolized by cytochromes P450 to intermediates that react with DNA forming methyl, pyridyloxobutyl (POB), and pyridylhydroxybutyl (PHB) adducts, which are critical in carcinogenesis. The methyl adduct O(6)-methylguanine (O(6)-methyl-G) has miscoding properties, but there are no reports on levels of this adduct in rats treated chronically with NNK in the drinking water, nor has its levels been compared with those of POB- and PHB-DNA adducts. We used liquid chromatography-electrospray ionization-tandem mass spectrometry-selected reaction monitoring to quantify O(6)-methyl-G in lung and liver DNA of rats treated with a carcinogenic dose of 10 ppm of NNK in the drinking water and sacrificed after 1, 2, 5, 10, 16, and 20 weeks. The maximal level of O(6)-methyl-G in lung DNA, 2550 +/- 263 fmol/mg DNA, was reached at 5 weeks and was significantly greater (P < 0.05) at that point than all other adducts (measured previously) except O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine. Overall levels of O(6)-methyl-G in lung were intermediate between those of total POB- and PHB-DNA adducts. In liver, the wave of O(6)-methyl-G peaked at 2 weeks while that of total POB-DNA adducts peaked at 10 weeks, and levels of total PHB-DNA adducts were low throughout. The results of this study demonstrate that substantial amounts of O(6)-methyl-G are formed at various time points in lung and liver DNA of rats treated chronically with NNK, supporting its role in carcinogenesis.
Collapse
Affiliation(s)
- Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
28
|
Havla J, Hill C, Abdel-Rahman S, Richter E. Evaluation of the mutagenic effects of myosmine in human lymphocytes using the HPRT gene mutation assay. Food Chem Toxicol 2009; 47:237-41. [DOI: 10.1016/j.fct.2008.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
29
|
Sandercock LE, Hahn JN, Li L, Luchman H, Giesbrecht JL, Peterson LA, Jirik FR. Mgmt deficiency alters the in vivo mutational spectrum of tissues exposed to the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Carcinogenesis 2008; 29:866-74. [DOI: 10.1093/carcin/bgn030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
30
|
Zhao J, Gao F, Zhang Y, Wei K, Liu Y, Deng X. Bcl2 inhibits abasic site repair by down-regulating APE1 endonuclease activity. J Biol Chem 2008; 283:9925-32. [PMID: 18263880 DOI: 10.1074/jbc.m708345200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bcl2 not only prolongs cell survival but also suppresses the repair of abasic (AP) sites of DNA lesions. Apurinic/apyrimidinic endonuclease 1 (APE1) plays a central role in the repair of AP sites via the base excision repair pathway. Here we found that Bcl2 down-regulates APE1 endonuclease activity in association with inhibition of AP site repair. Exposure of cells to nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone results in accumulation of Bcl2 in the nucleus and interaction with APE1, which requires all of the BH domains of Bcl2. Deletion of any of the BH domains from Bcl2 abrogates the ability of Bcl2 to interact with APE1 as well as the inhibitory effects of Bcl2 on APE1 activity and AP site repair. Overexpression of Bcl2 in cells reduces formation of the APE1.XRCC1 complex, and purified Bcl2 protein directly disrupts the APE1.XRCC1 complex with suppression of APE1 endonuclease activity in vitro. Importantly, specific knockdown of endogenous Bcl2 by RNA interference enhances APE1 endonuclease activity with accelerated AP site repair. Thus, Bcl2 inhibition of AP site repair may occur in a novel mechanism by down-regulating APE1 endonuclease activity, which may promote genetic instability and tumorigenesis.
Collapse
Affiliation(s)
- Jinfeng Zhao
- Department of Medicine, University of Florida Shands Cancer Center, 1376 Mowry Road, Gainesville, FL 32610-3633, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Tobacco use continues to be a major cause of cancer in the developed world, and despite significant progress in this country in tobacco control, which is driving a decrease in cancer mortality, there are still over 1 billion smokers in the world. This perspective discusses some selected issues in tobacco carcinogenesis focusing on progress during the 20 years of publication of Chemical Research in Toxicology. The topics covered include metabolism and DNA modification by tobacco-specific nitrosamines, tobacco carcinogen biomarkers, an unidentified DNA ethylating agent in cigarette smoke, mutations in the K-RAS and p53 gene in tobacco-induced lung cancer and their possible relationship to specific carcinogens, secondhand smoke and lung cancer, emerging issues in smokeless tobacco use, and a conceptual model for understanding tobacco carcinogenesis. It is hoped that a better understanding of mechanisms of tobacco-induced cancer will lead to new and useful approaches for the prevention of lung cancer and other cancers caused by tobacco use.
Collapse
Affiliation(s)
- Stephen S Hecht
- University of Minnesota Cancer Center, MMC 806, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
32
|
Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol 2008; 21:28-44. [PMID: 17970581 PMCID: PMC2602826 DOI: 10.1021/tx700198a] [Citation(s) in RCA: 571] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic exposure to nickel(II), chromium(VI), or inorganic arsenic (iAs) has long been known to increase cancer incidence among affected individuals. Recent epidemiological studies have found that carcinogenic risks associated with chromate and iAs exposures were substantially higher than previously thought, which led to major revisions of the federal standards regulating ambient and drinking water levels. Genotoxic effects of Cr(VI) and iAs are strongly influenced by their intracellular metabolism, which creates several reactive intermediates and byproducts. Toxic metals are capable of potent and surprisingly selective activation of stress-signaling pathways, which are known to contribute to the development of human cancers. Depending on the metal, ascorbate (vitamin C) has been found to act either as a strong enhancer or suppressor of toxic responses in human cells. In addition to genetic damage via both oxidative and nonoxidative (DNA adducts) mechanisms, metals can also cause significant changes in DNA methylation and histone modifications, leading to epigenetic silencing or reactivation of gene expression. In vitro genotoxicity experiments and recent animal carcinogenicity studies provided strong support for the idea that metals can act as cocarcinogens in combination with nonmetal carcinogens. Cocarcinogenic and comutagenic effects of metals are likely to stem from their ability to interfere with DNA repair processes. Overall, metal carcinogenesis appears to require the formation of specific metal complexes, chromosomal damage, and activation of signal transduction pathways promoting survival and expansion of genetically/epigenetically altered cells.
Collapse
Affiliation(s)
- Konstantin Salnikow
- Konstantin Salnikow, National Cancer Institute, Bldg. 538, Room 205 E, Frederick, MD 21702, Phone: 301-846-5623, Fax: 301-846-5946, E-mail:
| | - Anatoly Zhitkovich
- Anatoly Zhitkovich, Brown University, Center for Genomics and Proteomics, Department of Pathology and Laboratory Medicine, 70 Ship Street, Providence RI 02912, Phone: 401-863-2912, Fax: 401-863-9008, E-mail:
| |
Collapse
|
33
|
Coulter R, Blandino M, Tomlinson JM, Pauly GT, Krajewska M, Moschel RC, Peterson LA, Pegg AE, Spratt TE. Differences in the rate of repair of O6-alkylguanines in different sequence contexts by O6-alkylguanine-DNA alkyltransferase. Chem Res Toxicol 2007; 20:1966-71. [PMID: 17975884 DOI: 10.1021/tx700271j] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
O6-alkylguanine-DNA alkyltransferase (AGT) repairs O6-alkylguanine residues at different rates depending on the identity of the alkyl group as well as the sequence context. To elucidate the mechanism(s) underlying the differences in rates, we examined the repair of five alkyl groups in three different sequence contexts. The kinact and Km values were determined by measuring the rates of repair of oligodeoxynucleotide duplexes containing the O6-alkylguanine residues with various concentrations of AGT in excess. The time course of the reactions all followed pseudo-first-order kinetics except for one of the O6-ethylguanine substrates, which could be analyzed in a two-phase exponential equation. The differences in rates of repair between the different alkyl groups and the different sequence contexts are dependent on rates of alkyl transfer and not substrate recognition. The relative rates of reaction are in general benzyl>methyl>ethyl>2-hydroxyethyl>4-(3-pyridyl)-4-oxobutyl, but the absolute rates are dependent on sequence. The kinact values between benzyl and 4-(3-pyridyl)-4-oxobutyl range from 2300 to 350000 depending on sequence. The sequence-dependent variation in kinact varied the most for O6-[4-(3-pyridyl)-4-oxobutyl]guanine, which ranged from 0.022 to 0.000016 s(-1). The results are consistent with a mechanism in which the O6-alkylguanine can bind to AGT in either a reactive or an unreactive orientation, the proportion of which depends on the sequence context.
Collapse
Affiliation(s)
- Richard Coulter
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fang Q, Loktionova NA, Moschel RC, Javanmard S, Pauly GT, Pegg AE. Differential inactivation of polymorphic variants of human O6-alkylguanine-DNA alkyltransferase. Biochem Pharmacol 2007; 75:618-26. [PMID: 17996846 DOI: 10.1016/j.bcp.2007.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 11/25/2022]
Abstract
The human DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (hAGT) is an important source of resistance to some therapeutic alkylating agents and attempts to circumvent this resistance by the use of hAGT inhibitors have reached clinical trials. Several human polymorphisms in the MGMT gene that encodes hAGT have been described including L84F and the linked double alteration I143V/K178R. We have investigated the inactivation of these variants and the much rarer variant W65C by O(6)-benzylguanine, which is currently in clinical trials, and a number of other second generation hAGT inhibitors that contain folate derivatives (O(4)-benzylfolic acid, the 3' and 5' folate esters of O(6)-benzyl-2'-deoxyguanosine and the folic acid gamma ester of O(6)-(p-hydroxymethyl)benzylguanine). The I143V/K178R variant was resistant to all of these compounds. The resistance was due solely to the I143V change. These results suggest that the frequency of the I143V/K178R variant among patients in the clinical trials with hAGT inhibitors and the correlation with response should be considered.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
35
|
Penning TM, Drury JE. Human aldo-keto reductases: Function, gene regulation, and single nucleotide polymorphisms. Arch Biochem Biophys 2007; 464:241-50. [PMID: 17537398 PMCID: PMC2025677 DOI: 10.1016/j.abb.2007.04.024] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/24/2007] [Accepted: 04/24/2007] [Indexed: 01/31/2023]
Abstract
Aldo-keto reductases (AKRs) are a superfamily of NAD(P)H linked oxidoreductases that are generally monomeric 34-37kDa proteins present in all phyla. The superfamily consists of 15 families, which contains 151 members (www.med.upenn.edu/akr). Thirteen human AKRs exist that use endogenous substrates (sugar and lipid aldehydes, prostaglandins, retinals and steroid hormones), and in many instances they regulate nuclear receptor signaling. Exogenous substrates include metabolites implicated in chemical carcinogenesis: NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone), polycyclic aromatic hydrocarbon trans-dihydrodiols, and aflatoxin dialdehyde. Promoter analysis of the human genes identifies common elements involved in their regulation which include osmotic response elements, anti-oxidant response elements, xenobiotic response elements, AP-1 sites and steroid response elements. The human AKRs are highly polymorphic, and in some instances single nucleotide polymorphisms (SNPs) of high penetrance exist. This suggests that there will be inter-individual variation in endogenous and xenobiotic metabolism which in turn affect susceptibility to nuclear receptor signaling and chemical carcinogenesis.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, 130 C John Morgan Bldg., 3620 Hamilton Walk, Philadelphia, PA 19104-6084, USA.
| | | |
Collapse
|
36
|
Povey AC, Margison GP, Santibáñez-Koref MF. Lung cancer risk and variation in MGMT activity and sequence. DNA Repair (Amst) 2007; 6:1134-44. [PMID: 17569600 DOI: 10.1016/j.dnarep.2007.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (MGMT) repairs DNA adducts that result from alkylation at the O(6) position of guanine. These lesions are mutagenic and toxic and can be produced by a variety of agents including the tobacco-specific nitrosamines, carcinogens present in cigarette smoke. Here, we review some of our work in the context of inter-individual differences in MGMT expression and their potential influence on lung cancer risk. In humans there are marked inter-individual differences in not only levels of DNA damage in the lung (N7-methylguanine) that can arise from exposure to methylating agents but also in MGMT activity in lung tissues. In the presence of such exposure, this variability in MGMT activity may alter cancer susceptibility, particularly as animal models have demonstrated that the complete absence of MGMT activity predisposes to alkylating-agent induced cancer while overexpression is protective. Recent studies have uncovered a series of polymorphisms that affect protein activity or are associated with differences in expression levels. The associations between these (and other) polymorphisms and cancer risk are inconsistent, possibly because of small sample sizes and inter-study differences in lung cancer histology. We have recently analysed a consecutive series of case-control studies and found evidence that lung cancer risk was lower in subjects with the R178 allele.
Collapse
Affiliation(s)
- Andrew C Povey
- Centre for Occupational and Environmental Health, University of Manchester, United Kingdom.
| | | | | |
Collapse
|
37
|
Bugni JM, Han J, Tsai MS, Hunter DJ, Samson LD. Genetic association and functional studies of major polymorphic variants of MGMT. DNA Repair (Amst) 2007; 6:1116-26. [PMID: 17569599 DOI: 10.1016/j.dnarep.2007.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The DNA repair protein, O(6)-methylguanine DNA-methyltransferase (MGMT) prevents mutations and cell death that result from aberrant alkylation of DNA. The polymorphic variants Leu84Phe, Ile143Val, and Lys178Arg are frequent in the human population. We review here studies of these and other MGMT polymorphisms and their association with risk for lung, breast, colorectal and endometrial cancer with a consideration of gene-environment interactions. In addition, we review studies of the effects of polymorphic variation on alkyltransferase activity and expression. It is formally possible that polymorphic variation could modify functions of MGMT other than its alkyltransferase activity. While it was previously reported that an alkylated form of MGMT modifies Estrogen Receptor alpha activity, from our studies we conclude that this regulation is not a major function of MGMT. Overall, the effects of polymorphic variation on protein function are subtle, and further investigation is required to provide a comprehensive mechanism that explains the observed associations of these variants with risk for cancer.
Collapse
Affiliation(s)
- James M Bugni
- Biological Engineering Division, Biology Department, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
This article summarizes the current understanding of known variant forms of the MGMT gene that encode an altered protein. Epidemiological studies have been carried out to test whether these alterations are associated with altered cancer risk. Laboratory studies using recombinant proteins and cells expressing the known variants have investigated the possible effects of these sequence alterations on the ability of the encoded O(6)-alkylguanine-DNA alkyltransferase protein to protect cells from alkylation damage and to respond to therapeutic inactivators currently undergoing trials for cancer chemotherapy.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
39
|
Hou Y, Gao F, Wang Q, Zhao J, Flagg T, Zhang Y, Deng X. Bcl2 Impedes DNA Mismatch Repair by Directly Regulating the hMSH2-hMSH6 Heterodimeric Complex. J Biol Chem 2007; 282:9279-87. [PMID: 17259174 DOI: 10.1074/jbc.m608523200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bcl2 has been reported to suppress DNA mismatch repair (MMR) with promotion of mutagenesis, but the mechanism(s) is not fully understood. MutSalpha is the hMSH2-hMSH6 heterodimer that primarily functions to correct mutations that escape the proofreading activity of DNA polymerase. Here we have discovered that Bcl2 potently suppresses MMR in association with decreased MutSalpha activity and increased mutagenesis. Exposure of cells to nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone results in accumulation of Bcl2 in the nucleus, which interacts with hMSH6 but not hMSH2 via its BH4 domain. Deletion of the BH4 domain from Bcl2 abrogates the ability of Bcl2 to interact with hMSH6 and is associated with enhanced MMR efficiency and decreased mutation frequency. Overexpression of Bcl2 reduces formation of the hMSH2-hMSH6 complex in cells, and purified Bcl2 protein directly disrupts the hMSH2-hMSH6 complex and suppresses MMR in vitro. Importantly, depletion of endogenous Bcl2 by RNA interference enhances formation of the hMSH2-hMSH6 complex in association with increased MMR and decreased mutagenesis. Thus, Bcl2 suppression of MMR may occur in a novel mechanism by directly regulating the heterodimeric hMSH2-hMSH6 complex, which potentially contributes to genetic instability and carcinogenesis.
Collapse
Affiliation(s)
- Yongzhong Hou
- Department of Medicine, Shands Cancer Center, University of Florida, Gainesville, Florida 32610-3633, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Jiao L, Chang P, Firozi PF, Lai D, Abbruzzese JL, Li D. Polymorphisms of phase II xenobiotic-metabolizing and DNA repair genes and in vitro N-ethyl-N-nitrosourea-induced O6-ethylguanine levels in human lymphocytes. Mutat Res 2006; 627:146-57. [PMID: 17158087 PMCID: PMC1828113 DOI: 10.1016/j.mrgentox.2006.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/11/2006] [Accepted: 11/08/2006] [Indexed: 11/16/2022]
Abstract
This study tested the hypothesis that genetic variants of phase II detoxification enzymes and DNA repair proteins affect individual response to DNA damage from alkylating agents. In 171 healthy individuals, an immunoslot blot assay was used to measure O6-ethylguanosine (O6-EtGua) adduct levels in peripheral blood lymphocytes treated with N-ethyl-N-nitrosourea (ENU) in vitro. The genotypes of GSTM1, GSTT1, GSTP1 I(105)V and A(114)V, MGMT L(84)F and I(143)V, XPD D(312)N and K(751)Q, and XRCC3 T(241)M were determined. Demographic and exposure information was collected by in-person interview. Student's t-test, analysis of (co)variance, and multiple linear regression models were used in statistical analyses. The mean and median (range) O6-EtGua levels were 94.6 and 84.8 (3.2-508.1)fmol/g DNA, respectively. The adduct level was significantly lower in people who smoked >or=25 years than that in never-smokers (square-root transformed mean values 8.20 versus 9.37, P=0.03). Multiple linear regression models revealed that GSTT1 (beta=-2.36, P=0.009) polymorphism was a significant predictor of the level of adducts in 82 never-smokers, whereas the number of years smoked (beta=-0.08, P=0.005) and XRCC3 T(241)M (beta=2.22, P=0.007) in 89 ever-smokers. The association between GSTP1 I(105)V, MGMT I(143)V, and XPD D(312)N with the level of adducts was not conclusive. Each polymorphism could explain 2-10% of the variation of the adduct level. These observations suggest that GSTT1 null and XRCC3 T(241)M polymorphism may have some functional significance in modulating the level of ENU-induced DNA damage and these effects are smoking-dependent. Results from this exploratory study need to be confirmed in other experimental systems.
Collapse
Affiliation(s)
- Li Jiao
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX USA and
| | - Ping Chang
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX USA and
| | - Pervez F. Firozi
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX USA and
| | - Dejian Lai
- Biostatistics Division, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX USA
| | - James L Abbruzzese
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX USA and
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX USA and
- *Corresponding author at: Department of Gastrointestinal Medical Oncology, Unit 426, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA. Tel +1 713 834 6690; fax: +1 713 834 6153, E-mail address: (D. Li)
| |
Collapse
|
41
|
Jiao L, Bondy ML, Hassan MM, Wolff RA, Evans DB, Abbruzzese JL, Li D. Selected polymorphisms of DNA repair genes and risk of pancreatic cancer. ACTA ACUST UNITED AC 2006; 30:284-91. [PMID: 16844323 PMCID: PMC1857309 DOI: 10.1016/j.cdp.2006.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2006] [Indexed: 01/19/2023]
Abstract
BACKGROUND Genetic variants of DNA repair genes may contribute to pancreatic carcinogenesis. O(6)-methylguanine-DNA methyltransferase (MGMT) is the major protein that removes alkylating DNA adducts, and apurinic/apyrimidinic endonuclease 1 (APE1) and X-ray repair cross-complementing group 1 (XRCC1) play important roles in the base excision repair pathway. METHODS We investigated the association between polymorphisms of MGMT (Leu(84)Phe and Ile(143)Val), APE1 (Asp(148)Glu), and XRCC1 (Arg(194)Trp and Arg(399)Gln) and risk of pancreatic cancer in a case-control study. Exposure information from 384 patients with primary pancreatic ductal adenocarcinoma and 357 cancer-free healthy controls were collected and genomic DNAs were genotyped for five markers. Controls were frequency matched to patients by age at enrollment (+/-5 years), gender, and race. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) by using unconditional logistic regression models. RESULTS There was no significant main effect or interaction with smoking of these genetic variants on the risk of pancreatic cancer. However, the XRCC1(194) polymorphism had a significant interaction with the APE1(148) (p=0.005) or MGMT(84) polymorphism (p=0.02) in modifying the risk of pancreatic cancer. CONCLUSIONS This study suggests that polymorphisms of genes involved in the repair of alkylating DNA adduct and DNA base damage may play a role in modulating the risk of pancreatic cancer. Larger studies are required to validate these preliminary findings. The mechanism of the combined genotype effects remains to be elucidated.
Collapse
Affiliation(s)
- Li Jiao
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Mijal RS, Kanugula S, Vu CC, Fang Q, Pegg AE, Peterson LA. DNA sequence context affects repair of the tobacco-specific adduct O(6)-[4-Oxo-4-(3-pyridyl)butyl]guanine by human O(6)-alkylguanine-DNA alkyltransferases. Cancer Res 2006; 66:4968-74. [PMID: 16651455 DOI: 10.1158/0008-5472.can-05-3803] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) protects cells from the mutagenic and carcinogenic effects of alkylating agents by removing O(6)-alkylguanine adducts from DNA. Recently, we established that AGT protects against the mutagenic effects of pyridyloxobutylation resulting from the metabolic activation of the tobacco-specific nitrosamines (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N-nitrosonornicotine by repairing O(6)-[4-oxo-4-(3-pyridyl)butyl]guanine (O(6)-pobG). There have been several epidemiologic studies examining the association between the I143V/K178R AGT genotype and lung cancer risk. Two studies have found positive associations, suggesting that AGT proteins differ in their repair of DNA damage caused by TSNA. However, it is not known how this genotype alters the biochemical activity of AGT. We proposed that AGT proteins may differ in their ability to remove large O(6)-alkylguanine adducts, such as O(6)-pobG, from DNA. Therefore, we examined the repair of O(6)-pobG by wild-type (WT) human, I143V/K178R, and L84F AGT proteins when contained in multiple sequence contexts, including the twelfth codon of H-ras, a mutational hotspot within this oncogene. The AGT-mediated repair of O(6)-pobG was more profoundly influenced by sequence context than that of O(6)-methylguanine. These differences are not the result of secondary structure (hairpin) formation in DNA. In addition, the I143V/K178R variant seems less sensitive to the effects of sequence context than the WT or L84F proteins. These studies indicate that the sequence dependence of O(6)-pobG repair by human AGT (hAGT) varies with subtle changes in protein structure. These data establish a novel functional difference between the I143V/K178R protein and other hAGTs in the repair of a toxicologically relevant substrate, O(6)-pobG.
Collapse
Affiliation(s)
- Renée S Mijal
- Division of Environmental Health Sciences and The Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
43
|
Rabik CA, Njoku MC, Dolan ME. Inactivation of O6-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treat Rev 2006; 32:261-76. [PMID: 16698182 DOI: 10.1016/j.ctrv.2006.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
DNA adducts at the O6-position of guanine are a result of the carcinogenic, mutagenic and cytotoxic actions of methylating and chloroethylating agents. The presence of the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) renders cells resistant to the biological effects induced by agents that attack at this position. O6-Benzylguanine (O6-BG) is a low molecular weight substrate of AGT and therefore, results in sensitizing cells and tumors to alkylating agent-induced cytotoxicity and antitumor activity. Presently, chemotherapy regimens of O6-BG in combination with BCNU, temozolomide and Gliadel are in clinical development. Other ongoing clinical trials include expression of mutant AGT proteins that confer resistance to O6-BG in bone marrow stem cells, in an effort to reduce the potential enhanced toxicity and mutagenicity of alkylating agents in the bone marrow. O6-BG has also been found to enhance the cytotoxicity of agents that do not form adducts at the O6-position of DNA, including platinating agents. O6-BG's mechanism of action with these agents is not fully understood; however, it is independent of AGT activity or AGT inactivation. A better understanding of the effects of this agent will contribute to its clinical usefulness and the design of better analogs to further improve cancer chemotherapy.
Collapse
Affiliation(s)
- Cara A Rabik
- Department of Medicine, Committee on Cancer Biology, Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
44
|
Lao Y, Villalta PW, Sturla SJ, Wang M, Hecht SS. Quantitation of pyridyloxobutyl DNA adducts of tobacco-specific nitrosamines in rat tissue DNA by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Chem Res Toxicol 2006; 19:674-82. [PMID: 16696570 PMCID: PMC2518839 DOI: 10.1021/tx050351x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN, 1) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 2) are potent carcinogens in rodents. Bioactivation of NNN and NNK by cytochrome P450 enzymes generates a pyridyloxobutylating agent 6, which alkylates DNA to produce pyridyloxobutyl (POB)-DNA adducts. POB-DNA adduct formation plays a critical role in NNN and NNK carcinogenicity in rodents. To further investigate the significance of this pathway, we developed a high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method for quantitative analysis of four POB-DNA adducts with known structures. The corresponding deuterated analogues were synthesized and used as internal standards. DNA samples, spiked with internal standards, were subjected to neutral thermal hydrolysis followed by enzymatic hydrolysis. The hydrolysates were partially purified by solid phase extraction prior to HPLC-ESI-MS/MS analysis. The method was accurate and precise. Excellent sensitivity was achieved, especially for O2-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O2-POB-dThd, 11) with a detection limit of 100 amol per mg DNA. DNA samples treated with different concentrations of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc, 3) were subjected to HPLC-ESI-MS/MS analysis. 7-[4-(3-Pyridyl)-4-oxobut-1-yl]guanine (7-POB-Gua, 12) was the most abundant adduct, followed by O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O6-POB-dGuo, 8), O2-POB-dThd, and O2-[4-(3-pyridyl)-4-oxobut-1-yl]cytosine (O2-POB-Cyt, 13). Lung and liver DNA isolated from NNK-treated rats were analyzed. Consistent with the in vitro data, 7-POB-Gua was the major POB-DNA adduct formed in vivo. However, levels of O6-POB-dGuo were the lowest of the four adducts analyzed, suggesting efficient repair of this adduct in vivo. In contrast to the other three adducts, O6-POB-dGuo was more abundant in lung than in liver. O2-POB-dThd appeared to be poorly repaired in vivo, and its levels were comparable to those of 7-POB-Gua. The results of this study provide a sensitive HPLC-ESI-MS/MS method for comprehensive quantitation of four POB-DNA adducts, support an important role of O6-POB-dGuo in NNK lung tumorigenicity in rats, and suggest that O2-POB-dThd may be a useful tobacco-specific DNA biomarker for future tobacco carcinogenesis studies.
Collapse
Affiliation(s)
- Yanbin Lao
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
- The Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | | | - Shana J. Sturla
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
- The Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Mingyao Wang
- The Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Stephen S. Hecht
- The Cancer Center, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
45
|
Vogt S, Fuchs K, Richter E. Genotoxic effects of myosmine in a human esophageal adenocarcinoma cell line. Toxicology 2006; 222:71-9. [PMID: 16504364 DOI: 10.1016/j.tox.2006.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 01/23/2006] [Accepted: 01/24/2006] [Indexed: 10/25/2022]
Abstract
The incidence of esophageal adenocarcinoma is rapidly rising in Western populations. Gastroesophageal reflux disease (GERD) is thought to be one of the most important risk factors. However, the mechanisms by which GERD enhances tumor formation at the gastroesophageal junction are not well understood. Myosmine is a tobacco alkaloid which has also a wide spread occurrence in human diet. It is readily activated by nitrosation and peroxidation giving rise to the same hydroxypyridylbutanone-releasing DNA adducts as the esophageal carcinogen N'-nitrosonornicotine. Therefore, the genotoxicity of myosmine was tested in a human esophageal adenocarcinoma cell line (OE33). DNA damage was assessed by single-cell gel electrophoresis (Comet assay). DNA strand breaks, alkali labile sites and incomplete excision repair were expressed using the Olive tail moment (OTM). The Fapy glycosylase (Fpg) enzyme was incorporated into the assay to reveal additional oxidative DNA damage. DNA migration was determined after incubation of the cells for 1-24h. Under neutral conditions high myosmine concentrations of 25-50mM were necessary to elicit a weak genotoxic effect. At pH 6 genotoxicity was clearly enhanced giving a significant increase of OTM values at 5mM myosmine. Lower pH values could not be tested because of massive cytotoxicity even in the absence of myosmine. Co-incubation of 25 mM myosmine with 1mM H(2)O(2) for 1h significantly enhanced the genotoxicity of H(2)O(2) but not the oxidative lesions additionally detected with the Fpg enzyme. In the presence of the peroxynitrite donor 3-morpholinosydnonimine (SIN-1) a dose-dependent significant genotoxic effect was obtained with 1-10mM myosmine after 4h incubation. NS-398, a selective inhibitor of cyclooxygenase 2, did not affect the SIN-1 stimulated genotoxicity of myosmine. Finally, the 23 h repair of N-methyl-N'-nitro-N-nitrosoguanidine-induced DNA lesions was significantly inhibited in the presence of 10mM myosmine. In conclusion, myosmine exerts significant genotoxic effects in esophageal cells under conditions which may prevail in GERD such as increased oxidative and nitrosative stress resulting from chronic inflammation.
Collapse
Affiliation(s)
- Sarah Vogt
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians University, Goethestrasse 33, D-80336 Munich, Germany
| | | | | |
Collapse
|
46
|
Hill CE, Wickliffe JK, Wolfe KJ, Kinslow CJ, Lopez MS, Abdel-Rahman SZ. The L84F and the I143V polymorphisms in the O6-methylguanine-DNA-methyltransferase (MGMT) gene increase human sensitivity to the genotoxic effects of the tobacco-specific nitrosamine carcinogen NNK. Pharmacogenet Genomics 2005; 15:571-8. [PMID: 16007001 DOI: 10.1097/01.fpc.0000167332.38528.a5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
O-Methylguanine-DNA-methyltransferase (MGMT) is a direct-reversal DNA repair protein that removes DNA adducts formed by alkylating mutagens found in tobacco smoke. Several coding single nucleotide polymorphisms (cSNPs) in the MGMT gene have been reported. However, their effect on the levels and types of genetic damage induced by specific environmental carcinogens remains to be fully elucidated. We developed two novel genotyping techniques and used them, in conjunction with the mutagen-sensitivity assay, to test the hypothesis that the L84F and I143V cSNPs in the MGMT gene confer increased sensitivity to genetic damage induced by the alkylating tobacco-specific nitrosamine carcinogen NNK. Lymphocytes from 114 healthy volunteers were exposed in vitro to NNK, and the genotoxic response was assessed by measuring chromosome aberration (CA) frequencies. A significant (P<0.02) increase in NNK-induced CA was observed in cells from individuals with the 84F polymorphism compared to cells from individuals homozygous for the referent L84 allele. A significant positive interaction between this cSNP and smoking, gender and age was observed (P<0.03). In subjects with the variant 143V allele, significantly higher levels of NNK-induced CA were observed in males and in young subjects (<43 years old) compared to subjects homozygous for the referent I143 allele (P<0.02). Individuals who inherited two cSNPs had significantly higher levels of NNK-induced CA compared to individuals with none or with one cSNP (P<0.002). These new data suggest that the 84F and 143V cSNPs may alter the function characteristics of the MGMT protein, resulting in suboptimal repair of genetic damage induced by NNK.
Collapse
Affiliation(s)
- Courtney E Hill
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas 77555-1110, USA
| | | | | | | | | | | |
Collapse
|
47
|
Shen J, Terry MB, Gammon MD, Gaudet MM, Teitelbaum SL, Eng SM, Sagiv SK, Neugut AI, Santella RM. MGMT genotype modulates the associations between cigarette smoking, dietary antioxidants and breast cancer risk. Carcinogenesis 2005; 26:2131-7. [PMID: 16014702 DOI: 10.1093/carcin/bgi179] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
O(6)-methylguanine DNA methyl-transferase (MGMT) is the only known critical gene involved in cellular defense against alkylating agents in the DNA direct reversal repair (DRR) pathway. Three single nucleotide polymorphism (SNP) coding for non-conservative amino acid substitutions have been identified [C250T (Leu84Phe), A427G (Ile143Val) and A533G (Lys178Arg)]. To examine the importance of the DRR pathway in risk for breast cancer and the potential interaction with cigarette smoking and dietary antioxidants, we genotyped for these variants using biospecimens from the Long Island Breast Cancer Study Project. Genotyping was performed by a high throughput assay with fluorescence polarization and included 1067 cases and 1110 controls. Overall, there was no main effect between any variant genotype, haplotype or diplotype and breast cancer risk. Heavy smoking (>31 pack-year) significantly increased breast cancer risk for women with the codon 84 variant T-allele [odds ratio, OR = 3.0, 95% confidence interval (95% CI) = 1.4-6.2]. An inverse association between fruits and vegetables consumption and breast cancer risk was observed among women with the wild-type genotype for codon 84 (OR = 0.8, 95% CI = 0.6-0.9 for > or =35 servings of fruits and vegetables per week and CC genotype versus those with <35 servings per week and CC genotype). The association between fruits and vegetables consumption and reduced breast cancer risk was apparent among women with at least one variant allele for codon 143 (OR = 0.6, 95% CI = 0.5-0.9 for > or =35 servings of fruits and vegetables per week and AG or GG genotype versus those with <35 servings per week and AA genotype). Similar patterns were observed for dietary alpha-carotene and supplemental beta-carotene, but not for supplemental vitamins C and E. These data suggest that polymorphisms in MGMT may modulate the inverse association previously observed between fruits and vegetables consumption, dietary antioxidants and breast cancer risk, and support the importance of fruits and vegetables on breast cancer risk reduction.
Collapse
Affiliation(s)
- Jing Shen
- Department of Environmental Health Sciences, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zang H, Fang Q, Pegg AE, Guengerich FP. Kinetic analysis of steps in the repair of damaged DNA by human O6-alkylguanine-DNA alkyltransferase. J Biol Chem 2005; 280:30873-81. [PMID: 16000301 DOI: 10.1074/jbc.m505283200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rates of individual steps in the removal of alkyl groups from O6-methyl (Me) and -benzyl (Bz) guanine in oligonucleotides by human O6-alkylguanine DNA alkyltransferase (AGT) were estimated using rapid reaction kinetic methods. The overall reaction yields hyperbolic plots of rate versus AGT concentration for O6-MeG but linear plots for the O6-BzG reaction, which is approximately 100-fold faster. The binding of AGT and DNA (double-stranded 30-mer/36-mer complex) appears to be diffusion-limited. The rate of dissociation of the complex is approximately 25-fold slower (approximately 1 s(-1)) for DNA containing O6-MeG or O6-BzG than unmodified DNA. The fluorescent dC-analog 6-methylpyrrolo[2,3-d]pyrimidine-2(3H) one deoxyribonucleoside (pyrrolo dC), which pairs with G, was positioned opposite G, O6-MeG, or O6-BzG and used as a probe of the rate of base flipping. A rapid increase of fluorescence (k approximately 200 s(-1)) was observed with O6-MeG and O6-BzG and AGT but not with a Gly mutation at Arg128, which has been implicated in base flipping with crystal structures. Only weak and slower fluorescence changes were observed with G:pyrrolo dC or T:2-aminopurine pairs. These rate estimates were used in a kinetic model in which AGT binds and scans DNA rapidly, flips O6-alkylG residues, transfers the alkyl group in a chemical step that is rate-limiting in the case of O6-MeG but not O6-BzG, and releases the dealkylated DNA. The results explain the overall patterns of rates of alkyl group removal versus AGT concentration and the effects of the mutations, as well as the greater affinity of AGT for DNA with O6-alkylG lesions.
Collapse
Affiliation(s)
- Hong Zang
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | |
Collapse
|
49
|
Margison GP, Heighway J, Pearson S, McGown G, Thorncroft MR, Watson AJ, Harrison KL, Lewis SJ, Rohde K, Barber PV, O'Donnell P, Povey AC, Santibáñez-Koref MF. Quantitative trait locus analysis reveals two intragenic sites that influence O6-alkylguanine-DNA alkyltransferase activity in peripheral blood mononuclear cells. Carcinogenesis 2005; 26:1473-80. [PMID: 15831531 DOI: 10.1093/carcin/bgi087] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The repair of specific types of DNA alkylation damage by O6-alkylguanine-DNA alkyltransferase (MGMT) is a major mechanism of resistance to the carcinogenic and chemotherapeutic effects of certain alkylating agents. MGMT expression levels vary widely between individuals but the underlying causes of this variability are not known. To address this, we used an expressed single nucleotide polymorphism (SNP) and demonstrated that the MGMT alleles are frequently expressed at different levels in peripheral blood mononuclear cells (PBMC). This suggests that there is a genetic component of inter-allelic variation of MGMT levels that maps close to or within the MGMT locus. We then used quantitative trait locus (QTL) analysis using intragenic SNPs and found that there are at least two sites influencing inter-individual variation in PBMC MGMT activity. One is characterized by an SNP at the 3' end of the first intron and the second by two SNPs in the last exon. The latter are in perfect disequilibrium and both result in amino acid substitutions-one of them, Ile143Val, affecting an amino acid close to the Cys145 residue at the active site of MGMT. Using in vitro assays, we further showed that while the Val143 variant did not affect the activity of the protein on methylated DNA substrate, it was more resistant to inactivation by the MGMT pseudosubstrate, O6-(4-bromothenyl)guanine. These findings suggest that further investigations of the potential epidemiological and clinical significance of inherited differences in MGMT expression and activity are warranted.
Collapse
Affiliation(s)
- Geoffrey P Margison
- Cancer Research-UK Carcinogenesis Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|