1
|
Zhang Y, Chen T, Wang Z, Liang W, Wang X, Zhang X, Lu X, Liu X, Zhao C, Xu G. High-resolution mass spectrometry-based suspect and nontarget screening of natural toxins in foodstuffs and risk assessment of dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125338. [PMID: 39577611 DOI: 10.1016/j.envpol.2024.125338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Daily dietary intake inevitably exposes individuals to various natural toxins, which may pose potential health threats. Focusing only on specific toxins could underestimate dietary risks. Therefore, we have developed a suspect and nontarget method based on ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) to screen both known and unknown natural toxins in various foodstuffs. An in-house database containing 2952 natural toxins including fungal toxins, phytotoxins, animal toxins and cyanotoxins was established, facilitating suspect screening. Predicted retention time and mass spectrometry data were employed to enhance the confidence levels. Subsequently, Nontarget screening method was conducted based on molecular network analysis, annotating the edges and nodes through modified types and fragmentation characteristics. Finally, we analyzed 102 foodstuff samples and identified a total of 90 natural toxins, including mycotoxins and phytotoxins, with 65 identified by suspect screening and 25 by nontarget screening. Based on measured concentrations, the daily per capita dietary intake of total natural toxins was estimated, it was below risk doses for natural toxins with available reference values. Overall, this work established a novel method for the comprehensive identification of natural toxins in foodstuffs and emphasized the importance of dietary risk assessment for natural toxins.
Collapse
Affiliation(s)
- Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zixuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinxin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| |
Collapse
|
2
|
Teschke R, Qi X, Xuan TD, Eickhoff A. Tropical herb-induced liver injury by pyrrolizidine alkaloids. TREATMENT AND MANAGEMENT OF TROPICAL LIVER DISEASE 2025:182-187. [DOI: 10.1016/b978-0-323-87031-3.00031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Long Y, Wang Y, Song Z, He X, He Y, Lin G. Repair of Retrorsine-Induced DNA Damage in Rat Livers: Insights Gained from Transcriptomic and Proteomic Studies. Toxins (Basel) 2024; 16:538. [PMID: 39728796 DOI: 10.3390/toxins16120538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are common phytotoxins that are found worldwide. Upon hepatic metabolic activation, the reactive PA metabolites covalently bind to DNAs and form DNA adducts, causing mutagenicity and tumorigenicity in the liver. However, the molecular basis of the formation and removal of PA-derived DNA adducts remains largely unexplored. In the present study, Sprague Dawley (SD) rats were exposed to retrorsine (RTS), a representative PA, at a human-relevant dose of 3.3 mg/kg/day for 28 days. The rats were divided into three groups: control, RTS-28 (sacrificed after continuous RTS exposure), and RTS-161 (sacrificed at 133 days post-RTS-exposure). The multi-omics analyses demonstrated the involvement of homologous recombination (HR) and non-homologous end joining (NHEJ) repair pathways as a response to PA-induced DNA damage. Additionally, the characteristic guanine adducts induced by RTS exposure were in accordance with the higher expression of XPA and XPC, indicating that nucleotide excision repair (NER) and base excision repair (BER) also contributed to repairing RTS-induced DNA damage. Furthermore, we also showed that DNA damage persisted after PA exposure, and mutagenically related repair errors might occur due to the prolonged genotoxic effects. The present study lays the foundation for bridging PA-derived DNA adducts, DNA damage, DNA repair, and the follow-up mutagenesis and carcinogenesis associated with PA exposure.
Collapse
Affiliation(s)
- Yun Long
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yiwei Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zijing Song
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Wen C, Zhou T, Chang Y, Wei Y, Zhang H, Yang Z. Exposure to Gynura japonica (Thunb.) Juel plants induces hepatoxicity in rats and Buffalo rat liver cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118692. [PMID: 39151710 DOI: 10.1016/j.jep.2024.118692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gynura japonica (Thunb.) Juel is often confused with the non-pyrrolizidine alkaloid-producing herbs, Tu-San-Qi (Sedum aizoon L.) and San-Qi (Panax notoginseng L.), due to similarities in name, appearance, and medicinal use. It contains pyrrolizidine alkaloids, which cause over 50% of cases of hepatic sinus obstruction syndrome. However, the mechanisms underlying G. japonica-induced hepatotoxicity remain poorly understood. AIM OF THE STUDY In this study, we aimed to investigate the toxic effects of a G. japonica decoction on liver and Buffalo rat liver (BRL) cells and elucidate the associated mechanisms. MATERIALS AND METHODS This study employed G. japonica decoction and examined its effects on liver function and tissue damage in Sprague-Dawley rats. Bioinformatics analysis was employed to identify gene expression and enriched pathways related to hepatotoxicity. Laser scanning confocal microscopy and flow cytometric annexin V/PI labeling assays were utilized to observe apoptosis in BRL cells induced by G. japonica. Transmission electron microscopy and JC-1 staining were used to determine the effects of G. japonica on mitochondrial ultrastructure and membrane potential in BRL cells. The bicinchoninic acid method and enzyme-linked immunosorbent assays were used to detect the expression of apoptosis-related proteins and caspase-3 activity, respectively. RESULTS Comparisons of body weight, liver histopathology, and serum liver function-related indices in rats, t showed that exposure to G. japonica may cause liver damage. Bioinformatics analysis indicated that hepatotoxicity might be related to apoptotic signaling pathways, the positive regulation of programmed cell death, and responses to toxic substances. BRL cells exposed to the G. japonica decoction exhibited mid-to late-stage apoptosis and necrosis, along with alterations in mitochondrial morphology and membrane potential. Furthermore, expression of cytochrome C (Cyt C) and pro-apoptotic proteins was increased, anti-apoptotic proteins decreased, and caspase-3 activity elevated. CONCLUSIONS These findings indicate that G. japonica-induced hepatotoxicity involves the activation of mitochondria-mediated apoptosis. Our research enhances the scientific and theoretical foundation for clinical therapy and improves public awareness of the potential toxicity of herbal remedies.
Collapse
Affiliation(s)
- Chengli Wen
- Shandong Center for Disease Control and Prevention, Jinan, 250014, PR China.
| | - Tong Zhou
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, PR China.
| | - Yuqian Chang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, PR China.
| | - Yuan Wei
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, PR China.
| | - Haidong Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, PR China.
| | - Zhifeng Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, PR China.
| |
Collapse
|
5
|
He X, Xia Q, Bryant MS, Fu PP. An efficient enzymatic system for studying structure-carcinogenicity relationships: metabolism of pyrrolizidine alkaloids by human liver microsomes in the presence of calf thymus DNA, resulting in the formation of DNA adducts. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024:1-16. [PMID: 39545694 DOI: 10.1080/26896583.2024.2424091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Pyrrolizidine alkaloids (PAs) form a family of toxic and carcinogenic phytochemicals found in plants worldwide. The metabolism of toxic PAs, both in vivo and in vitro, generates four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-derived DNA adducts, namely, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4, as documented in previous research. We have proposed that these DHP-DNA adducts play a pivotal role in the induction of liver tumor by PAs in rats and mice, serving as potential common biological biomarkers for PA exposure and carcinogenesis. In this study, we found that the metabolism of PAs and PA N-oxides by human liver microsomes, in the presence of calf thymus DNA, results in the formation of DNA adducts. This process serves as a convenient and biologically significant platform for investigating the structure-carcinogenicity relationships of PAs.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Matthew S Bryant
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
6
|
Lis-Cieplak A, Trześniowska K, Stolarczyk K, Stolarczyk EU. Pyrrolizidine Alkaloids as Hazardous Toxins in Natural Products: Current Analytical Methods and Latest Legal Regulations. Molecules 2024; 29:3269. [PMID: 39064851 PMCID: PMC11279032 DOI: 10.3390/molecules29143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are toxic compounds that occur naturally in certain plants, however, there are many secondary pathways causing PA contamination of other plants, including medicinal herbs and plant-based food products, which pose a risk of human intoxication. It is proven that chronic exposure to PAs causes serious adverse health consequences resulting from their cytotoxicity and genotoxicity. This review briefly presents PA occurrence, structures, chemistry, and toxicity, as well as a set of analytical methods. Recently developed sensitive electrochemical and chromatographic methods for the determination of PAs in honey, teas, herbs, and spices were summarized. The main strategies for improving the analytical efficiency of PA determination are related to the use of mass spectrometric (MS) detection; therefore, this review focuses on advances in MS-based methods. Raising awareness of the potential health risks associated with the presence of PAs in food and herbal medicines requires ongoing research in this area, including the development of sensitive methods for PA determination and rigorous legal regulations of PA intake from herbal products. The maximum levels of PAs in certain products are regulated by the European Commission; however, the precise knowledge about which products contain trace but significant amounts of these alkaloids is still insufficient.
Collapse
Affiliation(s)
- Agnieszka Lis-Cieplak
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | - Katarzyna Trześniowska
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| | | | - Elżbieta U. Stolarczyk
- Spectrometric Methods Department, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (A.L.-C.); (K.T.)
| |
Collapse
|
7
|
Yi Y, Lu Y, Liu H, Wang Z, Li S, Huang X, Chai Y, Zhang X, Li Z, Chen H. Insight into pyrrolizidine alkaloids degradation and the chemical structures of their degradation products using ultra high performance liquid chromatography and Q-Exactive Orbitrap mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134260. [PMID: 38678722 DOI: 10.1016/j.jhazmat.2024.134260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Pyrrolizidine alkaloids (PAs), released into the environment by donor plants, are absorbed by crops or transported by animals, posing a global food safety concern. Photolysis is an effective way to eliminate harmful substances in the environment or food. Photolysis happens as PAs move among plants, environment and crops. In this study, we first investigated the photolysis and hydrolysis of 15 PAs and identified their degradation products via ultra-high performance liquid chromatography and Q-Exactive Orbitrap mass spectrometry. PAs were degraded under UV radiation but minimally affected by visible light from a xenon lamp, and solvent pH had little impact on their photolysis. PAs were stable in neutral and acidic solutions but degraded by 50% within 24 h in alkaline conditions. The degradation products of PAs were mainly PAs/PANOs isomers and some minor byproducts. Cytotoxicity and computational analysis revealed isomers had similar toxicity, with minor products being less toxic. This study is a precursor for revealing the potential PAs degradation dynamics in the environment and food products, providing a reference for systematic evaluations of potential health and ecological risks of their degradation products.
Collapse
Affiliation(s)
- Yuexing Yi
- College of Chemical and Engineering, Zhejiang University of Technology, Hangzhou 310008, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongxia Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziqi Wang
- College of Chemical and Engineering, Zhejiang University of Technology, Hangzhou 310008, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shiqi Li
- College of Chemical and Engineering, Zhejiang University of Technology, Hangzhou 310008, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xuchen Huang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, PR China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, PR China
| | - Zuguang Li
- College of Chemical and Engineering, Zhejiang University of Technology, Hangzhou 310008, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
8
|
Klein LM, Lamp J, Schopf C, Gabler AM, Kaltner F, Guldimann C, Rychlik M, Schwake-Anduschus C, Knappstein K, Gottschalk C. Pyrrolizidine alkaloids and tropane alkaloids in milk samples from individual dairy farms of the German federal states of Bavaria and Schleswig-Holstein. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:629-647. [PMID: 38592240 DOI: 10.1080/19440049.2024.2336054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/10/2024]
Abstract
1,2-Dehydro-pyrrolizidine alkaloids (PA), their corresponding N-oxides (PANO) and tropane alkaloids (TA), are toxic plant metabolites. If plant material, containing these toxins, is present in the feed of dairy cows these toxins can be transferred into milk. Here, milk was sampled directly from dairy farms in the German federal states of Bavaria and Schleswig-Holstein in 2020-2022 in order to investigate a possible contamination of milk at the production stage. In total, 228 milk samples were analysed for 54 PA/PANO and two TA by a sensitive LC-ESI-MS/MS method. In addition, a subset of milk samples (n = 85) was independently analysed for TA by a cooperating laboratory for verification. PA/PANO were found in 26 samples (11%) with a low median sum content of the contaminated samples of 0.024 µg/L. The highest level of contamination was 5.6 µg/L. Senecionine-, lycopsamine- and heliotrine-type PA/PANO were detected. In four samples (1.8%), atropine was determined up to 0.066 µg/L. The toxin levels in the milk samples hardly contributed to the total daily exposure. These data are first-time results on contamination rates and levels occurring in milk from individual dairy farms, based on a large sample number.
Collapse
Affiliation(s)
- Lisa Monika Klein
- Chair of Food Safety and Analytics, Faculty of Veterinary Medicine, LMU in Munich, Munich, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Julika Lamp
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Christina Schopf
- Chair of Food Safety and Analytics, Faculty of Veterinary Medicine, LMU in Munich, Munich, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Angelika Miriam Gabler
- Chair of Food Safety and Analytics, Faculty of Veterinary Medicine, LMU in Munich, Munich, Germany
| | - Florian Kaltner
- Chair of Food Safety and Analytics, Faculty of Veterinary Medicine, LMU in Munich, Munich, Germany
| | - Claudia Guldimann
- Chair of Food Safety and Analytics, Faculty of Veterinary Medicine, LMU in Munich, Munich, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Christine Schwake-Anduschus
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Detmold, Germany
| | - Karin Knappstein
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kiel, Germany
| | - Christoph Gottschalk
- Chair of Food Safety and Analytics, Faculty of Veterinary Medicine, LMU in Munich, Munich, Germany
| |
Collapse
|
9
|
Zagorski JW, Kaminski NE. Utilization of a novel human hepatocyte-endothelial cell coculture model to determine differential toxicities of pyrrolizidine alkaloid food contaminants. Food Chem Toxicol 2024; 187:114584. [PMID: 38490353 DOI: 10.1016/j.fct.2024.114584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Pyrrolizidine alkaloids (PA) are comprised of a family of hundreds of metabolites, produced by plants as a mechanism to protect against herbivory. Upon ingestion and metabolism, dehydropyrrolizidine alkaloids are formed, which are known to generate DNA adducts and subsequently double-strand DNA breaks. Within the liver, the most sensitive cell type to PA exposure is the sinusoidal endothelial cell, as evidenced by the generation of veno-occlusive disease in the human population. PAs are a common crop contaminant and have been regulated by some agencies, using the precautionary principle; each equally potent and genotoxic. Therefore, as a proof of principle we have established a human in vitro coculture model system, utilizing the metabolically active HepaRG hepatocyte and the SK-Hep-1 endothelial cell, to determine differential potencies of different PAs commonly found in crops and food products, notably cell death, targeting of endothelial cells, and genotoxicity comparing the micronucleus assay versus γH2AX assay. Our results demonstrate differential potencies of the PAs used, which encompass three esterification states (monoester, cyclic diester, and open-chain diester). The results suggest that a more nuanced approach to the regulation of PAs may be more appropriate in the regulatory decision-making process.
Collapse
Affiliation(s)
- Joseph W Zagorski
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Norbert E Kaminski
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
10
|
To YC, Pan Y, Yan X, He Y, Lin G. The toxicokinetic and metabolism of structurally diverse pyrrolizidine alkaloids in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117390. [PMID: 37956911 DOI: 10.1016/j.jep.2023.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pyrrolizidine alkaloids (PAs) are a group of phytotoxins present in about 3% of flowering plants worldwide. Ingestion of PA-containing herbal products may lead to hepatotoxicity. Notably, the toxicokinetic (TK) behaviors, especially pyrrole-protein adducts (PPAs) having the same structure but generated from metabolic activation of different PAs, significantly affect the toxicity of structurally diverse PAs, therefore studying them in their pure form is preferable to extracts to stratify toxic potency of different PAs co-existing in herbal extracts. However, previous studies mainly focus on the establishment of TK profiles of the intact PAs, revealing less or no kinetic information on the main PA metabolites (PA N-oxides) and PPAs which mediate PA-induced hepatotoxicity. In this study, PPA was measured as the biomarker of PA exposure and PA-induced toxicity. AIM OF STUDY This study aims to investigate the TK difference between structurally diverse PAs of retronecine-type PAs: retrorsine (RTS) and monocrotaline (MCT), and otonecine-type PA: clivorine (CLI), and their toxicity-related metabolite PPAs and PA N-oxides, the main metabolite of retronecine-type PAs, for the establishment of a more accurate risk assessment of PAs exposure. MATERIALS AND METHODS The TK studies were conducted using rats through intravenous (i.v.) or oral (p.o.) administration of PAs at 20 mg/kg. The main TK parameters of PAs and PA N-oxides were determined from plasma concentration-time profiles, and the kinetic profiles of PPAs were assessed from both plasma and erythrocyte concentration-time profiles. RESULTS MCT demonstrated the slowest but the highest extent of absorption among the three PAs, while RTS demonstrated a similar absorption rate with a lower extent than CLI. For elimination, MCT demonstrated a similar elimination rate as RTS but the lowest extent of elimination among the three PAs, and CLI exhibited significantly faster elimination than MCT and RTS. Moreover, the formation of PA N-oxide, which only occurs in retronecine-type PAs, was remarkably less in MCT-treated rats compared to RTS-treated ones. Of note, the retronecine-type RTS and MCT induced more PPAs via p.o. than i.v. administration route, whereas the otonecine-type CLI showed the opposite trend. CONCLUSION Dramatic TK differences, including not only PAs but also PA N-oxides and the derived protein adduct PPAs, were found among structurally diverse PAs in rats, laying the basis for varied hepatotoxic potencies induced by different PA-containing herbal products. Notably, our findings for the first time uncovered that oral administration of retronecine-type PAs might cause severer toxicity compared with the intravenous route, which warrants further in-depth exploration.
Collapse
Affiliation(s)
- Yuen Ching To
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Yueyang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoyu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen, China.
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Huang Z, Wu Z, Gu X, Ji L. Diagnosis, toxicological mechanism, and detoxification for hepatotoxicity induced by pyrrolizidine alkaloids from herbal medicines or other plants. Crit Rev Toxicol 2024; 54:123-133. [PMID: 38411492 DOI: 10.1080/10408444.2024.2310597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/28/2024]
Abstract
Pyrrolizidine alkaloids (PAs) are one type of phytotoxins distributed in various plants, including many medicinal herbs. Many organs might suffer injuries from the intake of PAs, and the liver is the most susceptible one. The diagnosis, toxicological mechanism, and detoxification of PAs-induced hepatotoxicity have been studied for several decades, which is of great significance for its prevention, diagnosis, and therapy. When the liver was exposed to PAs, liver sinusoidal endothelial cells (LSECs) loss, hemorrhage, liver parenchymal cells death, nodular regeneration, Kupffer cells activation, and fibrogenesis occurred. These pathological changes classified the PAs-induced liver injury as acute, sub-acute, and chronic type. PAs metabolic activation, mitochondria injury, glutathione (GSH) depletion, inflammation, and LSECs damage-induced activation of the coagulation system were well recognized to play critical roles in the pathological process of PAs-induced hepatotoxicity. A lot of natural compounds like glycyrrhizic acid, (-)-epicatechin, quercetin, baicalein, chlorogenic acid, and so on were demonstrated to be effective in alleviating PAs-induced liver injury, which rendered them huge potential to be developed into therapeutic drugs for PAs poisoning in clinics. This review presents updated information about the diagnosis, toxicological mechanism, and detoxification studies on PAs-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinnan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Hungerford NL, Zawawi N, Zhu T(E, Carter SJ, Melksham KJ, Fletcher MT. Analysis of Pyrrolizidine Alkaloids in Stingless Bee Honey and Identification of a Botanical Source as Ageratum conyzoides. Toxins (Basel) 2024; 16:40. [PMID: 38251258 PMCID: PMC10819179 DOI: 10.3390/toxins16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Stingless bee honeys (SBHs) from Australian and Malaysian species were analysed using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for the presence of pyrrolizidine alkaloids (PAs) and the corresponding N-oxides (PANOs) due to the potential for such hepatotoxic alkaloids to contaminate honey as a result of bees foraging on plants containing these alkaloids. Low levels of alkaloids were found in these SBHs when assessed against certified PA standards in targeted analysis. However, certain isomers were identified using untargeted analysis in a subset of honeys of Heterotrigona itama which resulted in the identification of a PA weed species (Ageratum conyzoides) near the hives. The evaluation of this weed provided a PA profile matching that of the SBH of H. itama produced nearby, and included supinine, supinine N-oxide (or isomers) and acetylated derivatives. These PAs lacking a hydroxyl group at C7 are thought to be less hepatoxic. However, high levels were also observed in SBH (and in A. conyzoides) of a potentially more toxic diester PA corresponding to an echimidine isomer. Intermedine, the C7 hydroxy equivalent of supinine, was also observed. Species differences in nectar collection were evident as the same alkaloids were not identified in SBH of G. thoracica from the same location. This study highlights that not all PAs and PANOs are identified using available standards in targeted analyses and confirms the need for producers of all types of honey to be aware of nearby potential PA sources, particularly weeds.
Collapse
Affiliation(s)
- Natasha L. Hungerford
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
| | - Norhasnida Zawawi
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
- Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia
| | - Tianqi (Evonne) Zhu
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
| | - Steve J. Carter
- Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (S.J.C.); (K.J.M.)
| | - Kevin J. Melksham
- Forensic and Scientific Services, Queensland Health, Coopers Plains, QLD 4108, Australia; (S.J.C.); (K.J.M.)
| | - Mary T. Fletcher
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia or (N.Z.); (M.T.F.)
| |
Collapse
|
13
|
Abdalfattah S, Knorz C, Ayoobi A, Omer EA, Rosellini M, Riedl M, Meesters C, Efferth T. Identification of Antagonistic Action of Pyrrolizidine Alkaloids in Muscarinic Acetylcholine Receptor M1 by Computational Target Prediction Analysis. Pharmaceuticals (Basel) 2024; 17:80. [PMID: 38256913 PMCID: PMC10818892 DOI: 10.3390/ph17010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Pyrrolizidine alkaloids (PAs) are one of the largest distributed classes of toxins in nature. They have a wide range of toxicity, such as hepatotoxicity, pulmonary toxicity, neuronal toxicity, and carcinogenesis. Yet, biological targets responsible for these effects are not well addressed. Using methods of computational biology for target identification, we tested more than 200 PAs. We used a machine-learning approach that applies structural similarity for target identification, ChemMapper, and SwissTargetPrediction. The predicted target with high probability was muscarinic acetylcholine receptor M1. The predicted interactions between this target and PAs were further studied by molecular docking-based binding energies using AutoDock and VinaLC, which revealed good binding affinities. The PAs are bound to the same binding pocket as pirenzepine, a known M1 antagonist. These results were confirmed by in vitro assays showing that PAs increased the levels of intracellular calcium. We conclude that PAs are potential acetylcholine receptor M1 antagonists. This elucidates for the first time the serious neuro-oncological toxicities exerted by PA consumption.
Collapse
Affiliation(s)
- Sara Abdalfattah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Caroline Knorz
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Akhtar Ayoobi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran 19938 93973, Iran
| | - Ejlal A. Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Matteo Rosellini
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| | - Max Riedl
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany;
| | - Christian Meesters
- High Performance Computing Group, University of Mainz, 55131 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (S.A.); (C.K.); (A.A.); (E.A.O.); (M.R.)
| |
Collapse
|
14
|
Haas M, Ackermann G, Küpper JH, Glatt H, Schrenk D, Fahrer J. OCT1-dependent uptake of structurally diverse pyrrolizidine alkaloids in human liver cells is crucial for their genotoxic and cytotoxic effects. Arch Toxicol 2023; 97:3259-3271. [PMID: 37676300 PMCID: PMC10567918 DOI: 10.1007/s00204-023-03591-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are important plant hepatotoxins, which occur as contaminants in plant-based foods, feeds and phytomedicines. Numerous studies demonstrated that the genotoxicity and cytotoxicity of PAs depend on their chemical structure, allowing for potency ranking and grouping. Organic cation transporter-1 (OCT1) was previously shown to be involved in the cellular uptake of the cyclic PA diesters monocrotaline, retrorsine and senescionine. However, little is known about the structure-dependent transport of PAs. Therefore, we investigated the impact of OCT1 on the uptake and toxicity of three structurally diverse PAs (heliotrine, lasiocarpine and riddelliine) differing in their degree and type of esterification in metabolically competent human liver cell models and hamster fibroblasts. Human HepG2-CYP3A4 liver cells were exposed to the respective PA in the presence or absence of the OCT1-inhibitors D-THP and quinidine, revealing a strongly attenuated cytotoxicity upon OCT1 inhibition. The same experiments were repeated in V79-CYP3A4 hamster fibroblasts, confirming that OCT1 inhibition prevents the cytotoxic effects of all tested PAs. Interestingly, OCT1 protein levels were much lower in V79-CYP3A4 than in HepG2-CYP3A4 cells, which correlated with their lower susceptibility to PA-induced cytotoxicity. The cytoprotective effect of OCT1 inhibiton was also demonstrated in primary human hepatocytes following PA exposure. Our experiments further showed that the genotoxic effects triggered by the three PAs are blocked by OCT1 inhibition as evidenced by strongly reduced γH2AX and p53 levels. Consistently, inhibition of OCT1-mediated uptake suppressed the activation of the DNA damage response (DDR) as revealed by decreased phosphorylation of checkpoint kinases upon PA treatment. In conclusion, we demonstrated that PAs, independent of their degree of esterification, are substrates for OCT1-mediated uptake into human liver cells. We further provided evidence that OCT1 inhibition prevents PA-triggered genotoxicity, DDR activation and subsequent cytotoxicity. These findings highlight the crucial role of OCT1 together with CYP3A4-dependent metabolic activation for PA toxicity.
Collapse
Affiliation(s)
- Manuel Haas
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Gabriel Ackermann
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Jan-Heiner Küpper
- Division of Molecular Cell Biology, Department of Environment and Nature Science, Brandenburg University of Technology Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Hansruedi Glatt
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Dieter Schrenk
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany.
| |
Collapse
|
15
|
Lin T, Zhou L, Chen Z, Wang L, Yang J, Wang S, Chen X, Zuo Z, He C, Guo L. Exposure to echimidine impairs the heart development and function of zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115574. [PMID: 37839186 DOI: 10.1016/j.ecoenv.2023.115574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a class of phytotoxins that are widely distributed and can be consumed by humans through their daily diets. Echimidine is one of the most abundant PAs, but its safety, particularly its effects on development, is not fully understood. In this study, we used a zebrafish model to assess the developmental toxicity of echimidine. Zebrafish embryos were exposed to echimidine at concentrations of 0.02, 0.2, and 2 mg/L for 96 h. Our study revealed that embryonic exposure to echimidine led to developmental toxicity, characterized by delayed hatching and reduced body length. Additionally, echimidine exposure had a notable impact on heart development in larvae, causing tachycardia and reducing stroke volume (SV)and cardiac output (CO). Upon exposing the transgenic zebrafish strain Tg(cmlc2:EGFP) to echimidine, we observed atrial dilation and thinning of the atrial wall in developing embryos. Moreover, our findings indicated abnormal expression of genes associated with cardiac development (including gata4, tbx5, nkx2.5 and myh6) and genes involved in calcium signaling pathways (such as cacna1aa, cacna1sa, ryr2a, ryr2b, atp2a2a, atp2a2b, slc8a1, slc8a3 and slc8a4a). In summary, our findings demonstrate that echimidine may impair cardiac development and function in zebrafish larvae by disrupting calcium transport, leading to developmental toxicity. These findings provide insights regarding the safety of products containing PAs in food and medicine.
Collapse
Affiliation(s)
- Tingting Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Nanchang 330000, China
| | - Zhibin Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Luanjin Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Nanchang 330000, China
| | - Sheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xintan Chen
- Chest Pain Center, Anxi County Hospital, Quanzhou, Fujian 362400, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
16
|
Huang T, Zhang X, Yan K, Lou D, He Y, Dai S, Zheng D, Chen P, Wu F, Gu L. Transjugular intrahepatic portosystemic shunt for pyrrolidine alkaloids-induced hepatic sinusoidal obstruction syndrome: a retrospective cohort study. Eur J Gastroenterol Hepatol 2023; 35:1004-1011. [PMID: 37395216 DOI: 10.1097/meg.0000000000002591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
BACKGROUND This study aimed to investigate the efficacy and safety of transjugular intrahepatic portosystemic shunt (TIPS) in the treatment of patients with pyrrolidine alkaloids-induced hepatic sinusoidal obstruction syndrome (PA-HSOS). METHODS Patients diagnosed with PA-HSOS and treated in Ningbo No.2 Hospital between November 2017 and October 2022 were enlisted in this retrospective cohort study. RESULTS This cohort comprised a total of 22 patients with PA-HSOS, of which 12 patients received TIPS treatment and 10 patients experienced conservative treatment. The median follow-up duration was 10.5 months. Baseline characteristics existed with no significant difference between the two groups. No operation failures or any TIPS-associated intraoperative complications were observed after TIPS. In the TIPS group, the portal venous pressure was substantially decreased from 25.3 ± 6.3 mmHg to 14.4 ± 3.5 mmHg after TIPS ( P = 0.002). Compared with preoperative, the ascites after TIPS were significantly subsided ( P = 0.001) and there existed a considerable decrease in Child-Pugh score. At the end of follow-up, 5 patients died, involving 1 in the TIPS group and 4 in the conservative treatment group. The median survival time was 13 (3-28) months in the TIPS group and 6.5 (1-49) months in the conservative treatment group, respectively. The survival analysis demonstrated that the total survival time of TIPS group was longer than that of the conservative treatment group, no statistical significance was observed ( P = 0.08). CONCLUSION TIPS may be a secure and effective therapeutic strategy for PA-HSOS patients who do not respond to conservative treatment.
Collapse
Affiliation(s)
- Tongmin Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | | | - Kun Yan
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo
| | - Dandi Lou
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Senjie Dai
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Dingcheng Zheng
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Ping Chen
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Feng Wu
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| | - Lihu Gu
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
17
|
Moeung S, Chassagne F, Goyet S, Nhoeung S, Sun L, Yang D, Vilhem S, Dim B, Ly S, Sov L, Sreng V, Chorn S, Chhun S, Borand L, Kim S, Segeral O. Traditional medicine consumption in postpartum for HBV-infected women enrolled in the ANRS 12345 TA PROHM study in Cambodia. PLoS One 2023; 18:e0288389. [PMID: 37561767 PMCID: PMC10414559 DOI: 10.1371/journal.pone.0288389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/26/2023] [Indexed: 08/12/2023] Open
Abstract
In Cambodia, traditional medicine was commonly described as being used by pregnant women at two time points: one month before birth and during early postpartum. The present study aims to describe traditional medicine consumption during postpartum phase for women enrolled in the TA PROHM study and to investigate the possible association between traditional medicine consumption and acute liver toxicity. An ethnobotanical survey was conducted in 2 groups of HBV-infected pregnant women (with and without postpartum hepatocellular injury) enrolled in the study. Hepatocellular injury was defined by having Alanine Aminotransferase (ALT) > 2.5 times the Upper Limit of Normal (ULN = 40 U/L) at the 6th week postpartum visit. Interviews were done using a standardized questionnaire. Plant samples were collected and later identified by two traditional healers. Chi-square test was used to find the association between hepatocellular injury and traditional medicine consumption or a specific plant species. In total, 75 women were enrolled and 52 (69.3%) used at least one traditional remedy composed of 123 different plants and 12 alcoholic macerations of porcupine stomach. Orally consuming at least one remedy with alcohol was significantly associated with hepatocellular injury (33% vs 13%, p = 0.034). Among the 123 plants species identified, four were found to be associated with hepatocellular injury, namely Amphineurion marginatum (Roxb.) D.J.Middleton [Apocynaceae] (p = 0.022), Selaginella tamariscina (P.Beauv.) Spring [Selaginellaceae] (p = 0.048), Mitragyna speciosa Korth. [Rubiaceae] (p = 0.099) and Tetracera indica (Christm. & Panz.) Merr. [Dilleniaceae] (p = 0.079). Consumption of traditional medicine in postpartum is a common practice for women enrolled in the TA PROHM study. Alcohol-based remedies may exacerbate the risk of acute hepatocellular injury in HBV-infected women already exposed to immune restoration. The complex mixtures of herbs need to be further evaluated by in vitro and in vivo studies.
Collapse
Affiliation(s)
| | | | - Sophie Goyet
- “Independent Researcher”, 7 Passage du Clair Matin, Annecy le Vieux, France
| | - Sovann Nhoeung
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lynecta Sun
- Faculty of Pharmacy, University of Health Sciences, Phnom Penh, Cambodia
| | - Dorina Yang
- Faculty of Pharmacy, University of Health Sciences, Phnom Penh, Cambodia
| | - Steve Vilhem
- Faculty of Medicine, University of Health Sciences, Phnom Penh, Cambodia
| | - Bunnet Dim
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Socheat Ly
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Linda Sov
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Vouchleang Sreng
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sokda Chorn
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Laurence Borand
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sothea Kim
- Faculty of Pharmacy, University of Health Sciences, Phnom Penh, Cambodia
| | - Olivier Segeral
- ANRS, University of Health Sciences, Phnom Penh, Cambodia
- HIV Unit, Infectious Diseases Department, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
18
|
Tan Y, Zheng S. Clinicopathological characteristics and diagnosis of hepatic sinusoidal obstruction syndrome caused by Tusanqi - Case report and literature review. Open Med (Wars) 2023; 18:20230737. [PMID: 37333448 PMCID: PMC10276616 DOI: 10.1515/med-2023-0737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Tusanqi-induced hepatic sinusoidal obstruction syndrome (HSOS) is caused by exposure to pyrrolizidine alkaloids (PAs) and manifests as abdominal distension, liver pain, ascites, jaundice, and hepatomegaly. Pathologically, hepatic congestion and sinusoidal occlusion are observed in HSOS. We summarized the clinical characteristics of 124 patients with HSOS caused by Tusanqi in China between 1980 and 2019, along with those of 831 patients from seven English case series. The main clinical manifestations of PA-HSOS included abdominal pain, ascites, and jaundice. Common imaging features included characteristic heterogeneous density, slender hepatic veins, and other nonspecific changes. The acute stage is primarily manifested as hepatic sinus congestion and necrosis. Meanwhile, the persistence of hepatic sinus congestion and the onset of perisinusoidal fibrosis were observed during the repair stage. Finally, the persistence of hepatic sinusoidal fibrosis and resultant central hepatic vein occlusion were observed in the chronic stage. The new Nanjing standard for PA-HSOS incorporates the history of PA consumption and imaging features and eliminates weight gain and the serum total bilirubin value. Preliminary clinical validation of the Nanjing standard for PA-HSOS diagnosis revealed a sensitivity and specificity of 95.35 and 100%, respectively.
Collapse
Affiliation(s)
- Youwen Tan
- Department of Hepatology, Third Hospital of the Zhenjiang Affiliated Jiangsu University, No. 300, Daijiamen, Runzhou Distinct, Zhenjiang212003, China
| | - Sainan Zheng
- Department of Hepatology, Third Hospital of the Zhenjiang Affiliated Jiangsu University, No. 300, Daijiamen, Runzhou Distinct, Zhenjiang212003, China
| |
Collapse
|
19
|
Mid- to long-term outcomes of initial transjugular intrahepatic portosystemic shunt versus anticoagulation for pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. Eur J Gastroenterol Hepatol 2023; 35:445-452. [PMID: 36719828 DOI: 10.1097/meg.0000000000002509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Anticoagulation therapy (AT) is often used as the initial treatment for pyrrolizidine alkaloid (PA)-induced hepatic sinusoidal obstruction syndrome (HSOS). However, transjugular intrahepatic portosystemic shunt (TIPS) is an alternative treatment. This study aimed to determine the mid- to long-term outcomes of TIPS versus AT as the initial treatment for PA-induced HSOS. METHODS We retrospectively analyzed the clinical data of 61 patients with PA-induced HSOS that were collected between November 2015 and July 2021. The patients were allocated to the TIPS group ( n = 20) or the AT group ( n = 41). These two groups were divided into subgroups according to the severity grading. The clinical data of the patients in both groups were analyzed. Cumulative survival rates were calculated and compared between the two groups and among the subgroups. RESULTS The clinical symptoms and signs improved or stabilized in 100% of the patients following TIPS and in 85% of the patients following AT at discharge ( P = 0.166). The mortality rate was 0.0% in the TIPS group and 34.1% in the AT group ( P = 0.005). The patients were followed up for 2-69 months (mean, 26.3 ± 20.5 months). In the mild- and moderate-grade subgroups, there was no difference in the cumulative survival rate between the TIPS and AT groups ( P = 0.589 and P = 0.364, respectively). In the severe and very severe-grade subgroups, the cumulative survival rate was higher in the TIPS group than in the AT group ( P = 0.018 and P = 0.025, respectively). CONCLUSION AT is a suitable initial treatment for mild or moderate PA-induced HSOS, whereas TIPS should be considered the appropriate initial treatment for severe or very severe PA-induced HSOS.
Collapse
|
20
|
Haas M, Wirachowski K, Thibol L, Küpper JH, Schrenk D, Fahrer J. Potency ranking of pyrrolizidine alkaloids in metabolically competent human liver cancer cells and primary human hepatocytes using a genotoxicity test battery. Arch Toxicol 2023; 97:1413-1428. [PMID: 36928417 PMCID: PMC10110667 DOI: 10.1007/s00204-023-03482-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Pyrrolizidine alkaloids (PAs) occur as contaminants in plant-based foods and herbal medicines. Following metabolic activation by cytochrome P450 (CYP) enzymes, PAs induce DNA damage, hepatotoxicity and can cause liver cancer in rodents. There is ample evidence that the chemical structure of PAs determines their toxicity. However, more quantitative genotoxicity data are required, particularly in primary human hepatocytes (PHH). Here, the genotoxicity of eleven structurally different PAs was investigated in human HepG2 liver cells with CYP3A4 overexpression and PHH using an in vitro test battery. Furthermore, the data were subject to benchmark dose (BMD) modeling to derive the genotoxic potency of individual PAs. The cytotoxicity was initially determined in HepG2-CYP3A4 cells, revealing a clear structure-toxicity relationship for the PAs. Importantly, experiments in PHH confirmed the structure-dependent toxicity and cytotoxic potency ranking of the tested PAs. The genotoxicity markers γH2AX and p53 as well as the alkaline Comet assay consistently demonstrated a structure-dependent genotoxicity of PAs in HepG2-CYP3A4 cells, correlating well with their cytotoxic potency. BMD modeling yielded BMD values in the range of 0.1-10 µM for most cyclic and open diesters, followed by the monoesters. While retrorsine showed the highest genotoxic potency, monocrotaline and lycopsamine displayed the lowest genotoxicity. Finally, experiments in PHH corroborated the genotoxic potency ranking, and revealed genotoxic effects even in the absence of detectable cytotoxicity. In conclusion, our findings strongly support the concept of grouping PAs into potency classes and help to pave the way for a broader acceptance of relative potency factors in risk assessment.
Collapse
Affiliation(s)
- Manuel Haas
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Karina Wirachowski
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Lea Thibol
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Jan-Heiner Küpper
- Division of Molecular Cell Biology, Department of Environment and Nature Science, Brandenburg University of Technology Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Dieter Schrenk
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schroedinger-Str. 52, 67663, Kaiserslautern, Germany.
| |
Collapse
|
21
|
Song Z, Lian W, He Y, Zhang C, Lin G. Targeting erythrocyte-mediated hypoxia to alleviate lung injury induced by pyrrolizidine alkaloids. Arch Toxicol 2023; 97:819-829. [PMID: 36639515 DOI: 10.1007/s00204-023-03443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are widely distributed natural toxins and have been extensively studied for their hepatotoxicity. However, PA-induced pulmonary toxicity remains less studied regarding the initiating mechanism and treatment approaches. Our previous study demonstrated the formation of pyrrole-hemoglobin adducts after PA exposure in vivo, which is suspected to affect the oxygen-carrying capacity of erythrocytes [red blood cells (RBCs)] consequently. The present study aimed to investigate the effects of PAs on the oxygen-carrying capacity of RBCs and the potential of targeting RBC-mediated hypoxia to alleviate PA-induced lung injury. First, rats were treated with retrorsine (RTS) or monocrotaline (MCT) intravenously at 0.2 mmol/kg. The results of Raman spectrometry analysis on blood samples revealed both RTS and MCT significantly reduced the oxygen-carrying capacity of RBCs. Further, MCT (0.2 mmol/kg) was orally given to the rats with or without pretreatment with two doses of erythropoietin (Epo, 500 IU/kg/dose every other day), an RBC-stimulating agent. Biochemical and histological results showed pretreatment with Epo effectively reduced the cardiopulmonary toxicity induced by MCT. These findings provide the first evidence that adduction on hemoglobin, and the resulting RBC damage and impaired oxygen-carrying capacity, are the major initiating mechanism underlying PA-induced pulmonary arterial hypertension (PAH), while targeting the RBC damage is a potential therapeutic approach for PA-induced lung injury.
Collapse
Affiliation(s)
- Zijing Song
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Wei Lian
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
- School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen, People's Republic of China
| | - Chunyuan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
22
|
He X, Xia Q, Zhu L, He Y, Bryant MS, Lin G, Fu PP. Formation of DHP-DNA Adducts from Rat Liver Microsomal Metabolism of 1,2-Unsaturated Pyrrolizidine Alkaloid-Containing Plant Extracts and Dietary Supplements. Chem Res Toxicol 2023; 36:243-250. [PMID: 36705520 DOI: 10.1021/acs.chemrestox.2c00321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1,2-Unsaturated pyrrolizidine alkaloids (PAs) are carcinogenic phytochemicals. We previously determined that carcinogenic PAs and PA N-oxides commonly form a set of four (±)-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP)-DNA adducts, namely, DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4. This set of DHP-DNA adducts has been implicated as a potential biomarker of PA-induced liver tumor initiation from metabolism of individual carcinogenic PAs. To date, it is not known whether this generality occurs from metabolism of PA-containing plant extracts. In this study, we investigate the rat liver microsomal metabolism of nine PA-containing plant extracts and two PA-containing dietary supplements in the presence of calf thymus DNA. The presence of carcinogenic PAs and PA N-oxides in plant extracts was first confirmed by LC-MS/MS analysis with selected reaction monitoring mode. Upon rat liver microsomal metabolism of these PA-containing plant extracts and dietary supplements, the formation of this set of DHP-DNA adducts was confirmed. Thus, these results indicate that metabolism of PA-containing plant extracts and dietary supplements can generate DHP-dG-3, DHP-dG-4, DHP-dA-3, and DHP-dA-4 adducts, thereby potentially initiating liver tumor formation.
Collapse
Affiliation(s)
- Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Lin Zhu
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China
| | - Yisheng He
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China
| | - Matthew S Bryant
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| | - Ge Lin
- School of Biomedical Science, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, The People's Republic of China
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas 72079, United States
| |
Collapse
|
23
|
Widjaja F, Alhejji Y, Yangchen J, Wesseling S, Rietjens IMCM. Physiologically-Based Kinetic Modeling Predicts Similar In Vivo Relative Potency of Senecionine N-Oxide for Rat and Human at Realistic Low Exposure Levels. Mol Nutr Food Res 2023; 67:e2200293. [PMID: 36478522 DOI: 10.1002/mnfr.202200293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/30/2022] [Indexed: 12/12/2022]
Abstract
SCOPE This study aims to determine if previously developed physiologically-based kinetic (PBK) model in rat can be modified for senecionine (SEN) and its N-oxide (SENO), and be used to investigate potential species differences between rat and human in relative potency (REP) of the N-oxide relative to the parent pyrrolizidine alkaloid (PA). METHODS AND RESULTS In vitro derived kinetic parameters including the apparent maximum velocities (Vmax ) and Michaelis-Menten constants (Km ) for SENO reduction and SEN clearance are used to define the PBK models. The rat model is validated with published animal data, and the toxicokinetic profiles of SEN from either orally-administered SENO or SEN are simulated. REP values of SENO relative to SEN amount to 0.84 and 0.89 in rat and human, respectively. CONCLUSION The REP value can be dose- and species-dependent, with the values for rat and human being comparable at low realistic exposure scenarios. In summary, PBK modeling serves as a valuable New Approach Methodology (NAM) tool for predicting REP values of PA-N-oxides and may actually result in more accurate REP values for human risk assessment than what would be defined using in vivo animal experiments.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands
| | - Yasser Alhejji
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands.,Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Jamyang Yangchen
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands.,Bhutan Agriculture and Food Regulatory Authority, Ministry of Agriculture and Forests, Thimphu, 11002, Bhutan
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, PO Box 8000, Wageningen, 6700 EA, The Netherlands
| |
Collapse
|
24
|
Genotoxicity of pyrrolizidine alkaloids in metabolically inactive human cervical cancer HeLa cells co-cultured with human hepatoma HepG2 cells. Arch Toxicol 2023; 97:295-306. [PMID: 36273350 PMCID: PMC9816206 DOI: 10.1007/s00204-022-03394-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/05/2022] [Indexed: 01/19/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are secondary plant metabolites, which can be found as contaminant in various foods and herbal products. Several PAs can cause hepatotoxicity and liver cancer via damaging hepatic sinusoidal endothelial cells (HSECs) after hepatic metabolization. HSECs themselves do not express the required metabolic enzymes for activation of PAs. Here we applied a co-culture model to mimic the in vivo hepatic environment and to study PA-induced effects on not metabolically active neighbour cells. In this co-culture model, bioactivation of PA was enabled by metabolically capable human hepatoma cells HepG2, which excrete the toxic and mutagenic pyrrole metabolites. The human cervical epithelial HeLa cells tagged with H2B-GFP were utilized as non-metabolically active neighbours because they can be identified easily based on their green fluorescence in the co-culture. The PAs europine, riddelliine and lasiocarpine induced micronuclei in HepG2 cells, and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Metabolic inhibition of cytochrome P450 enzymes with ketoconazole abrogated micronucleus formation. The efflux transporter inhibitors verapamil and benzbromarone reduced micronucleus formation in the co-culture model. Furthermore, mitotic disturbances as an additional genotoxic mechanism of action were observed in HepG2 cells and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Overall, we were able to show that PAs were activated by HepG2 cells and the metabolites induced genomic damage in co-cultured HeLa cells.
Collapse
|
25
|
Li AP, Shi YP. Effect of Adulteration on Quality and Preliminary Risk Assessment of the Decoction Pieces of Farfarae Flos Based on the Determination of Hepatotoxic Pyrrolizidine Alkaloids by UHPLC-MS/MS. J AOAC Int 2022; 106:192-204. [PMID: 35866688 DOI: 10.1093/jaoacint/qsac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Farfarae Flos (FF) is a frequently used traditional herbal medicine with outstanding antitussive actions. The adulteration of FF decoction pieces is common. OBJECTIVE This study aimed to study the effect of adulteration on the safety and quality of FF decoction pieces. METHODS The proportion of impurities was conducted by cone quartering method. A simple and accurate ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was established to simultaneous determinate three pyrrolizidine alkaloids (PAs) as endogenous toxic compounds in FF. The traditional medicinal parts (flower bud), impurities (pedicel and rhizome) and unselected samples were determined respectively. The values of estimated daily intake (EDI) and margin of exposure (MOE) were used for risk assessment. RESULTS Twenty batches of samples were collected from different habitats, and the proportion of impurities ranged from 17.51% to 41.27%. Pedicel and rhizome were the main impurities, accounting for more than 87.40% of the total impurities. The content of PAs in impurities was significantly higher. The EDI value range was 5.34 to 16.59 μg/kg bw/day, which was much higher than the standard safety value of 7.00 × 10-3 μg/kg bw/day. The MOE values ranges for life long time and shorter exposure were 14.29 to 44.37 and 371.53 to 1153.63, respectively, indicating that at least 80% of the samples had safety risks. Correlation analysis showed that the proportion of adulterated impurities had significant correlation with the values of EDI and MOE. CONCLUSIONS Adulteration of non medicinal parts may significantly increase the risk of medications of FF decoction pieces. HIGHLIGHTS This study provides an efficient methodology reference for the control of PAs and a basis for adulteration to affect the safety and quality of FF decoction pieces.
Collapse
Affiliation(s)
- An-Ping Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 18 Tianshui Middle Road, Lanzhou 730000, PR China.,Gansu Institute for Drug Control, Key Laboratory for Quality Control of Chinese Medicinal Materials and Decoction Pieces, National Medical Products Administration (NMPA), Lanzhou 730000, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 18 Tianshui Middle Road, Lanzhou 730000, PR China
| |
Collapse
|
26
|
Wu H, Fan D, Cheng J. Development and Validation of an UHPLC-MS/MS Method for the Determination of 32 Pyrrolizidine Alkaloids in Chinese Wild Honey. J AOAC Int 2022; 106:56-64. [PMID: 35924956 DOI: 10.1093/jaoacint/qsac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Studies on pyrrolizidine alkaloid (PA) contamination in honey produced in China are scarce. Previously reported HPLC-MS/MS methods for the determination of PAs in honey often suffer from insufficient separation and uncertainties in PA isomers. OBJECTIVE To develop and validate an Ultra-HPLC (UHPLC)-MS/MS method for baseline separation of PA isomers towards precise determination of 32 PAs in Chinese wild honey. METHODS PAs were extracted from honey samples and separated on an ACQUITY BEH C18 (2.1 mm × 100 mm, 1.7 µm) column with (A) 0.1% formic acid aqueous solution containing 5 mM ammonium acetate and (B) methanol as mobile phase. The column temperature was maintained at 30°C, and flow rate was 0.3 mL/min. Detection was performed by tandem mass spectrometry. The total run time was reduced to 18 min. RESULTS Thirty-one of 32 PAs were baseline separated efficiently within 18 min. The LOD and LOQ were 0.06-0.25 µg/kg and 0.22-0.82 µg/kg, respectively, except for that of clivorine, for which LOD and LOQ were 2.03 and 6.78 µg/kg, respectively. The average recoveries ranged between 66.3 and 95.1% and the average RSDs were 3.2 to 8%. The established method was used to analyze PAs in 22 types of Chinese wild honey, and the predominant PAs found in these honey samples were intermedine and lycopsamine. CONCLUSION A high-throughput method for the determination of isomeric PAs in honey was developed and validated. Five of the 22 types of Chinese wild honey were contaminated with PAs concentrations of 2.2-207.0 µg/kg. HIGHLIGHTS A new method capable of monitoring more PAs and providing better separation than previously reported protocols for the determination of multiclass PAs in honey is established.
Collapse
Affiliation(s)
- Haiping Wu
- GRA (Shanghai) Standard Technology Service Co., Ltd, Research and Development Department, Shanghai 201318, P.R. China
| | - Dingyan Fan
- GRA (Shanghai) Standard Technology Service Co., Ltd, Research and Development Department, Shanghai 201318, P.R. China
| | - Jiangchuang Cheng
- GRA (Shanghai) Standard Technology Service Co., Ltd, Research and Development Department, Shanghai 201318, P.R. China
| |
Collapse
|
27
|
Li J, Li X, Zhou M, Lai X, Li W, Zheng J. Evaluating and predicting the correlations of hepatic concentration and pyrrole-protein adduction with hepatotoxicity induced by retrorsine based on pharmacokinetic/pharmacodynamic model. Toxicol Lett 2022; 373:152-159. [PMID: 36464202 DOI: 10.1016/j.toxlet.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Retrosine (RTS) is a pyrrolozidine alkaloid and a known hepatotoxin that widely exist in nature. The mechanisms involved in toxic action of pyrrolizidine alkaloids need further investigation. The objective of the present study was to evaluate the correlation of RTS hepatotoxicity with hepatic RTS concentration and pyrrole-protein adduction. Mice were intragastrically treated with RTS alone or RTS and ketoconazole (KTZ) simultaneously. Sera and liver tissues were collected at various time points after administration, followed by the determination of changes in serum transaminase activity, hepatic RTS concentration and pyrrole-protein adduction. The correlation of RTS hepatotoxicity with hepatic RTS concentration and hepatic pyrrole-protein adduction were examined by use of Sigmoid-Emax PK/PD models. Dose-dependent hepatotoxicity, hepatic RTS concentration and pyrrole-protein adduction were observed in the animals, which could be modulated by co-treatment with KTZ. The fit parameters indicated pyrrole-protein adduction was more closely related with liver injury than hepatic RTS concentration. Similar correlation was observed in mice given low-dose of RTS for 4 consecutive days. RTS hepatotoxicity is correlated with hepatic pyrrole-protein adduction derived from RTS rather than hepatic RTS concentration. The observed protein modification would be a good indicator to predict the hepatoxicity of RTS at low dose.
Collapse
Affiliation(s)
- Jing Li
- School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Ximei Li
- School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Mengyue Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Center for Drug Inspection of Guizhou Medical Products Administration, Guiyang 550004, Guizhou, PR China
| | - Xiaoqiong Lai
- School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Weiwei Li
- School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550004, Guizhou, PR China.
| | - Jiang Zheng
- School of Basic Medicine, School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550004, Guizhou, PR China; Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, Liaoning, PR China.
| |
Collapse
|
28
|
Han H, Jiang C, Wang C, Lu Y, Wang Z, Chai Y, Zhang X, Liu X, Lu C, Chen H. Dissipation pattern and conversion of pyrrolizidine alkaloids (PAs) and pyrrolizidine alkaloid N-oxides (PANOs) during tea manufacturing and brewing. Food Chem 2022; 390:133183. [PMID: 35597088 DOI: 10.1016/j.foodchem.2022.133183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 01/23/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and pyrrolizidine alkaloid N-oxides (PANOs) are toxic secondary metabolites in plants, and one kind of main exogenous pollutants of tea. Herein, the dissipation pattern and conversion behavior of PAs/PANOs were investigated during tea manufacturing and brewing using ultra high-performance liquid chromatography tandem mass spectrometry. Compared with PAs (processing factor (PF) = 0.73-1.15), PANOs had higher degradation rates (PF = 0.21-0.56) during tea manufacturing, and drying played the most important role in PANOs degradation. Moreover, PANOs were firstly discovered to be converted to corresponding PAs especially in the time-consuming (spreading of green tea manufacturing and withering of black tea manufacturing) and high-temperature tea processing (drying). Moreover, higher transfer rates of PANOs (≥75.84%) than that of PAs (≤56.53%) were observed during tea brewing. Due to higher toxicity of PAs than PANOs, these results are conducive to risk assessment and pollution control of PAs/PANOs in tea.
Collapse
Affiliation(s)
- Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Agriculture and Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Xin Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China.
| |
Collapse
|
29
|
Kurimoto M, Chang T, Nishiyama Y, Suzuki T, Dohmae N, Tanaka K, Yokoshima S. Anticancer Approach Inspired by the Hepatotoxic Mechanism of Pyrrolizidine Alkaloids with Glycosylated Artificial Metalloenzymes. Angew Chem Int Ed Engl 2022; 61:e202205541. [DOI: 10.1002/anie.202205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Michitaka Kurimoto
- Graduate School of Pharmaceutical Sciences Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 Japan
| | - Tsung‐che Chang
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research RIKEN 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Yoshitake Nishiyama
- Graduate School of Pharmaceutical Sciences Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research RIKEN 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552 Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 Japan
| |
Collapse
|
30
|
Risk Assessment of (Herbal) Teas Containing Pyrrolizidine Alkaloids (PAs) Based on Margin of Exposure Approach and Relative Potency (REP) Factors. Foods 2022; 11:foods11192946. [PMID: 36230022 PMCID: PMC9564199 DOI: 10.3390/foods11192946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) present distinct toxicity potencies depending on their metabolites and in vivo toxicokinetics. To represent the potency differences of various PAs, the interim relative potency (REP) factors have been derived. However, little is known about the risk assessment for (herbal) teas when taking REP factors into account. In this study, a set of 68 individual 1,2-unsaturated PA in 21 types of (herbal) teas was analyzed using LC-MS/MS. The REP factors for these PAs were applied on the PA levels. The margin of exposure (MOE) approach was employed to assess the risks of the exposure to PAs due to consumption of (herbal) teas. The results show that the total PA levels ranged from 13.4 to 286,682.2 μg/kg d.m., which were decreased by REP correction in most of the teas. The MOE values for tephroseris, borage and lemon balm (melissa) tea based on REP-corrected PA levels were below 10,000, assuming daily consumption of one cup of tea during a lifetime, indicating that consuming these teas may raise a concern. Our study also indicates a priority for risk management for tephroseris tea, as having nephrosis tea for more than 11.2 weeks during a 75-year lifetime would result in an MOE of 10,000.
Collapse
|
31
|
Kurimoto M, Chang TC, Nishiyama Y, Suzuki T, Dohmae N, Tanaka K, Yokoshima S. Anticancer Approach Inspired by the Hepatotoxic Mechanism of Pyrrolizidine Alkaloids with Glycosylated Artificial Metalloenzymes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Tsung-che Chang
- Rikagaku Kenkyujo RIKEN Cluster for Pioneering Research JAPAN
| | | | | | - Naoshi Dohmae
- Rikagaku Kenkyujo Biomolecular Characterization Unit JAPAN
| | | | - Satoshi Yokoshima
- Nagoya Daigaku Graduate School of Pharmaceutical Sciences Furo-cho, Chikusa-ku 464-8601 Nagoya JAPAN
| |
Collapse
|
32
|
Xiao Y, Yi H, Wang G, Chen S, Li X, Wu Q, Zhang S, Deng K, He Y, Yang X. Electrochemiluminescence sensor for point-of-care detection of pyrrolizidine alkaloids. Talanta 2022; 249:123645. [PMID: 35700647 DOI: 10.1016/j.talanta.2022.123645] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 10/31/2022]
Abstract
Pyrrolizidine alkaloids (PAs) and PA N-oxides are hepatotoxic natural products, produced by over 6000 plant species worldwide. However, an unmet need remains for confirmative measurement of PAs in routine clinical tests. Here, we develop a visual, easy-to-use, and economic mesoporous silica-electrochemiluminescence (MPS-ECL) sensor for point-of-care (POC) testing of PAs, utilizing MPS's amplification effect on positive ions. The relationship between PAs' different structures and corresponding Ru(bpy)32+ ECL activity shows that reaction mechanism, stability of intermediate, molecular geometry and alternative anodic reactivity significantly affect the ECL activity. The ECL intensity varies among different PAs: monocrotaline ˃ senecionine N-oxide ˃ retrorsine ˃ senkirkine. The POC sensors possess excellent linearity (0.9993 > R2 > 0.9944), low detection limits (0.02 μM-0.07 μM), and good recoveries (90.12%-105.93%), indicating good accuracy and practicability. The portable and low-cost sensor is user-friendly, which holds promise to be applied to POC testing of PAs in drugs, food products, and clinical samples, which is promising for initial assessments of PA-induced health risk.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Haomin Yi
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Guofang Wang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Suhua Chen
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Xiang Li
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Qinyu Wu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Siyi Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Kexin Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| |
Collapse
|
33
|
Simultaneous Determination of Pyrrolizidine and Tropane Alkaloids in Honey by Liquid Chromatography-mass Spectrometry. J Vet Res 2022; 66:235-243. [PMID: 35892104 PMCID: PMC9281522 DOI: 10.2478/jvetres-2022-0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction Pyrrolizidine alkaloids (PAs) and tropane alkaloids (TAs) are natural contaminants of honey and respectively hepatoxic and neurotoxic compounds. Because honey is a popular constituent of the human diet, it is relevant to warrant the safety of the product. For that reason, a method for simultaneous determination of PAs and TAs in honey based on liquid chromatography- mass spectrometry was developed. Material and Methods The analytical protocol used sulphuric acid extraction and solid-phase extraction purification. The developed procedure was subjected to validation in terms of linearity, selectivity, repeatability, reproducibility, limits of quantification and determination, matrix effect and uncertainty. A total of 29 honey samples were analysed for the determination of PAs and TAs. Results All the evaluated validation parameters fulfilled the requirements of European Commission Decision 2002/657/EC. At least one of the monitored alkaloids was determined in 52% of the samples. Among the most abundant alkaloids were echimidine, intermedine and lycopsamine. The total PA concentrations ranged from 2.2 to 147.0 μg kg-1. Contrastingly, none of the monitored TAs was detected in the analysed samples. An assessment of the dietary exposure to PAs from the consumption of the contaminated honeys showed that three of them would pose a risk to consumers, especially if they were children. Conclusion A sensitive method suitable for simultaneous determination of PAs and TAs in honey was developed and validated. The analysis of 29 honey samples for PAs and TAs revealed that honey destined for retail could pose a risk to consumers.
Collapse
|
34
|
Zhu L, Xue J, He Y, Xia Q, Fu PP, Lin G. Correlation Investigation between Pyrrole-DNA and Pyrrole-Protein Adducts in Male ICR Mice Exposed to Retrorsine, a Hepatotoxic Pyrrolizidine Alkaloid. Toxins (Basel) 2022; 14:toxins14060377. [PMID: 35737038 PMCID: PMC9231038 DOI: 10.3390/toxins14060377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Pyrrolizidine alkaloids (PAs) have been found in over 6000 plants worldwide and represent the most common hepatotoxic phytotoxins. Catalyzed by hepatic cytochrome P450 enzymes, PAs are metabolized into reactive pyrrolic metabolites, which can alkylate cellular proteins and DNA to form pyrrole-protein adducts and pyrrole-DNA adducts, leading to cytotoxicity, genotoxicity, and tumorigenicity. To date, the correlation between these PA-derived pyrrole-protein and pyrrole-DNA adducts has not been well investigated. Retrorsine is a representative hepatotoxic and carcinogenic PA. In the present study, the correlations among the PA-derived liver DNA adducts, liver protein adducts, and serum protein adducts in retrorsine-treated mice under different dosage regimens were studied. The results showed positive correlations among these adducts, in which serum pyrrole-protein adducts were more accessible and present in higher abundance, and thus could be used as a suitable surrogate biomarker for pyrrole-DNA adducts to indicate the genetic or carcinogenic risk posed by retrorsine.
Collapse
Affiliation(s)
- Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.Z.); (J.X.); (Y.H.)
| | - Junyi Xue
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.Z.); (J.X.); (Y.H.)
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.Z.); (J.X.); (Y.H.)
| | - Qingsu Xia
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Peter P. Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
- Correspondence: (P.P.F.); (G.L.)
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (L.Z.); (J.X.); (Y.H.)
- Correspondence: (P.P.F.); (G.L.)
| |
Collapse
|
35
|
The chemical structure impairs the intensity of genotoxic effects promoted by 1,2-unsaturated pyrrolizidine alkaloids in vitro. Food Chem Toxicol 2022; 164:113049. [PMID: 35500694 DOI: 10.1016/j.fct.2022.113049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022]
Abstract
1,2-unsaturated pyrrolizidine alkaloids (PAs) represent a large group of secondary plant metabolites exhibiting hepatotoxic, genotoxic, and carcinogenic properties upon bioactivation. To examine how the degree of esterification affects the genotoxic profile of PA we investigated cytotoxicity, histone H2AX phosphorylation, DNA strand break induction, cell cycle perturbation, micronuclei formation, and aneugenic effects in different cell models. Analysis of cytotoxicity and phosphorylation of histone H2AX was structure- and concentration-dependent: diester-type PAs (except monocrotaline) showed more pronounced effects than monoester-type PAs. Cell cycle analysis identified that diester-type PAs induced a S-phase arrest and a decrease in the occurrence of cells in the G1-phase. The same structure-dependency was observed by flow-cytometric analysis of PA-induced micronuclei in CYP3A4-overexpressing V79 cells. Analysis of centromeres induced by lasiocarpine in the micronuclei by fluorescence in situ hybridization indicated an aneugenic effect in V79h3A4 cells. Comet assays revealed no significant induction of DNA strand breaks for all investigated PAs. Overall, diester-type PAs induced more pronounced effects than monoester-type PAs. Furthermore, our results indicate aneugenic effects upon exposure towards lasiocarpine in vitro. These data improve our understanding how structural features of PA influence the genotoxic profile. Especially, the monoester-type PAs seem to induce less severe effects than other PAs.
Collapse
|
36
|
Utilization of Biomasses from Landscape Conservation Growths Dominated by Common Ragwort (Jacobaea vulgaris Gaertn.) for Biomethanization. PLANTS 2022; 11:plants11060813. [PMID: 35336694 PMCID: PMC8953157 DOI: 10.3390/plants11060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
The highly toxic species common ragwort (Jacobaea vulgaris Gaertn.) prefers to migrate into protected dry grassland biotopes and limits the use of the resulting biomass as animal feed. There is an urgent need for a safe alternative use of the contaminated biomass apart from landfill disposal. We investigated the optional utilization of biomethanization of fresh and ensiled common ragwort biomasses and evaluated their energetic potentials by estimation models based on biochemical characteristics and by standardized batch experiments. The fresh and ensiled substrates yielded 174 LN∙kg−1 oDM methane and 185 LN∙kg−1 oDM, respectively. Ensiling reduced the toxic pyrrolizidine alkaloid content by 76.6%; a subsequent wet fermentation for an additional reduction is recommended. In comparison with other biomasses from landscape cultivation, ragwort biomass can be ensiled readily but has a limited energy potential if harvested at its peak flowering stage. Considering these properties and limitations, the energetic utilization is a promising option for a sustainable handling of Senecio-contaminated biomasses in landscape conservation practice and represents a safe alternative for reducing pyrrolizidine alkaloid entry into the agri-food sector.
Collapse
|
37
|
Edgar JA, Molyneux RJ, Colegate SM. 1,2-Dehydropyrrolizidine Alkaloids: Their Potential as a Dietary Cause of Sporadic Motor Neuron Diseases. Chem Res Toxicol 2022; 35:340-354. [PMID: 35238548 DOI: 10.1021/acs.chemrestox.1c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sporadic motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), can be caused by spontaneous genetic mutations. However, many sporadic cases of ALS and other debilitating neurodegenerative diseases (NDDs) are believed to be caused by environmental factors, subject to considerable debate and requiring intensive research. A common pathology associated with MND development involves progressive mitochondrial dysfunction and oxidative stress in motor neurons and glial cells of the central nervous system (CNS), leading to apoptosis. Consequent degeneration of skeletal and respiratory muscle cells can lead to death from respiratory failure. A significant number of MND cases present with cancers and liver and lung pathology. This Perspective explores the possibility that MNDs could be caused by intermittent, low-level dietary exposure to 1,2-dehydropyrrolizidine alkaloids (1,2-dehydroPAs) that are increasingly recognized as contaminants of many foods consumed throughout the world. Nontoxic, per se, 1,2-dehydroPAs are metabolized, by particular cytochrome P450 (CYP450) isoforms, to 6,7-dihydropyrrolizines that react with nucleophilic groups (-NH, -SH, -OH) on DNA, proteins, and other vital biochemicals, such as glutathione. Many factors, including aging, gender, smoking, and alcohol consumption, influence CYP450 isoform activity in a range of tissues, including glial cells and neurons of the CNS. Activation of 1,2-dehydroPAs in CNS cells can be expected to cause gene mutations and oxidative stress, potentially leading to the development of MNDs and other NDDs. While relatively high dietary exposure to 1,2-dehydroPAs causes hepatic sinusoidal obstruction syndrome, pulmonary venoocclusive disease, neurotoxicity, and diverse cancers, this Perspective suggests that, at current intermittent, low levels of dietary exposure, neurotoxicity could become the primary pathology that develops over time in susceptible individuals, along with a tendency for some of them to also display liver and lung pathology and diverse cancers co-occurring with some MND/NDD cases. Targeted research is recommended to investigate this proposal.
Collapse
Affiliation(s)
- John A Edgar
- CSIRO Agriculture and Food, 11 Julius Avenue, North Ryde, New South Wales 2113, Australia
| | - Russell J Molyneux
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, United States
| | - Steven M Colegate
- Poisonous Plant Research Laboratory, ARS/USDA, 1150 East 1400 North, Logan, Utah 84341, United States
| |
Collapse
|
38
|
Enge AM, Sprenger H, Braeuning A, Hessel-Pras S. Identification of microRNAs Implicated in Modulating Senecionine-Induced Liver Toxicity in HepaRG Cells. Foods 2022; 11:foods11040532. [PMID: 35206009 PMCID: PMC8871147 DOI: 10.3390/foods11040532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
1,2-unsaturated Pyrrolizidine Alkaloids (PAs) are secondary plant metabolites that occur as food contaminants. Upon consumption, they can cause severe liver damage. PAs have been shown to induce apoptosis, to have cytotoxic and genotoxic effects, and to impair bile acid homeostasis in the human hepatoma cell line HepaRG. The major mode of action of PAs is DNA- and protein-adduct formation. Beyond that, nuclear receptor activation has only been observed for one receptor and two PAs, yielding the possibility that other cellular mediators are involved in PA-mediated toxicity. Here, the mode of action of Senecionine (Sc), a prominent and ubiquitous representative of hepatotoxic PAs, was investigated by analyzing 7 hepatic microRNAs (miRNAs) in HepaRG cells. Ultimately, 11 target genes that were predicted with Ingenuity Pathway Analysis software (IPA) were found to be significantly downregulated, while their assigned miRNAs showed significant upregulation of gene expression. According to IPA, these targets are positively correlated with apoptosis and cellular death and are involved in diseases such as hepatocellular carcinoma. Subsequent antagomiR-inhibition analysis revealed a significant correlation between PA-induced miRNA-4434 induction and P21-Activated Kinase-1 (PAK1) downregulation. PAK1 downregulation is usually associated with cell cycle arrest, suggesting a new function of Sc-mediated toxicity in human liver cells.
Collapse
|
39
|
Han H, Jiang C, Wang C, Wang Z, Chai Y, Zhang X, Liu X, Lu C, Chen H. Development, optimization, validation and application of ultra high performance liquid chromatography tandem mass spectrometry for the analysis of pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides in teas and weeds. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
|
41
|
Masoudi M. An Unprecedented Synthesis of 8b-Hydroxy-3a-(1H-pyrrol-2-yl)/(1H-indol-3-yl)-3a,8b-dihydroindeno[1,2-b]pyrrol-4(1H)-one Derivatives from Pyrrole/Indole with Ninhydrin and β‑Enaminocarbonyls. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Kwon Y, Gu Y, Jeong Y. Evaluation of pyrrolizidine alkaloids in Korean commercial honeys and bee pollens. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2022. [DOI: 10.3136/fstr.fstr-d-21-00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yujihn Kwon
- Department of Food Science and Nutrition, College of Food Science and Technology Dankook University
| | - Yongui Gu
- Food Contaminants Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety
| | - Yoonhwa Jeong
- Department of Food Science and Nutrition, College of Food Science and Technology Dankook University
| |
Collapse
|
43
|
Xue Z, Li Y, Zhou M, Liu Z, Fan G, Wang X, Zhu Y, Yang J. Traditional Herbal Medicine Discovery for the Treatment and Prevention of Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:720873. [PMID: 34899290 PMCID: PMC8660120 DOI: 10.3389/fphar.2021.720873] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary artery remodeling that may subsequently culminate in right heart failure and premature death. Although there are currently both non-pharmacological (lung transplantation, etc.) and pharmacological (Sildenafil, Bosentan, and new oral drugs on trial) therapies available, PAH remains a serious and fatal pulmonary disease. As a unique medical treatment, traditional herbal medicine (THM) treatment has gradually exerted its advantages in treating PAH worldwide through a multi-level and multi-target approach. Additionally, the potential mechanisms of THM were deciphered, including suppression of proliferation and apoptosis of pulmonary artery smooth muscle cells, controlling the processes of inflammation and oxidative stress, and regulating vasoconstriction and ion channels. In this review, the effects and mechanisms of the frequently studied compound THM, single herbal preparations, and multiple active components from THM are comprehensively summarized, as well as their related mechanisms on several classical preclinical PAH models. It is worth mentioning that sodium tanshinone IIA sulfonate sodium and tetramethylpyrazine are under clinical trials and are considered the most promoting medicines for PAH treatment. Last, reverse pharmacology, a strategy to discover THM or THM-derived components, has also been proposed here for PAH. This review discusses the current state of THM, their working mechanisms against PAH, and prospects of reverse pharmacology, which are expected to facilitate the natural anti-PAH medicine discovery and development and its bench-to-bedside transformation.
Collapse
Affiliation(s)
- Zhifeng Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Yixuan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Mengen Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
44
|
Hepatotoxicity of Pyrrolizidine Alkaloid Compound Intermedine: Comparison with Other Pyrrolizidine Alkaloids and Its Toxicological Mechanism. Toxins (Basel) 2021; 13:toxins13120849. [PMID: 34941687 PMCID: PMC8709407 DOI: 10.3390/toxins13120849] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are common secondary plant compounds with hepatotoxicity. The consumption of herbal medicines and herbal teas containing PAs is one of the main causes of hepatic sinusoidal obstruction syndrome (HSOS), a potentially life-threatening condition. The present study aimed to reveal the mechanism underlying the cytotoxicity of intermedine (Im), the main PA in Comfrey. We evaluated the toxicity of the retronecine-type PAs with different structures to cell lines derived from mammalian tissues, including primary mouse hepatocytes, human hepatocytes (HepD), mouse hepatoma-22 (H22) and human hepatocellular carcinoma (HepG2) cells. The cytotoxicity of Im to hepatocyte was evaluated by using cell counting kit-8 assay, colony formation experiment, wound healing assay and dead/live fluorescence imaging. In vitro characterization showed that these PAs were cytotoxic and induced cell apoptosis in a dose-dependent manner. We also demonstrated that Im induced cell apoptosis by generating excessive reactive oxygen species (ROS), changing the mitochondrial membrane potential and releasing cytochrome c (Cyt c) before activating the caspase-3 pathway. Importantly, we directly observed the destruction of the cell mitochondrial structure after Im treatment through transmission electron microscopy (TEM). This study provided the first direct evidence of Im inducing hepatotoxicity through mitochondria-mediated apoptosis. These results supplemented the basic toxicity data of PAs and facilitated the comprehensive and systematic evaluation of the toxicity caused by PA compounds.
Collapse
|
45
|
Enge AM, Kaltner F, Gottschalk C, Kin A, Kirstgen M, Geyer J, These A, Hammer H, Pötz O, Braeuning A, Hessel-Pras S. Organic Cation Transporter I and Na + /taurocholate Co-Transporting Polypeptide are Involved in Retrorsine- and Senecionine-Induced Hepatotoxicity in HepaRG cells. Mol Nutr Food Res 2021; 66:e2100800. [PMID: 34826203 DOI: 10.1002/mnfr.202100800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/03/2021] [Indexed: 01/05/2023]
Abstract
SCOPE 1,2-unsaturated pyrrolizidine alkaloids (PAs) are secondary plant metabolites that are found in many plant species throughout the world. They are of concern for risk assessment as consumption of contaminated foodstuff can cause severe liver damage. Of late, transporter-mediated uptake and transport has advanced as a vital determinant of PA toxicity. In this study, the authors investigate a transporter-mediated uptake of PAs and its implications in PA toxicity. METHODS AND RESULTS We show that transporter expression levels are significantly affected by treatment with the PAs senecionine (Sc) and retrorsine (Re) in the human hepatoma cell line HepaRG. Furthermore, the specific contribution to PA uptake of the two transporters Na+ /taurocholate co-transporting polypeptide (SLC10A1) and organic cation transporter I (SLC22A1), both belonging to the heterogeneous solute carrier super family, is investigated by means of a siRNA-mediated knockdown approach. Knockdown of both uptake transporters result in reduced uptake of Re and Sc in a time-dependent manner and attenuated PA-mediated cytotoxic effects in HepaRG cells. CONCLUSION Our results confirm previous findings of active transport mechanisms of PAs into hepatocytes and highlight the importance of toxicokinetic studies for the risk assessment of PAs.
Collapse
Affiliation(s)
- Anne-Margarethe Enge
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Florian Kaltner
- Chair of Food Safety and Analytics, Ludwig Maximilian University of Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany.,Institute of Food Chemistry and Food Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 17-19, 35392, Giessen, Germany
| | - Christoph Gottschalk
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.,Chair of Food Safety and Analytics, Ludwig Maximilian University of Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Angelina Kin
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Michael Kirstgen
- Biomedical Research Center Seltersberg (BFS), Faculty of Veterinary Medicine, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Joachim Geyer
- Biomedical Research Center Seltersberg (BFS), Faculty of Veterinary Medicine, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Anja These
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Helen Hammer
- Signatope GmbH, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Oliver Pötz
- Signatope GmbH, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
46
|
Ma J, Zhang C, He Y, Chen X, Lin G. Fasting augments pyrrolizidine alkaloid-induced hepatotoxicity. Arch Toxicol 2021; 96:639-651. [PMID: 34792613 DOI: 10.1007/s00204-021-03193-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are phytotoxins widely present in various natural products and foodstuffs. The present study aims to investigate the effects of fasting on PA-induced hepatotoxicity and the underlying biochemical mechanisms. The results of hepatotoxic study showed that 15-h overnight fasting significantly exacerbated the hepatotoxicity of retrorsine (RTS, a representative toxic PA) in fasted rats compared to fed rats, as indicated by remarkably elevated plasma ALT and bilirubin levels and obvious liver histological changes. Further toxicokinetic studies revealed that fasting significantly enhanced cytochromes P450 enzymes (CYPs)-mediated metabolic activation of RTS leading to increased formation of pyrrole-protein adducts and thus decreased the in vivo exposure and excretion of both parent RTS and its N-oxide metabolite. Metabolic studies demonstrated that fasting induced enzyme activities of CYP1A2, CYP2B6 and CYP2E1 that participated in catalyzing RTS to its reactive pyrrolic metabolites. Moreover, fasting also dramatically decreased hepatic glutathione (GSH) content, which restricted the detoxification of GSH by neutralizing the reactive pyrrolic metabolite of RTS, further contributing to the enhanced hepatotoxicity. The present findings may have an impact on future PA toxicity tests with different dietary styles and/or risk assessment of metabolite-mediated toxins by considering the profound effects of fasting.
Collapse
Affiliation(s)
- Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chunyuan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xinmeng Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
47
|
Li J, Zhou M, Lai X, Wang Y, Zou Y, Li K, Li W, Zheng J. Toxicokinetic and bioavailability studies on retrorsine in mice, and ketoconazole-induced alteration in toxicokinetic properties. Biomed Chromatogr 2021; 36:e5270. [PMID: 34727371 DOI: 10.1002/bmc.5270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/11/2022]
Abstract
Retrorsine (RTS) is a toxic retronecine-type pyrrolizidine alkaloid, which is widely distributed. The purpose of this study was to develop a high-performance liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for serum RTS determination in mice. Serum samples were deproteinated by acetonitrile, separated on a C18 -PFP column and delivered at 0.8 ml/min with an eluting system composed of water containing 0.1% (v/v) formic acid and acetonitrile containing 0.1% (v/v) formic acid as mobile phases. RTS and the internal standard S-hexylglutathione (H-GSH) were quantitatively monitored with precursor-to-product transitions of m/z 352.1 → 120.1 and m/z 392.2 → 246.3, respectively. The method showed excellent linearity over the concentration range 0.05-50 μg/ml, with correlation coefficient r2 = 0.9992. The extraction recovery was >86.34%, and the matrix effect was not significant. Inter- and intra-day precisions (RSD) were <4.99%. The validated LC-MS/MS method was successfully applied to study the toxicokinetic profiles of serum RTS in mice after intravenous, oral administration and co-treated with ketoconazole, which showed that RTS displayed a long half-life (~11.05 h) and good bioavailability (81.80%). Co-administration of ketoconazole (KTZ) increased the peak serum concentration and area under the concentration-time curve and decreased the clearance and mean residence time. Summing up, a new standardized method was established for quantitative determination of RTS in sera.
Collapse
Affiliation(s)
- Jing Li
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Mengyue Zhou
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Xiaoqiong Lai
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Yang Wang
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Ying Zou
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Kunna Li
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Weiwei Li
- National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Jiang Zheng
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
48
|
Ma J, Li M, Li N, Chan WY, Lin G. Pyrrolizidine Alkaloid-Induced Hepatotoxicity Associated with the Formation of Reactive Metabolite-Derived Pyrrole-Protein Adducts. Toxins (Basel) 2021; 13:723. [PMID: 34679016 PMCID: PMC8540779 DOI: 10.3390/toxins13100723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) with 1,2-unsaturated necine base are hepatotoxic phytotoxins. Acute PA intoxication is initiated by the formation of adducts between PA-derived reactive pyrrolic metabolites with cellular proteins. The present study aimed to investigate the correlation between the formation of hepatic pyrrole-protein adducts and occurrence of PA-induced liver injury (PA-ILI), and to further explore the use of such adducts for rapidly screening the hepatotoxic potency of natural products which contain PAs. Aqueous extracts of Crotalaria sessiliflora (containing one PA: monocrotaline) and Gynura japonica (containing two PAs: senecionine and seneciphylline) were orally administered to rats at different doses for 24 h to investigate PA-ILI. Serum alanine aminotransferase (ALT) activity, hepatic glutathione (GSH) level, and liver histological changes of the treated rats were evaluated to assess the severity of PA-ILI. The levels of pyrrole-protein adducts formed in the rats' livers were determined by a well-established spectrophotometric method. The biological and histological results showed a dose-dependent hepatotoxicity with significantly different toxic severity among groups of rats treated with herbal extracts containing different PAs. Both serum ALT activity and the amount of hepatic pyrrole-protein adducts increased in a dose-dependent manner. Moreover, the elevation of ALT activity correlated well with the formation of hepatic pyrrole-protein adducts, regardless of the structures of different PAs. The findings revealed that the formation of hepatic pyrrole-protein adducts-which directly correlated with the elevation of serum ALT activity-was a common insult leading to PA-ILI, suggesting a potential for using pyrrole-protein adducts to screen hepatotoxicity and rank PA-containing natural products, which generally contain multiple PAs with different structures.
Collapse
Affiliation(s)
- Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Mi Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
| | - Na Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 4054577, China; (J.M.); (M.L.); (N.L.); (W.Y.C.)
| |
Collapse
|
49
|
Thanebal SA, Vun-Sang S, Iqbal M. Hepatoprotective effects of Pandanus amaryllifolius against carbon tetrachloride (CCl4) induced toxicity: A biochemical and histopathological study. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
50
|
Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci 2021; 22:ijms221910419. [PMID: 34638760 PMCID: PMC8508847 DOI: 10.3390/ijms221910419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.
Collapse
|