1
|
Tauchmannová K, Pecinová A, Houštěk J, Mráček T. Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase. Physiol Res 2024; 73:S243-S278. [PMID: 39016153 PMCID: PMC11412354 DOI: 10.33549/physiolres.935407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function. Keywords: Mitochondrial diseases o ATP synthase o Nuclear DNA o Mitochondrial DNA o TMEM70.
Collapse
Affiliation(s)
- K Tauchmannová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
2
|
Tian D, Cui M, Han M. Bacterial muropeptides promote OXPHOS and suppress mitochondrial stress in mammals. Cell Rep 2024; 43:114067. [PMID: 38583150 PMCID: PMC11107371 DOI: 10.1016/j.celrep.2024.114067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Mitochondrial dysfunction critically contributes to many major human diseases. The impact of specific gut microbial metabolites on mitochondrial functions of animals and the underlying mechanisms remain to be uncovered. Here, we report a profound role of bacterial peptidoglycan muropeptides in promoting mitochondrial functions in multiple mammalian models. Muropeptide addition to human intestinal epithelial cells (IECs) leads to increased oxidative respiration and ATP production and decreased oxidative stress. Strikingly, muropeptide treatment recovers mitochondrial structure and functions and inhibits several pathological phenotypes of fibroblast cells derived from patients with mitochondrial disease. In mice, muropeptides accumulate in mitochondria of IECs and promote small intestinal homeostasis and nutrient absorption by modulating energy metabolism. Muropeptides directly bind to ATP synthase, stabilize the complex, and promote its enzymatic activity in vitro, supporting the hypothesis that muropeptides promote mitochondria homeostasis at least in part by acting as ATP synthase agonists. This study reveals a potential treatment for human mitochondrial diseases.
Collapse
Affiliation(s)
- Dong Tian
- Department of MCDB, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Mingxue Cui
- Department of MCDB, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
3
|
Del Dotto V, Musiani F, Baracca A, Solaini G. Variants in Human ATP Synthase Mitochondrial Genes: Biochemical Dysfunctions, Associated Diseases, and Therapies. Int J Mol Sci 2024; 25:2239. [PMID: 38396915 PMCID: PMC10889682 DOI: 10.3390/ijms25042239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondrial ATP synthase (Complex V) catalyzes the last step of oxidative phosphorylation and provides most of the energy (ATP) required by human cells. The mitochondrial genes MT-ATP6 and MT-ATP8 encode two subunits of the multi-subunit Complex V. Since the discovery of the first MT-ATP6 variant in the year 1990 as the cause of Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP) syndrome, a large and continuously increasing number of inborn variants in the MT-ATP6 and MT-ATP8 genes have been identified as pathogenic. Variants in these genes correlate with various clinical phenotypes, which include several neurodegenerative and multisystemic disorders. In the present review, we report the pathogenic variants in mitochondrial ATP synthase genes and highlight the molecular mechanisms underlying ATP synthase deficiency that promote biochemical dysfunctions. We discuss the possible structural changes induced by the most common variants found in patients by considering the recent cryo-electron microscopy structure of human ATP synthase. Finally, we provide the state-of-the-art of all therapeutic proposals reported in the literature, including drug interventions targeting mitochondrial dysfunctions, allotopic gene expression- and nuclease-based strategies, and discuss their potential translation into clinical trials.
Collapse
Affiliation(s)
- Valentina Del Dotto
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40127 Bologna, Italy;
| | - Alessandra Baracca
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy; (V.D.D.); (G.S.)
| |
Collapse
|
4
|
A Mutation in Mouse MT-ATP6 Gene Induces Respiration Defects and Opposed Effects on the Cell Tumorigenic Phenotype. Int J Mol Sci 2023; 24:ijms24021300. [PMID: 36674816 PMCID: PMC9865613 DOI: 10.3390/ijms24021300] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
As the last step of the OXPHOS system, mitochondrial ATP synthase (or complex V) is responsible for ATP production by using the generated proton gradient, but also has an impact on other important functions linked to this system. Mutations either in complex V structural subunits, especially in mtDNA-encoded ATP6 gene, or in its assembly factors, are the molecular cause of a wide variety of human diseases, most of them classified as neurodegenerative disorders. The role of ATP synthase alterations in cancer development or metastasis has also been postulated. In this work, we reported the generation and characterization of the first mt-Atp6 pathological mutation in mouse cells, an m.8414A>G transition that promotes an amino acid change from Asn to Ser at a highly conserved residue of the protein (p.N163S), located near the path followed by protons from the intermembrane space to the mitochondrial matrix. The phenotypic consequences of the p.N163S change reproduce the effects of MT-ATP6 mutations in human diseases, such as dependence on glycolysis, defective OXPHOS activity, ATP synthesis impairment, increased ROS generation or mitochondrial membrane potential alteration. These observations demonstrate that this mutant cell line could be of great interest for the generation of mouse models with the aim of studying human diseases caused by alterations in ATP synthase. On the other hand, mutant cells showed lower migration capacity, higher expression of MHC-I and slightly lower levels of HIF-1α, indicating a possible reduction of their tumorigenic potential. These results could suggest a protective role of ATP synthase inhibition against tumor transformation that could open the door to new therapeutic strategies in those cancer types relying on OXPHOS metabolism.
Collapse
|
5
|
Su X, Dautant A, Rak M, Godard F, Ezkurdia N, Bouhier M, Bietenhader M, Mueller DM, Kucharczyk R, di Rago JP, Tribouillard-Tanvier D. The pathogenic m.8993 T > G mutation in mitochondrial ATP6 gene prevents proton release from the subunit c-ring rotor of ATP synthase. Hum Mol Genet 2021; 30:381-392. [PMID: 33600551 DOI: 10.1093/hmg/ddab043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023] Open
Abstract
The human ATP synthase is an assembly of 29 subunits of 18 different types, of which only two (a and 8) are encoded in the mitochondrial genome. Subunit a, together with an oligomeric ring of c-subunit (c-ring), forms the proton pathway responsible for the transport of protons through the mitochondrial inner membrane, coupled to rotation of the c-ring and ATP synthesis. Neuromuscular diseases have been associated to a number of mutations in the gene encoding subunit a, ATP6. The most common, m.8993 T > G, leads to replacement of a strictly conserved leucine residue with arginine (aL156R). We previously showed that the equivalent mutation (aL173R) dramatically compromises respiratory growth of Saccharomyces cerevisiae and causes a 90% drop in the rate of mitochondrial ATP synthesis. Here, we isolated revertants from the aL173R strain that show improved respiratory growth. Four first-site reversions at codon 173 (aL173M, aL173S, aL173K and aL173W) and five second-site reversions at another codon (aR169M, aR169S, aA170P, aA170G and aI216S) were identified. Based on the atomic structures of yeast ATP synthase and the biochemical properties of the revertant strains, we propose that the aL173R mutation is responsible for unfavorable electrostatic interactions that prevent the release of protons from the c-ring into a channel from which protons move from the c-ring to the mitochondrial matrix. The results provide further evidence that yeast aL173 (and thus human aL156) optimizes the exit of protons from ATP synthase, but is not essential despite its strict evolutionary conservation.
Collapse
Affiliation(s)
- Xin Su
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Alain Dautant
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Malgorzata Rak
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - François Godard
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Nahia Ezkurdia
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | - Marine Bouhier
- University Bordeaux, CNRS, IBGC, UMR 5095, F-33000 Bordeaux, France
| | | | - David M Mueller
- Center for Genetic Diseases, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd, North Chicago, IL, 60064, USA
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00090 Warsaw, Poland
| | | | | |
Collapse
|
6
|
Su X, Rak M, Tetaud E, Godard F, Sardin E, Bouhier M, Gombeau K, Caetano-Anollés D, Salin B, Chen H, di Rago JP, Tribouillard-Tanvier D. Deregulating mitochondrial metabolite and ion transport has beneficial effects in yeast and human cellular models for NARP syndrome. Hum Mol Genet 2020; 28:3792-3804. [PMID: 31276579 DOI: 10.1093/hmg/ddz160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/14/2022] Open
Abstract
The m.8993T>G mutation of the mitochondrial MT-ATP6 gene has been associated with numerous cases of neuropathy, ataxia and retinitis pigmentosa and maternally inherited Leigh syndrome, which are diseases known to result from abnormalities affecting mitochondrial energy transduction. We previously reported that an equivalent point mutation severely compromised proton transport through the ATP synthase membrane domain (FO) in Saccharomyces cerevisiae and reduced the content of cytochrome c oxidase (Complex IV or COX) by 80%. Herein, we report that overexpression of the mitochondrial oxodicarboxylate carrier (Odc1p) considerably increases Complex IV abundance and tricarboxylic acid-mediated substrate-level phosphorylation of ADP coupled to conversion of α-ketoglutarate into succinate in m.8993T>G yeast. Consistently in m.8993T>G yeast cells, the retrograde signaling pathway was found to be strongly induced in order to preserve α-ketoglutarate production; when Odc1p was overexpressed, this stress pathway returned to an almost basal activity. Similar beneficial effects were induced by a partial uncoupling of the mitochondrial membrane with the proton ionophore, cyanide m-chlorophenyl hydrazone. This chemical considerably improved the glutamine-based, respiration-dependent growth of human cytoplasmic hybrid cells that are homoplasmic for the m.8993T>G mutation. These findings shed light on the interdependence between ATP synthase and Complex IV biogenesis, which could lay the groundwork for the creation of nutritional or metabolic interventions for attenuating the effects of mtDNA mutations.
Collapse
Affiliation(s)
- Xin Su
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Malgorzata Rak
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Emmanuel Tetaud
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - François Godard
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Elodie Sardin
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Marine Bouhier
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Kewin Gombeau
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Derek Caetano-Anollés
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Bénédicte Salin
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Huimei Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, Université Victor Segalen, 1 Rue Camille Saint-Saëns, CEDEX 33077 Bordeaux, France.,INSERM, Paris, France
| |
Collapse
|
7
|
Ganetzky RD, Stendel C, McCormick EM, Zolkipli-Cunningham Z, Goldstein AC, Klopstock T, Falk MJ. MT-ATP6 mitochondrial disease variants: Phenotypic and biochemical features analysis in 218 published cases and cohort of 14 new cases. Hum Mutat 2019; 40:499-515. [PMID: 30763462 PMCID: PMC6506718 DOI: 10.1002/humu.23723] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 01/30/2023]
Abstract
Mitochondrial complex V (CV) generates cellular energy as adenosine triphosphate (ATP). Mitochondrial disease caused by the m.8993T>G pathogenic variant in the CV subunit gene MT-ATP6 was among the first described human mitochondrial DNA diseases. Due to a lack of clinically available functional assays, validating the definitive pathogenicity of additional MT-ATP6 variants remains challenging. We reviewed all reportedMT-ATP6 disease cases ( n = 218) to date, to assess for MT-ATP6 variants, heteroplasmy levels, and inheritance correlation with clinical presentation and biochemical findings. We further describe the clinical and biochemical features of a new cohort of 14 kindreds with MT-ATP6 variants of uncertain significance. Despite extensive overlap in the heteroplasmy levels of MT-ATP6 variant carriers with and without a wide range of clinical symptoms, previously reported symptomatic subjects had significantly higher heteroplasmy load (p = 2.2 x 10-16 ). Pathogenic MT-ATP6 variants resulted in diverse biochemical features. The most common findings were reduced ATP synthesis rate, preserved ATP hydrolysis capacity, and abnormally increased mitochondrial membrane potential. However, no single biochemical feature was universally observed. Extensive heterogeneity exists among both clinical and biochemical features of distinct MT-ATP6 variants. Improved mechanistic understanding and development of consistent biochemical diagnostic analyses are needed to permit accurate pathogenicity assessment of variants of uncertain significance in MT-ATP6.
Collapse
Affiliation(s)
- Rebecca D. Ganetzky
- Department of Pediatrics, Mitochondrial Medicine Frontier Program, Division of Human Genetics
Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
USA
| | - Claudia Stendel
- Department of Psychiatry, Ludwig Maximilians University of Munich, Munich, Germany
| | - Elizabeth M. McCormick
- Department of Pediatrics, Mitochondrial Medicine Frontier Program, Division of Human Genetics
Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Zarazuela Zolkipli-Cunningham
- Department of Pediatrics, Mitochondrial Medicine Frontier Program, Division of Human Genetics
Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
USA
| | - Amy C. Goldstein
- Department of Pediatrics, Mitochondrial Medicine Frontier Program, Division of Human Genetics
Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
USA
| | - Thomas Klopstock
- Department of Neurology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Marni J. Falk
- Department of Pediatrics, Mitochondrial Medicine Frontier Program, Division of Human Genetics
Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
USA
| |
Collapse
|
8
|
Clinical syndromes associated with mtDNA mutations: where we stand after 30 years. Essays Biochem 2018; 62:235-254. [DOI: 10.1042/ebc20170097] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/16/2023]
Abstract
The landmark year 1988 can be considered as the birthdate of mitochondrial medicine, when the first pathogenic mutations affecting mtDNA were associated with human diseases. Three decades later, the field still expands and we are not ‘scraping the bottom of the barrel’ yet. Despite the tremendous progress in terms of molecular characterization and genotype/phenotype correlations, for the vast majority of cases we still lack a deep understanding of the pathogenesis, good models to study, and effective therapeutic options. However, recent technological advances including somatic cell reprogramming to induced pluripotent stem cells (iPSCs), organoid technology, and tailored endonucleases provide unprecedented opportunities to fill these gaps, casting hope to soon cure the major primary mitochondrial phenotypes reviewed here. This group of rare diseases represents a key model for tackling the pathogenic mechanisms involving mitochondrial biology relevant to much more common disorders that affect our currently ageing population, such as diabetes and metabolic syndrome, neurodegenerative and inflammatory disorders, and cancer.
Collapse
|
9
|
Dautant A, Meier T, Hahn A, Tribouillard-Tanvier D, di Rago JP, Kucharczyk R. ATP Synthase Diseases of Mitochondrial Genetic Origin. Front Physiol 2018; 9:329. [PMID: 29670542 PMCID: PMC5893901 DOI: 10.3389/fphys.2018.00329] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/15/2018] [Indexed: 01/30/2023] Open
Abstract
Devastating human neuromuscular disorders have been associated to defects in the ATP synthase. This enzyme is found in the inner mitochondrial membrane and catalyzes the last step in oxidative phosphorylation, which provides aerobic eukaryotes with ATP. With the advent of structures of complete ATP synthases, and the availability of genetically approachable systems such as the yeast Saccharomyces cerevisiae, we can begin to understand these molecular machines and their associated defects at the molecular level. In this review, we describe what is known about the clinical syndromes induced by 58 different mutations found in the mitochondrial genes encoding membrane subunits 8 and a of ATP synthase, and evaluate their functional consequences with respect to recently described cryo-EM structures.
Collapse
Affiliation(s)
- Alain Dautant
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Thomas Meier
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alexander Hahn
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt, Germany
| | - Déborah Tribouillard-Tanvier
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Jean-Paul di Rago
- Institut de Biochimie et Génétique Cellulaires, Centre National de la Recherche Scientifique UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Alteration of structure and function of ATP synthase and cytochrome c oxidase by lack of Fo-a and Cox3 subunits caused by mitochondrial DNA 9205delTA mutation. Biochem J 2015; 466:601-11. [PMID: 25588698 DOI: 10.1042/bj20141462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in the MT-ATP6 gene are frequent causes of severe mitochondrial disorders. Typically, these are missense mutations, but another type is represented by the 9205delTA microdeletion, which removes the stop codon of the MT-ATP6 gene and affects the cleavage site in the MT-ATP8/MT-ATP6/MT-CO3 polycistronic transcript. This interferes with the processing of mRNAs for the Atp6 (Fo-a) subunit of ATP synthase and the Cox3 subunit of cytochrome c oxidase (COX). Two cases described so far presented with strikingly different clinical phenotypes-mild transient lactic acidosis or fatal encephalopathy. To gain more insight into the pathogenic mechanism, we prepared 9205delTA cybrids with mutation load ranging between 52 and 99% and investigated changes in the structure and function of ATP synthase and the COX. We found that 9205delTA mutation strongly reduces the levels of both Fo-a and Cox3 proteins. Lack of Fo-a alters the structure but not the content of ATP synthase, which assembles into a labile, ∼60 kDa smaller, complex retaining ATP hydrolytic activity but which is unable to synthesize ATP. In contrast, lack of Cox3 limits the biosynthesis of COX but does not alter the structure of the enzyme. Consequently, the diminished mitochondrial content of COX and non-functional ATP synthase prevent most mitochondrial ATP production. The biochemical effects caused by the 9205delTA microdeletion displayed a pronounced threshold effect above ∼90% mutation heteroplasmy. We observed a linear relationship between the decrease in subunit Fo-a or Cox3 content and the functional presentation of the defect. Therefore we conclude that the threshold effect originated from a gene-protein level.
Collapse
|
11
|
Xu T, Pagadala V, Mueller DM. Understanding structure, function, and mutations in the mitochondrial ATP synthase. MICROBIAL CELL 2015; 2:105-125. [PMID: 25938092 PMCID: PMC4415626 DOI: 10.15698/mic2015.04.197] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.
Collapse
Affiliation(s)
- Ting Xu
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - Vijayakanth Pagadala
- Department of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC
| | - David M Mueller
- Department of Biochemistry and Molecular Biology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| |
Collapse
|
12
|
Blanco-Grau A, Bonaventura-Ibars I, Coll-Cantí J, Melià MJ, Martinez R, Martínez-Gallo M, Andreu AL, Pinós T, García-Arumí E. Identification and biochemical characterization of the novel mutation m.8839G>C in the mitochondrial ATP6 gene associated with NARP syndrome. GENES BRAIN AND BEHAVIOR 2013; 12:812-20. [PMID: 24118886 DOI: 10.1111/gbb.12089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
Mutations in the ATP6 gene are reported to be associated with Leber hereditary optic neuropathy, bilateral striatal necrosis, coronary atherosclerosis risk and neuropathy, ataxia and retinitis pigmentosa (NARP)/maternally inherited Leigh syndromes. Here, we present a patient with NARP syndrome, in whom a previously undescribed mutation was detected in the ATP6 gene: m.8839G>C. Several observations support the concept that m.8839G>C is pathogenically involved in the clinical phenotype of this patient: (1) the mutation was heteroplasmic in muscle; (2) mutation load was higher in the symptomatic patient than in the asymptomatic carriers; (3) cybrids carrying this mutation presented lower cell proliferation, increased mitochondrial DNA (mtDNA) copy number, increased steady-state OxPhos protein levels and decreased mitochondrial membrane potential with respect to isogenic wild-type cybrids; (4) this change was not observed in 2959 human mtDNAs from different mitochondrial haplogroups; (5) the affected amino acid was conserved in all the ATP6 sequences analyzed; and (6) using in silico prediction, the mutation was classified as 'probably damaging'. However, measurement of ATP synthesis showed no differences between wild-type and mutated cybrids. Thus, we suggest that m.8839G>C may lower the efficiency between proton translocation within F0 and F1 rotation, required for ATP synthesis. Further experiments are needed to fully characterize the molecular mechanisms involved in m.8839G>C pathogenicity.
Collapse
Affiliation(s)
- A Blanco-Grau
- Departament de Patología Mitocondrial i Neuromuscular, Universitari Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring.
Collapse
|
14
|
Modifiers of the oligomycin sensitivity of the mitochondrial F1F0-ATPase. Mitochondrion 2013; 13:312-9. [DOI: 10.1016/j.mito.2013.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 02/02/2023]
|
15
|
Jonckheere AI, Smeitink JAM, Rodenburg RJT. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 2012; 35:211-25. [PMID: 21874297 PMCID: PMC3278611 DOI: 10.1007/s10545-011-9382-9] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/22/2011] [Accepted: 07/27/2011] [Indexed: 12/16/2022]
Abstract
Human mitochondrial (mt) ATP synthase, or complex V consists of two functional domains: F(1), situated in the mitochondrial matrix, and F(o), located in the inner mitochondrial membrane. Complex V uses the energy created by the proton electrochemical gradient to phosphorylate ADP to ATP. This review covers the architecture, function and assembly of complex V. The role of complex V di-and oligomerization and its relation with mitochondrial morphology is discussed. Finally, pathology related to complex V deficiency and current therapeutic strategies are highlighted. Despite the huge progress in this research field over the past decades, questions remain to be answered regarding the structure of subunits, the function of the rotary nanomotor at a molecular level, and the human complex V assembly process. The elucidation of more nuclear genetic defects will guide physio(patho)logical studies, paving the way for future therapeutic interventions.
Collapse
Affiliation(s)
- An I. Jonckheere
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jan A. M. Smeitink
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Richard J. T. Rodenburg
- Department of Pediatrics, Nijmegen Center for Mitochondrial Disorders, 656 Laboratory for Genetic, Endocrine, and Metabolic Disorders, Radboud University Nijmegen Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
16
|
Debray FG, Lambert M, Allard P, Mitchell GA. Low citrulline in Leigh disease: still a biomarker of maternally inherited Leigh syndrome. J Child Neurol 2010; 25:1000-2. [PMID: 20472868 DOI: 10.1177/0883073809351983] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two siblings presented with encephalopathy, lactic acidosis, and hypocitrullinemia. Muscle and liver biopsies were considered for respiratory chain studies, but because of hypocitrullinemia, molecular analysis for maternally inherited Leigh syndrome was first performed, revealing in both siblings the mitochondrial DNA T8993G mutation (95% heteroplasmy), allowing to avoid tissue biopsies. Hypocitrullinemia, an occasional finding in mitochondrial diseases, has been specifically associated with T8993G mutation. However, only few patients have been reported, and the prevalence of hypocitrullinemia in 8993 mitochondrial DNA mutations is unknown. In a small series of 16 Leigh syndrome patients, sensitivity and specificity of hypocitrullinemia (< or = 12 micromol/L) for 8993 mitochondrial DNA mutations were 66% and 85%, respectively. Although studies in larger cohorts are necessary, we suggest considering T8993G mutation early in the diagnostic evaluation of infantile mitochondrial diseases with hypocitrullinemia, which minimizes the need for invasive procedures associated with a small but nonnegligible risk of complications and incorrect diagnosis.
Collapse
|
17
|
D'Aurelio M, Vives-Bauza C, Davidson MM, Manfredi G. Mitochondrial DNA background modifies the bioenergetics of NARP/MILS ATP6 mutant cells. Hum Mol Genet 2009; 19:374-86. [PMID: 19875463 DOI: 10.1093/hmg/ddp503] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the mitochondrial DNA (mtDNA) encoded subunit 6 of ATPase (ATP6) are associated with variable disease expression, ranging from adult onset neuropathy, ataxia and retinitis pigmentosa (NARP) to fatal childhood maternally inherited Leigh's syndrome (MILS). Phenotypical variations have largely been attributed to mtDNA heteroplasmy. However, there is often a discrepancy between the levels of mutant mtDNA and disease severity. Therefore, the correlation among genetic defect, bioenergetic impairment and clinical outcome in NARP/MILS remains to be elucidated. We investigated the bioenergetics of cybrids from five patients carrying different ATP6 mutations: three harboring the T8993G, one with the T8993C and one with the T9176G mutation. The bioenergetic defects varied dramatically, not only among different ATP6 mutants, but also among lines carrying the same T8993G mutation. Mutants with the most severe ATP synthesis impairment showed defective respiration and disassembly of respiratory chain complexes. This indicates that respiratory chain defects modulate the bioenergetic impairment in NARP/MILS cells. Sequencing of the entire mtDNA from the different mutant cell lines identified variations in structural genes, resulting in amino acid changes that destabilize the respiratory chain. Taken together, these results indicate that the mtDNA background plays an important role in modulating the biochemical defects and clinical outcome in NARP/MILS.
Collapse
Affiliation(s)
- M D'Aurelio
- Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | |
Collapse
|
18
|
Vazquez-Memije ME, Rizza T, Meschini MC, Nesti C, Santorelli FM, Carrozzo R. Cellular and functional analysis of four mutations located in the mitochondrial ATPase6 gene. J Cell Biochem 2009; 106:878-86. [PMID: 19160410 DOI: 10.1002/jcb.22055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The smallest rotary motor of living cells, F0F1-ATP synthase, couples proton flow-generated by the OXPHOS system-from the intermembrane space back to the matrix with the conversion of ADP to ATP. While all mutations affecting the multisubunit complexes of the OXPHOS system probably impact on the cell's output of ATP, only mutations in complex V can be considered to affect this output directly. So far, most of the F0F1-ATP synthase variations have been detected in the mitochondrial ATPase6 gene. In this study, the four most frequent mutations in the ATPase6 gene, namely L156R, L217R, L156P, and L217P, are studied for the first time together, both in primary cells and in cybrid clones. Arginine ("R") mutations were associated with a much more severe phenotype than Proline ("P") mutations, in terms of both biochemical activity and growth capacity. Also, a threshold effect in both "R" mutations appeared at 50% mutation load. Different mechanisms seemed to emerge for the two "R" mutations: the F1 seemed loosely bound to the membrane in the L156R mutant, whereas the L217R mutant induced low activity of complex V, possibly the result of a reduced rate of proton flow through the A6 channel.
Collapse
Affiliation(s)
- Martha Elisa Vazquez-Memije
- Unidad de Investigacion Medica en Genetica, Centro Medico Nacional, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
19
|
DiMauro S, Hirano M. Pathogenesis and treatment of mitochondrial disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:139-70. [PMID: 20225024 PMCID: PMC10440730 DOI: 10.1007/978-90-481-2813-6_10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 50 years, our understanding of the biochemical and molecular causes of mitochondrial diseases, defined restrictively as disorders due to defects of the mitochondrial respiratory chain (RC), has made great strides. Mitochondrial diseases can be due to mutations in mitochondrial DNA (mtDNA) or in nuclear DNA (nDNA) and each group can be subdivided into more specific classes. Thus, mtDNA-related disorders can result from mutations in genes affecting protein synthesis in toto or mutations in protein-coding genes. Mendelian mitochondrial disorders can be attributed to mutations in genes that (i) encode subunits of the RC ("direct hits"); (ii) encode assembly proteins or RC complexes ("indirect hits"); (iii) encode factors needed for mtDNA maintenance, replication, or translation (intergenomic signaling); (iv) encode components of the mitochondrial protein import machinery; (v) control the synthesis and composition of mitochondrial membrane phospholipids; and (vi) encode proteins involved in mitochondrial dynamics.In contrast to this wealth of knowledge about etiology, our understanding of pathogenic mechanism is very limited. We discuss pathogenic factors that can influence clinical expression, especially ATP shortage and reactive oxygen radicals (ROS) excess. Therapeutic options are limited and fall into three modalities: (i) symptomatic interventions, which are palliative but crucial for day-to-day management; (ii) radical approaches aimed at correcting the biochemical or molecular error, which are interesting but still largely experimental; and (iii) pharmacological means of interfering with the pathogenic cascade of events (e.g. boosting ATP production or scavenging ROS), which are inconsistently and incompletely effective, but can be safe and helpful.
Collapse
Affiliation(s)
- Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, 3-313 Russ Berrie Medical Science Pavilion, New York, NY 10032, USA.
| | | |
Collapse
|
20
|
Kasraie S, Houshmand M, Banoei MM, Ahari SE, Panahi MSS, Shariati P, Bahar M, Moin M. Investigation of tRNA(Leu/Lys) and ATPase 6 genes mutations in Huntington's disease. Cell Mol Neurobiol 2008; 28:933-8. [PMID: 18386172 DOI: 10.1007/s10571-008-9261-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/18/2008] [Indexed: 11/29/2022]
Abstract
Huntington disease (HD) is a genetically dominant condition caused by expanded CAG repeats which code for glutamine in the HD gene product, huntingtin. Huntingtin is expressed in almost all tissues, so abnormalities outside the brain can also be expected. Involvement of nuclei and mitochondria in HD pathophysiology has been suggested. In fact mitochondrial dysfunction is reported in brains of patients suffering from HD. The tRNA gene mutations are one of hot spots that can cause mitochondrial disorders. In this study, possible mitochondrial DNA (mtDNA) damage was evaluated by screening for mutations in the tRNA(leu/lys) and ATPase 6 genes of 20 patients with HD, using PCR and automated DNA sequencing. Mutations including an A8656G mutation in one patient were observed, which may be causal to the disease. Understanding the role of mitochondria in the pathogenesis of neurodegenerative diseases could potentially be important for the development of therapeutic strategies in HD.
Collapse
Affiliation(s)
- Sadaf Kasraie
- Science & Research Unit, Azad University, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Solaini G, Harris DA, Lenaz G, Sgarbi G, Baracca A. The study of the pathogenic mechanism of mitochondrial diseases provides information on basic bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:941-5. [PMID: 18486591 DOI: 10.1016/j.bbabio.2008.04.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 11/17/2022]
Abstract
Mitochondrial F(1)F(0)-ATPase was studied in lymphocytes from patients with neuropathy, ataxia, and retinitis pigmentosa (NARP), caused by a mutation at leu-156 in the ATPase 6 subunit. The mutation giving the milder phenotype (Leu156Pro) suffered a 30% reduction in proton flux, and a similar loss in ATP synthetic activity. The more severe mutation (Leu156Arg) also suffered a 30% reduction in proton flux, but ATP synthesis was virtually abolished. Oligomycin sensitivity of the proton translocation through F(0) was enhanced by both mutations. We conclude that in the Leu156Pro mutation, rotation of the c-ring is slowed but coupling of ATP synthesis to proton flux is maintained, whereas in the Leu156Arg mutation, proton flux appears to be uncoupled. Modelling indicated that, in the Leu156Arg mutation, transmembrane helix III of ATPase 6 is unable to span the membrane, terminating in an intramembrane helix II-helix III loop. We propose that the integrity of transmembrane helix III is essential for the mechanical function of ATPase 6 as a stator element in the ATP synthase, but that it is not relevant for oligomycin inhibition.
Collapse
Affiliation(s)
- Giancarlo Solaini
- Dipartimento di Biochimica G. Moruzzi, Via Irnerio, 48, Università di Bologna, Italy.
| | | | | | | | | |
Collapse
|
22
|
Debray FG, Lambert M, Lortie A, Vanasse M, Mitchell GA. Long-term outcome of Leigh syndrome caused by the NARP-T8993C mtDNA mutation. Am J Med Genet A 2007; 143A:2046-51. [PMID: 17663470 DOI: 10.1002/ajmg.a.31880] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mutations at mitochondrial DNA (mtDNA) nucleotide 8993 can cause neurogenic weakness, ataxia and retinitis pigmentosa (NARP syndrome), or maternally inherited Leigh syndrome (LS), with a correlation between the amount of mutant mtDNA and the severity of the neurological disease. The T8993C mutation is generally considered to be clinically milder than the T8993G mutation but when the level of heteroplasmy exceeds 90%, progressive neurodegeneration has been found. We report on a long-term follow-up of a patient who presented at 4 years of age with typical LS but showed an unexpected resolution of his symptoms and a favorable outcome. At 18 years of age, his neurological examination was near normal, with neither peripheral neuropathy nor retinopathy. mtDNA analysis identified the presence of T8993C mutation at high level (>95%) in the patient's blood leukocytes. This case report and literature review emphasizes the variability of the phenotypic expression of the T8993C mutation and the need for caution in predictive counseling in such patients. (c) 2007 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- François-Guillaume Debray
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de Montréal, Côte-Sainte-Catherine, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
23
|
Abstract
Diabetes mellitus is one of the most common genetic diseases that afflicts humans. It is not a single disease but a collection of diseases having in common an abnormal glucose-insulin relationship and a dysfunctional regulation of glucose homeostasis. Of interest is the diabetic state that results when the mitochondrial genome mutates. Epidemiological studies have shown this to occur in humans. Detailed metabolic studies that are impossible to conduct in humans have been carried out in the BHE/Cdb rat. This rat has a mutated mitochondrial ATPase 6 gene. Strategies to ameliorate the consequences of this mutation have been explored and some of the mechanisms for the transcription and translation of the mitochondrial gene product have been elucidated.
Collapse
|
24
|
Baracca A, Sgarbi G, Mattiazzi M, Casalena G, Pagnotta E, Valentino ML, Moggio M, Lenaz G, Carelli V, Solaini G. Biochemical phenotypes associated with the mitochondrial ATP6 gene mutations at nt8993. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:913-9. [PMID: 17568559 DOI: 10.1016/j.bbabio.2007.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 05/07/2007] [Accepted: 05/11/2007] [Indexed: 01/09/2023]
Abstract
Two point mutations (T>G and T>C) at the same 8993 nucleotide of mitochondrial DNA (at comparable mutant load), affecting the ATPase 6 subunit of the F1F0-ATPase, result in neurological phenotypes of variable severity in humans. We have investigated mitochondrial function in lymphocytes from individuals carrying the 8993T>C mutation: the results were compared with data from five 8993T>G NARP (Neuropathy, Ataxia and Retinitis Pigmentosa) patients. Both 8993T>G and 8993T>C mutations led to energy deprivation and ROS overproduction. However, the relative contribution of the two pathogenic components is different depending on the mutation considered. The 8993T>G change mainly induces an energy deficiency, whereas the 8993T>C favours an increased ROS production. These results possibly highlight the different pathogenic mechanism generated by the two mutations at position 8993 and provide useful information to better characterize the biochemical role of the highly conserved Leu-156 in ATPase 6 subunit of the mitochondrial ATP synthase complex.
Collapse
Affiliation(s)
- Alessandra Baracca
- Dipartimento di Biochimica G. Moruzzi, via Irnerio 48, Università di Bologna, 40126 Bologna, and Fondazione Ospedale Maggiore IRCCS-Centro Dino Ferrari, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cortés-Hernández P, Vázquez-Memije ME, García JJ. ATP6 homoplasmic mutations inhibit and destabilize the human F1F0-ATP synthase without preventing enzyme assembly and oligomerization. J Biol Chem 2006; 282:1051-8. [PMID: 17121862 DOI: 10.1074/jbc.m606828200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular pathogenic mechanism of the human mitochondrial diseases neurogenic ataxia and retinitis pigmentosa and maternally inherited Leigh syndrome was determined in cultured human cells harboring homoplasmic T8993G/T8993C point mutations in the mitochondrial ATP6 gene, which encodes subunit 6 of the F1F0-ATP synthase. Immunoprecipitation and blue native electrophoresis showed that F1F0-ATP synthase assembles correctly in homoplasmic mutant mitochondria. The mutants exhibited a tendency to have an increased sensitivity to subsaturating amounts of oligomycin; this provided further evidence for complete assembly and tight coupling between the F1 and F0 sectors. Furthermore, human ATP synthase dimers and higher homo-oligomers were observed for the first time, and it was demonstrated that the mutant enzymes retain enough structural integrity to oligomerize. A reproducible increase in the proportion of oligomeric-to-monomeric enzyme was found for the T8993G mutant suggesting that F1F0 oligomerization is regulated in vivo and that it can be modified in pathological conditions. Despite correct assembly, the T8993G mutation produced a 60% inhibition in ATP synthesis turnover. In vitro denaturing conditions showed F1F0 instability conferred by the mutations, although this instability did not produce enzyme disassembly in the conditions used for determination of ATP synthesis. Taken together, the data show that the primary molecular pathogenic mechanism of these deleterious human mitochondrial mutations is functional inhibition in a correctly assembled ATP synthase. Structural instability may play a role in the progression of the disease under potentially denaturing conditions, as discussed.
Collapse
|
26
|
Sgarbi G, Baracca A, Lenaz G, Valentino L, Carelli V, Solaini G. Inefficient coupling between proton transport and ATP synthesis may be the pathogenic mechanism for NARP and Leigh syndrome resulting from the T8993G mutation in mtDNA. Biochem J 2006; 395:493-500. [PMID: 16402916 PMCID: PMC1462703 DOI: 10.1042/bj20051748] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations in the ATP6 gene of mtDNA (mitochondrial DNA) have been shown to cause several different neurological disorders. The product of this gene is ATPase 6, an essential component of the F1F0-ATPase. In the present study we show that the function of the F1F0-ATPase is impaired in lymphocytes from ten individuals harbouring the mtDNA T8993G point mutation associated with NARP (neuropathy, ataxia and retinitis pigmentosa) and Leigh syndrome. We show that the impaired function of both the ATP synthase and the proton transport activity of the enzyme correlates with the amount of the mtDNA that is mutated, ranging from 13-94%. The fluorescent dye RH-123 (Rhodamine-123) was used as a probe to determine whether or not passive proton flux (i.e. from the intermembrane space to the matrix) is affected by the mutation. Under state 3 respiratory conditions, a slight difference in RH-123 fluorescence quenching kinetics was observed between mutant and control mitochondria that suggests a marginally lower F0 proton flux capacity in cells from patients. Moreover, independent of the cellular mutant load the specific inhibitor oligomycin induced a marked enhancement of the RH-123 quenching rate, which is associated with a block in proton conductivity through F0 [Linnett and Beechey (1979) Inhibitors of the ATP synthethase system. Methods Enzymol. 55, 472-518]. Overall, the results rule out the previously proposed proton block as the basis of the pathogenicity of the mtDNA T8993G mutation. Since the ATP synthesis rate was decreased by 70% in NARP patients compared with controls, we suggest that the T8993G mutation affects the coupling between proton translocation through F0 and ATP synthesis on F1. We discuss our findings in view of the current knowledge regarding the rotary mechanism of catalysis of the enzyme.
Collapse
Affiliation(s)
- Gianluca Sgarbi
- *Dipartimento di Biochimica ‘G. Moruzzi’, via Irnerio 48, Università di Bologna, 40126 Bologna, Italy
| | - Alessandra Baracca
- *Dipartimento di Biochimica ‘G. Moruzzi’, via Irnerio 48, Università di Bologna, 40126 Bologna, Italy
| | - Giorgio Lenaz
- *Dipartimento di Biochimica ‘G. Moruzzi’, via Irnerio 48, Università di Bologna, 40126 Bologna, Italy
| | - Lucia M. Valentino
- †Dipartimento di Scienze Neurologiche, via U. Foscolo, Università di Bologna, 40126 Bologna, Italy
| | - Valerio Carelli
- †Dipartimento di Scienze Neurologiche, via U. Foscolo, Università di Bologna, 40126 Bologna, Italy
| | - Giancarlo Solaini
- *Dipartimento di Biochimica ‘G. Moruzzi’, via Irnerio 48, Università di Bologna, 40126 Bologna, Italy
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Janssen AJM, Trijbels FJM, Sengers RCA, Wintjes LTM, Ruitenbeek W, Smeitink JAM, Morava E, van Engelen BGM, van den Heuvel LP, Rodenburg RJT. Measurement of the Energy-Generating Capacity of Human Muscle Mitochondria: Diagnostic Procedure and Application to Human Pathology. Clin Chem 2006; 52:860-71. [PMID: 16543390 DOI: 10.1373/clinchem.2005.062414] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractBackground: Diagnosis of mitochondrial disorders usually requires a muscle biopsy to examine mitochondrial function. We describe our diagnostic procedure and results for 29 patients with mitochondrial disorders.Methods: Muscle biopsies were from 43 healthy individuals and 29 patients with defects in one of the oxidative phosphorylation (OXPHOS) complexes, the pyruvate dehydrogenase complex (PDHc), or the adenine nucleotide translocator (ANT). Homogenized muscle samples were used to determine the oxidation rates of radiolabeled pyruvate, malate, and succinate in the absence or presence of various acetyl Co-A donors and acceptors, as well as specific inhibitors of tricarboxylic acid cycle or OXPHOS enzymes. We determined the rate of ATP production from oxidation of pyruvate.Results: Each defect in the energy-generating system produced a specific combination of substrate oxidation impairments. PDHc deficiencies decreased substrate oxidation reactions containing pyruvate. Defects in complexes I, III, and IV decreased oxidation of pyruvate plus malate, with normal to mildly diminished oxidation of pyruvate plus carnitine. In complex V defects, pyruvate oxidation improved by addition of carbonyl cyanide 3-chlorophenyl hydrazone, whereas other oxidation rates were decreased. In most patients, ATP production was decreased.Conclusion: The proposed method can be successfully applied to the diagnosis of defects in PDHc, OXPHOS complexes, and ANT.
Collapse
Affiliation(s)
- Antoon J M Janssen
- Department of Pediatrics and Laboratory of Pediatrics and Neurology, the Nijmegen Centre for Mitochondrial Disorders (NCMD), Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pallotti F, Baracca A, Hernandez-Rosa E, Walker W, Solaini G, Lenaz G, Melzi d'ERIL G, DiMAURO S, Schon E, Davidson M. Biochemical analysis of respiratory function in cybrid cell lines harbouring mitochondrial DNA mutations. Biochem J 2005; 384:287-93. [PMID: 15324306 PMCID: PMC1134112 DOI: 10.1042/bj20040561] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We analysed key biochemical features that reflect the balance between glycolysis and glucose oxidation in cybrids (cytoplasmic hybrids) harbouring a representative sample of mitochondrial DNA point mutations and deletions. The cybrids analysed had the same 143B cell nuclear background and were isogenic for the mitochondrial background. The 143B cell line and its rho(0) counterpart were used as controls. All cells analysed were in a dynamic state, and cell number, time of plating, culture medium, extracellular volume and time of harvest and assay were strictly controlled. Intra- and extra-cellular lactate and pyruvate levels were measured in homoplasmic wild-type and mutant cells, and correlated with rates of ATP synthesis and O2 consumption. In all mutant cell lines, except those with the T8993C mutation in the ATPase 6 gene, glycolysis was increased even under conditions of low glucose, as demonstrated by increased levels of extracellular lactate and pyruvate. Extracellular lactate levels were strictly and inversely correlated with rates of ATP synthesis and O2 consumption. These results show increased glycolysis and defective oxidative phosphorylation, irrespective of the type or site of the point mutation or deletion in the mitochondrial genome. The different biochemical consequences of the T8993C mutation suggest a uniquely different pathogenic mechanism for this mutation. However, the distinct clinical features associated with some of these mutations still remain to be elucidated.
Collapse
Affiliation(s)
- Francesco Pallotti
- *Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, U.S.A
- †Dipartimento Scienze Biomediche Sperimentali e Cliniche, Università degli Studi dell'Insubria, Via Dunant 5, 21100 Varese, Italy
| | - Alessandra Baracca
- ‡Dipartimento Biochimica ‘G. Moruzzi’, Università degli Studi di Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Evelyn Hernandez-Rosa
- *Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, U.S.A
| | - Winsome F. Walker
- *Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, U.S.A
| | - Giancarlo Solaini
- §Scuola Superiore di Studi Universitari e di Perfezionamento ‘S. Anna’, Piazza dei Martiri 33, Pisa, Italy
| | - Giorgio Lenaz
- ‡Dipartimento Biochimica ‘G. Moruzzi’, Università degli Studi di Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Gian Vico Melzi d'ERIL
- †Dipartimento Scienze Biomediche Sperimentali e Cliniche, Università degli Studi dell'Insubria, Via Dunant 5, 21100 Varese, Italy
| | - Salvatore DiMAURO
- *Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, U.S.A
| | - Eric A. Schon
- *Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, U.S.A
- ∥Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, U.S.A
| | - Mercy M. Davidson
- *Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
29
|
DiMauro S. Mitochondrial diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:80-8. [PMID: 15282178 DOI: 10.1016/j.bbabio.2004.03.014] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 03/23/2004] [Accepted: 03/25/2004] [Indexed: 12/12/2022]
Abstract
By convention, the term "mitochondrial diseases" refers to disorders of the mitochondrial respiratory chain, which is the only metabolic pathway in the cell that is under the dual control of the mitochondrial genome (mtDNA) and the nuclear genome (nDNA). Therefore, a genetic classification of the mitochondrial diseases distinguishes disorders due to mutations in mtDNA, which are governed by the relatively lax rules of mitochondrial genetics, and disorders due to mutations in nDNA, which are governed by the stricter rules of mendelian genetics. Mutations in mtDNA can be divided into those that impair mitochondrial protein synthesis in toto and those that affect any one of the 13 respiratory chain subunits encoded by mtDNA. Essential clinical features for each group of diseases are reviewed. Disorders due to mutations in nDNA are more abundant not only because most respiratory chain subunits are nucleus-encoded but also because correct assembly and functioning of the respiratory chain require numerous steps, all of which are under the control of nDNA. These steps (and related diseases) include: (i) synthesis of assembly proteins; (ii) intergenomic signaling; (iii) mitochondrial importation of nDNA-encoded proteins; (iv) synthesis of inner mitochondrial membrane phospholipids; (v) mitochondrial motility and fission.
Collapse
Affiliation(s)
- Salvatore DiMauro
- Department of Neurology, 4-420 College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
30
|
Thyagarajan D, Byrne E. Mitochondrial disorders of the nervous system: clinical, biochemical, and molecular genetic features. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 53:93-144. [PMID: 12512338 DOI: 10.1016/s0074-7742(02)53005-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Dominic Thyagarajan
- Department of Neurology, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | | |
Collapse
|
31
|
Abstract
We describe two children carrying an inherited T899C mutation in the mitochondrial ATPase 6 gene with mild encephalopathy and normal postnatal growth followed by tall stature and obesity. No familial tall stature, endocrine anomaly or advanced skeletal age were present. Failure to thrive is a characteristic finding in most patients with a mitochondrial disease. Our observations suggest that children with encephalomyopathy, even in the presence of a significant clinical overgrowth, should be screened for a possible defect in oxidative phosphorylation.
Collapse
Affiliation(s)
- E Morava
- Nijmegen Center for Mitochondrial Disorders, Department of Pediatrics, UMC Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
32
|
Manfredi G, Spinazzola A, Checcarelli N, Naini A. Assay of mitochondrial ATP synthesis in animal cells. Methods Cell Biol 2002; 65:133-45. [PMID: 11381590 DOI: 10.1016/s0091-679x(01)65008-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- G Manfredi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | |
Collapse
|
33
|
García JJ, Ogilvie I, Robinson BH, Capaldi RA. Structure, functioning, and assembly of the ATP synthase in cells from patients with the T8993G mitochondrial DNA mutation. Comparison with the enzyme in Rho(0) cells completely lacking mtdna. J Biol Chem 2000; 275:11075-81. [PMID: 10753912 DOI: 10.1074/jbc.275.15.11075] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure and functioning of the ATP synthase of human fibroblast cell lines with 91 and 100%, respectively, of the T8993G mutation have been studied, with MRC5 human fibroblasts and Rho(0) cells derived from this cell line as controls. ATP hydrolysis was normal but ATP synthesis was reduced by 60% in the 100% mutants. Both activities were highly oligomycin-sensitive. The levels of F(1)F(0) were close to normal, and the enzyme was stable. It is concluded that the loss of ATP synthesis is because of disruption of the proton translocation step within the F(0) part. This is supported by membrane potential measurements using the dye JC-1. Cells with a 91% mutation load grew well and showed only a 25% loss in ATP synthesis. This much reduced effect for only a 9% difference in mutation load mirrors the reduced pathogenicity in patients. F(1)F(0) has been purified for the first time from human cell lines. A partial complex was obtained from Rho(0) cells containing the F(1) subunits associated with several stalk, as well as F(0) subunits, including oligomycin sensitivity conferring protein, b, and c subunits. This partial complex no longer binds inhibitor protein.
Collapse
Affiliation(s)
- J J García
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | |
Collapse
|