1
|
Azuma Y, Doi T, Asada A, Tanaka M, Tagami T. Synthesis and structure determination of a synthetic cannabinoid CUMYL-THPINACA metabolite with differentiation between the ortho-, meta-, and para-hydroxyl positions of the cumyl moiety. Drug Test Anal 2024; 16:348-358. [PMID: 37485784 DOI: 10.1002/dta.3548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Synthetic cannabinoids, a type of new psychoactive substances, are likely to be rapidly metabolized; thus, the detection of their metabolites, rather than the parent compound, is a common method used to prove drug consumption. Although the analysis of metabolites is generally performed by mass spectrometry, it is limited to structural estimation because of few commercially available standards. In particular, distinguishing between positional isomers is difficult. Synthetic cannabinoids with a cumyl moiety can be hydroxylated at the cumyl moiety during metabolism, but it remains unclear whether the hydroxylation occurs at the ortho, meta, or para position. This study determined the structures of a metabolite formed by mono-hydroxylation at the cumyl moiety of the synthetic cannabinoid CUMYL-THPINACA, used as a model compound. Chemical synthesis was performed to create possible metabolites with one hydroxyl group at the ortho, meta, or para positions of the cumyl moiety. Using the synthesized metabolites and liquid chromatography-quadrupole time-of-flight mass spectrometry, the metabolite detected in the microsomal reaction of CUMYL-THPINACA was identified as a compound mono-hydroxylated at the para position based on retention time and product ion spectra. Moreover, the rapid metabolism of CUMYL-THPINACA was demonstrated with an in vitro half-life of 4.9 min and the identified metabolite could be detected for a relatively long time in vitro. The synthesized metabolite may be utilized as a good reference standard for proof of CUMYL-THPINACA consumption. These findings have potential applications in the synthesis of metabolites of other synthetic cannabinoids bearing a cumyl moiety.
Collapse
Affiliation(s)
- Yuki Azuma
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Takahiro Doi
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Akiko Asada
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Misa Tanaka
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| | - Takaomi Tagami
- Division of Hygienic Chemistry, Osaka Institute of Public Health, Higashinari-ku, Osaka, Japan
| |
Collapse
|
2
|
Fujiwara R, Journey M, Al-Doori F, Bell P, Judge B, Miracle K, Ito K, Jones S. Potential neonatal toxicity of new psychoactive substances. Pharmacol Ther 2023; 248:108468. [PMID: 37290575 DOI: 10.1016/j.pharmthera.2023.108468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Cannabis, cocaine, 3,4-methylenedioxymethamphetamine, and lysergic acid diethylamide are psychoactive substances with a significant increase in consumption during the 21st century due to their popularity in medicinal and recreational use. New psychoactive substances (NPSs) mimic established psychoactive substances. NPSs are known as being natural and safe to consumers; however, they are neither natural nor safe, causing severe adverse reactions, including seizures, nephrotoxicity, and sometimes death. Synthetic cannabinoids, synthetic cathinones, phenethylamines, and piperazines are all examples of NPSs. As of January 2020, nearly 1000 NPSs have become documented. Due to their low cost, ease of availability, and difficulty of detection, misuse of NPSs has become a familiar and growing problem, especially in adolescents and young adults in the past decade. The use of NPSs is associated with higher risks of unplanned sexual intercourse and pregnancy. As many as 4 in 100 women seeking treatment for substance abuse are pregnant or nursing. Animal studies and human clinical case reports have shown that exposure to certain NPSs during lactation periods has toxic effects on neonates, increasing various risks, including brain damage. Nevertheless, neonatal toxicity effects of NPSs are usually unrecognized and overlooked by healthcare professionals. In this review article, we introduce and discuss the potential neonatal toxicity of NPSs, emphasizing synthetic cannabinoids. Utilizing the established prediction models, we identify synthetic cannabinoids and their highly accumulative metabolites in breast milk.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Megan Journey
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Fatimah Al-Doori
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paris Bell
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Brahmjot Judge
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kamille Miracle
- College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Sabrina Jones
- Department of Physics, University of Arkansas Fayetteville, Fayetteville, AR, USA
| |
Collapse
|
3
|
Corli G, Tirri M, Bilel S, Giorgetti A, Bernardi T, Boccuto F, Borsari M, Giorgetti R, Marti M. Ethanol enhances JWH-018-induced impairment of sensorimotor and memory functions in mice: From preclinical evidence to forensic implication in Driving Under the Influence of Drugs. Drug Alcohol Depend 2023; 247:109888. [PMID: 37120918 DOI: 10.1016/j.drugalcdep.2023.109888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Several new Synthetic Cannabinoids have appeared each year since their introduction into the illicit drug market as recreational drugs. Among these, naphtalen-1-yl-(1-pentylindol-3-yl) methanone (JWH-018) is one of the most detected compounds in biological samples from patients involved in intoxication or death cases. Furthermore, consumption of JWH-018 has been linked to several cases of Driving Under the Influence of Drugs (DUID) suggesting that effects induced by this compound can affect individuals' ability to drive. METHODS Given the high spread of polydrug consumption and the wide number of alcohol-related traffic accidents, this study aims to investigate the acute effects induced by co-administration of JWH-018 with ethanol on sensorimotor and motor responses, grip strength and memory functions in CD-1 male mice. Acute impairments induced by JWH-018 and ethanol alone have also been investigated, in order to compare their effects with that induced by their concurrent administration. RESULTS In vivo behavioral experiments revealed a worsening of the cognitive and sensorimotor disruption after the co-administration of JWH-018 with ethanol compared to single compounds. CONCLUSIONS These animal-based findings suggest a potential increased impairment on psychomotor performances which could be related to driving abilities posed by poly-drug consumption involving SCs and ethanol.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Via Irnerio 49, Bologna, 40126, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, 44121, Italy
| | - Federica Boccuto
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Borsari
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Science and Public Health, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy.
| |
Collapse
|
4
|
De Simone U, Pignatti P, Villani L, Russo LA, Sargenti A, Bonetti S, Buscaglia E, Coccini T. Human Astrocyte Spheroids as Suitable In Vitro Screening Model to Evaluate Synthetic Cannabinoid MAM2201-Induced Effects on CNS. Int J Mol Sci 2023; 24:ijms24021421. [PMID: 36674936 PMCID: PMC9861655 DOI: 10.3390/ijms24021421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
There is growing concern about the consumption of synthetic cannabinoids (SCs), one of the largest groups of new psychoactive substances, its consequence on human health (general population and workers), and the continuous placing of new SCs on the market. Although drug-induced alterations in neuronal function remain an essential component for theories of drug addiction, accumulating evidence indicates the important role of activated astrocytes, whose essential and pleiotropic role in brain physiology and pathology is well recognized. The study aims to clarify the mechanisms of neurotoxicity induced by one of the most potent SCs, named MAM-2201 (a naphthoyl-indole derivative), by applying a novel three-dimensional (3D) cell culture model, mimicking the physiological and biochemical properties of brain tissues better than traditional two-dimensional in vitro systems. Specifically, human astrocyte spheroids, generated from the D384 astrocyte cell line, were treated with different MAM-2201 concentrations (1-30 µM) and exposure times (24-48 h). MAM-2201 affected, in a concentration- and time-dependent manner, the cell growth and viability, size and morphological structure, E-cadherin and extracellular matrix, CB1-receptors, glial fibrillary acidic protein, and caspase-3/7 activity. The findings demonstrate MAM-2201-induced cytotoxicity to astrocyte spheroids, and support the use of this human 3D cell-based model as species-specific in vitro tool suitable for the evaluation of neurotoxicity induced by other SCs.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Laura Villani
- Pathology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | | | | | - Simone Bonetti
- CNR-ISMN, Institute for Nanostructured Materials, 40129 Bologna, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-592416
| |
Collapse
|
5
|
Jackson MA, Brown AL, Johnston J, Clancy R, McGregor I, Bruno R, Lintzeris N, Montebello M, Luksza J, Bowman J, Phung N, Allsop D, Dunlop AJ. The use and effects of synthetic cannabinoid receptor agonists by New South Wales cannabis treatment clients. J Cannabis Res 2021; 3:33. [PMID: 34311790 PMCID: PMC8314558 DOI: 10.1186/s42238-021-00091-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/09/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Despite decreasing consumption by general populations, use of synthetic cannabinoid receptor agonists (SCRAs) persists in some marginalised groups, including those who use other substances. This article explores SCRA consumption in an Australian cannabis treatment sample, comparing those who report ever using SCRAs with those who have never used SCRAs. Methods A questionnaire orally administered in person to a convenience sample of 154 cannabis treatment service clients from New South Wales, Australia (71% male, median age 35) collected information regarding cannabis and SCRA use including motivations, effects and health-related consequences of use, demographics, other substance use and overall health. Demographic profiles and between-group differences were explored. McNemar tests compared effects of SCRA and cannabis. Logistic regression analysis determined predictors of SCRA use. Results Half (53%) reported lifetime SCRA use; 20% reported previous-month use. The SCRA + cannabis group displayed greater polysubstance use and psychological distress. Reduced dependence on cannabis but higher levels of other substance use may predict SCRA use. Although curiosity motivated initial SCRA consumption, perceived psychoactive strength drove continued use. SCRAs appear to induce more negative side-effects than cannabis. Of the SCRA + cannabis group, 27% sought medical assistance for SCRA use. Most (90%) preferred cannabis to SCRAs, citing superior safety, effects and consistency of cannabis. Conclusions Among clients seeking treatment for cannabis use, SCRA use was relatively common, although not a preferred substance. Hazardous substance use and poor mental health characterised SCRA consumers, highlighting the need for continued monitoring by researchers and treatment providers of SCRA consumption in populations who use substances. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-021-00091-z.
Collapse
Affiliation(s)
- Melissa A Jackson
- Drug and Alcohol Clinical Services, Hunter New England Local Health District, Level 3, 670 Hunter Street, Newcastle, NSW, 2290, Australia.
| | - Amanda L Brown
- Drug and Alcohol Clinical Services, Hunter New England Local Health District, Level 3, 670 Hunter Street, Newcastle, NSW, 2290, Australia
| | - Jennifer Johnston
- University Centre for Rural Health, University of Sydney, Lismore, NSW, Australia
| | - Richard Clancy
- Centre for Brain and Mental Health Research, Hunter New England Local Health District, Newcastle, NSW, Australia
| | - Iain McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Raimondo Bruno
- School of Health, University of Tasmania, Hobart, TAS, Australia
| | - Nick Lintzeris
- Drug and Alcohol Services, South East Sydney Local Health District, Sydney, NSW, Australia
| | - Mark Montebello
- Drug and Alcohol Services, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Jennifer Luksza
- Drug Health, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Jenny Bowman
- Faculty of Science and Information Technology, University of Newcastle, Newcastle, NSW, Australia
| | - Nghi Phung
- Drug Health, Western Sydney Local Health District, Parramatta, NSW, Australia
| | - Dave Allsop
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Adrian J Dunlop
- Drug and Alcohol Clinical Services, Hunter New England Local Health District, Level 3, 670 Hunter Street, Newcastle, NSW, 2290, Australia
| |
Collapse
|
6
|
Coccini T, De Simone U, Lonati D, Scaravaggi G, Marti M, Locatelli CA. MAM-2201, One of the Most Potent-Naphthoyl Indole Derivative-Synthetic Cannabinoids, Exerts Toxic Effects on Human Cell-Based Models of Neurons and Astrocytes. Neurotox Res 2021; 39:1251-1273. [PMID: 33945101 DOI: 10.1007/s12640-021-00369-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/26/2021] [Accepted: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Considering the consequences on human health, in general population and workplace, associated with the use of new psychoactive substances and their continuous placing on the market, novel in vitro models for neurotoxicology research, applying human-derived CNS cells, may provide a means to understand the mechanistic basis of molecular and cellular alterations in brain. Cytotoxic effects of MAM-2201, a potent-naphthoyl indole derivative-synthetic cannabinoid, have been evaluated applying a panel of human cell-based models of neurons and astrocytes, testing different concentrations (1-30 µM) and exposure times (3-24-48 h). MAM-2201 induced toxicity in primary neuron-like cells (hNLCs), obtained from transdifferentiation of mesenchymal stem cells derived from human umbilical cord. Effects occurred in a concentration- and time-dependent manner. The lowest concentration affecting cell viability, metabolic function, apoptosis, morphology, and neuronal markers (MAP-2, NSE) was 5 μM, and even 1 μM induced apoptosis. Effects appeared early (3 h) and persisted after 24 and 48 h. Similar behavior was evidenced for human D384-astrocytes treated with MAM-2201. Differently, human SH-SY5Y-neurons, both differentiated and undifferentiated, were not sensitive to MAM-2201. On D384, the different altered endpoints were reversed, attenuated, or not antagonized by AM251 indicating that CB1 receptors may partially mediate MAM-2201-induced cytotoxicity. While in hNLCs, all toxic effects caused by MAM-2201 were apparently unrelated to CB-receptors since they were not evidenced by immunofluorescence. The present in vitro findings demonstrate the cytotoxicity of MAM-2201 on human primary neurons (hNLCs) and astrocytes cell line (D384), and support the use of these cellular models as species-specific in vitro tools suitable to clarify the neurotoxicity mechanisms of synthetic cannabinoids.
Collapse
Affiliation(s)
- T Coccini
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy.
| | - U De Simone
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - D Lonati
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - G Scaravaggi
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - M Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, Ferrara, Italy.,Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| | - C A Locatelli
- Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| |
Collapse
|
7
|
Nguyen T, Thomas BF, Zhang Y. Overcoming the Psychiatric Side Effects of the Cannabinoid CB1 Receptor Antagonists: Current Approaches for Therapeutics Development. Curr Top Med Chem 2019; 19:1418-1435. [PMID: 31284863 DOI: 10.2174/1568026619666190708164841] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022]
Abstract
The Cannabinoid CB1 Receptor (CB1R) is involved in a variety of physiological pathways and has long been considered a golden target for therapeutic manipulation. A large body of evidence in both animal and human studies suggests that CB1R antagonism is highly effective for the treatment of obesity, metabolic disorders and drug addiction. However, the first-in-class CB1R antagonist/inverse agonist, rimonabant, though demonstrating effectiveness for obesity treatment and smoking cessation, displays serious psychiatric side effects, including anxiety, depression and even suicidal ideation, resulting in its eventual withdrawal from the European market. Several strategies are currently being pursued to circumvent the mechanisms leading to these side effects by developing neutral antagonists, peripherally restricted ligands, and allosteric modulators. In this review, we describe the progress in the development of therapeutics targeting the CB1R in the last two decades.
Collapse
Affiliation(s)
- Thuy Nguyen
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - Brian F Thomas
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle Park, NC 27709, United States
| |
Collapse
|
8
|
Cannaert A, Vandeputte M, Wille SMR, Stove CP. Activity-based reporter assays for the screening of abused substances in biological matrices. Crit Rev Toxicol 2019; 49:95-109. [DOI: 10.1080/10408444.2019.1576588] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
- Department of Toxicology, National Institute of Criminalistics and Criminology, Federal Public Service Justice, Brussels, Belgium
| | - Marthe Vandeputte
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah M. R. Wille
- Department of Toxicology, National Institute of Criminalistics and Criminology, Federal Public Service Justice, Brussels, Belgium
| | - Christophe P. Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Gamage TF, Farquhar CE, McKinnie RJ, Kevin RC, McGregor IS, Trudell ML, Wiley JL, Thomas BF. Synthetic Cannabinoid Hydroxypentyl Metabolites Retain Efficacy at Human Cannabinoid Receptors. J Pharmacol Exp Ther 2019; 368:414-422. [PMID: 30552295 PMCID: PMC6374541 DOI: 10.1124/jpet.118.254425] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/12/2018] [Indexed: 01/26/2023] Open
Abstract
Synthetic cannabinoids (SCs) are novel psychoactive substances that are easily acquired, widely abused as a substitute for cannabis, and associated with cardiotoxicity and seizures. Although the structural bases of these compounds are scaffolds with known affinity and efficacy at the human cannabinoid type-1 receptor (hCB1), upon ingestion or inhalation they can be metabolized to multiple chemical entities of unknown pharmacological activity. A large proportion of these metabolites are hydroxylated on the pentyl chain, a key substituent that determines receptor affinity and selectivity. Thus, the pharmacology of SC metabolites may be an important component in understanding the in vivo effects of SCs. We examined nine SCs (AB-PINACA, 5F-AB-PINACA, ADB/MDMB-PINACA, 5F-ADB, 5F-CUMYL-PINACA, AMB-PINACA, 5F-AMB, APINACA, and 5F-APINACA) and their hydroxypentyl (either 4-OH or 5-OH) metabolites in [3H]CP55,940 receptor binding and the [35S]GTPγS functional assay to determine the extent to which these metabolites retain activity at cannabinoid receptors. All of the SCs tested exhibited high affinity (<10 nM) and efficacy for hCB1 and hCB2 The majority of the hydroxypentyl metabolites retained full efficacy at hCB1 and hCB2, albeit with reduced affinity and potency, and exhibited greater binding selectivity for hCB2 These data suggest that phase I metabolites may be contributing to the in vivo pharmacology and toxicology of abused SCs. Considering this and previous reports demonstrating that metabolites retain efficacy at the hCB1 receptor, the full pharmacokinetic profiles of the parent compounds and their metabolites need to be considered in terms of the pharmacological effects and time course associated with these drugs.
Collapse
Affiliation(s)
- Thomas F Gamage
- RTI International, Research Triangle Park, North Carolina (T.F.G., C.E.F., J.L.W., B.F.T.); Department of Chemistry, University of New Orleans, New Orleans, Louisiana (R.J.M., M.L.T.); and School of Psychology, University of Sydney, Sydney, New South Wales, Australia (R.C.K., I.S.M.)
| | - Charlotte E Farquhar
- RTI International, Research Triangle Park, North Carolina (T.F.G., C.E.F., J.L.W., B.F.T.); Department of Chemistry, University of New Orleans, New Orleans, Louisiana (R.J.M., M.L.T.); and School of Psychology, University of Sydney, Sydney, New South Wales, Australia (R.C.K., I.S.M.)
| | - Ryan J McKinnie
- RTI International, Research Triangle Park, North Carolina (T.F.G., C.E.F., J.L.W., B.F.T.); Department of Chemistry, University of New Orleans, New Orleans, Louisiana (R.J.M., M.L.T.); and School of Psychology, University of Sydney, Sydney, New South Wales, Australia (R.C.K., I.S.M.)
| | - Richard C Kevin
- RTI International, Research Triangle Park, North Carolina (T.F.G., C.E.F., J.L.W., B.F.T.); Department of Chemistry, University of New Orleans, New Orleans, Louisiana (R.J.M., M.L.T.); and School of Psychology, University of Sydney, Sydney, New South Wales, Australia (R.C.K., I.S.M.)
| | - Iain S McGregor
- RTI International, Research Triangle Park, North Carolina (T.F.G., C.E.F., J.L.W., B.F.T.); Department of Chemistry, University of New Orleans, New Orleans, Louisiana (R.J.M., M.L.T.); and School of Psychology, University of Sydney, Sydney, New South Wales, Australia (R.C.K., I.S.M.)
| | - Mark L Trudell
- RTI International, Research Triangle Park, North Carolina (T.F.G., C.E.F., J.L.W., B.F.T.); Department of Chemistry, University of New Orleans, New Orleans, Louisiana (R.J.M., M.L.T.); and School of Psychology, University of Sydney, Sydney, New South Wales, Australia (R.C.K., I.S.M.)
| | - Jenny L Wiley
- RTI International, Research Triangle Park, North Carolina (T.F.G., C.E.F., J.L.W., B.F.T.); Department of Chemistry, University of New Orleans, New Orleans, Louisiana (R.J.M., M.L.T.); and School of Psychology, University of Sydney, Sydney, New South Wales, Australia (R.C.K., I.S.M.)
| | - Brian F Thomas
- RTI International, Research Triangle Park, North Carolina (T.F.G., C.E.F., J.L.W., B.F.T.); Department of Chemistry, University of New Orleans, New Orleans, Louisiana (R.J.M., M.L.T.); and School of Psychology, University of Sydney, Sydney, New South Wales, Australia (R.C.K., I.S.M.)
| |
Collapse
|
10
|
Potential Mechanisms Underlying the Deleterious Effects of Synthetic Cannabinoids Found in Spice/K2 Products. Brain Sci 2019; 9:brainsci9010014. [PMID: 30654473 PMCID: PMC6357179 DOI: 10.3390/brainsci9010014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
The chief psychoactive constituent of many bioactive phytocannabinoids (Δ9-tetrahydrocannabinol, Δ9-THC) found in hemp, cannabis or marijuana plants are scientifically denoted by the Latin term, Cannabis sativa, acts on cell surface receptors. These receptors are ubiquitously expressed. To date, two cannabinoid receptors have been cloned and characterized. Cannabinoid receptor type 1 (CB1R) is found to serve as the archetype for cannabinoid action in the brain. They have attracted wide interest as the mediator of all psychoactive properties of exogenous and endogenous cannabinoids and they are abundantly expressed on most inhibitory and excitatory neurons. Recent evidence established that cannabinoid receptor type 2 (CB2R) is also expressed in the neurons at both presynaptic and postsynaptic terminals and are involved in neuropsychiatric effects. Distinct types of cells in many regions in the brain express CB2Rs and the cellular origin of CB2Rs that induce specific behavioral effects are emerging. To mimic the bliss effects of marijuana, synthetic cannabinoids (SCBs) have been sprayed onto plant material, and this plant material has been consequently packaged and sold under brand name “Spice” or “K2”. These SCBs have been shown to maintain their affinity and functional activity for CB1R and CB2R and have been shown to cause severe harmful effects when compared to the effects of Δ9-THC. The present review discusses the potential brain mechanisms that are involved in the deleterious effects of SCBs.
Collapse
|
11
|
The ongoing challenge of novel psychoactive drugs of abuse. Part I. Synthetic cannabinoids (IUPAC Technical Report). PURE APPL CHEM 2018. [DOI: 10.1515/pac-2017-0605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
In the past decade, the world has experienced a large increase in the number of novel compounds appearing on the illicit drug market for recreational purposes. Such substances are designed to circumvent governmental regulations; the illegal drug manufacturers take a known psychoactive compound reported in the scientific literature and slightly modify its chemical structure in order to produce analogues that will mimic the pharmacological activity of the original substance. Many of these novel substances are sold via the Internet. Among the various chemical classes, synthetic cannabinoid receptor modulators, commonly referred to as “synthetic cannabinoids” have been at the forefront, as demonstrated by the frequency of drug seizures, numerous severe toxic effects, and fatalities associated with some of these substances. This review presents the chemical structures of relevant synthetic cannabinoids and describes their mechanism of action, pharmacological features, metabolic pathways, and structure-activity relationships. It illustrates the approaches used in forensic testing, both for bulk analysis (drug seizures) and for analytical toxicology (biological matrices) and discusses aspects of regulation surrounding this drug class. This report is intended to provide pertinent information for the purposes of informing scientific, medical, social, and governmental bodies about this ever-evolving recreational drug class and the challenges it poses worldwide.
Collapse
|
12
|
Bonsai intoxication at emergency service: A review of 61 cases. JOURNAL OF SURGERY AND MEDICINE 2018. [DOI: 10.28982/josam.422416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Cengel HY, Bozkurt M, Evren C, Umut G, Keskinkilic C, Agachanli R. Evaluation of cognitive functions in individuals with synthetic cannabinoid use disorder and comparison to individuals with cannabis use disorder. Psychiatry Res 2018; 262:46-54. [PMID: 29407568 DOI: 10.1016/j.psychres.2018.01.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/26/2017] [Accepted: 01/24/2018] [Indexed: 02/05/2023]
Abstract
The use of synthetic cannabinoid has been increasing throughout the world and has become a major public health problem. The present study aims to investigate the attention, memory, visuospatial and executive functions in individuals with synthetic cannabinoid use disorder and compare the results with findings obtained from individuals with cannabis use disorder and healthy volunteers with no substance use. Fifty-two patients with synthetic cannabinoid use disorder, 45 patients with cannabis use disorder and 48 healthy control group males were included in the study. The neuropsychological test battery was designed to involve ten studies evaluating a large series of cognitive functions. Impairments in attention, memory, executive and visuospatial functions were identified in individuals with synthetic cannabinoid use disorder and these impairments were found to be significantly greater than in individuals with cannabis use disorder and healthy controls. In line with the data obtained from this study; the evaluation of each cognitive function with more comprehensive test batteries and supporting these evaluations with sensitive brain imaging studies are important topics for future research.
Collapse
Affiliation(s)
- Hanife Yilmaz Cengel
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey.
| | - Muge Bozkurt
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Cuneyt Evren
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Gokhan Umut
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Cahit Keskinkilic
- Department of Neuropsychology, Bakirkoy Training and Research Hospital for Psychiatry Neurology and Neurosurgery, Istanbul, Turkey
| | - Ruken Agachanli
- Research, Treatment and Training Center for Alcohol and Substance Dependence (AMATEM), Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
14
|
Banister SD, Olson A, Winchester M, Stuart J, Edington AR, Kevin RC, Longworth M, Herrera M, Connor M, McGregor IS, Gerona RR, Kassiou M. The chemistry and pharmacology of synthetic cannabinoid SDB-006 and its regioisomeric fluorinated and methoxylated analogs. Drug Test Anal 2018; 10:1099-1109. [PMID: 29350472 DOI: 10.1002/dta.2362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 01/01/2023]
Abstract
Synthetic cannabinoids are the largest and most structurally diverse class of new psychoactive substances, with manufacturers often using isomerism to evade detection and circumvent legal restriction. The regioisomeric methoxy- and fluorine-substituted analogs of SDB-006 (N-benzyl-1-pentyl-1H-indole-3-carboxamide) were synthesized and could not be differentiated by gas chromatography-mass spectrometry (GC-MS), but were distinguishable by liquid chromatography-quadrupole time-of-flight-MS (LC-QTOF-MS). In a fluorescence-based plate reader membrane potential assay, SDB-006 acted as a potent agonist at human cannabinoid receptors (CB1 EC50 = 19 nM). All methoxy- and fluorine-substituted analogs showed reduced potency compared to SDB-006, although the 2-fluorinated analog (EC50 = 166 nM) was comparable to known synthetic cannabinoid RCS-4 (EC50 = 146 nM). Using biotelemetry in rats, SDB-006 and RCS-4 evoked comparable reduction in body temperature (~0.7°C at a dose of 10 mg/kg), suggesting lower potency than the recent synthetic cannabinoid AB-CHMINACA (>2°C, 3 mg/kg).
Collapse
Affiliation(s)
- Samuel D Banister
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Alexander Olson
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, California, USA
| | - Matthew Winchester
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, California, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jordyn Stuart
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Amelia R Edington
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Richard C Kevin
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | | | - Marco Herrera
- Department of Immunology, Stanford University, Stanford, California, USA
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Iain S McGregor
- School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California San Francisco, San Francisco, California, USA
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Hondebrink L, Zwartsen A, Westerink RHS. Effect fingerprinting of new psychoactive substances (NPS): What can we learn from in vitro data? Pharmacol Ther 2017; 182:193-224. [PMID: 29097307 DOI: 10.1016/j.pharmthera.2017.10.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of new psychoactive substances (NPS) is increasing and currently >600 NPS have been reported. However, limited information on neuropharmacological and toxicological effects of NPS is available, hampering risk characterization. We reviewed the literature on the in vitro neuronal modes of action to obtain effect fingerprints of different classes of illicit drugs and NPS. The most frequently reported NPS were selected for review: cathinones (MDPV, α-PVP, mephedrone, 4-MEC, pentedrone, methylone), cannabinoids (JWH-018), (hallucinogenic) phenethylamines (4-fluoroamphetamine, benzofurans (5-APB, 6-APB), 2C-B, NBOMes (25B-NBOMe, 25C-NBOMe, 25I-NBOMe)), arylcyclohexylamines (methoxetamine) and piperazine derivatives (mCPP, TFMPP, BZP). Our effect fingerprints highlight the main modes of action for the different NPS studied, including inhibition and/or reversal of monoamine reuptake transporters (cathinones and non-hallucinogenic phenethylamines), activation of 5-HT2receptors (hallucinogenic phenethylamines and piperazines), activation of cannabinoid receptors (cannabinoids) and inhibition of NDMA receptors (arylcyclohexylamines). Importantly, we identified additional targets by relating reported effect concentrations to the estimated human brain concentrations during recreational use. These additional targets include dopamine receptors, α- and β-adrenergic receptors, GABAAreceptors and acetylcholine receptors, which may all contribute to the observed clinical symptoms following exposure. Additional data is needed as the number of NPS continues to increase. Also, the effect fingerprints we have obtained are still incomplete and suffer from a large variation in the reported effects and effect sizes. Dedicated in vitro screening batteries will aid in complementing specific effect fingerprints of NPS. These fingerprints can be implemented in the risk assessments of NPS that are necessary for eventual control measures to reduce Public Health risks.
Collapse
Affiliation(s)
- Laura Hondebrink
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, The Netherlands
| | - Anne Zwartsen
- Dutch Poisons Information Center (DPIC), University Medical Center Utrecht, Utrecht University, The Netherlands; Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Kevin RC, Lefever TW, Snyder RW, Patel PR, Gamage TF, Fennell TR, Wiley JL, McGregor IS, Thomas BF. Kinetic and metabolic profiles of synthetic cannabinoids NNEI and MN-18. Drug Test Anal 2017; 10:137-147. [PMID: 28834241 DOI: 10.1002/dta.2262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 01/28/2023]
Abstract
In 2014 and 2015, synthetic cannabinoid receptor agonists NNEI (N-1-naphthalenyl-1-pentyl-1H-indole-3-carboxamide) and MN-18 (N-1-naphthalenyl-1-pentyl-1H-indazole-3-carboxamide) were detected in recreationally used and abused products in multiple countries, and were implicated in episodes of poisoning and toxicity. Despite this, the pharmacokinetic profiles of NNEI and MN-18 have not been characterized. In the present study NNEI and MN-18 were incubated in rat and human liver microsomes and hepatocytes, to estimate kinetic parameters and to identify potential metabolic pathways, respectively. These parameters and pathways were then examined in vivo, via analysis of blood and urine samples from catheterized male rats following intraperitoneal (3 mg/kg) administration of NNEI and MN-18. Both NNEI and MN-18 were rapidly cleared by rat and human liver microsomes, and underwent a range of oxidative transformations during incubation with rat and human hepatocytes. Several unique metabolites were identified for the forensic identification of NNEI and MN-18 intake. Interestingly, NNEI underwent a greater number of biotransformations (20 NNEI metabolites versus 10 MN-18 metabolites), yet parent MN-18 was eliminated at a faster rate than NNEI in vivo. Additionally, in vivo elimination was more rapid than in vitro estimates. These data highlight that even closely related synthetic cannabinoids can possess markedly distinct pharmacokinetic profiles, which can vary substantially between in vitro and in vivo models.
Collapse
Affiliation(s)
- Richard C Kevin
- School of Psychology, The University of Sydney, NSW, Australia.,The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW, Australia
| | | | | | | | | | | | | | - Iain S McGregor
- School of Psychology, The University of Sydney, NSW, Australia.,The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW, Australia
| | | |
Collapse
|
17
|
Longworth M, Connor M, Banister SD, Kassiou M. Synthesis and Pharmacological Profiling of the Metabolites of Synthetic Cannabinoid Drugs APICA, STS-135, ADB-PINACA, and 5F-ADB-PINACA. ACS Chem Neurosci 2017; 8:1673-1680. [PMID: 28574245 DOI: 10.1021/acschemneuro.7b00116] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Synthetic cannabinoids (SCs) containing a 1-pentyl-1-H substituted indole or indazole are abused around the world and are associated with an array of serious side effects. These compounds undergo extensive phase 1 metabolism after ingestion with little understanding whether these metabolites are contributing to the cannabimimetic activity of the drugs. This work presents the synthesis and pharmacological characterization of the major metabolites of two high concern SCs; APICA and ADB-PINACA. In a fluorometric assay of membrane potential, all metabolites that did not contain a carboxylic acid functionality retained potent activity at both the CB1 (EC50 = 14-787 nM) and CB2 (EC50 = 5.5-291 nM) receptors regardless of heterocyclic core or 3-carboxamide substituent. Of note were the 5-hydroxypentyl and 4-pentanone metabolites which showed significant increases in CB2 functional selectivity. These results suggest that the metabolites of SCs potentially contribute to the overall pharmacological profile of these drugs.
Collapse
Affiliation(s)
- Mitchell Longworth
- School
of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Mark Connor
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Samuel D. Banister
- Department
of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Michael Kassiou
- School
of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
18
|
Raso S, Bell S. Qualitative Analysis and Detection of the Pyrolytic Products of JWH-018 and 11 Additional Synthetic Cannabinoids in the Presence of Common Herbal Smoking Substrates. J Anal Toxicol 2017. [DOI: 10.1093/jat/bkx039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Kevin RC, Wood KE, Stuart J, Mitchell AJ, Moir M, Banister SD, Kassiou M, McGregor IS. Acute and residual effects in adolescent rats resulting from exposure to the novel synthetic cannabinoids AB-PINACA and AB-FUBINACA. J Psychopharmacol 2017; 31:757-769. [PMID: 28093016 DOI: 10.1177/0269881116684336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Synthetic cannabinoids (SCs) have rapidly proliferated as recreational drugs, and may present a substantial health risk to vulnerable populations. However, information on possible effects of long-term use is sparse. This study compared acute and residual effects of the popular indazole carboxamide SC compounds AB-PINACA and AB-FUBINACA in adolescent rats with ∆9-tetrahydrocannabinol (THC) and control treatments. Albino Wistar rats were injected (i.p.) with AB-PINACA or AB-FUBINACA every second day (beginning post-natal day (PND) 31), first at a low dose (0.2 mg/kg on 6 days) followed by a higher dose (1 mg/kg on a further 6 days). THC-treated rats received equivalent doses of 6 × 1 mg/kg and 6 × 5 mg/kg. During drug treatment, THC, AB-PINACA, and AB-FUBINACA decreased locomotor activity at high and low doses, increased anxiety-like behaviours and audible vocalisations, and reduced weight gain. Two weeks after dosing was completed, all cannabinoid pre-treated rats exhibited object recognition memory deficits. These were notably more severe in rats pre-treated with AB-FUBINACA. However, social interaction was reduced in the THC pre-treated group only. Six weeks post-dosing, plasma levels of cytokines interleukin (IL)-1α and IL-12 were reduced by AB-FUBINACA pre-treatment, while cerebellar endocannabinoids were reduced by THC and AB-PINACA pre-treatment. The acute effects of AB-PINACA and AB-FUBINACA were broadly similar to those of THC, suggesting that acute SC toxicity in humans may be modulated by dose factors, including inadvertent overdose and product contamination. However, some lasting residual effects of these different cannabinoid receptor agonists were subtly different, hinting at recruitment of different mechanisms of neuroadaptation.
Collapse
Affiliation(s)
- Richard C Kevin
- 1 School of Psychology, The University of Sydney, NSW, Australia
| | - Katie E Wood
- 1 School of Psychology, The University of Sydney, NSW, Australia
| | - Jordyn Stuart
- 1 School of Psychology, The University of Sydney, NSW, Australia
| | - Andrew J Mitchell
- 2 Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia
| | - Michael Moir
- 3 School of Chemistry, The University of Sydney, NSW, Australia
| | | | - Michael Kassiou
- 3 School of Chemistry, The University of Sydney, NSW, Australia
| | - Iain S McGregor
- 1 School of Psychology, The University of Sydney, NSW, Australia
| |
Collapse
|
20
|
In vitro and in vivo pharmacokinetics and metabolism of synthetic cannabinoids CUMYL-PICA and 5F-CUMYL-PICA. Forensic Toxicol 2017; 35:333-347. [PMID: 28824730 PMCID: PMC5519669 DOI: 10.1007/s11419-017-0361-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/28/2017] [Indexed: 11/18/2022]
Abstract
CUMYL-PICA [1-pentyl-N-(2-phenylpropan-2-yl)-1H-indole-3-carboxamide] and 5F-CUMYL-PICA [1-(5-fluoropentyl)-N-(2-phenylpropan-2-yl)-1H-indole-3-carboxamide] are recently identified recreationally used/abused synthetic cannabinoids, but have uncharacterized pharmacokinetic profiles and metabolic processes. This study characterized clearance and metabolism of these compounds by human and rat liver microsomes and hepatocytes, and then compared these parameters with in vivo rat plasma and urine sampling. It also evaluated hypothermia, a characteristic cannabimimetic effect. Incubation of CUMYL-PICA and 5F-CUMYL-PICA with rat and human liver microsomes suggested rapid metabolic clearance, but in vivo metabolism was prolonged, such that parent compounds remained detectable in rat plasma 24 h post-dosing. At 3 mg/kg (intraperitoneally), both compounds produced moderate hypothermic effects. Twenty-eight metabolites were tentatively identified for CUMYL-PICA and, coincidentally, 28 metabolites for 5F-CUMYL-PICA, primarily consisting of phase I oxidative transformations and phase II glucuronidation. The primary metabolic pathways for both compounds resulted in the formation of identical metabolites following terminal hydroxylation or dealkylation of the N-pentyl chain for CUMYL-PICA or of the 5-fluoropentyl chain for 5F-CUMYL-PICA. These data provide evidence that in vivo elimination of CUMYL-PICA, 5F-CUMYL-PICA and other synthetic cannabinoids is delayed compared to in vitro modeling, possibly due to sequestration into adipose tissue. Additionally, the present data underscore the need for careful selection of metabolites as analytical targets to distinguish between closely related synthetic cannabinoids in forensic settings.
Collapse
|
21
|
Ford BM, Tai S, Fantegrossi WE, Prather PL. Synthetic Pot: Not Your Grandfather's Marijuana. Trends Pharmacol Sci 2017; 38:257-276. [PMID: 28162792 PMCID: PMC5329767 DOI: 10.1016/j.tips.2016.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023]
Abstract
In the early 2000s in Europe and shortly thereafter in the USA, it was reported that 'legal' forms of marijuana were being sold under the name K2 and/or Spice. Active ingredients in K2/Spice products were determined to be synthetic cannabinoids (SCBs), producing psychotropic actions via CB1 cannabinoid receptors, similar to those of Δ9-tetrahydrocannabinol (Δ9-THC), the primary active constituent in marijuana. Often abused by adolescents and military personnel to elude detection in drug tests due to their lack of structural similarity to Δ9-THC, SCBs are falsely marketed as safe marijuana substitutes. Instead, SCBs are a highly structural diverse group of compounds, easily synthesized, which produce very dangerous adverse effects occurring by, as of yet, unknown mechanisms. Therefore, available evidence indicates that K2/Spice products are clearly not safe marijuana alternatives.
Collapse
Affiliation(s)
- Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sherrica Tai
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
22
|
Wiley JL, Marusich JA, Thomas BF. Combination Chemistry: Structure-Activity Relationships of Novel Psychoactive Cannabinoids. Curr Top Behav Neurosci 2017; 32:231-248. [PMID: 27753007 DOI: 10.1007/7854_2016_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Originally developed as research tools for use in structure-activity relationship studies, synthetic cannabinoids contributed to significant scientific advances in the cannabinoid field. Unfortunately, a subset of these compounds was diverted for recreational use beginning in the early 2000s. As these compounds were banned, they were replaced with additional synthetic cannabinoids with increasingly diverse chemical structures. This chapter focuses on integration of recent results with those covered in previous reviews. Whereas most of the early compounds were derived from the prototypic naphthoylindole JWH-018, currently popular synthetic cannabinoids include tetramethylcyclopropyl ketones and indazole-derived cannabinoids (e.g., AB-PINACA, AB-CHMINACA). Despite their structural differences, psychoactive synthetic cannabinoids bind with high affinity to CB1 receptors in the brain and, when tested, have been shown to activate these receptors and to produce a characteristic profile of effects, including suppression of locomotor activity, antinociception, hypothermia, and catalepsy, as well as Δ9-tetrahydrocannabinol (THC)-like discriminative stimulus effects in mice. When they have been tested, synthetic cannabinoids are often found to be more efficacious at activation of the CB1 receptor and more potent in vivo. Further, their chemical alteration by thermolysis during use and their uncertain stability and purity may result in exposure to degradants that differ from the parent compound contained in the original product. Consequently, while their intoxicant effects may be similar to those of THC, use of synthetic cannabinoids may be accompanied by unpredicted, and sometimes harmful, effects.
Collapse
Affiliation(s)
- Jenny L Wiley
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC, 27709-2194, USA.
| | - Julie A Marusich
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC, 27709-2194, USA
| | - Brian F Thomas
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC, 27709-2194, USA
| |
Collapse
|
23
|
Tai S, Fantegrossi WE. Pharmacological and Toxicological Effects of Synthetic Cannabinoids and Their Metabolites. Curr Top Behav Neurosci 2017; 32:249-262. [PMID: 28012093 PMCID: PMC5392241 DOI: 10.1007/7854_2016_60] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Commercial preparations containing synthetic cannabinoids (SCBs) are rapidly emerging as drugs of abuse. Although often assumed to be "safe" and "legal" alternatives to cannabis, reports indicate that SCBs induce toxicity not often associated with the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). This chapter will summarize the evidence that use of SCBs poses greater health risks relative to marijuana and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ9-THC may contribute to this increased toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ9-THC typically observed in vitro, SCBs act as full CB1 and CB2 receptor agonists both in cellular assays and animal studies. Furthermore, unlike Δ9-THC metabolism, several SCB metabolites retain high affinity for and exhibit a range of intrinsic activities at CB1 and CB2 receptors. Finally, the potential for SCBs to cause adverse drug-drug interactions with other drugs of abuse, as well as with common therapeutic agents, will be discussed. Collectively, the evidence provided in this chapter indicates that SCBs should not be considered safe and legal alternatives to marijuana. Instead, the enhanced toxicity of SCBs relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2 receptors, highlights the inherent danger that may accompany use of these substances.
Collapse
Affiliation(s)
- Sherrica Tai
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences College of Medicine, Mail Slot 638, 4301 West Markham Street, Little Rock, AR, 72207, USA
- Department of Pharmacology, University of Michigan Medical School, 2301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences College of Medicine, Mail Slot 638, 4301 West Markham Street, Little Rock, AR, 72207, USA.
| |
Collapse
|
24
|
Cannaert A, Storme J, Franz F, Auwärter V, Stove CP. Detection and Activity Profiling of Synthetic Cannabinoids and Their Metabolites with a Newly Developed Bioassay. Anal Chem 2016; 88:11476-11485. [DOI: 10.1021/acs.analchem.6b02600] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Annelies Cannaert
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jolien Storme
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Florian Franz
- Institute
of Forensic Medicine, Forensic Toxicology, Medical Center −
University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| | - Volker Auwärter
- Institute
of Forensic Medicine, Forensic Toxicology, Medical Center −
University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
25
|
Holm NB, Noble C, Linnet K. JWH-018 ω-OH, a shared hydroxy metabolite of the two synthetic cannabinoids JWH-018 and AM-2201, undergoes oxidation by alcohol dehydrogenase and aldehyde dehydrogenase enzymes in vitro forming the carboxylic acid metabolite. Toxicol Lett 2016; 259:35-43. [PMID: 27421777 DOI: 10.1016/j.toxlet.2016.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/06/2016] [Accepted: 07/12/2016] [Indexed: 01/14/2023]
Abstract
Synthetic cannabinoids are new psychoactive substances (NPS) acting as agonists at the cannabinoid receptors. The aminoalkylindole-type synthetic cannabinoid naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) was among the first to appear on the illicit drug market and its metabolism has been extensively investigated. The N-pentyl side chain is a major site of human cytochrome P450 (CYP)-mediated oxidative metabolism, and the ω-carboxylic acid metabolite appears to be a major in vivo human urinary metabolite. This metabolite is, however, not formed to any significant extent in human liver microsomal (HLM) incubations raising the possibility that the discrepancy is due to involvement of cytosolic enzymes. Here we demonstrate in incubations with human liver cytosol (HLC), that JWH-018 ω-OH, but not the JWH-018 parent compound, is a substrate for nicotinamide adenine dinucleotide (NAD(+))-dependent alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. The sole end-product identified in HLC was the JWH-018 ω-COOH metabolite, while trapping tests with methoxyamine proved the presence of the aldehyde intermediate. ADH/ALDH and UDP-glucuronosyl-transferases (UGT) enzymes may therefore both act on the JWH-018 ω-OH substrate. Finally, we note that for [1-(5-fluoropentyl)indol-3-yl]-naphthalen-1-yl-methanone (AM-2201), the ω-fluorinated analog of JWH-018, a high amount of JWH-018 ω-OH was formed in HLM incubated without NADPH, suggesting that the oxidative defluorination is efficiently catalyzed by non-CYP enzyme(s). The pathway presented here may therefore be especially important for N-(5-fluoropentyl) substituted synthetic cannabinoids, because the oxidative defluorination can occur even if the CYP-mediated metabolism preferentially takes place on other parts of the molecule than the N-alkyl side chain. Controlled clinical studies in humans are ultimately required to demonstrate the in vivo importance of the oxidation pathway presented here.
Collapse
Affiliation(s)
- Niels Bjerre Holm
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Carolina Noble
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Linnet
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Miliano C, Serpelloni G, Rimondo C, Mereu M, Marti M, De Luca MA. Neuropharmacology of New Psychoactive Substances (NPS): Focus on the Rewarding and Reinforcing Properties of Cannabimimetics and Amphetamine-Like Stimulants. Front Neurosci 2016; 10:153. [PMID: 27147945 PMCID: PMC4835722 DOI: 10.3389/fnins.2016.00153] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/21/2016] [Indexed: 01/19/2023] Open
Abstract
New psychoactive substances (NPS) are a heterogeneous and rapidly evolving class of molecules available on the global illicit drug market (e.g smart shops, internet, “dark net”) as a substitute for controlled substances. The use of NPS, mainly consumed along with other drugs of abuse and/or alcohol, has resulted in a significantly growing number of mortality and emergency admissions for overdoses, as reported by several poison centers from all over the world. The fact that the number of NPS have more than doubled over the last 10 years, is a critical challenge to governments, the scientific community, and civil society [EMCDDA (European Drug Report), 2014; UNODC, 2014b; Trends and developments]. The chemical structure (phenethylamines, piperazines, cathinones, tryptamines, synthetic cannabinoids) of NPS and their pharmacological and clinical effects (hallucinogenic, anesthetic, dissociative, depressant) help classify them into different categories. In the recent past, 50% of newly identified NPS have been classified as synthetic cannabinoids followed by new phenethylamines (17%) (UNODC, 2014b). Besides peripheral toxicological effects, many NPS seem to have addictive properties. Behavioral, neurochemical, and electrophysiological evidence can help in detecting them. This manuscript will review existing literature about the addictive and rewarding properties of the most popular NPS classes: cannabimimetics (JWH, HU, CP series) and amphetamine-like stimulants (amphetamine, methamphetamine, methcathinone, and MDMA analogs). Moreover, the review will include recent data from our lab which links JWH-018, a CB1 and CB2 agonist more potent than Δ9-THC, to other cannabinoids with known abuse potential, and to other classes of abused drugs that increase dopamine signaling in the Nucleus Accumbens (NAc) shell. Thus the neurochemical mechanisms that produce the rewarding properties of JWH-018, which most likely contributes to the greater incidence of dependence associated with “Spice” use, will be described (De Luca et al., 2015a). Considering the growing evidence of a widespread use of NPS, this review will be useful to understand the new trends in the field of drug reward and drug addiction by revealing the rewarding properties of NPS, and will be helpful to gather reliable data regarding the abuse potential of these compounds.
Collapse
Affiliation(s)
- Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari Cagliari, Italy
| | - Giovanni Serpelloni
- Advisory and Steering Group, URITo.N. - Unit for Research and Innovation on Forensic Toxicology, Neuroscience of Addiction and New Drugs. FT-DSS University of Florence Florence, Italy
| | - Claudia Rimondo
- Department of Diagnostic and Public Health, University of Verona Verona, Italy
| | - Maddalena Mereu
- Departmentof Pharmaceutical and Pharmacological Sciences, University of Padua Padua, Italy
| | - Matteo Marti
- Department of Life Sciences and Biotechnology, University of Ferrara Ferrara, Italy
| | | |
Collapse
|
27
|
De Luca MA, Bimpisidis Z, Melis M, Marti M, Caboni P, Valentini V, Margiani G, Pintori N, Polis I, Marsicano G, Parsons LH, Di Chiara G. Stimulation of in vivo dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid. Neuropharmacology 2015; 99:705-14. [PMID: 26327678 DOI: 10.1016/j.neuropharm.2015.08.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
Abstract
The synthetic cannabinoid 1-pentyl-3-(1-naphthoyl)-indole (JWH-018) has been detected in about 140 samples of a smokable herbal mixture termed "Spice". JWH-018 is a CB1 and CB2 agonist with a higher affinity than Δ9-THC. In order to investigate the neurobiological substrates of JWH-018 actions, we studied by microdialysis in freely moving rats the effect of JWH-018 on extracellular dopamine (DA) levels in the nucleus accumbens (NAc) shell and core and in the medial prefrontal cortex (mPFC). JWH-018, at the dose of 0.25 mg/kg i.p., increased DA release in the NAc shell but not in the NAc core and mPFC. Lower (0.125 mg/kg) and higher doses (0.50 mg/kg) were ineffective. These effects were blocked by CB1 receptor antagonists (SR-141716A and AM 251) and were absent in mice lacking the CB1 receptor. Ex vivo whole cell patch clamp recordings from rat ventral tegmental area (VTA) DA neurons showed that JWH-018 decreases GABAA-mediated post-synaptic currents in a dose-dependent fashion suggesting that the stimulation of DA release observed in vivo might result from disinhibition of DA neurons. In addition, on the "tetrad" paradigm for screening cannabinoid-like effects (i.e., hypothermia, analgesia, catalepsy, hypomotility), JWH-018, at doses of 1 and 3 mg/kg i.p., produced CB1 receptor-dependent behavioural effects in rats. Finally, under appropriate experimental conditions, rats (20 μg/kg/inf i.v., FR3; nose-poking) and mice (30 μg/kg/inf i.v., FR1; lever-pressing) self-administer intravenously JWH-018. In conclusion, JWH-018 shares with the active ingredient of Marijuana, Δ9-THC, CB1-dependent reinforcing and DA stimulant actions.
Collapse
Affiliation(s)
- M A De Luca
- Department of Biomedical Sciences, University of Cagliari, Italy; INN, National Institute of Neuroscience, Italy.
| | - Z Bimpisidis
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - M Melis
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - M Marti
- INN, National Institute of Neuroscience, Italy; Department of Life Sciences and Biotechnology, University of Ferrara, Italy
| | - P Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - V Valentini
- Department of Biomedical Sciences, University of Cagliari, Italy; INN, National Institute of Neuroscience, Italy; Centre of Excellence "Neurobiology of Addiction", Italy
| | - G Margiani
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - N Pintori
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - I Polis
- The Scripps Research Institute, La Jolla, CA, USA
| | - G Marsicano
- Neurocentre Magendie, University of Bordeaux, France
| | - L H Parsons
- The Scripps Research Institute, La Jolla, CA, USA
| | - G Di Chiara
- Department of Biomedical Sciences, University of Cagliari, Italy; INN, National Institute of Neuroscience, Italy; CNR Institute of Neuroscience, Cagliari Section, Italy; Centre of Excellence "Neurobiology of Addiction", Italy
| |
Collapse
|
28
|
Bertol E, Vaiano F, Di Milia MG, Mari F. In vivo detection of the new psychoactive substance AM-694 and its metabolites. Forensic Sci Int 2015; 256:21-7. [PMID: 26295909 DOI: 10.1016/j.forsciint.2015.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/21/2015] [Accepted: 07/07/2015] [Indexed: 01/16/2023]
Abstract
AM-694 or 1-(5-fluoropentyl)-3-(2-iodobenzoyl)indole is a synthetic cannabinoid that acts as a selective and a powerful agonist for CB1 receptor, inducing cannabinoid-like effects (euphoria, sedation, hallucinations and anxiety). Its spread, like for other synthetic cannabinoids, has increased in recent years and many web sources freely supply these kinds of new drugs. It can be taken by smoking or through oral consumption. A 25-years-old man was hospitalized at the local hospital following a major trauma after ingestion of alcohol and an unknown pill. Urine and blood samples were sent to our Forensic Toxicology Division to investigate on possible substance abuse. A general unknown screening of biological samples, extracted by liquid-liquid extraction (ethylacetate and dichloromethane) in basic, acidic and neutral conditions, was achieved to verify the presence of drugs of abuse and/or their metabolites, both in gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). For the quantification of AM-694, urine was extracted by solid phase extraction (SPE) on a Bond Elut Certify cartridge; an acidic hydrolysis (HCl 30%, 95°C, 60min) was necessary before liquid-liquid extraction of metabolites. For the detection of benzodiazepines and their metabolites, an enzymatic hydrolysis was applied (β-glucuronidase, pH 4.5, 50°C, 18h). Quantification of AM-694 (internal standard AM-2201), midazolam and α-hydroxymidazolam (internal standard halazepam) were performed by LC-MS/MS analysis in multiple reaction monitoring ([M+H](+): m/z 436→190, 272, AM-694; m/z 360→155, 127, AM-2201; m/z 326→291, 223, midazolam; m/z 342→168, 203, α-hydroxymidazolam; m/z 353→241, 222, halazepam). The general unknown screening revealed the presence of AM-694 (urine sample) and benzodiazepines (urine and blood). The concentration of AM-694, obtained by LC-MS/MS, was 0.084μg/L. Midazolam and α-hydroxymidazolam were detected in urine (0.97 and 74.58μg/L, respectively) and in blood (34.84 and 23.15μg/L, respectively). Qualitative information about the AM-694 metabolites was obtained by LC-MS/MS in selected-ion monitoring for the putative [M+H](+) ions: m/z 448, carboxylated metabolite; m/z 434, defluorinated metabolite; quantification was not possible since reference standards are not available. Our report is the first case of detection of AM-694 and its metabolites in human biological fluids in Italy. For this reason, this case constitutes a first worrisome alarm about the spread of this substance.
Collapse
Affiliation(s)
- Elisabetta Bertol
- Department of Health Science, Forensic Toxicology Division, University of Florence, Florence, Italy.
| | - Fabio Vaiano
- Department of Health Science, Forensic Toxicology Division, University of Florence, Florence, Italy
| | - Maria Grazia Di Milia
- Department of Health Science, Forensic Toxicology Division, University of Florence, Florence, Italy
| | - Francesco Mari
- Department of Health Science, Forensic Toxicology Division, University of Florence, Florence, Italy
| |
Collapse
|
29
|
Basavarajappa BS, Subbanna S. CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations. Hippocampus 2014; 24:178-88. [PMID: 24123667 DOI: 10.1002/hipo.22213] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/18/2013] [Accepted: 10/02/2013] [Indexed: 01/23/2023]
Abstract
Recently, synthetic cannabinoids have been sprayed onto plant material, which is subsequently packaged and sold as "Spice" or "K2" to mimic the effects of marijuana. A recent report identified several synthetic additives in samples of "Spice/K2", including JWH-081, a synthetic ligand for the cannabinoid receptor 1 (CB1). The deleterious effects of JWH-081 on brain function are not known, particularly on CB1 signaling, synaptic plasticity, learning and memory. Here, we evaluated the effects of JWH-081 on pCaMKIV, pCREB, and pERK1/2 signaling events followed by long-term potentiation (LTP), hippocampal-dependent learning and memory tasks using CB1 receptor wild-type (WT) and knockout (KO) mice. Acute administration of JWH-081 impaired CaMKIV phosphorylation in a dose-dependent manner, whereas inhibition of CREB phosphorylation in CB1 receptor WT mice was observed only at higher dose of JWH-081 (1.25 mg/kg). JWH-081 at higher dose impaired CaMKIV and CREB phosphorylation in a time-dependent manner in CB1 receptor WT mice but not in KO mice and failed to alter ERK1/2 phosphorylation. In addition, SR treated or CB1 receptor KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio compared with vehicle or WT littermates. In hippocampal slices, JWH-081 impaired LTP in CB1 receptor WT but not in KO littermates. Furthermore, JWH-081 at higher dose impaired object recognition, spontaneous alternation and spatial memory on the Y-maze in CB1 receptor WT mice but not in KO mice. Collectively our findings suggest that deleterious effects of JWH-081 on hippocampal function involves CB1 receptor mediated impairments in CaMKIV and CREB phosphorylation, LTP, learning and memory in mice.
Collapse
|
30
|
Understanding the risks associated with the use of new psychoactive substances (NPS): high variability of active ingredients concentration, mislabelled preparations, multiple psychoactive substances in single products. Toxicol Lett 2014; 229:220-8. [PMID: 24910986 DOI: 10.1016/j.toxlet.2014.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/24/2022]
Abstract
New psychoactive substances (NPS), are now a large group of substances of abuse not yet completely controlled by international drug conventions, which may pose a public health threat. Anxiety, paranoia, hallucinations, seizures, hyperthermia and cardiotoxicity are some of the common adverse effects associated with these compounds. In this paper, three case reports taken from the archive of processed cases of the authors' laboratory are presented and discussed to stress the risks of possible adverse consequences for NPS users: in particular, (i) the risk deriving from the difficulty of predicting the actual consumed dose, due to variability of active ingredients concentration in consumed products, (ii) the risk deriving from the difficulty of predicting the actual active ingredients present in consumed products, as opposed to those claimed by the manufacturer, and (iii) the risk deriving from the difficulty of predicting the actual pharmacological and toxicological effects related to the simultaneous consumption of different psychoactive ingredients contained in single products, whose interactions are mostly unknown. Each of them individually provide a source of concern for possible serious health related consequences. However, they should be considered in conjunction with each others, with the worldwide availability of NPS through the web and also with the incessantly growing business derived from the manipulation and synthesis of new substances. The resulting scenario is that of a cultural challenge which demands a global approach from different fields of knowledge.
Collapse
|
31
|
Wiley JL, Lefever TW, Cortes RA, Marusich JA. Cross-substitution of Δ9-tetrahydrocannabinol and JWH-018 in drug discrimination in rats. Pharmacol Biochem Behav 2014; 124:123-8. [PMID: 24887450 DOI: 10.1016/j.pbb.2014.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/07/2014] [Accepted: 05/22/2014] [Indexed: 11/25/2022]
Abstract
Synthetic indole-derived cannabinoids, originally developed to probe cannabinoid CB1 and CB2 receptors, have become widely abused for their marijuana-like intoxicating properties. The present study examined the effects of indole-derived cannabinoids in rats trained to discriminate Δ(9)-tetrahydrocannabinol (Δ(9)-THC) from vehicle. In addition, the effects of Δ(9)-THC in rats trained to discriminate JWH-018 from vehicle were assessed. Adult male Sprague-Dawley rats were trained to discriminate 3mg/kg Δ(9)-THC or 0.3mg/kg JWH-018 from vehicle. JWH-018, JWH-073, and JWH-210 fully substituted in Δ(9)-THC-trained rats and Δ(9)-THC substituted in JWH-018-trained rats. In contrast, JWH-320, an indole-derived cannabinoid without affinity for CB1 receptors, failed to substitute for Δ(9)-THC. Pre-treatment with 1mg/kg rimonabant significantly reduced responding on the JWH-018-associated lever in JWH-018-trained rats. These results support the conclusion that the interoceptive effects of Δ(9)-THC and synthetic indole-derived cannabinoids show a large degree of overlap, which is predictive of their use for their marijuana-like intoxicating properties. Characterization of the extent of pharmacological differences among structural classes of cannabinoids, and determination of their mechanisms remain important goals.
Collapse
Affiliation(s)
- Jenny L Wiley
- RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA.
| | - Timothy W Lefever
- RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| | - Ricardo A Cortes
- RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| | - Julie A Marusich
- RTI International, 3040 Cornwallis Rd., Research Triangle Park, NC 27709, USA
| |
Collapse
|
32
|
Gandhi AS, Wohlfarth A, Zhu M, Pang S, Castaneto M, Scheidweiler KB, Huestis MA. High-resolution mass spectrometric metabolite profiling of a novel synthetic designer drug, N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135), using cryopreserved human hepatocytes and assessment of metabolic stability with human liver microsomes. Drug Test Anal 2014; 7:187-98. [PMID: 24827428 DOI: 10.1002/dta.1662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 12/15/2022]
Abstract
N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a new synthetic cannabinoid in herbal incense products discussed on Internet drug user forums and identified in police seizures. To date, there are no STS-135 clinical or in vitro studies identifying STS-135 metabolites. However, characterizing STS-135 metabolism is critical because synthetic cannabinoid metabolites can possess pharmacological activity and parent compounds are rarely detectable in urine. To characterize the metabolite profile, human hepatocytes were incubated with 10 µmol/L STS-135 for up to 3 h. High-resolution mass spectrometry with software-assisted data mining identified 29 STS-135 metabolites. Less than 25% of STS-135 parent compound remained after 3 h incubation. Primary metabolites were generated by mono-, di- or trihydroxylation with and without ketone formation, dealkylation, and oxidative defluorination of N-fluoropentyl side chain or possible oxidation to carboxylic acid, some of them further glucuronidated. Hydroxylations occurred mainly on the aliphatic adamantane ring and less commonly on the N-pentyl side chain. At 1 h, phase I metabolites predominated, while at 3 h, phase II metabolites were present in higher amounts. The major metabolites were monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21), both hydroxylated on the adamantane system. Moreover, metabolic stability of STS-135 (1 µmol/L) was assessed in human liver microsomes experiments. The in vitro half-life of STS-135 was 3.1 ± 0.2 min and intrinsic clearance (CLint ) was 208.8 mL · min(-1) · kg(-1) . This is the first report characterizing STS-135 hepatic metabolic pathways. These data provide potential urinary targets to document STS-135 intake in clinical and forensic settings and potential candidates for pharmacological testing.
Collapse
Affiliation(s)
- Adarsh S Gandhi
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Appendino G, Minassi A, Taglialatela-Scafati O. Recreational drug discovery: natural products as lead structures for the synthesis of smart drugs. Nat Prod Rep 2014; 31:880-904. [PMID: 24823967 DOI: 10.1039/c4np00010b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to December 2013. Over the past decade, there has been a growing transition in recreational drugs from natural materials (marijuana, hashish, opium), natural products (morphine, cocaine), or their simple derivatives (heroin), to synthetic agents more potent than their natural prototypes, which are sometimes less harmful in the short term, or that combine properties from different classes of recreational prototypes. These agents have been named smart drugs, and have become popular both for personal consumption and for collective intoxication at rave parties. The reasons for this transition are varied, but are mainly regulatory and commercial. New analogues of known illegal intoxicants are invisible to most forensic detection techniques, while the alleged natural status and the lack of avert acute toxicity make them appealing to a wide range of users. On the other hand, the advent of the internet has made possible the quick dispersal of information among users and the on-line purchase of these agents and/or the precursors for their synthesis. Unlike their natural products chemotypes (ephedrine, mescaline, cathinone, psilocybin, THC), most new drugs of abuse are largely unfamiliar to the organic chemistry community as well as to health care providers. To raise awareness of the growing plague of smart drugs we have surveyed, in a medicinal chemistry fashion, their development from natural products leads, their current methods of production, and the role that clandestine home laboratories and underground chemists have played in the surge of popularity of these drugs.
Collapse
Affiliation(s)
- Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy.
| | | | | |
Collapse
|
34
|
Malik-Wolf B, Vorce S, Holler J, Bosy T. Evaluation of Abalone -Glucuronidase Substitution in Current Urine Hydrolysis Procedures. J Anal Toxicol 2014; 38:171-6. [DOI: 10.1093/jat/bku003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Kronstrand R, Brinkhagen L, Birath-Karlsson C, Roman M, Josefsson M. LC-QTOF-MS as a superior strategy to immunoassay for the comprehensive analysis of synthetic cannabinoids in urine. Anal Bioanal Chem 2014; 406:3599-609. [PMID: 24424965 DOI: 10.1007/s00216-013-7574-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/02/2013] [Accepted: 12/10/2013] [Indexed: 11/28/2022]
Abstract
The objective of this study was to compare the performance of an immunoassay screening for synthetic cannabinoids with a newly developed confirmation method using liquid chromatography quadrupole time-of-flight mass spectrometry. The screening included metabolites from JWH-018, JWH-073, and AM-2201. The confirmation included metabolites from AM-2201, JWH-018, JWH-019, JWH-073, JWH-081, JWH-122, JWH-210, JWH-250, JWH-398, MAM-2201, RCS-4, and UR-144. The immunoassay was tested and found to have no cross-reactivity with UR-144 metabolites but considerable cross-reactivity with MAM-2201 and JWH-122 metabolites. Sensitivity and specificity for the immunoassay were evaluated with 87 authentic urine samples and found to be 87% and 82%, respectively. With a cutoff at 2 ng/ml, the confirmation showed 80 positive findings in 38 cases. The most common finding was JWH-122 5-OH-pentyl, followed by JWH-018 5-OH-pentyl. There were 9 findings of UR-144 metabolites and 3 of JWH-073 metabolites. In summary, the immunoassay performed well, presenting both high sensitivity and specificity for the synthetic cannabinoids present in the urine samples tested. The rapid exchange of one cannabinoid for another may pose problems for immunoassays as well as for confirmation methods. However, we consider time-of-flight mass spectrometry to be superior since new metabolites can be quickly included and identified.
Collapse
Affiliation(s)
- Robert Kronstrand
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, 58758, Linköping, Sweden,
| | | | | | | | | |
Collapse
|
36
|
Elsohly MA, Gul W, Wanas AS, Radwan MM. Synthetic cannabinoids: analysis and metabolites. Life Sci 2014; 97:78-90. [PMID: 24412391 DOI: 10.1016/j.lfs.2013.12.212] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 01/12/2023]
Abstract
Cannabimimetics (commonly referred to as synthetic cannabinoids), a group of compounds encompassing a wide range of chemical structures, have been developed by scientists with the hope of achieving selectivity toward one or the other of the cannabinoid receptors CB1 and CB2. The goal was to have compounds that could possess high therapeutic activity without many side effects. However, underground laboratories have used the information generated by the scientific community to develop these compounds for illicit use as marijuana substitutes. This chapter reviews the different classes of these "synthetic cannabinoids" with particular emphasis on the methods used for their identification in the herbal products with which they are mixed and identification of their metabolites in biological specimens.
Collapse
Affiliation(s)
- Mahmoud A Elsohly
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA; National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Waseem Gul
- ElSohly Laboratories, Inc., 5 Industrial Park Drive, Oxford, MS 38655, USA; National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Amira S Wanas
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
37
|
|
38
|
CB1 and CB2 receptors are novel molecular targets for Tamoxifen and 4OH-Tamoxifen. Biochem Biophys Res Commun 2013; 441:339-43. [PMID: 24148245 DOI: 10.1016/j.bbrc.2013.10.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 11/24/2022]
Abstract
Tamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action. The molecular targets responsible for the ER-independent effects of Tam and its derivatives are poorly understood. Interestingly, similar to Tam and 4OH-Tam, cannabinoids have also been shown to exhibit anti-proliferative and apoptotic effects in ER-negative breast cancer cells, and estrogen can regulate expression levels of cannabinoid receptors (CBRs). Therefore, this study investigated whether CBRs might serve as novel molecular targets for Tam and 4OH-Tam. We report that both compounds bind to CB1 and CB2Rs with moderate affinity (0.9-3 μM). Furthermore, Tam and 4OH-Tam exhibit inverse activity at CB1 and CB2Rs in membrane preparations, reducing basal G-protein activity. Tam and 4OH-Tam also act as CB1/CB2R-inverse agonists to regulate the downstream intracellular effector adenylyl cyclase in intact cells, producing concentration-dependent increases in intracellular cAMP. These results suggest that CBRs are molecular targets for Tam and 4OH-Tam and may contribute to the ER-independent cytotoxic effects reported for these drugs. Importantly, these findings also indicate that Tam and 4OH-Tam might be used as structural scaffolds for development of novel, efficacious, non-toxic cancer drugs acting via CB1 and/or CB2Rs.
Collapse
|
39
|
Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity? Life Sci 2013; 97:45-54. [PMID: 24084047 DOI: 10.1016/j.lfs.2013.09.017] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/10/2013] [Accepted: 09/19/2013] [Indexed: 02/01/2023]
Abstract
K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a "safe" and "legal" alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ∆(9)-tetrahydrocannabinol (Δ(9)-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ(9)-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ(9)-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ(9)-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed "advantages" have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances.
Collapse
Affiliation(s)
- William E Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeffery H Moran
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205, USA
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
40
|
Patton AL, Seely KA, Chimalakonda KC, Tran JP, Trass M, Miranda A, Fantegrossi WE, Kennedy PD, Dobrowolski P, Radominska-Pandya A, McCain KR, James LP, Endres GW, Moran JH. Targeted Metabolomic Approach for Assessing Human Synthetic Cannabinoid Exposure and Pharmacology. Anal Chem 2013; 85:9390-9. [DOI: 10.1021/ac4024704] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Amy L. Patton
- Arkansas
Department of Health, Public Health Laboratory, Little Rock, Arkansas 72205, United States
| | - Kathryn A. Seely
- Arkansas
Department of Health, Public Health Laboratory, Little Rock, Arkansas 72205, United States
| | - Krishna C. Chimalakonda
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Johnny P. Tran
- Arkansas
Department of Health, Public Health Laboratory, Little Rock, Arkansas 72205, United States
| | - Matthew Trass
- Phenomenex, Torrance, California 90501, United States
| | - Art Miranda
- Phenomenex, Torrance, California 90501, United States
| | - William E. Fantegrossi
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Paul D. Kennedy
- Cayman Chemical Co., Ann Arbor, Michigan 48108, United States
| | | | - Anna Radominska-Pandya
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Keith R. McCain
- Arkansas Poison & Drug Information Center, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Laura P. James
- Section
of Clinical Pharmacology and Toxicology, Arkansas Children’s Hospital and Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital, Little Rock, Arkansas 72205, United States
| | | | - Jeffery H. Moran
- Arkansas
Department of Health, Public Health Laboratory, Little Rock, Arkansas 72205, United States
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
41
|
Gandhi AS, Zhu M, Pang S, Wohlfarth A, Scheidweiler KB, Liu HF, Huestis MA. First characterization of AKB-48 metabolism, a novel synthetic cannabinoid, using human hepatocytes and high-resolution mass spectrometry. AAPS JOURNAL 2013; 15:1091-8. [PMID: 23913126 DOI: 10.1208/s12248-013-9516-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/15/2013] [Indexed: 11/30/2022]
Abstract
Since the federal authorities scheduled the first synthetic cannabinoids, JWH-018 and JWH-073, new synthetic cannabinoids were robustly marketed. N-(1-Adamantyl)-1-pentylindazole-3-carboxamide (AKB-48), also known as APINACA, was recently observed in Japanese herbal smoking blends. The National Forensic Laboratory Information System registered 443 reports of AKB-48 cases in the USA from March 2010 to January 2013. In May 2013, the Drug Enforcement Administration listed AKB-48 as a Schedule I drug. Recently, AKB-48 was shown to have twice the CB1 receptor binding affinity than CB2. These pharmacological effects and the difficulty in detecting the parent compound in urine highlight the importance of metabolite identification for developing analytical methods for clinical and forensic investigations. Using human hepatocytes and TripleTOF mass spectrometry, we identified 17 novel phase I and II AKB-48 metabolites, products of monohydroxylation, dihydroxylation, or trihydroxylation on the aliphatic adamantane ring or N-pentyl side chain. Glucuronide conjugation of some mono- and dihydroxylated metabolites also occurred. Oxidation and dihydroxylation on the adamantane ring and N-pentyl side chain formed a ketone. More metabolites were identified after 3 h of incubation than at 1 h. For the first time, we present a AKB-48 metabolic scheme obtained from human hepatocytes and high-resolution mass spectrometry. These data are needed to develop analytical methods to identify AKB-48 consumption in clinical and forensic testing.
Collapse
Affiliation(s)
- Adarsh S Gandhi
- Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Suite 200, Room 05A-721, Baltimore, Maryland, 21224, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Järbe TUC, Gifford RS. "Herbal incense": designer drug blends as cannabimimetics and their assessment by drug discrimination and other in vivo bioassays. Life Sci 2013; 97:64-71. [PMID: 23891559 DOI: 10.1016/j.lfs.2013.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/21/2013] [Accepted: 07/09/2013] [Indexed: 02/05/2023]
Abstract
Recently, synthetic cannabinoids originally designed for testing in the laboratory only have found use recreationally in designer herbal blends, originally called "Spice". The myriad of compounds found are for the most part potent full agonists of the cannabinoid receptor 1, producing effects similar to tetrahydrocannabinol (THC) and marijuana. Drug discrimination of these compounds offers a specific behavioral test that can help determine whether these new synthetic compounds share a similar "subjective high" with the effects of marijuana/THC. By utilization of drug discrimination and other behavioral techniques, a better understanding of these new "designer" cannabinoids may be reached to assist in treating both the acute and chronic effects of these drugs. The paper provides a brief exposé of modern cannabinoid research as a backdrop to the recreational use of designer herbal blend cannabimimetics.
Collapse
Affiliation(s)
- Torbjörn U C Järbe
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Roger S Gifford
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
43
|
Banister SD, Wilkinson SM, Longworth M, Stuart J, Apetz N, English K, Brooker L, Goebel C, Hibbs DE, Glass M, Connor M, McGregor IS, Kassiou M. The synthesis and pharmacological evaluation of adamantane-derived indoles: cannabimimetic drugs of abuse. ACS Chem Neurosci 2013; 4:1081-92. [PMID: 23551277 DOI: 10.1021/cn400035r] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Two novel adamantane derivatives, adamantan-1-yl(1-pentyl-1H-indol-3-yl)methanone (AB-001) and N-(adamtan-1-yl)-1-pentyl-1H-indole-3-carboxamide (SDB-001), were recently identified as cannabimimetic indoles of abuse. Conflicting anecdotal reports of the psychoactivity of AB-001 in humans, and a complete dearth of information about the bioactivity of SDB-001, prompted the preparation of AB-001, SDB-001, and several analogues intended to explore preliminary structure-activity relationships within this class. This study sought to elucidate which structural features of AB-001, SDB-001, and their analogues govern the cannabimimetic potency of these chemotypes in vitro and in vivo. All compounds showed similar full agonist profiles at CB1 (EC50 = 16-43 nM) and CB2 (EC50 = 29-216 nM) receptors in vitro using a FLIPR membrane potential assay, with the exception of SDB-002, which demonstrated partial agonist activity at CB2 receptors. The activity of AB-001, AB-002, and SDB-001 in rats was compared to that of Δ(9)-tetrahydrocannabinol (Δ(9)-THC) and cannabimimetic indole JWH-018 using biotelemetry. SDB-001 dose-dependently induced hypothermia and reduced heart rate (maximal dose 10 mg/kg) with potency comparable to that of Δ(9)-tetrahydrocannabinol (Δ(9)-THC, maximal dose 10 mg/kg), and lower than that of JWH-018 (maximal dose 3 mg/kg). Additionally, the changes in body temperature and heart rate affected by SDB-001 are of longer duration than those of Δ(9)-THC or JWH-018, suggesting a different pharmacokinetic profile. In contrast, AB-001, and its homologue, AB-002, did not produce significant hypothermic and bradycardic effects, even at relatively higher doses (up to 30 mg/kg), indicating greatly reduced potency compared to Δ(9)-THC, JWH-018, and SDB-001.
Collapse
Affiliation(s)
- Samuel D. Banister
- School of Chemistry, The University of Sydney, NSW 2006, Australia
- Brain and Mind Research Institute, NSW 2050, Australia
| | | | | | - Jordyn Stuart
- The Australian School of Advanced Medicine, Macquarie
University, NSW 2109, Australia
| | - Nadine Apetz
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Katrina English
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Lance Brooker
- Australian Sports Drug Testing Laboratory, National Measurement Institute, NSW 2073, Australia
| | - Catrin Goebel
- Australian Sports Drug Testing Laboratory, National Measurement Institute, NSW 2073, Australia
| | - David E. Hibbs
- Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Michelle Glass
- School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Mark Connor
- The Australian School of Advanced Medicine, Macquarie
University, NSW 2109, Australia
| | - Iain S. McGregor
- School of Psychology, The University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
- Brain and Mind Research Institute, NSW 2050, Australia
- Discipline of Medical Radiation Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
44
|
Arntson A, Ofsa B, Lancaster D, Simon JR, McMullin M, Logan B. Validation of a Novel Immunoassay for the Detection of Synthetic Cannabinoids and Metabolites in Urine Specimens. J Anal Toxicol 2013; 37:284-90. [DOI: 10.1093/jat/bkt024] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
45
|
Seely KA, Lapoint J, Moran JH, Fattore L. Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:234-43. [PMID: 22561602 PMCID: PMC3936256 DOI: 10.1016/j.pnpbp.2012.04.017] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 01/09/2023]
Abstract
"K2" and "Spice" drugs (collectively hereafter referred to as Spice) represent a relatively new class of designer drugs that have recently emerged as popular alternatives to marijuana, otherwise characterized as "legal highs". These drugs are readily available on the Internet and sold in many head shops and convenience stores under the disguise of innocuous products like herbal blends, incense, or air fresheners. Although package labels indicate "not for human consumption", the number of intoxicated people presenting to emergency departments is dramatically increasing. The lack of validated and standardized human testing procedures and an endless supply of potential drugs of abuse are primary reasons why researchers find it difficult to fully characterize clinical consequences associated with Spice. While the exact chemical composition and toxicology of Spice remains to be determined, there is mounting evidence identifying several synthetic cannabinoids as causative agents responsible for psychoactive and adverse physical effects. This review provides updates of the legal status of common synthetic cannabinoids detected in Spice and analytical procedures used to test Spice products and human specimens collected under a variety of clinical circumstances. The pharmacological and toxicological consequences of synthetic cannabinoid abuse are also reviewed to provide a future perspective on potential short- and long-term implications.
Collapse
Affiliation(s)
- Kathryn A. Seely
- Arkansas Department of Health, Public Health Laboratory, Little Rock, Arkansas, United States
| | - Jeff Lapoint
- New York City Poison Control Center, 455 First Ave, New York, 10016, United States
| | - Jeffery H. Moran
- Arkansas Department of Health, Public Health Laboratory, Little Rock, Arkansas, United States
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Liana Fattore
- Neuroscience Institute-Cagliari, CNR National Research Council of Italy
| |
Collapse
|
46
|
Kneisel S, Auwärter V, Kempf J. Analysis of 30 synthetic cannabinoids in oral fluid using liquid chromatography-electrospray ionization tandem mass spectrometry. Drug Test Anal 2012; 5:657-69. [PMID: 23081933 DOI: 10.1002/dta.1429] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/08/2022]
Abstract
In recent years, the analysis of synthetic cannabinoids in human specimens has gained enormous importance in the broad field of drug testing. Nevertheless, the considerable structural diversity among synthetic cannabinoids already identified in 'herbal mixtures' hampers the development of comprehensive analytical methods. As the identification of the main metabolites of newly appearing substances is very laborious and time-consuming, the detection of the parent compounds in blood samples is the current approach of choice for drug abstinence testing. Whenever blood sampling is not possible however, the need for alternative matrices arises. In this article, we present a fully validated liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method for the analysis of 30 synthetic cannabinoids in oral fluid samples collected with the Dräger DCD 5000 collection device. The method proved to be suitable for the quantification of 28 substances. The limits of detection were in the range from 0.015 to 0.9 ng/ml, while the lower limits of quantification ranged from 0.15 to 3.0 ng/ml. The method was successfully applied to 264 authentic samples during routine analysis. A total of 31 samples (12%) was tested positive for at least one of the following synthetic cannabinoids: AM-694, AM-2201, JWH-018, JWH-019, JWH-081, JWH-122, JWH-203, JWH-210, JWH-250, JWH-307, MAM-2201, and RCS-4. Given that stabilization of the collection pads after sampling is warranted, the collection device provides satisfactory sensitivity. Hence, whenever blood sampling is not possible, the Dräger DCD 5000 collection device offers a good tool for the analysis of synthetic cannabinoids in oral fluid in the broad field of drug testing.
Collapse
Affiliation(s)
- Stefan Kneisel
- Institute of Forensic Medicine, University Medical Center Freiburg, Albertstr. 9, 79104, Freiburg, Germany
| | | | | |
Collapse
|