1
|
Estevao IL, Kazman JB, Bramer LM, Nicora C, Ren MQ, Sambuughin N, Munoz N, Kim YM, Bloodsworth K, Richert M, Teeguarden J, Burnum-Johnson K, Deuster PA, Nakayasu ES, Many G. The impact of heat stress on the human plasma lipidome. RESEARCH SQUARE 2024:rs.3.rs-4548154. [PMID: 38978592 PMCID: PMC11230469 DOI: 10.21203/rs.3.rs-4548154/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The year of 2023 displayed the highest average global temperatures since it has been recorded-the duration and severity of extreme heat are projected to increase. Rising global temperatures represent a major public health threat, especially to occupations exposed to hot environments, such as construction and agricultural workers, and first responders. Despite efforts of the scientific community, there is still a need to characterize the pathophysiological processes leading to heat related illness and develop biomarkers that can predict its onset. Here, we performed a plasma lipidomic analysis on male and female subjects who underwent heat tolerance testing (HTT), consisting of a 2-h treadmill walk at 5 km/h with 2% inclination at a controlled temperature of 40°C. We identified 995 lipids from 27 classes, with nearly half of all detected lipids being responsive to HTT. Lipid classes related to substrate utilization were predominantly affected by HTT, with a downregulation of triacylglycerols and upregulation of free fatty acids and acyl-carnitines (CARs). We additionally examined correlations between changes in plasma lipids by using the physiological strain index (PSI). Here, even chain CAR 4:0, 14:0 and 16:1, suggested by-products of incomplete beta oxidation, and diacylglycerols displayed the highest correlation to PSI. PSI did not correlate with plasma lactate levels, suggesting that correlations between even chain CARs and PSI is related to metabolic efficiency versus physical exertion. Overall, our results show that HTT has a strong impact on the plasma lipidome and that metabolic inefficiencies may underlie heat intolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gina Many
- Pacific Northwest National Laboratory
| |
Collapse
|
2
|
Łuczaj W, Gęgotek A, Conde T, Domingues MR, Domingues P, Skrzydlewska E. Lipidomic assessment of the impact of Nannochloropsis oceanica microalga lipid extract on human skin keratinocytes exposed to chronic UVB radiation. Sci Rep 2023; 13:22302. [PMID: 38102403 PMCID: PMC10724133 DOI: 10.1038/s41598-023-49827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
Considerable attention has been devoted to investigating the biological activity of microalgal extracts, highlighting their capacity to modulate cellular metabolism. This study aimed to assess the impact of Nannochloropsis oceanica lipid extract on the phospholipid profile of human keratinocytes subjected to UVB radiation. The outcomes revealed that treatment of keratinocytes with the lipid extract from microalgae led to a reduction in sphingomyelin (SM) levels, with a more pronounced effect observed in UVB-irradiated cells. Concomitantly, there was a significant upregulation of ceramides CER[NDS] and CER[NS], along with increased sphingomyelinase activity. Pathway analysis further confirmed that SM metabolism was the most significantly affected pathway in both non-irradiated and UVB-irradiated keratinocytes treated with the microalgal lipid extract. Additionally, the elevation in alkylacylPE (PEo) and diacylPE (PE) species content observed in UVB-irradiated keratinocytes following treatment with the microalgal extract suggested the potential induction of pro-survival mechanisms through autophagy in these cells. Conversely, a noteworthy reduction in LPC content in UVB-irradiated keratinocytes treated with the extract, indicated the anti-inflammatory properties of the lipid extract obtained from microalgae. However, to fully comprehend the observed alterations in the phospholipid profile of UVB-irradiated keratinocytes, further investigations are warranted to identify the specific fraction of compounds responsible for the activity of the Nannochloropsis oceanica extract.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| |
Collapse
|
3
|
Lindner JR. Opportunities and Challenges of Murine Atrial Strain Imaging. Circ Cardiovasc Imaging 2023; 16:e015976. [PMID: 37795598 DOI: 10.1161/circimaging.123.015976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Affiliation(s)
- Jonathan R Lindner
- Division of Cardiovascular Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville
| |
Collapse
|
4
|
Zhang KR, Jankowski CSR, Marshall R, Nair R, Más Gómez N, Alnemri A, Liu Y, Erler E, Ferrante J, Song Y, Bell BA, Baumann BH, Sterling J, Anderson B, Foshe S, Roof J, Fazelinia H, Spruce LA, Chuang JZ, Sung CH, Dhingra A, Boesze-Battaglia K, Chavali VRM, Rabinowitz JD, Mitchell CH, Dunaief JL. Oxidative stress induces lysosomal membrane permeabilization and ceramide accumulation in retinal pigment epithelial cells. Dis Model Mech 2023; 16:dmm050066. [PMID: 37401371 PMCID: PMC10399446 DOI: 10.1242/dmm.050066] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
Oxidative stress has been implicated in the pathogenesis of age-related macular degeneration, the leading cause of blindness in older adults, with retinal pigment epithelium (RPE) cells playing a key role. To better understand the cytotoxic mechanisms underlying oxidative stress, we used cell culture and mouse models of iron overload, as iron can catalyze reactive oxygen species formation in the RPE. Iron-loading of cultured induced pluripotent stem cell-derived RPE cells increased lysosomal abundance, impaired proteolysis and reduced the activity of a subset of lysosomal enzymes, including lysosomal acid lipase (LIPA) and acid sphingomyelinase (SMPD1). In a liver-specific Hepc (Hamp) knockout murine model of systemic iron overload, RPE cells accumulated lipid peroxidation adducts and lysosomes, developed progressive hypertrophy and underwent cell death. Proteomic and lipidomic analyses revealed accumulation of lysosomal proteins, ceramide biosynthetic enzymes and ceramides. The proteolytic enzyme cathepsin D (CTSD) had impaired maturation. A large proportion of lysosomes were galectin-3 (Lgals3) positive, suggesting cytotoxic lysosomal membrane permeabilization. Collectively, these results demonstrate that iron overload induces lysosomal accumulation and impairs lysosomal function, likely due to iron-induced lipid peroxides that can inhibit lysosomal enzymes.
Collapse
Affiliation(s)
- Kevin R. Zhang
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor S. R. Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rayna Marshall
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rohini Nair
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Néstor Más Gómez
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahab Alnemri
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingrui Liu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Erler
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia Ferrante
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brent A. Bell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bailey H. Baumann
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon Anderson
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra Foshe
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Roof
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Lynn A. Spruce
- CHOP-PENN Proteomics Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anuradha Dhingra
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Venkata R. M. Chavali
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Claire H. Mitchell
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua L. Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Lee JH, Gwon MR, Park JS, Lee HW, Lee DH, Yoon YR, Seong SJ. Metabolomic analysis of the inhibitory effect of phthalates and bisphenol A on the antioxidant activity of vitamin D in human samples using liquid chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1221:123687. [PMID: 37001203 DOI: 10.1016/j.jchromb.2023.123687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Vitamin D is important because it has roles in maintaining musculoskeletal health, redox homeostasis, and the immune system; however, it is commonly dysregulated by endocrine disrupting chemicals, particularly phthalates and bisphenol A (BPA). Continuous exposure to phthalates and BPA may alter the endogenous metabolite profiles associated with vitamin D activity, although the specific metabolites are yet to be identified. In this study, we identified the endogenous metabolites altered by phthalates and BPA exposure through untargeted metabolic profiling and investigated the role of these metabolites in vitamin D activity. Plasma metabolic profiling using liquid chromatography-mass spectrometry was performed in two groups: severe 25-hydroxyvitamin D (25(OH)D) deficiency and high exposure to phthalates and BPA (Group A) and 25(OH)D deficiency and low exposure to phthalates and BPA (Group B). Multivariate analysis revealed a distinct separation between the two groups. A total of six metabolites were annotated, of which levels of two were significantly different between the two groups: platelet-activating factor (PAF) C16 or lysophosphatidylcholine (lysoPC) 18:0, and 11Z-eicosenamide. Plasma levels of PAF C16 or lysoPC 18:0 were increased in Group A and exhibited an area under the curve of 0.769 with an accuracy of 74.4% in a receiver operating characteristic curve analysis. These metabolites are generated as byproducts of lipid peroxidation, which supports the fact that phthalates and BPA induce oxidative stress in cells. Furthermore, PAF C16 and lysoPC 18:0 may be involved in the network that interferes with the antioxidant activity of vitamin D upon exposure to phthalates and BPA. This study results provide useful information on how the activity of vitamin D on the antioxidant system is inhibited when exposure to phthalates and BPA.
Collapse
|
6
|
Pharmacometabolomic study of drug response to antihypertensive medications for hypertension marker identification in Han Chinese individuals in Taiwan. Comput Struct Biotechnol J 2022; 20:6458-6466. [DOI: 10.1016/j.csbj.2022.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
|
7
|
Low Concentrations of Oxidized Phospholipids Increase Stress Tolerance of Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11091741. [PMID: 36139816 PMCID: PMC9495896 DOI: 10.3390/antiox11091741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidized phospholipids (OxPLs) are generated by enzymatic or autooxidation of esterified polyunsaturated fatty acids (PUFAs) residues. OxPLs are present in circulation and atherosclerotic plaques where they are thought to induce predominantly proinflammatory and toxic changes in endothelial (ECs) and other cell types. Unexpectedly, we found that low concentrations of OxPLs were not toxic but protected ECs from stress induced by serum deprivation or cytostatic drugs. The protective effect was observed in ECs obtained from different vessels and was monitored using a variety of readouts based on different biological and chemical principles. Analysis of the structure−activity relationship identified oxidized or missing fatty acid residue (OxPLs or Lyso-PLs, respectively) as a prerequisite for the protective action of a PL. Protective OxPLs or Lyso-PLs acquired detergent-like properties and formed in solution aggregates <10 nm in diameter (likely micelles), which were in striking contrast with large aggregates (>1000 nm, likely multilayer liposomes) produced by nonoxidized precursor PLs. Because surfactants, OxPLs, and Lyso-PLs are known to extract membrane cholesterol, we tested if this effect might trigger the protection of endothelial cells. The protective action of OxPLs and Lyso-PLs was inhibited by cotreatment with cholesterol and mimicked by cholesterol-binding beta-cyclodextrin but not inactive α-cyclodextrin. Wide-scale mRNA expression analysis in four types of ECs showed the induction of genes encoding for heat shock proteins (HSPs) and secreted prosurvival peptides and proteins. Inducers of HSPs, chemical chaperones, and pure prosurvival factors mimicked the protective action of OxPLs/Lyso-PLs. We hypothesize that oxidation changes the physicochemical properties of PLs, thus promoting membrane cholesterol redistribution or extraction leading to the expression of intra- and extracellular prosurvival factors.
Collapse
|
8
|
Zhang D, Jiang L, Li L, Li X, Zheng W, Gui L, Yang Y, Liu Y, Yang L, Wang J, Xiong Y, Ji L, Deng Y, Liu X, He Q, Hu X, Liu X, Fan R, Lu Y, Liu J, Cheng J, Yang H, Li T, Gong M. Integrated metabolomics revealed the fibromyalgia-alleviation effect of Mo 2C nanozyme through regulated homeostasis of oxidative stress and energy metabolism. Biomaterials 2022; 287:121678. [PMID: 35853361 DOI: 10.1016/j.biomaterials.2022.121678] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 02/08/2023]
Abstract
Fibromyalgia (FM), the most common cause of chronic musculoskeletal pain in the general public, lacks advanced therapeutic methodology and detailed bioinformation. However, acting as a newly developed and important transition metal carbide or carbonitride, the Mo2C nanozyme has provided a novel iatrotechnique with excellent bioactivity in a cell/animal model, which also exhibits potential prospects for future clinical applications. In addition, high-content and high-throughput integrated metabolomics (including aqueous metabolomics, lipidomics, and desorption electrospray ionization-mass spectrometry imaging) also specializes in qualitative and quantitative analysis of metabolic shifts at the molecular level. In this work, the FM-alleviation effect of Mo2C nanozyme was investigated through integrated metabolomics in a mouse model. An advanced platform combining gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry and bioinformatics was utilized to study the variation in the mouse metabolome and lipidome. The results revealed that Mo2C treatment could effectively enhance energy metabolism-related biological events impaired by FM, leading to homeostasis of oxidative stress and energy metabolism toward the control levels. During this process, Mo2C facilitated the elimination of ROS in plasma and cells and the rehabilitation of mice from oxidative stress and mitochondrial dysfunction. It was believed that such an integrated metabolomics study on the FM-alleviation effect of Mo2C nanozyme could provide another excellent alternative to traditional Mo2C-based research with numerous pieces of bioinformation, further supporting research area innovation, material modification, and clinical application.
Collapse
Affiliation(s)
- Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Ling Jiang
- Laboratory of Mitochondrial and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Li
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, PR China
| | - Wen Zheng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, PR China
| | - Luolan Gui
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yin Yang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueqiu Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yixiao Xiong
- Laboratory of Mitochondrial and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liwei Ji
- Laboratory of Mitochondrial and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Deng
- Laboratory of Mitochondrial and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Liu
- Laboratory of Mitochondrial and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinqin He
- Laboratory of Mitochondrial and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyi Hu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xin Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Rong Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong; Chengdu Research Institute, City University of Hong Kong, Chengdu, PR China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong; Chengdu Research Institute, City University of Hong Kong, Chengdu, PR China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Hao Yang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China
| | - Tao Li
- Laboratory of Mitochondrial and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, PR China.
| |
Collapse
|
9
|
Bartolacci C, Andreani C, Vale G, Berto S, Melegari M, Crouch AC, Baluya DL, Kemble G, Hodges K, Starrett J, Politi K, Starnes SL, Lorenzini D, Raso MG, Solis Soto LM, Behrens C, Kadara H, Gao B, Wistuba II, Minna JD, McDonald JG, Scaglioni PP. Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer. Nat Commun 2022; 13:4327. [PMID: 35882862 PMCID: PMC9325712 DOI: 10.1038/s41467-022-31963-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/06/2022] [Indexed: 12/22/2022] Open
Abstract
Mutant KRAS (KM), the most common oncogene in lung cancer (LC), regulates fatty acid (FA) metabolism. However, the role of FA in LC tumorigenesis is still not sufficiently characterized. Here, we show that KMLC has a specific lipid profile, with high triacylglycerides and phosphatidylcholines (PC). We demonstrate that FASN, the rate-limiting enzyme in FA synthesis, while being dispensable in EGFR-mutant or wild-type KRAS LC, is required for the viability of KMLC cells. Integrating lipidomic, transcriptomic and functional analyses, we demonstrate that FASN provides saturated and monounsaturated FA to the Lands cycle, the process remodeling oxidized phospholipids, such as PC. Accordingly, blocking either FASN or the Lands cycle in KMLC, promotes ferroptosis, a reactive oxygen species (ROS)- and iron-dependent cell death, characterized by the intracellular accumulation of oxidation-prone PC. Our work indicates that KM dictates a dependency on newly synthesized FA to escape ferroptosis, establishing a targetable vulnerability in KMLC.
Collapse
Affiliation(s)
- Caterina Bartolacci
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Cristina Andreani
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Gonçalo Vale
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Stefano Berto
- Department of Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Margherita Melegari
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Anna Colleen Crouch
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dodge L Baluya
- Tissue Imaging and Proteomics Laboratory, Washington State University, Pullman, WA, 99164, USA
| | | | - Kurt Hodges
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | | | - Katerina Politi
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Sandra L Starnes
- Department of Surgery, Division of Thoracic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Daniele Lorenzini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, via Venezian 1, 20133, Milan, Italy
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic H&N Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pier Paolo Scaglioni
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA.
| |
Collapse
|
10
|
Andreani C, Bartolacci C, Scaglioni PP. Ferroptosis: A Specific Vulnerability of RAS-Driven Cancers? Front Oncol 2022; 12:923915. [PMID: 35912247 PMCID: PMC9337859 DOI: 10.3389/fonc.2022.923915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis has emerged as a new type of programmed cell death that can be harnessed for cancer therapy. The concept of ferroptosis was for the first time proposed in in the early 2000s, as an iron-dependent mode of regulated cell death caused by unrestricted lipid peroxidation (LPO) and subsequent plasma membrane rupture. Since the discovery and characterization of ferroptosis, a wealth of research has improved our understanding of the main pathways regulating this process, leading to both the repurposing and the development of small molecules.However, ferroptosis is still little understood and several aspects remain to be investigated. For instance, it is unclear whether specific oncogenes, cells of origin or tumor niches impose specific susceptibility/resistance to ferroptosis or if there are some ferroptosis-related genes that may be used as bona fide pan-cancer targetable dependencies. In this context, even though RAS-driven cancer cell lines seemed to be selectively sensitive to ferroptosis inducers, subsequent studies have questioned these results, indicating that in some cases mutant RAS is necessary, but not sufficient to induce ferroptosis. In this perspective, based on publicly available genomic screening data and the literature, we discuss the relationship between RAS-mutation and ferroptosis susceptibility in cancer.
Collapse
|
11
|
Pidoux L, Delanoe K, Barbier J, Marchand F, Lingueglia E, Deval E. Single Subcutaneous Injection of Lysophosphatidyl-Choline Evokes ASIC3-Dependent Increases of Spinal Dorsal Horn Neuron Activity. Front Mol Neurosci 2022; 15:880651. [PMID: 35774865 PMCID: PMC9239072 DOI: 10.3389/fnmol.2022.880651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Lysophosphatidyl-choline (LPC), a member of the phospholipid family, is an emerging player in pain. It is known to modulate different pain-related ion channels, including Acid-Sensing Ion Channel 3 (ASIC3), a cationic channel mainly expressed in peripheral sensory neurons. LPC potentiates ASIC3 current evoked by mild acidifications, but can also activate the channel at physiological pH. Very recently, LPC has been associated to chronic pain in patients suffering from fibromyalgia or osteoarthritis. Accordingly, repetitive injections of LPC within mouse muscle or joint generate both persistent pain-like and anxiety-like behaviors in an ASIC3-dependent manner. LPC has also been reported to generate acute pain behaviors when injected intraplantarly in rodents. Here, we explore the mechanism of action of a single cutaneous injection of LPC by studying its effects on spinal dorsal horn neurons. We combine pharmacological, molecular and functional approaches including in vitro patch clamp recordings and in vivo recordings of spinal neuronal activity. We show that a single cutaneous injection of LPC exclusively affects the nociceptive pathway, inducing an ASIC3-dependent sensitization of nociceptive fibers that leads to hyperexcitabilities of both high threshold (HT) and wide dynamic range (WDR) spinal neurons. ASIC3 is involved in LPC-induced increase of WDR neuron’s windup as well as in WDR and HT neuron’s mechanical hypersensitivity, and it participates, together with TRPV1, to HT neuron’s thermal hypersensitivity. The nociceptive input induced by a single LPC cutaneous rather induces short-term sensitization, contrary to previously described injections in muscle and joint. If the effects of peripheral LPC on nociceptive pathways appear to mainly depend on peripheral ASIC3 channels, their consequences on pain may also depend on the tissue injected. Our findings contribute to a better understanding of the nociceptive signaling pathway activated by peripheral LPC via ASIC3 channels, which is an important step regarding the ASIC3-dependent roles of this phospholipid in acute and chronic pain conditions.
Collapse
Affiliation(s)
- Ludivine Pidoux
- Université Côte d’Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France
| | - Kevin Delanoe
- Université Côte d’Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France
| | - Julie Barbier
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Fabien Marchand
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Eric Lingueglia
- Université Côte d’Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France
| | - Emmanuel Deval
- Université Côte d’Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France
- *Correspondence: Emmanuel Deval,
| |
Collapse
|
12
|
Wang Z, Gao Y, Huang X, Huang S, Yang X, Wang J, Zheng N. Metabolomics analysis underlay mechanisms in the renal impairment of mice caused by combination of aflatoxin M1 and ochratoxin A. Toxicology 2021; 458:152835. [PMID: 34126166 DOI: 10.1016/j.tox.2021.152835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
Aflatoxin M1 (AFM1) and ochratoxin A (OTA) are pernicious mycotoxins widely co-existing in the environment. However, nephrotoxicity and underlying mechanism induced by AFM1 coupled with OTA still remain to be explored. In this study, CD-1 mice were treated with 3.5 mg/kg b.w. AFM1, OTA, and AFM1 + OTA for 35 days, and UPLC-MS-based metabolomics method was effectuated to investigate metabolomic profiles of mice kidney. Subsequent experiments on human renal proximal tubular (HK-2) cells were performed to dig out the causal connections between distinguished differential metabolites and nephrotoxicity. Compared with DMSO vehicle group, all three toxin treatments (AFM1 and OTA alone, and in combination) significantly reduced final body weight, and remarkably elevated the concentration of serum creatinine (SCr) and caused abnormal histological phenotypes (shown by histopathological slices). OTA, AFM1 + OTA but not AFM1 reduced the relative weight index of kidney. These phenotypic results indicated that AFM1 and OTA were both toxic to the body, and it seemed that OTA exhibited a notable impairment to kidney while AFM1 had similar but limited effect compared with OTA. Further metabolomics analysis showed that when AFM1 and OTA were combined together, OTA exerted dominant effect on the alteration of metabolic processes. There were few differences in the number of changed metabolites between OTA and AFM1 + OTA group. Among the differentially expressed metabolites affected by OTA, and AFM1 + OTA, lysophosphatidylcholines (LysoPCs) were identified as the main type with significant upregulation, in which LysoPC (16:0) accounted for the most prime proportion. Western blotting results of HK-2 cells showed that single OTA and AFM1 + OTA increased the apoptotic protein expressions of Bax, caspase 3 and PARP, and decreased the expression of Bcl-2; while AFM1 only raised the expression of caspase 3. LysoPC (16:0) but not LysoPC (18:1) lifted the protein level of caspase 3 and PARP in HK-2 cells, and reduced the level of Bcl-2. Taken together, this study is the first effort trying to assess nephrotoxicity of AFM1 with OTA, and we guessed that OTA had a more pronounced toxicity to kidney in contrast to AFM1. No obvious synergism between AFM1 and OTA was found to contribute to the occurrence or development of nephropathy. LysoPC (16:0) might be the pivotal metabolite in response to single OTA and combined AFM1 + OTA engendering renal injury.
Collapse
Affiliation(s)
- Ziwei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xin Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Shengnan Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Xue Yang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
13
|
Structure and Dynamics of Oxidized Lipoproteins In Vivo: Roles of High-Density Lipoprotein. Biomedicines 2021; 9:biomedicines9060655. [PMID: 34201176 PMCID: PMC8229488 DOI: 10.3390/biomedicines9060655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/30/2023] Open
Abstract
Oxidative modification of lipoproteins is implicated in the occurrence and development of atherosclerotic lesions. Earlier studies have elucidated on the mechanisms of foam cell formation and lipid accumulation in these lesions, which is mediated by scavenger receptor-mediated endocytosis of oxidized low-density lipoprotein (oxLDL). Mounting clinical evidence has supported the involvement of oxLDL in cardiovascular diseases. High-density lipoprotein (HDL) is known as anti-atherogenic; however, recent studies have shown circulating oxidized HDL (oxHDL) is related to cardiovascular diseases. A modified structure of oxLDL, which was increased in the plasma of patients with acute myocardial infarction, was characterized. It had two unique features: (1) a fraction of oxLDL accompanied oxHDL, and (2) apoA1 was heavily modified, while modification of apoB, and the accumulation of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) was less pronounced. When LDL and HDL were present at the same time, oxidized lipoproteins actively interacted with each other, and oxPC and lysoPC were transferred to another lipoprotein particle and enzymatically metabolized rapidly. This brief review provides a novel view on the dynamics of oxLDL and oxHDL in circulation.
Collapse
|
14
|
Różanowska MB, Pawlak A, Różanowski B. Products of Docosahexaenoate Oxidation as Contributors to Photosensitising Properties of Retinal Lipofuscin. Int J Mol Sci 2021; 22:ijms22073525. [PMID: 33805370 PMCID: PMC8037991 DOI: 10.3390/ijms22073525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Retinal lipofuscin which accumulates with age in the retinal pigment epithelium (RPE) is subjected to daily exposures to high fluxes of visible light and exhibits potent photosensitising properties; however, the molecules responsible for its photoreactivity remain unknown. Here, we demonstrate that autooxidation of docosahexaenoate (DHE) leads to the formation of products absorbing, in addition to UVB and UVA light, also visible light. The products of DHE oxidation exhibit potent photosensitising properties similar to photosensitising properties of lipofuscin, including generation of an excited triplet state with similar characteristics as the lipofuscin triplet state, and photosensitised formation of singlet oxygen and superoxide. The quantum yields of singlet oxygen and superoxide generation by oxidised DHE photoexcited with visible light are 2.4- and 3.6-fold higher, respectively, than for lipofuscin, which is consistent with the fact that lipofuscin contains some chromophores which do contribute to the absorption of light but not so much to its photosensitising properties. Importantly, the wavelength dependence of photooxidation induced by DHE oxidation products normalised to equal numbers of incident photons is also similar to that of lipofuscin—it steeply increases with decreasing wavelength. Altogether, our results demonstrate that products of DHE oxidation include potent photosensitiser(s) which are likely to contribute to lipofuscin photoreactivity.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Correspondence: ; Tel.: +44-292087-5057
| | - Anna Pawlak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | | |
Collapse
|
15
|
Cheng YS, Linetsky M, Li H, Ayyash N, Gardella A, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic acid lactone can induce mitochondrial dysfunction in retinal pigmented epithelial cells. Free Radic Biol Med 2020; 160:719-733. [PMID: 32920040 PMCID: PMC7704664 DOI: 10.1016/j.freeradbiomed.2020.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 11/30/2022]
Abstract
Oxidation of docosahexaenoate (DHA)-containing phospholipids in the cell plasma membrane leads to release of the α,β-unsaturated aldehyde 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone which is capable of inducing retinal pigmented epithelial (RPE) cell dysfunction. Previously, HOHA lactone was shown to induce apoptosis and angiogenesis, and to activate the alternative complement pathway. RPE cells metabolize HOHA lactone through enzymatic conjugation with glutathione (GSH). Competing with this process is the adduction of HOHA lactone to protein lysyl residues generating 2-(ω-carboxyethyl)pyrrole (CEP) derivatives that have pathological relevance to age-related macular degeneration (AMD). We now find that HOHA lactone induces mitochondrial dysfunction. It decreases ATP levels, mitochondrial membrane potentials, enzymatic activities of mitochondrial complexes, depletes GSH and induces oxidative stress in RPE cells. The present study confirmed that pyridoxamine and other primary amines, which have been shown to scavenge γ-ketoaldehydes formed by carbohydrate or lipid peroxidation, are ineffective for scavenging the α,β-unsaturated aldehydes. Histidyl hydrazide (HH), that has both hydrazide and imidazole nucleophile functionalities, is an effective scavenger of HOHA lactone and it protects ARPE-19 cells against HOHA lactone-induced cytotoxicity. The HH α-amino group is not essential for this electrophile trapping activity. The Nα-acyl L-histidyl hydrazide derivatives with 2- to 7-carbon acyl groups with increasing lipophilicities are capable of maintaining the effectiveness of HH in protecting ARPE-19 cells against HOHA lactone toxicity, which potentially has therapeutic utility for treatment of age related eye diseases.
Collapse
Affiliation(s)
- Yu-Shiuan Cheng
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Haoting Li
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Naji Ayyash
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Anthony Gardella
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
16
|
Neutrophils as a Novel Target of Modified Low-Density Lipoproteins and an Accelerator of Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21218312. [PMID: 33167592 PMCID: PMC7664187 DOI: 10.3390/ijms21218312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) significantly contribute to various pathophysiological conditions, including cardiovascular diseases. NET formation in the vasculature exhibits inflammatory and thrombogenic activities on the endothelium. NETs are induced by various stimulants such as exogenous damage-associated molecular patterns (DAMPs). Oxidatively modified low-density lipoprotein (oxLDL) has been physiologically defined as a subpopulation of LDL that comprises various oxidative modifications in the protein components and oxidized lipids, which could act as DAMPs. oxLDL has been recognized as a crucial initiator and accelerator of atherosclerosis through foam cell formation by macrophages; however, recent studies have demonstrated that oxLDL stimulates neutrophils to induce NET formation and enhance NET-mediated inflammatory responses in vascular endothelial cells, thereby suggesting that oxLDL may be involved in cardiovascular diseases through neutrophil activation. As NETs comprise myeloperoxidase and proteases, they have the potential to mediate oxidative modification of LDL. This review summarizes recent updates on the analysis of NETs, their implications for cardiovascular diseases, and prospects for a possible link between NET formation and oxidative modification of lipoproteins.
Collapse
|
17
|
Liang S, Wang S, Meng Y, Sun C. Enzymatic preparation of glycerophosphatilcholine catalyzed by combinational phospholipases: a comparative study of concerted versus stepwise catalysis. RSC Adv 2020; 10:38727-38735. [PMID: 35518402 PMCID: PMC9057254 DOI: 10.1039/d0ra07012b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
Glycerophosphatilcholine (GPC) is widely applied in medical, pharmaceutical, food and cosmetic industries. Due to the lack of natural resources, enzymatic preparation of GPC has been explored in recent years. This study aimed to investigate and compare the effects of different addition methods of combinational phospholipases (PLA1 and PLA2) and various process parameters (time, temperature, pH, substrate concentrate, enzyme load, and stirring rate) on the preparation of GPC. The results showed that compared with concerted catalysis, the catalytic efficiency of adding PLA2 and then PLA1 (PLA2 → A1) was higher, whereas that of adding PLA1 and then PLA2 was lower. The main reason might be that the method of PLA2 → A1 could reduce acyl migration and the competition between PLA1 and PLA2, which was beneficial to improve the GPC yield and shorten the reaction time. This paper could provide a novel approach for the future preparation of GPC catalyzed by combinational phospholipases. The addition methods of PLA1 and PLA2 had a vital influence on the preparation of GPC, and the method of PLA2 → A1 was the most effective.![]()
Collapse
Affiliation(s)
- Shaohua Liang
- College of Food Science and Engineering, Henan University of Technology Lianhua Road 100 Zhengzhou 450001 Henan Province P. R. China +86-371-67758022 +86-371-67758022
| | - Shukun Wang
- College of Food Science and Engineering, Henan University of Technology Lianhua Road 100 Zhengzhou 450001 Henan Province P. R. China +86-371-67758022 +86-371-67758022
| | - Yannan Meng
- College of Food Science and Engineering, Henan University of Technology Lianhua Road 100 Zhengzhou 450001 Henan Province P. R. China +86-371-67758022 +86-371-67758022
| | - Cong Sun
- College of Food Science and Engineering, Henan University of Technology Lianhua Road 100 Zhengzhou 450001 Henan Province P. R. China +86-371-67758022 +86-371-67758022
| |
Collapse
|
18
|
Hung CH, Lee CH, Tsai MH, Chen CH, Lin HF, Hsu CY, Lai CL, Chen CC. Activation of acid-sensing ion channel 3 by lysophosphatidylcholine 16:0 mediates psychological stress-induced fibromyalgia-like pain. Ann Rheum Dis 2020; 79:1644-1656. [PMID: 32907805 PMCID: PMC7677496 DOI: 10.1136/annrheumdis-2020-218329] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Fibromyalgia is commonly considered a stress-related chronic pain disorder, and daily stressors are known triggers. However, the relation between stress and pain development remains poorly defined by clinical approaches. Also, the aetiology remains largely unknown. METHODS We used a newly developed mouse model and lipidomic approaches to probe the causation and explore the biological plausibility for how perceived stress translates into chronic non-inflammatory pain. Clinical and lipidomic investigations of fibromyalgia were conducted for human validation. RESULTS Using non-painful sound stimuli as psychological stressors, we demonstrated that mice developed long-lasting non-inflammatory hyperalgesia after repeated and intermittent sound stress exposure. Elevated serum malondialdehyde level in stressed mice indicated excessive oxidative stress and lipid oxidative damage. Lipidomics revealed upregulation of lysophosphatidylcholine 16:0 (LPC16:0), a product of lipid oxidisation, in stressed mice. Intramuscular LPC16:0 injection triggered nociceptive responses and a hyperalgesic priming-like effect that caused long-lasting hypersensitivity. Pharmacological or genetic inhibition of acid-sensing ion channel 3 impeded the development of LPC16:0-induced chronic hyperalgesia. Darapladib and antioxidants could effectively alleviate the stress-induced hyperalgesia by inhibiting LPC16:0 synthesis. Clinical investigations showed that excessive oxidative stress and LPC16:0 expression also exist in patients with fibromyalgia. Moreover, LPC16:0 expression was correlated with pain symptoms in patients with high oxidative stress and disease severity. CONCLUSIONS Our study provides experimental evidence for the causal effect of psychological stressors on chronic pain development. The findings identify a possible pathophysiological mechanism of stress-induced chronic non-inflammatory pain at molecular, behavioural and clinical levels that might indicate a new therapeutic approach for fibromyalgia.
Collapse
Affiliation(s)
- Chih-Hsien Hung
- Department of Neurology, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,PhD program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Kaohsiung / Taipei, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsien Tsai
- Department of Child Care, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chu-Huang Chen
- Vascular and Medicinal Research, Texas Heart Institute, Houston, Texas, USA.,Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsiu-Fen Lin
- Department of Neurology, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Yao Hsu
- Department of Neurology, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiou-Lian Lai
- Department of Neurology, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan .,PhD program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Kaohsiung / Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan .,PhD program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Kaohsiung / Taipei, Taiwan.,Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Bourgeois R, Devillers R, Perrot N, Després AA, Boulanger MC, Mitchell PL, Guertin J, Couture P, Boffa MB, Scipione CA, Pibarot P, Koschinsky ML, Mathieu P, Arsenault BJ. Interaction of Autotaxin With Lipoprotein(a) in Patients With Calcific Aortic Valve Stenosis. ACTA ACUST UNITED AC 2020; 5:888-897. [PMID: 33015412 PMCID: PMC7524777 DOI: 10.1016/j.jacbts.2020.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022]
Abstract
Our objectives were to determine whether autotaxin (ATX) is transported by lipoprotein(a) [Lp(a)] in human plasma and if could be used as a biomarker of calcific aortic valve stenosis (CAVS). We first found that ATX activity was higher in Lp(a) compared to low-density lipoprotein fractions in isolated fractions of 10 healthy participants. We developed a specific assay to measure ATX-Lp(a) in 88 patients with CAVS and 144 controls without CAVS. In a multivariable model corrected for CAVS risk factors, ATX-Lp(a) was associated with CAVS (p = 0.003). We concluded that ATX is preferentially transported by Lp(a) and might represent a novel biomarker for CAVS.
Collapse
Key Words
- ALR, adiponectin-to-leptin ratio
- ATX, autotaxin
- ATX-apo(a), ATX carried by Lp(a)
- ATX-apoB, ATX carried by apoB-containing lipoproteins
- BMI, body mass index
- CAD, coronary artery disease
- CAVS, calcific aortic valve stenosis
- HDL, high-density lipoprotein
- LDL, low-density lipoprotein
- Lp(a), lipoprotein(a)
- LysoPA, lysophosphatidic acid
- LysoPC, lysophosphatidylcholine
- OxPLs, oxidized phospholipids
- apo(a), apolipoprotein(a)
- apoB, apolipoprotein B
- autotaxin
- calcific aortic valve stenosis
- lipoprotein(a)
- low-density lipoproteins
- obesity
Collapse
Affiliation(s)
- Raphaëlle Bourgeois
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Romain Devillers
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Nicolas Perrot
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Audrey-Anne Després
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Marie-Chloé Boulanger
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Patricia L Mitchell
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Jakie Guertin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Patrick Couture
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.,Centre de Recherche du CHU de Québec, Quebec, Canada
| | - Michael B Boffa
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Corey A Scipione
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Philippe Pibarot
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Marlys L Koschinsky
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Patrick Mathieu
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| |
Collapse
|
20
|
Lee HJ, Kim BM, Lee SH, Sohn JT, Choi JW, Cho CW, Hong HD, Rhee YK, Kim HJ. Ginseng-Induced Changes to Blood Vessel Dilation and the Metabolome of Rats. Nutrients 2020; 12:nu12082238. [PMID: 32727012 PMCID: PMC7468881 DOI: 10.3390/nu12082238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 01/03/2023] Open
Abstract
Ginseng consumption has been shown to prevent and reduce many health risks, including cardiovascular disease. However, the ginseng-induced changes in biofluids and tissue metabolomes associated with blood health remain poorly understood. In this study, healthy rats were orally administered ginseng extracts or water for one month. Biofluid and tissue metabolites along with steroid hormones, plasma cytokines, and blood pressure factors were determined to elucidate the relationship between ginseng intake and blood vessel health. Moreover, the effect of ginseng extract on blood vessel tension was measured from the thoracic aorta. Ginseng intake decreased the levels of blood phospholipids, lysophosphatidylcholines and related enzymes, high blood pressure factors, and cytokines, and induced vasodilation. Moreover, ginseng intake decreased the level of renal oxidized glutathione. Overall, our findings suggest that ginseng intake can improve blood vessel health via modulation of vasodilation, oxidation stress, and pro-inflammatory cytokines. Moreover, the decrease in renal oxidized glutathione indicated that ginseng intake is positively related with the reduction in oxidative stress-induced renal dysfunction.
Collapse
Affiliation(s)
- Hyeon-Jeong Lee
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongsangnam-do 52828, Korea; (H.-J.L.); (B.-M.K.)
| | - Bo-Min Kim
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongsangnam-do 52828, Korea; (H.-J.L.); (B.-M.K.)
| | - Soo Hee Lee
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, 79 Gangnam-ro, Jinju, Gyeongsangnam-do 52727, Korea; (S.H.L.); (J.-T.S.)
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, 79 Gangnam-ro, Jinju, Gyeongsangnam-do 52727, Korea; (S.H.L.); (J.-T.S.)
- Institute of Health Sciences, Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongsangnam-do 52828, Korea
| | - Jae Woong Choi
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
| | - Chang-Won Cho
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
| | - Hee-Do Hong
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
| | - Young Kyoung Rhee
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
- Correspondence: (Y.K.R.); (H.-J.K.); Tel.: +82-63-219-9319 (Y.K.R.); +82-55-772-1908 (H.-J.K.); Fax: +82-63-219-9876 (Y.K.R.); +82-55-772-1909 (H.-J.K.)
| | - Hyun-Jin Kim
- Division of Applied Life Sciences (BK21 plus), Gyeongsang National University, 501 Jinjudae-ro, Jinju, Gyeongsangnam-do 52828, Korea; (H.-J.L.); (B.-M.K.)
- Department of Food Science & Technology, and Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, Gyeongsangnam-do 52828, Korea
- Correspondence: (Y.K.R.); (H.-J.K.); Tel.: +82-63-219-9319 (Y.K.R.); +82-55-772-1908 (H.-J.K.); Fax: +82-63-219-9876 (Y.K.R.); +82-55-772-1909 (H.-J.K.)
| |
Collapse
|
21
|
Linetsky M, Guo J, Udeigwe E, Ma D, Chamberlain AS, Yu AO, Solovyova K, Edgar E, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone induces apoptosis in retinal pigment epithelial cells. Free Radic Biol Med 2020; 152:280-294. [PMID: 32222470 PMCID: PMC7276294 DOI: 10.1016/j.freeradbiomed.2020.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Retinal pigment epithelial (RPE) cell dysfunction and death play vital roles in age-related macular degeneration (AMD) pathogenesis. Previously we showed that oxidative cleavage of docosahexenoate (DHA) phospholipids generates an α,β-unsaturated aldehyde, 4-hydroxy-7-oxohept-4-enoic acid (HOHA) lactone, that forms ω-carboxyethylpyrrole (CEP) derivatives through adduction to proteins and ethanolamine phospholipids. CEP derivatives and autoantibodies accumulate in the retinas and blood plasma of individuals with AMD and are a biomarker of AMD. They promote the choroidal neovascularization of "wet AMD". Immunization of mice with CEP-modified mouse serum albumin induces "dry AMD"-like lesions in their retinas as well as interferon-gamma and interleukin-17 production by CEP-specific T cells that promote inflammatory M1 polarization of macrophages. The present study confirms that oxidative stress or inflammatory stimulus produces CEP in both the primary human ARPE-19 cell line and hRPE cells. Exposure of these cells to HOHA lactone fosters production of reactive oxygen species. Thus, HOHA lactone participates in a vicious cycle, promoting intracellular oxidative stress leading to oxidative cleavage of DHA to produce more HOHA lactone. We now show that HOHA lactone is cytotoxic, inducing apoptotic cell death through activation of the intrinsic pathway. This suggests that therapeutic interventions targeting HOHA lactone-induced apoptosis may prevent the loss of RPE cells during the early phase of AMD. We also discovered that ARPE-19 cells are more susceptible than hRPE cells to HOHA lactone cytotoxicity. This is consistent with the view that, compared to normal RPE cells, ARPE-19 cells exhibit a diseased RPE phenotype that also includes elevated expression of the mesenchymal indicator vimentin, elevated integrin a5 promotor strength and deficient secretion of the anti-VEGF molecule pigment-epithelium-derived factor fostering weaker tight junctions.
Collapse
Affiliation(s)
- Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, USA
| | - Junhong Guo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Emeka Udeigwe
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Duoming Ma
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Amanda S Chamberlain
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Annabelle O Yu
- Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kseniya Solovyova
- Department of Chemistry, Cleveland State University, Cleveland, OH, 44115, USA
| | - Elise Edgar
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Ophthalmology and Visual Sciences, Case Western Reserve University, USA.
| |
Collapse
|
22
|
Gao Y, Teo YCK, Beuerman RW, Wong TY, Zhou L, Cheung CMG. A serum metabolomics study of patients with nAMD in response to anti-VEGF therapy. Sci Rep 2020; 10:1341. [PMID: 31992792 PMCID: PMC6987119 DOI: 10.1038/s41598-020-58346-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is the current standard of treatment for choroidal neovascularization (CNV) secondary to neovascular age-related macular degeneration (nAMD), but there are no diagnostic tools to predict response of these therapies. We hypothesize that differences in baseline metabolic profiles of patients with nAMD may influence responsiveness to anti-VEGF therapy, and thus provide prognosticating information for these patients. A prospective study was performed on 100 patients with nAMD treated with anti-VEGF therapy. We classified patients into two groups: responders (n = 54) and non-responders (n = 46). The expression levels of glycerophosphocholine,LysoPC (18:2) and PS (18:0/20:4) were higher in non-responders and these findings were verified in the validation cohort, implicating that reductions in these three metabolites can be used as predictors for responsiveness to anti-VEGF therapy during the initial loading phase for patients with nAMD. Our study also provided new insights into the pathophysiological changes and molecular mechanism of anti- VEGF therapy for nAMD patients.
Collapse
Affiliation(s)
- Yan Gao
- Singapore Eye Research Institute, Singapore, Singapore
| | - Yi Chong Kelvin Teo
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Roger W Beuerman
- Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
| | - Chui Ming Gemmy Cheung
- Singapore Eye Research Institute, Singapore, Singapore.
- Singapore National Eye Centre, Singapore, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Relationship Between the Gastrointestinal Side Effects of an Anti-Hypertensive Medication and Changes in the Serum Lipid Metabolome. Nutrients 2020; 12:nu12010205. [PMID: 31941114 PMCID: PMC7019348 DOI: 10.3390/nu12010205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023] Open
Abstract
An earlier study using a rat model system indicated that the active ingredients contained in the anti-hypertensive medication amlodipine (AMD) appeared to induce various bowel problems, including constipation and inflammation. A probiotic blend was found to alleviate intestinal complications caused by the medicine. To gain more extensive insight into the beneficial effects of the probiotic blend, we investigated the changes in metabolite levels using a non-targeted metabolic approach with ultra-performance liquid chromatography-quadrupole/time-of-fligh (UPLC-q/TOF) mass spectrometry. Analysis of lipid metabolites revealed that rats that received AMD had a different metabolome profile compared with control rats and rats that received AMD plus the probiotic blend. In the AMD-administered group, serum levels of phosphatidylcholines, lysophosphatidylcholines, sphingomyelins, triglycerides with large numbers of double bonds, cholesterols, sterol derivatives, and cholesterol esters (all p < 0.05) were increased compared with those of the control group and the group that received AMD plus the probiotic blend. The AMD-administered group also exhibited significantly decreased levels of triglycerides with small numbers of double bonds (all p < 0.05). These results support our hypothesis that AMD-induced compositional changes in the gut microbiota are a causal factor in inflammation.
Collapse
|
24
|
Characterisation of the Serum Metabolic Signature of Cholangiocarcinoma in a United Kingdom Cohort. J Clin Exp Hepatol 2020; 10:17-29. [PMID: 32025163 PMCID: PMC6995894 DOI: 10.1016/j.jceh.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A distinct serum metabonomic pattern has been previously revealed to be associated with various forms of liver disease. Here, we aimed to apply mass spectrometry to obtain serum metabolomic profiles from individuals with cholangiocarcinoma and benign hepatobiliary diseases to gain an insight into pathogenesis and search for potential early-disease biomarkers. METHODS Serum samples were profiled using a hydrophilic interaction liquid chromatography platform, coupled to a mass spectrometer. A total of 47 serum specimens from 8 cholangiocarcinoma cases, 20 healthy controls, 8 benign disease controls (bile duct strictures) and 11 patients with hepatocellular carcinoma (as malignant disease controls) were included. Data analysis was performed using univariate and multivariate statistics. RESULTS The serum metabolome disparities between the metabolite profiles from healthy controls and patients with hepatobiliary disease were predominantly related to changes in lipid and lipid-derived compounds (phospholipids, bile acids and steroids) and amino acid metabolites (phenylalanine). A metabolic pattern indicative of inflammatory response due to cirrhosis and cholestasis was associated with the disease groups. The abundance of phospholipid metabolites was altered in individuals with liver disease, particularly cholangiocarcinoma, but no significant difference was seen between profiles from patients with benign biliary strictures and cholangiocarcinoma. CONCLUSION The serum metabolome in cholangiocarcinoma exhibited changes in metabolites related to inflammation, altered energy production and phospholipid metabolism. This study serves to highlight future avenues for biomarker research in large-scale studies.
Collapse
Key Words
- ABC, ATP-binding cassette
- CCA, cholangiocarcinoma
- CRP, C-reactive protein
- DDA, data-dependent acquisition
- ESI, electrospray ionisation
- GC–MS, gas chromatography–mass spectroscopy
- HCC, hepatocellular carcinoma
- HILIC, hydrophilic interaction liquid chromatography
- HPO, hydrogen peroxide
- LC-MS, liquid chromatography–mass spectroscopy
- MDR3, multidrug-resistant protein 3
- MS, mass spectroscopy
- NMR, nuclear magnetic resonance
- OPLS, orthogonal projections to latent structures
- OPLS-DA, orthogonal projections to latent structures discriminant analysis
- PBC, primary biliary cirrhosis
- PC, phosphatidylcholine
- PCA, principal component analysis
- PE, phosphatidylethanolamine
- PSC, primary sclerosing cholangitis
- UPLC, Ultraperformance liquid chromatography
- VIP, variable importance in projection
- cholangiocarcinoma
- diagnostic biomarkers
- mass spectroscopy
- metabolic finger print
- metabolomics
Collapse
|
25
|
Tomko N, Kluever M, Wu C, Zhu J, Wang Y, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic acid lactone is a potent inducer of brain cancer cell invasiveness that may contribute to the failure of anti-angiogenic therapies. Free Radic Biol Med 2020; 146:234-256. [PMID: 31715381 DOI: 10.1016/j.freeradbiomed.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Previously, we discovered that free radical-induced oxidative fragmentation of the docosahexaenoate ester of 2-lysophosphatidylcholine produces 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone that, in turn, promotes the migration and invasion of endothelial cells. This suggested that HOHA lactone might similarly promote migration and invasion of glioblastoma multiformae (GBM) brain cancer stem cells (CSCs). A bioinformatics analysis of clinical cancer genomic data revealed that matrix metalloproteinase (MMP)1 and three markers of oxidative stress - superoxide dismutase 2, NADPH oxidase 4, and carbonic anhydrase 9 - are upregulated in human mesenchymal GBM cancer tissue, and that MMP1 is positively correlated to all three of these oxidative stress markers. In addition, elevated levels of MMP1 are indicative of GBM invasion, while low levels of MMP1 indicate survival. We also explored the hypothesis that the transition from the proneural to the more aggressive mesenchymal phenotype, e.g., after treatment with an anti-angiogenic therapy, is promoted by the effects of lipid oxidation products on GBM CSCs. We found that low micromolar concentrations of HOHA lactone increase the cell migration velocity of cultured GBM CSCs, and induce the expression of MMP1 and two protein biomarkers of the proneural to mesenchymal transition (PMT): p65 NF-κβ and vimentin. Exposure of cultured GBM CSCs to HOHA lactone causes an increase in phosphorylation of mitogen-activated protein kinases and Akt kinases that are dependent on both protease-activated receptor 1 (PAR1) and MMP1 activity. We conclude that HOHA lactone promotes the PMT in GBM through the activation of PAR1 and MMP1. This contributes to a fatal flaw in antiangiogenic, chemo, and radiation therapies: they promote oxidative stress and the generation of HOHA lactone in the tumor that fosters a change from the proliferative proneural to the migratory mesenchymal GBM CSC phenotype that seeds new tumor growth. Inhibition of PAR1 and HOHA lactone are potential new therapeutic targets for impeding GBM tumor recurrence.
Collapse
Affiliation(s)
- Nicholas Tomko
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark Kluever
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chunying Wu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yanming Wang
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
26
|
Kim MJ, Lee MY, Shon JC, Kwon YS, Liu KH, Lee CH, Ku KM. Untargeted and targeted metabolomics analyses of blackberries – Understanding postharvest red drupelet disorder. Food Chem 2019; 300:125169. [DOI: 10.1016/j.foodchem.2019.125169] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
|
27
|
Rothman JA, Leger L, Kirkwood JS, McFrederick QS. Cadmium and Selenate Exposure Affects the Honey Bee Microbiome and Metabolome, and Bee-Associated Bacteria Show Potential for Bioaccumulation. Appl Environ Microbiol 2019; 85:e01411-19. [PMID: 31471302 PMCID: PMC6803295 DOI: 10.1128/aem.01411-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023] Open
Abstract
Honey bees are important insect pollinators used heavily in agriculture and can be found in diverse environments. Bees may encounter toxicants such as cadmium and selenate by foraging on plants growing in contaminated areas, which can result in negative health effects. Honey bees are known to have a simple and consistent microbiome that conveys many benefits to the host, and toxicant exposure may impact this symbiotic microbial community. We used 16S rRNA gene sequencing to assay the effects that sublethal cadmium and selenate treatments had over 7 days and found that both treatments significantly but subtly altered the composition of the bee microbiome. Next, we exposed bees to cadmium and selenate and then used untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics to show that chemical exposure changed the bees' metabolite profiles and that compounds which may be involved in detoxification, proteolysis, and lipolysis were more abundant in treatments. Finally, we exposed several strains of bee-associated bacteria in liquid culture and found that each strain removed cadmium from its medium but that only Lactobacillus Firm-5 microbes assimilated selenate, indicating the possibility that these microbes may reduce the metal and metalloid burden on their host. Overall, our report shows that metal and metalloid exposure can affect the honey bee microbiome and metabolome and that strains of bee-associated bacteria can bioaccumulate these toxicants.IMPORTANCE Bees are important insect pollinators that may encounter environmental pollution when foraging upon plants grown in contaminated areas. Despite the pervasiveness of pollution, little is known about the effects of these toxicants on honey bee metabolism and their symbiotic microbiomes. Here, we investigated the impact of selenate and cadmium exposure on the gut microbiome and metabolome of honey bees. We found that exposure to these chemicals subtly altered the overall composition of the bees' microbiome and metabolome and that exposure to toxicants may negatively impact both host and microbe. As the microbiome of animals can reduce mortality upon metal or metalloid challenge, we grew bee-associated bacteria in media spiked with selenate or cadmium. We show that some bacteria can remove these toxicants from their media in vitro and suggest that bacteria may reduce metal burden in their hosts.
Collapse
Affiliation(s)
- Jason A Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Laura Leger
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
28
|
Lipid Metabolism Alterations in a Rat Model of Chronic and Intergenerational Exposure to Arsenic. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4978018. [PMID: 31737665 PMCID: PMC6815581 DOI: 10.1155/2019/4978018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/17/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
Abstract
Chronic exposure to arsenic (As), whether directly through the consumption of contaminated drinking water or indirectly through the daily intake of As-contaminated food, is a health threat for more than 150 million people worldwide. Epidemiological studies found an association between chronic consumption of As and several pathologies, the most common being cancer-related disorders. However, As consumption has also been associated with metabolic disorders that could lead to diverse pathologies, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, and obesity. Here, we used ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization/quadrupole time-of-flight mass spectrometry (ESI-QToF) to assess the effect of chronic intergenerational As exposure on the lipid metabolism profiles of serum from 4-month-old Wistar rats exposed to As prenatally and also during early life in drinking water (3 ppm). Significant differences in the levels of certain identified lysophospholipids, phosphatidylcholines, and triglycerides were found between the exposed rats and the control groups, as well as between the sexes. Significantly increased lipid oxidation determined by the malondialdehyde (MDA) method was found in exposed rats compared with controls. Chronic intergenerational As exposure alters the rat lipidome, increases lipid oxidation, and dysregulates metabolic pathways, the factors associated with the chronic inflammation present in different diseases associated with chronic exposure to As (i.e., keratosis, Bowen's disease, and kidney, liver, bladder, and lung cancer).
Collapse
|
29
|
Chi L, Tu P, Liu CW, Lai Y, Xue J, Ru H, Lu K. Chronic Arsenic Exposure Induces Oxidative Stress and Perturbs Serum Lysolipids and Fecal Unsaturated Fatty Acid Metabolism. Chem Res Toxicol 2019; 32:1204-1211. [PMID: 31038932 DOI: 10.1021/acs.chemrestox.9b00039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic arsenic exposure from drinking water is a global public health issue, which is associated with numerous human diseases and influences millions of people worldwide. The effects of arsenic exposure to the metabolic networks remain elusive. Here, we exposed female C57BL/6J mice to 1 ppm inorganic arsenic in drinking water for 3 months to investigate how arsenic exposure perturbs serum and fecal metabolic profiles. We found decreased levels of serum compounds with antioxidative activities in arsenic-treated mice, in accordance with elevated oxidative stress indicated by higher urinary 8-oxo-2'-deoxyguanosine (8-oxo-dG) levels. Moreover, the levels of multiple lysophosphatidylcholines (lysoPCs) were significantly increased in the sera of arsenic-exposed mice, including lysoPC (O-18:0), lysoPC (20:3), lysoPC (18:1), and lysoPC (22:6). Arsenic exposure perturbed the levels of several key polyunsaturated fatty acids (PUFAs) in the fecal samples in concert with alterations in related microbial pathways. Additionally, changes in the abundances of many functional metabolites, together with decreased levels of amino acids, were found in the fecal samples of arsenic-treated mice. By delineating the impact of arsenic exposure on the metabolic profiles, the findings may provide new biomarkers and mechanistic insights into arsenic-associated diseases.
Collapse
Affiliation(s)
- Liang Chi
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Pengcheng Tu
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Jingchuan Xue
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Hongyu Ru
- Department of Population Health and Pathobiology , North Carolina State University , Raleigh , North Carolina 27607 , United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
30
|
Light-induced generation and toxicity of docosahexaenoate-derived oxidation products in retinal pigmented epithelial cells. Exp Eye Res 2018; 181:325-345. [PMID: 30296412 DOI: 10.1016/j.exer.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Oxidative cleavage of docosahexaenoate (DHA) in retinal pigmented epithelial (RPE) cells produces 4-hydroxy-7-oxohept-5-enoic acid (HOHA) esters of 2-lysophosphatidylcholine (PC). HOHA-PC spontaneously releases a membrane-permeant HOHA lactone that modifies primary amino groups of proteins and ethanolamine phospholipids to produce 2-(ω-carboxyethyl)pyrrole (CEP) derivatives. CEPs have significant pathological relevance to age-related macular degeneration (AMD) including activation of CEP-specific T-cells leading to inflammatory M1 polarization of macrophages in the retina involved in "dry AMD" and TLR2-dependent induction of angiogenesis that characterizes "wet AMD". RPE cells accumulate DHA from shed rod photoreceptor outer segments through phagocytosis and from plasma lipoproteins secreted by the liver through active uptake from the choriocapillaris. As a cell model of light-induced oxidative damage of DHA phospholipids in RPE cells, ARPE-19 cells were supplemented with DHA, with or without the lipofuscin fluorophore A2E. In this model, light exposure, in the absence of A2E, promoted the generation HOHA lactone-glutathione (GSH) adducts, depletion of intracellular GSH and a competing generation of CEPs. While DHA-rich RPE cells exhibit an inherent proclivity toward light-induced oxidative damage, photosensitization by A2E nearly doubled the amount of lipid oxidation and expanded the spectral range of photosensitivity to longer wavelengths. Exposure of ARPE-19 cells to 1 μM HOHA lactone for 24 h induced massive (50%) loss of lysosomal membrane integrity and caused loss of mitochondrial membrane potential. Using senescence-associated β-galactosidase (SA β-gal) staining that detects lysosomal β-galactosidase, we determined that exposure to HOHA lactone induces senescence in ARPE-19 cells. The present study shows that products of light-induced oxidative damage of DHA phospholipids in the absence of A2E can lead to RPE cell dysfunction. Therefore, their toxicity may be especially important in the early stages of AMD before RPE cells accumulate lipofuscin fluorophores.
Collapse
|
31
|
Teiber JF, Xiao J, Kramer GL, Ogawa S, Ebner C, Wolleb H, Carreira EM, Shih DM, Haley RW. Identification of biologically active δ-lactone eicosanoids as paraoxonase substrates. Biochem Biophys Res Commun 2018; 505:87-92. [PMID: 30241945 DOI: 10.1016/j.bbrc.2018.09.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
The mammalian paraoxonases (PONs 1, 2 and 3) are a family of esterases that are highly conserved within and between species. They exhibit antioxidant and anti-inflammatory activities. However, their physiological function(s) and native substrates are uncertain. Previous structure-activity relationship studies demonstrate that PONs have a high specificity for lipophilic lactones, suggesting that such compounds may be representative of native substrates. This report describes the ability of PONs to hydrolyze two bioactive δ-lactones derived from arachidonic acid, 5,6-dihydroxy-eicosatrienoic acid lactone (5,6-DHTL) and cyclo-epoxycyclopentenone (cyclo-EC). Both lactones were very efficiently hydrolyzed by purified PON3. PON1 efficiently hydrolyzed 5,6-DHTL, but with a specific activity about 15-fold lower than PON3. 5,6-DHTL was a poor substrate for PON2. Cyclo-EC was a poor substrate for PON1 and not hydrolyzed by PON2. Studies with the PON inhibitor EDTA and a serine esterase inhibitor indicated that the PONs are the main contributors to hydrolysis of the lactones in human and mouse liver homogenates. Studies with homogenates from PON3 knockout mouse livers indicated that >80% of the 5,6-DHTL and cyclo-EC lactonase activities were attributed to PON3. The findings provide further insight into the structural requirements for PONs substrates and support the hypothesis that PONs, particularly PON1 and PON3, evolved to hydrolyze and regulate a class of lactone lipid mediators derived from polyunsaturated fatty acids.
Collapse
Affiliation(s)
- John F Teiber
- Department of Internal Medicine, Division of Epidemiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Junhui Xiao
- Department of Internal Medicine, Division of Epidemiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gerald L Kramer
- Department of Internal Medicine, Division of Epidemiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Seiji Ogawa
- ETH-Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg 3, HCI H335, Zürich, 8093, Switzerland
| | - Christian Ebner
- ETH-Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg 3, HCI H335, Zürich, 8093, Switzerland
| | - Helene Wolleb
- ETH-Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg 3, HCI H335, Zürich, 8093, Switzerland
| | - Erick M Carreira
- ETH-Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg 3, HCI H335, Zürich, 8093, Switzerland
| | - Diana M Shih
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, 90095, USA
| | - Robert W Haley
- Department of Internal Medicine, Division of Epidemiology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
32
|
Linetsky M, Bondelid KS, Losovskiy S, Gabyak V, Rullo MJ, Stiadle TI, Munjapara V, Saxena P, Ma D, Cheng YS, Howes AM, Udeigwe E, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic Acid Lactone Is a Potent Inducer of the Complement Pathway in Human Retinal Pigmented Epithelial Cells. Chem Res Toxicol 2018; 31:666-679. [PMID: 29883119 DOI: 10.1021/acs.chemrestox.8b00028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We previously discovered that oxidative cleavage of docosahexaenoate (DHA), which is especially abundant in the retinal photoreceptor rod outer segments and retinal pigmented endothelial (RPE) cells, generates 4-hydroxy-7-oxo-5-heptenoate (HOHA) lactone, and that HOHA lactone can enter RPE cells that metabolize it through conjugation with glutathione (GSH). The consequent depletion of GSH results in oxidative stress. We now find that HOHA lactone induces upregulation of the antioxidant transcription factor Nrf2 in ARPE-19 cells. This leads to expression of GCLM, HO1, and NQO1, three known Nrf2-responsive antioxidant genes. Besides this protective response, HOHA lactone also triggers a countervailing inflammatory activation of innate immunity. Evidence for a contribution of the complement pathway to age-related macular degeneration (AMD) pathology includes the presence of complement proteins in drusen and Bruch's membrane from AMD donor eyes, and the identification of genetic susceptibility loci for AMD in the complement pathway. In eye tissues from a mouse model of AMD, accumulation of complement protein in Bruch's membrane below the RPE suggested that the complement pathway targets this interface, where lesions occur in the RPE and photoreceptor rod outer segments. In animal models of AMD, intravenous injection of NaIO3 to induce oxidative injury selectively destroys the RPE and causes secretion of factor C3 from the RPE into areas directly adjacent to sites of RPE damage. However, a molecular-level link between oxidative injury and complement activation remained elusive. We now find that sub-micromolar concentrations of HOHA lactone foster expression of C3, CFB, and C5 in ARPE-19 cells and induce a countervailing upregulation of CD55, an inhibitor of C3 convertase production and complement cascade amplification. Ultimately, HOHA lactone causes membrane attack complex formation on the plasma membrane. Thus, HOHA lactone provides a molecular-level connection between free-radical-induced oxidative cleavage of DHA and activation of the complement pathway in AMD pathology.
Collapse
Affiliation(s)
- Mikhail Linetsky
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Karina S Bondelid
- Department of Biochemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Sofiya Losovskiy
- Department of Chemistry , Cleveland State University , Cleveland , Ohio 44115 , United States
| | - Vadym Gabyak
- Department of Biological, Geological, and Environmental Sciences , Cleveland State University , Cleveland , Ohio 44115 , United States
| | - Mario J Rullo
- Department of Biochemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Thomas I Stiadle
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Vasu Munjapara
- Department of Biochemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Priyali Saxena
- Department of Biochemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Duoming Ma
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Yu-Shiuan Cheng
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Andrew M Howes
- Department of Biochemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Emeka Udeigwe
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Robert G Salomon
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States.,Department of Ophthalmology & Visual Sciences , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
33
|
Macrophage phenotype and bioenergetics are controlled by oxidized phospholipids identified in lean and obese adipose tissue. Proc Natl Acad Sci U S A 2018; 115:E6254-E6263. [PMID: 29891687 PMCID: PMC6142199 DOI: 10.1073/pnas.1800544115] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue macrophages (ATMs) maintain adipose tissue homeostasis. However, during obesity ATMs become inflammatory, resulting in impaired adipose tissue function. Oxidative stress increases during obesity, which is thought to contribute to adipose tissue inflammation. To date, the connection between oxidative stress and adipose tissue inflammation remain unclear. In this study, we identify two classes of phospholipid oxidation products in lean and obese adipose tissue, which polarize macrophages to an antioxidant or proinflammatory state, respectively. Furthermore, we show that these phospholipids differently affect macrophage cellular metabolism, reflecting the metabolisms of ATMs found in lean and obese adipose tissue. Identification of pathways controlling ATM metabolism will lead to novel therapies for insulin resistance. Adipose tissue macrophages (ATMs) adapt their metabolic phenotype either to maintain lean tissue homeostasis or drive inflammation and insulin resistance in obesity. However, the factors in the adipose tissue microenvironment that control ATM phenotypic polarization and bioenergetics remain unknown. We have recently shown that oxidized phospholipids (OxPL) uniquely regulate gene expression and cellular metabolism in Mox macrophages, but the presence of the Mox phenotype in adipose tissue has not been reported. Here we show, using extracellular flux analysis, that ATMs isolated from lean mice are metabolically inhibited. We identify a unique population of CX3CR1neg/F4/80low ATMs that resemble the Mox (Txnrd1+HO1+) phenotype to be the predominant ATM phenotype in lean adipose tissue. In contrast, ATMs isolated from obese mice had characteristics typical of the M1/M2 (CD11c+CD206+) phenotype with highly activated bioenergetics. Quantifying individual OxPL species in the stromal vascular fraction of murine adipose tissue, using targeted liquid chromatography-mass spectrometry, revealed that high fat diet-induced adipose tissue expansion led to a disproportional increase in full-length over truncated OxPL species. In vitro studies showed that macrophages respond to truncated OxPL species by suppressing bioenergetics and up-regulating antioxidant programs, mimicking the Mox phenotype of ATMs isolated from lean mice. Conversely, full-length OxPL species induce proinflammatory gene expression and an activated bioenergetic profile that mimics ATMs isolated from obese mice. Together, these data identify a redox-regulatory Mox macrophage phenotype to be predominant in lean adipose tissue and demonstrate that individual OxPL species that accumulate in adipose tissue instruct ATMs to adapt their phenotype and bioenergetic profile to either maintain redox homeostasis or to promote inflammation.
Collapse
|
34
|
Secretory phospholipase A 2 modified HDL rapidly and potently suppresses platelet activation. Sci Rep 2017; 7:8030. [PMID: 28808297 PMCID: PMC5556053 DOI: 10.1038/s41598-017-08136-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/05/2017] [Indexed: 12/16/2022] Open
Abstract
Levels of secretory phospholipases A2 (sPLA2) highly increase under acute and chronic inflammatory conditions. sPLA2 is mainly associated with high-density lipoproteins (HDL) and generates bioactive lysophospholipids implicated in acute and chronic inflammatory processes. Unexpectedly, pharmacological inhibition of sPLA2 in patients with acute coronary syndrome was associated with an increased risk of myocardial infarction and stroke. Given that platelets are key players in thrombosis and inflammation, we hypothesized that sPLA2-induced hydrolysis of HDL-associated phospholipids (sPLA2-HDL) generates modified HDL particles that affect platelet function. We observed that sPLA2-HDL potently and rapidly inhibited platelet aggregation induced by several agonists, P-selectin expression, GPIIb/IIIa activation and superoxide production, whereas native HDL showed little effects. sPLA2-HDL suppressed the agonist-induced rise of intracellular Ca2+ levels and phosphorylation of Akt and ERK1/2, which trigger key steps in promoting platelet activation. Importantly, sPLA2 in the absence of HDL showed no effects, whereas enrichment of HDL with lysophosphatidylcholines containing saturated fatty acids (the main sPLA2 products) mimicked sPLA2-HDL activities. Our findings suggest that sPLA2 generates lysophosphatidylcholine-enriched HDL particles that modulate platelet function under inflammatory conditions.
Collapse
|
35
|
Calcium-independent binding of human C-reactive protein to lysophosphatidylcholine in supported planar phospholipid monolayers. Acta Biomater 2017; 48:206-214. [PMID: 27815167 DOI: 10.1016/j.actbio.2016.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/06/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
Details describing the molecular dynamics of inflammation biomarker human C-reactive protein (CRP) on plasma membranes containing bioactive lipid lysophosphatidylcholine (LPC) remain elusive. Here, we measured the binding kinetics of CRP to supported phospholipid monolayers deposited on an alkanethiol self-assembled monolayer on a planar gold substrate using surface plasmon resonance. Surprisingly, CRP binding to supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/LPC monolayers was calcium-independent although CRP binding to supported POPC monolayers was calcium-dependent. Binding inhibition assays indicate a specific interaction between CRP and the glycerophosphate group in LPC in the absence of calcium ions. Binding experiments on supported POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) monolayers further validated calcium-independent binding of CRP through the glycerophosphate moiety. Docking analysis predicted a new binding site for LPC in the absence of calcium ions, which is located on the opposite side of the known binding site for PC of cyclic pentameric CRP. These results using model plasma membranes should aid our understanding of the activation dynamics of CRP in altered local microenvironments of inflammation and infection. STATEMENT OF SIGNIFICANCE C-reactive protein (CRP), a major acute-phase pentraxin, binds to plasma membranes through the multivalent contacts with zwitterionic phosphorylcholine groups for activating classical complement systems. However, the interaction of CRP with phosphorylcholine-based biomaterials is unknown due to the lack of our understanding on the activation mechanism of CRP in altered local microenvironments. This paper reports the novel calcium-independent interaction of CRP to bioactive phospholipid lysophosphatidylcholine (LPC) in supported phospholipids monolayers as determined using SPR. Binding inhibition experiments indicate exposure of glycerophosphate moiety of LPC is responsible for the calcium-free interaction. Our study may explode the established concept that CRP requires calcium for binding to LPC on damaged cell membranes or biomaterials.
Collapse
|
36
|
Guo J, Linetsky M, Yu AO, Zhang L, Howell SJ, Folkwein HJ, Wang H, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic Acid Lactone Induces Angiogenesis through Several Different Molecular Pathways. Chem Res Toxicol 2016; 29:2125-2135. [PMID: 27806561 DOI: 10.1021/acs.chemrestox.6b00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress and angiogenesis have been implicated not only in normal phenomena such as tissue healing and remodeling but also in many pathological processes. However, the relationships between oxidative stress and angiogenesis still remain unclear, although oxidative stress has been convincingly demonstrated to influence the progression of angiogenesis under physiological and pathological conditions. The retina is particularly susceptible to oxidative stress because of its intensive oxygenation and high abundance of polyunsaturated fatty acyls. In particular, it has high levels of docosahexanoates, whose oxidative fragmentation produces 4-hydroxy-7-oxo-5-heptenoic acid lactone (HOHA-lactone). Previously, we found that HOHA-lactone is a major precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives, which are tightly linked to age-related macular degeneration (AMD). CEPs promote the pathological angiogenesis of late-stage AMD. We now report additional mechanisms by which HOHA-lactone promotes angiogenesis. Using cultured ARPE-19 cells, we observed that HOHA-lactone induces secretion of vascular endothelial growth factor (VEGF), which is correlated to increases in reactive oxygen species and decreases in intracellular glutathione (GSH). Wound healing and tube formation assays provided, for the first time, in vitro evidence that HOHA-lactone induces the release of VEGF from ARPE-19 cells, which promotes angiogenesis by human umbilical vein endothelial cells (HUVEC) in culture. Thus, HOHA-lactone can stimulate vascular growth through a VEGF-dependent pathway. In addition, results from MTT and wound healing assays as well as tube formation experiments showed that GSH-conjugated metabolites of HOHA-lactone stimulate HUVEC proliferation and promote angiogenesis in vitro. Previous studies demonstrated that HOHA-lactone, through its CEP derivatives, promotes angiogenesis in a novel Toll-like receptor 2-dependent manner that is independent of the VEGF receptor or VEGF expression. The new studies show that HOHA-lactone also participates in other angiogenic signaling pathways that include promoting the secretion of VEGF from retinal pigmented epithelial cells.
Collapse
Affiliation(s)
- Junhong Guo
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Annabelle O Yu
- Department of Biology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Liang Zhang
- Department of Biochemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Scott J Howell
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Heather J Folkwein
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Hua Wang
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
37
|
Salomon RG. Carboxyethylpyrroles: From Hypothesis to the Discovery of Biologically Active Natural Products. Chem Res Toxicol 2016; 30:105-113. [PMID: 27750413 DOI: 10.1021/acs.chemrestox.6b00304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Our research on the roles of lipid oxidation in human disease is guided by chemical intuition. For example, we postulated that 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amines would be produced through covalent adduction of a γ-hydroxyalkenal generated, in turn, through oxidative fragmentation of docosahexaenoates. Our studies confirmed the natural occurrence of this chemistry, and the biological activities of these natural products and their extensive involvements in human physiology (wound healing) and pathology (age-related macular degeneration, autism, atherosclerosis, sickle cell disease, and tumor growth) continue to emerge. This perspective recounts these discoveries and proposes new frontiers where further developments are likely. Perhaps more significantly, it depicts an effective chemistry-based approach to the discovery of novel biochemistry.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
38
|
Nsaibia MJ, Mahmut A, Boulanger MC, Arsenault BJ, Bouchareb R, Simard S, Witztum JL, Clavel MA, Pibarot P, Bossé Y, Tsimikas S, Mathieu P. Autotaxin interacts with lipoprotein(a) and oxidized phospholipids in predicting the risk of calcific aortic valve stenosis in patients with coronary artery disease. J Intern Med 2016; 280:509-517. [PMID: 27237700 DOI: 10.1111/joim.12519] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Studies have shown that lipoprotein(a) [Lp(a)], an important carrier of oxidized phospholipids, is causally related to calcific aortic valve stenosis (CAVS). Recently, we found that Lp(a) mediates the development of CAVS through autotaxin (ATX). OBJECTIVE To determine the predictive value of circulating ATX mass and activity for CAVS. METHODS We performed a case-control study in 300 patients with coronary artery disease (CAD). Patients with CAVS plus CAD (cases, n = 150) were age- and gender-matched (1 : 1) to patients with CAD without aortic valve disease (controls, n = 150). ATX mass and enzymatic activity and levels of Lp(a) and oxidized phospholipids on apolipoprotein B-100 (OxPL-apoB) were determined in fasting plasma samples. RESULTS Compared to patients with CAD alone, ATX mass (P < 0.0001), ATX activity (P = 0.05), Lp(a) (P = 0.003) and OxPL-apoB (P < 0.0001) levels were elevated in those with CAVS. After adjustment, we found that ATX mass (OR 1.06, 95% CI 1.03-1.10 per 10 ng mL-1 , P = 0.001) and ATX activity (OR 1.57, 95% CI 1.14-2.17 per 10 RFU min-1 , P = 0.005) were independently associated with CAVS. ATX activity interacted with Lp(a) (P = 0.004) and OxPL-apoB (P = 0.001) on CAVS risk. After adjustment, compared to patients with low ATX activity (dichotomized at the median value) and low Lp(a) (<50 mg dL-1 ) or OxPL-apoB (<2.02 nmol L-1 , median) levels (referent), patients with both higher ATX activity (≥84 RFU min-1 ) and Lp(a) (≥50 mg dL-1 ) (OR 3.46, 95% CI 1.40-8.58, P = 0.007) or OxPL-apoB (≥2.02 nmol L-1 , median) (OR 5.48, 95% CI 2.45-12.27, P < 0.0001) had an elevated risk of CAVS. CONCLUSION Autotaxin is a novel and independent predictor of CAVS in patients with CAD.
Collapse
Affiliation(s)
- M J Nsaibia
- Laboratory of Cardiovascular Pathobiology Quebec Heart and Lung Institute/Research Center, Department of Surgery, Quebec, Canada
| | - A Mahmut
- Laboratory of Cardiovascular Pathobiology Quebec Heart and Lung Institute/Research Center, Department of Surgery, Quebec, Canada
| | - M-C Boulanger
- Laboratory of Cardiovascular Pathobiology Quebec Heart and Lung Institute/Research Center, Department of Surgery, Quebec, Canada
| | - B J Arsenault
- Department of Medicine, Laval University, Quebec, Canada
| | - R Bouchareb
- Laboratory of Cardiovascular Pathobiology Quebec Heart and Lung Institute/Research Center, Department of Surgery, Quebec, Canada
| | - S Simard
- Statistical Consulting Service Unit at the Quebec Heart and Lung Institute/Research Center, Laval University, Quebec, Canada
| | - J L Witztum
- University of California San Diego, La Jolla, CA, USA
| | - M-A Clavel
- Department of Medicine, Laval University, Quebec, Canada
| | - P Pibarot
- Department of Medicine, Laval University, Quebec, Canada
| | - Y Bossé
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - S Tsimikas
- University of California San Diego, La Jolla, CA, USA
| | - P Mathieu
- Laboratory of Cardiovascular Pathobiology Quebec Heart and Lung Institute/Research Center, Department of Surgery, Quebec, Canada.
| |
Collapse
|
39
|
Díaz M, Fabelo N, Casañas-Sánchez V, Marin R, Gómez T, Quinto-Alemany D, Pérez JA. Hippocampal Lipid Homeostasis in APP/PS1 Mice is Modulated by a Complex Interplay Between Dietary DHA and Estrogens: Relevance for Alzheimer's Disease. J Alzheimers Dis 2016; 49:459-81. [PMID: 26519437 DOI: 10.3233/jad-150470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current evidence suggests that lipid homeostasis in the hippocampus is affected by different genetic, dietary, and hormonal factors, and that its deregulation may be associated with the onset and progression of Alzheimer's disease (AD). However, the precise levels of influence of each of these factors and their potential interactions remain largely unknown, particularly during neurodegenerative processes. In the present study, we have performed multifactorial analyses of the combined effects of diets containing different doses of docosahexaenoic acid (DHA), estrogen status (ovariectomized animals receiving vehicle or 17β-estradiol), and genotype (wild-type or transgenic APP/PS1 mice) in hippocampal lipid profiles. We have observed that the three factors affect lipid classes and fatty acid composition to different extents, and that strong interactions between these factors exist. The most aberrant lipid profiles were observed in APP/PS1 animals receiving DHA-poor diets and deprived of estrogens. Conversely, wild-type animals under a high-DHA diet and receiving estradiol exhibited a lipid profile that closely resembled that of the hippocampus of control animals. Interestingly, though the lipid signatures of APP/PS1 hippocampi markedly differed from wild-type, administration of a high-DHA diet in the presence of estrogens gave rise to a lipid profile that approached that of control animals. Paralleling changes in lipid composition, patterns of gene expression of enzymes involved in lipid biosynthesis were also altered and affected by combination of experimental factors. Overall, these results indicate that hippocampal lipid homeostasis is strongly affected by hormonal and dietary conditions, and that manipulation of these factors might be incorporated in AD therapeutics.
Collapse
Affiliation(s)
- Mario Díaz
- Department of Animal Physiology, Laboratory of Membrane Physiology and Biophysics, University of La Laguna, Tenerife, Spain
| | - Noemí Fabelo
- Department of Animal Physiology, Laboratory of Membrane Physiology and Biophysics, University of La Laguna, Tenerife, Spain
| | | | - Raquel Marin
- Department of Physiology, Laboratory of Cellular Neurobiology, University of La Laguna, Tenerife, Spain
| | - Tomás Gómez
- Department of Animal Physiology, Laboratory of Membrane Physiology and Biophysics, University of La Laguna, Tenerife, Spain
| | - David Quinto-Alemany
- Department of Animal Physiology, Laboratory of Membrane Physiology and Biophysics, University of La Laguna, Tenerife, Spain
| | - José A Pérez
- Department of Genetics, University of La Laguna, Tenerife, Spain
| |
Collapse
|
40
|
Marin R, Fabelo N, Martín V, Garcia-Esparcia P, Ferrer I, Quinto-Alemany D, Díaz M. Anomalies occurring in lipid profiles and protein distribution in frontal cortex lipid rafts in dementia with Lewy bodies disclose neurochemical traits partially shared by Alzheimer's and Parkinson's diseases. Neurobiol Aging 2016; 49:52-59. [PMID: 27768960 DOI: 10.1016/j.neurobiolaging.2016.08.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
Lipid rafts are highly dynamic membrane microdomains intimately associated with cell signaling. Compelling evidence has demonstrated that alterations in lipid rafts are associated with neurodegenerative diseases such Alzheimer's disease, but at present, whether alterations in lipid raft microdomains occur in other types of dementia such dementia with Lewy bodies (DLB) remains unknown. Our analyses reveal that lipid rafts from DLB exhibit aberrant lipid profiles including low levels of n-3 long-chain polyunsaturated fatty acids (mainly docosahexaenoic acid), plasmalogens and cholesterol, and reduced unsaturation and peroxidability indexes. As a consequence, lipid raft resident proteins holding principal factors of the β-amyloidogenic pathway, including β-amyloid precursor protein, presenilin 1, β-secretase, and PrP, are redistributed between lipid rafts and nonraft domains in DLB frontal cortex. Meta-analysis discloses certain similarities in the altered composition of lipid rafts between DLB and Parkinson's disease which are in line with the spectrum of Lewy body diseases. In addition, redistribution of proteins linked to the β-amyloidogenic pathway in DLB can facilitate generation of β-amyloid, thus providing mechanistic clues to the intriguing convergence of Alzheimer's disease pathology, particularly β-amyloid deposition, in DLB.
Collapse
Affiliation(s)
- Raquel Marin
- Departamento de Fisiología, Universidad de La Laguna, Tenerife, Spain
| | - Noemí Fabelo
- Departamento de Biología Animal, Universidad de La Laguna, Tenerife, Spain
| | | | - Paula Garcia-Esparcia
- Instituto Neuropatología, Servicio Anatomía Patológica, Hospital Universitario de Bellvitge, Universidad de Barcelona, CIBERNED, Hospitalet de Llobregat, Spain
| | - Isidre Ferrer
- Instituto Neuropatología, Servicio Anatomía Patológica, Hospital Universitario de Bellvitge, Universidad de Barcelona, CIBERNED, Hospitalet de Llobregat, Spain
| | | | - Mario Díaz
- Departamento de Biología Animal, Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
41
|
Goda T, Miyahara Y. Engineered zwitterionic phosphorylcholine monolayers for elucidating multivalent binding kinetics of C-reactive protein. Acta Biomater 2016; 40:46-53. [PMID: 26873368 DOI: 10.1016/j.actbio.2016.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED Understanding of the activation dynamics of C-reactive protein (CRP) on plasma membranes is important in the development of zwitterionic biomaterials for their uses in the tissues of inflammation and infection. Previously, the use of a zwitterionic phosphorylcholine group, a biomimetic ligand for CRP in the presence of calcium ions, for binding experiments has revealed that the adsorption dynamics changed by ionic microenvironments. Here we focused on the effect of the ligand density on a surface, a major physicochemical parameter, on the multivalent binding modes. A building block from synthetic origin, a phospholipid analogue with thiol ends, was developed for making a cell membrane-mimicked self-assembled monolayers with tunable lateral ligand density on the molecular basis. The multivalent binding kinetics of CRP, a pentraxin in the original conformation, onto the engineered surface was measured using a surface plasmon resonance technique. The binding experiments revealed that the on-rate and off-rate constants in the first ligand-occupation reaction increased with increasing the ligand density, which resulted in stable values of the dissociation constant. Notably, the binding affinity in the second ligand-occupation reaction showed the optimal value as a function of the ligand density. Moreover, the binding experiments using a monomeric CRP-specific DNA aptamer revealed that pentameric CRP underwent structural transition into the monomers following the adsorption onto the surfaces via multivalent contacts in a pH-dependent manner. The bioengineering-based approach reveals for the first time how the multiple binding reaction is altered by the ligand arrangement at the molecular resolution and how CRP is activated by the conformational transition induced by the multiplex bindings. STATEMENT OF SIGNIFICANCE C-reactive protein (CRP), a major acute-phase pentraxin, binds to plasma membranes through the multivalent contacts with zwitterionic phosphorylcholine groups. However, details in the molecular dynamics is unknown due to a lack of proper sensing platform. The paper describe the synthesis of thiol-functionalized phosphorylcholine for the development of a robust cell membrane-mimetic surface on a surface plasmon resonance sensor at desired lateral ligand densities. The engineered approach on molecular basis enables a rigorous arrangement of the ligand on the surface, whose tunability and robustness are not achieved using conventional supported lipid layers. The effect of the ligand density on the multivalent binding kinetics provides the understanding of how the multivalent contacts induce conformational transitions of CRP and responses to inflammation.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
42
|
Freigang S. The regulation of inflammation by oxidized phospholipids. Eur J Immunol 2016; 46:1818-25. [PMID: 27312261 DOI: 10.1002/eji.201545676] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/01/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022]
Abstract
During inflammation or under conditions of oxidative stress, the polyunsaturated fatty acid side chains of phospholipids in cellular membranes or lipoproteins can be oxidatively modified. This process generates a complex mixture of structurally diverse oxidized phospholipid (OxPL) species, each of which may exert distinct biological effects. The presence of OxPLs has been documented in acute and chronic microbial infections, metabolic disorders, and degenerative diseases. It is now well recognized that OxPLs actively influence biological processes and contribute to the induction and resolution of inflammation. While many pro- and anti-inflammatory effects have been documented for bulk OxPL preparations, we are only beginning to understand the exact molecular mechanisms and signaling events that mediate the individual proinflammatory or anti-inflammatory bioactivities of discrete isolated OxPL species. Here, we review the current knowledge on the regulation of inflammation by OxPLs and summarize recent studies that establish cyclopentenone-containing OxPLs as a category of potent anti-inflammatory lipid mediators.
Collapse
Affiliation(s)
- Stefan Freigang
- Institute of Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
43
|
Cyclopentenone-containing oxidized phospholipids and their isoprostanes as pro-resolving mediators of inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:382-392. [PMID: 27422370 DOI: 10.1016/j.bbalip.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
Abstract
Inflammation represents a powerful innate immune response that defends tissue homeostasis. However, the appropriate termination of inflammatory processes is essential to prevent the development of chronic inflammatory disorders. The resolution of inflammation is actively induced by specialized pro-resolving lipid mediators, which include eicosanoids, resolvins, protectins and maresins. The responsible pro-resolution pathways have emerged as promising targets for anti-inflammatory therapies since they mitigate excessive inflammation without compromising the anti-microbial defenses of the host. We have recently shown that the lipid peroxidation of membrane phospholipids, which is associated with inflammatory conditions, generates oxidized phospholipid (OxPL) species with potent pro-resolving activities. These pro-resolving OxPLs contain a cyclopentenone as their common determinant, and are structurally and functionally related to endogenous pro-resolving prostaglandins. Here, we review the regulation of inflammatory responses by OxPLs with particular focus on the bioactivities and structural characteristics of cyclopentenone-OxPLs, and discuss the impact of the responsible signaling pathways on inflammatory diseases. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
|
44
|
Wang H, Linetsky M, Guo J, Yu AO, Salomon RG. Metabolism of 4-Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone by Retinal Pigmented Epithelial Cells. Chem Res Toxicol 2016; 29:1198-210. [PMID: 27355557 DOI: 10.1021/acs.chemrestox.6b00153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
4-Hydroxy-7-oxo-5-heptenic acid (HOHA)-lactone is a biologically active oxidative truncation product released (t1/2 = 30 min at 37 °C) by nonenzymatic transesterification/deacylation from docosahexaenoate lipids. We now report that HOHA-lactone readily diffuses into retinal pigmented epithelial (RPE) cells where it is metabolized. A reduced glutathione (GSH) Michael adduct of HOHA-lactone is the most prominent metabolite detected by LC-MS in both the extracellular medium and cell lysates. This molecule appeared inside of ARPE-19 cells within seconds after exposure to HOHA-lactone. The intracellular level reached a maximum concentration at 30 min and then decreased with concomitant increases in its level in the extracellular medium, thus revealing a unidirectional export of the reduced GSH-HOHA-lactone adduct from the cytosol to extracellular medium. This metabolism is likely to modulate the involvement of HOHA-lactone in the pathogenesis of human diseases. HOHA-lactone is biologically active, e.g., low concentrations (0.1-1 μM) induce secretion of vascular endothelial growth factor (VEGF) from ARPE-19 cells. HOHA-lactone is also a precursor of 2-(ω-carboxyethyl)pyrrole (CEP) derivatives of primary amino groups in proteins and ethanolamine phospholipids that have significant pathological and physiological relevance to age-related macular degeneration (AMD), cancer, and wound healing. Both HOHA-lactone and the derived CEP can contribute to the angiogenesis that defines the neovascular "wet" form of AMD and that promotes the growth of tumors. While GSH depletion can increase the lethality of radiotherapy, because it will impair the metabolism of HOHA-lactone, the present study suggests that GSH depletion will also increase levels of HOHA-lactone and CEP that may promote recurrence of tumor growth.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Junhong Guo
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Annabelle O Yu
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
45
|
Guo J, Wang H, Hrinczenko B, Salomon RG. Efficient Quantitative Analysis of Carboxyalkylpyrrole Ethanolamine Phospholipids: Elevated Levels in Sickle Cell Disease Blood. Chem Res Toxicol 2016; 29:1187-97. [PMID: 27341308 DOI: 10.1021/acs.chemrestox.6b00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
γ-Hydroxy-α,β-unsaturated aldehydes, generated by oxidative damage of polyunsaturated phospholipids, form pyrrole derivatives that incorporate the ethanolamine phospholipid (EP) amino group such as 2-pentylpyrrole (PP)-EP and 2-(ω-carboxyalkyl)pyrrole (CAP)-EP derivatives: 2-(ω-carboxyethyl)pyrrole (CEP)-EP, 2-(ω-carboxypropyl)pyrrole (CPP)-EP, and 2-(ω-carboxyheptyl)pyrrole (CHP)-EP. Because EPs occur in vivo in various forms, a complex mixture of pyrrole-modified EPs with different molecular weights is expected to be generated. To provide a sensitive index of oxidative stress, all of the differences in mass related to the glycerophospholipid moieties were removed by releasing a single CAP-ethanolamine (ETN) or PP-ETN from each mixture by treatment with phospholipase D. Accurate quantization was achieved using the corresponding ethanolamine-d4 pyrroles as internal standards. The product mixture obtained by phospholipolysis of total blood phospholipids from sickle cell disease (SCD) patients was analyzed by LC-MS/MS. The method was applied to measure CAP-EP and PP-EP levels in blood plasma from clinical monitoring of SCD patients. We found uniformly elevated blood levels of CEP-EP (63.9 ± 9.7 nM) similar to mean levels in blood from age-related macular degeneration (AMD) patients (56.3 ± 37.1 nM), and 2-fold lower levels (27.6 ± 3.6 nM, n = 5) were detected in plasma from SCD patients hospitalized to treat a sickle cell crisis, although mean levels remain higher than those (12.1 ± 10.5 nM) detected in blood from healthy controls. Plasma levels of CPP-EPs from SCD clinic patients were 4-fold higher than those of SCD patients hospitalized to treat a sickle cell crisis (45.1 ± 10.9 nM, n = 5 versus 10.9 ± 3.4 nM, n = 6; p < 0.002). PP-EP concentration in plasma from SCD clinic patients is nearly 4.8-fold higher than its level in plasma samples from SCD patients hospitalized to treat a sickle cell crisis (7.06 ± 4.05 vs 1.48 ± 0.92 nM; p < 0.05). Because CAP-EPs promote angiogenesis and platelet activation, the elevated levels present in SCD blood can contribute to the hypercoaguability and vaso-occlusive events that are critical pathophysiologic features of SCD.
Collapse
Affiliation(s)
- Junhong Guo
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Hua Wang
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Borys Hrinczenko
- Division of Hematology and Oncology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
46
|
Kimura T, Kuwata H, Miyauchi K, Katayama Y, Kayahara N, Sugiuchi H, Matsushima K, Kondo Y, Ishitsuka Y, Irikura M, Irie T. An enzyme combination assay for serum sphingomyelin: Improved specificity through avoiding the interference with lysophosphatidylcholine. Anal Biochem 2016; 498:29-36. [DOI: 10.1016/j.ab.2016.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/31/2015] [Accepted: 01/01/2016] [Indexed: 12/31/2022]
|
47
|
Jiang P, Stanstrup J, Thymann T, Sangild PT, Dragsted LO. Progressive Changes in the Plasma Metabolome during Malnutrition in Juvenile Pigs. J Proteome Res 2015; 15:447-56. [PMID: 26626656 DOI: 10.1021/acs.jproteome.5b00782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Severe acute malnutrition (SAM) is one of the leading nutrition-related causes of death in children under five years of age. The clinical features of SAM are well documented, but a comprehensive understanding of the development from a normal physiological state to SAM is lacking. Characterizing the temporal metabolomic change may help to understand the disease progression and to define nutritional rehabilitation strategies. Using a piglet model we hypothesized that a progressing degree of malnutrition induces marked plasma metabolite changes. Four-week-old weaned pigs were fed a nutrient-deficient maize diet (MAL) or nutritionally optimized reference diet (REF) for 7 weeks. Plasma collected weekly was subjected to LC-MS for a nontargeted profiling of metabolites with abundance differentiation. The MAL pigs showed markedly reduced body-weight gain and lean-mass proportion relative to the REF pigs. Levels of eight essential and four nonessential amino acids showed a time-dependent deviation in the MAL pigs from that in the REF. Choline metabolites and gut microbiomic metabolites generally showed higher abundance in the MAL pigs. The results demonstrated that young malnourished pigs had a profoundly perturbed metabolism, and this provides basic knowledge about metabolic changes during malnourishment, which may be of help in designing targeted therapeutic foods for refeeding malnourished children.
Collapse
Affiliation(s)
- Pingping Jiang
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen , 68 Dyrlægevej, DK-1870 Frederiksberg C, Denmark
| | - Jan Stanstrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen , 30 Rolighedsvej, DK-1958 Frederiksberg C, Denmark
| | - Thomas Thymann
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen , 68 Dyrlægevej, DK-1870 Frederiksberg C, Denmark
| | - Per Torp Sangild
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen , 68 Dyrlægevej, DK-1870 Frederiksberg C, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen , 30 Rolighedsvej, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
48
|
Ban RH, Kamvissi V, Schulte KM, Bornstein SR, Rubino F, Graessler J. Lipidomic profiling at the interface of metabolic surgery and cardiovascular disease. Curr Atheroscler Rep 2015; 16:455. [PMID: 25236775 DOI: 10.1007/s11883-014-0455-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bariatric surgery has helped patients attain not only significant and sustained weight loss but has also proved to be an effective means of mitigating or reversing various obesity-related comorbidities. The impressive rates of remission or resolution of type 2 diabetes mellitus (T2D) following bariatric surgery are well documented and have rightly received great attention. Less understood are the effects of bariatric surgery on cardiovascular disease (CVD) and its underlying risk factors. Thanks to the availability of increasingly sensitive laboratory tools, the emerging science of lipidomics and metagenomics is poised to offer significant contributions to our understanding of metabolically induced vascular diseases. They are set to identify novel mechanisms explaining how the varied approaches of bariatric surgery produce the remarkable improvements in multiple organs observed during patient follow-up. This article reviews recent and novel findings in patients through the lens of lipidomics with an emphasis on CVD.
Collapse
Affiliation(s)
- Ryan H Ban
- Department and Outpatient Department of Medicine III, Carl Gustav Carus Medical School, Technische Universitaet Dresden, Fetscherstrasse 74, 01307, Dresden, Germany,
| | | | | | | | | | | |
Collapse
|
49
|
Wang H, Linetsky M, Guo J, Choi J, Hong L, Chamberlain AS, Howell SJ, Howes AM, Salomon RG. 4-Hydroxy-7-oxo-5-heptenoic Acid (HOHA) Lactone is a Biologically Active Precursor for the Generation of 2-(ω-Carboxyethyl)pyrrole (CEP) Derivatives of Proteins and Ethanolamine Phospholipids. Chem Res Toxicol 2015; 28:967-77. [PMID: 25793308 DOI: 10.1021/acs.chemrestox.5b00001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
2-(ω-Carboxyethyl)pyrrole (CEP) derivatives of proteins were previously shown to have significant pathological and physiological relevance to age-related macular degeneration, cancer and wound healing. Previously, we showed that CEPs are generated in the reaction of ε-amino groups of protein lysyl residues with 1-palmityl-2-(4-hydroxy-7-oxo-5-heptenoyl)-sn-glycero-3-phosphatidylcholine (HOHA-PC), a lipid oxidation product uniquely generated by oxidative truncation of docosahexanenate-containing phosphatidylcholine. More recently, we found that HOHA-PC rapidly releases HOHA-lactone and 2-lyso-PC (t1/2 = 30 min at 37 °C) by nonenzymatic transesterification/deacylation. Now we report that HOHA-lactone reacts with Ac-Gly-Lys-OMe or human serum albumin to form CEP derivatives in vitro. Incubation of human red blood cell ghosts with HOHA-lactone generates CEP derivatives of membrane proteins and ethanolamine phospholipids. Quantitative analysis of the products generated in the reaction HOHA-PC with Ac-Gly-Lys-OMe showed that HOHA-PC mainly forms CEP-dipeptide that is not esterified to 2-lysophosphatidycholine. Thus, the HOHA-lactone pathway predominates over the direct reaction of HOHA-PC to produce the CEP-PC-dipeptide derivative. Myleoperoxidase/H2O2/NO2(-) promoted in vitro oxidation of either 1-palmityl-2-docosahexaneoyl-sn-glycero-3-phosphatidylcholine (DHA-PC) or docosahexaenoic acid (DHA) generates HOHA-lactone in yields of 0.45% and 0.78%, respectively. Lipid oxidation in human red blood cell ghosts also releases HOHA-lactone. Oxidative injury of ARPE-19 human retinal pigmented epithelial cells by exposure to H2O2 generated CEP derivatives. Treatment of ARPE-19 cells with HOHA-lactone generated CEP-modified proteins. Low (submicromolar), but not high, concentrations of HOHA-lactone promote increased vascular endothelial growth factor (VEGF) secretion by ARPE-19 cells. Therefore, HOHA-lactone not only serves as an intermediate for the generation of CEPs but also is a biologically active oxidative truncation product from docosahexaenoate lipids.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Mikhail Linetsky
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Junhong Guo
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jaewoo Choi
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Li Hong
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Amanda S Chamberlain
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Scott J Howell
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Andrew M Howes
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
50
|
Zeb A. Chemistry and liquid chromatography methods for the analyses of primary oxidation products of triacylglycerols. Free Radic Res 2015; 49:549-64. [PMID: 25824968 DOI: 10.3109/10715762.2015.1022540] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Triacylglycerols (TAGs) are one of the major components of the cells in higher biological systems, which can act as an energy reservoir in the living cells. The unsaturated fatty acid moiety is the key site of oxidation and formation of oxidation compounds. The TAG free radical generates several primary oxidation compounds. These include hydroperoxides, hydroxides, epidioxides, hydroperoxy epidioxides, hydroxyl epidioxides, and epoxides. The presence of these oxidized TAGs in the cell increases the chances of several detrimental processes. For this purpose, several liquid chromatography (LC) methods were reported in their analyses. This review is therefore focused on the chemistry, oxidation, extraction, and the LC methods reported in the analyses of oxidized TAGs. The studies on thin-layer chromatography were mostly focused on the total oxidized TAGs separation and employ hexane as major solvent. High-performance LC (HPLC) methods were discussed in details along with their merits and demerits. It was found that most of the HPLC methods employed isocratic elution with methanol and acetonitrile as major solvents with an ultraviolet detector. The coupling of HPLC with mass spectrometry (MS) highly increases the efficiency of analysis as well as enables reliable structural elucidation. The use of MS was found to be helpful in studying the oxidation chemistry of TAGs and needs to be extended to the complex biological systems.
Collapse
Affiliation(s)
- A Zeb
- Department of Biotechnology, University of Malakand , Chakdara , Pakistan
| |
Collapse
|