1
|
Jin T, Li B, Li L, Qi W, Xi L. High spatiotemporal mapping of cortical blood flow velocity with an enhanced accuracy. BIOMEDICAL OPTICS EXPRESS 2024; 15:2419-2432. [PMID: 38633086 PMCID: PMC11019678 DOI: 10.1364/boe.520886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
Cerebral blood flow velocity is one of the most essential parameters related to brain functions and diseases. However, most existing mapping methods suffer from either inaccuracy or lengthy sampling time. In this study, we propose a particle-size-related calibration method to improve the measurement accuracy and a random-access strategy to suppress the sampling time. Based on the proposed methods, we study the long-term progress of cortical vasculopathy and abnormal blood flow caused by glioma, short-term variations of blood flow velocity under different anesthetic depths, and cortex-wide connectivity of the rapid fluctuation of blood flow velocities during seizure onset. The experimental results demonstrate that the proposed calibration method and the random-access strategy can improve both the qualitative and quantitative performance of velocimetry techniques and are also beneficial for understanding brain functions and diseases from the perspective of cerebral blood flow.
Collapse
Affiliation(s)
- Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Baochen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Linyang Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Heidari M, Shokrani P. Imaging Role in Diagnosis, Prognosis, and Treatment Response Prediction Associated with High-grade Glioma. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:7. [PMID: 38993200 PMCID: PMC11111132 DOI: 10.4103/jmss.jmss_30_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/31/2022] [Accepted: 03/14/2023] [Indexed: 07/13/2024]
Abstract
Background Glioma is one of the most drug and radiation-resistant tumors. Gliomas suffer from inter- and intratumor heterogeneity which makes the outcome of similar treatment protocols vary from patient to patient. This article is aimed to overview the potential imaging markers for individual diagnosis, prognosis, and treatment response prediction in malignant glioma. Furthermore, the correlation between imaging findings and biological and clinical information of glioma patients is reviewed. Materials and Methods The search strategy in this study is to select related studies from scientific websites such as PubMed, Scopus, Google Scholar, and Web of Science published until 2022. It comprised a combination of keywords such as Biomarkers, Diagnosis, Prognosis, Imaging techniques, and malignant glioma, according to Medical Subject Headings. Results Some imaging parameters that are effective in glioma management include: ADC, FA, Ktrans, regional cerebral blood volume (rCBV), cerebral blood flow (CBF), ve, Cho/NAA and lactate/lipid ratios, intratumoral uptake of 18F-FET (for diagnostic application), RD, ADC, ve, vp, Ktrans, CBFT1, rCBV, tumor blood flow, Cho/NAA, lactate/lipid, MI/Cho, uptakes of 18F-FET, 11C-MET, and 18F-FLT (for prognostic and predictive application). Cerebral blood volume and Ktrans are related to molecular markers such as vascular endothelial growth factor (VEGF). Preoperative ADCmin value of GBM tumors is associated with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. 2-hydroxyglutarate metabolite and dynamic 18F-FDOPA positron emission tomography uptake are related to isocitrate dehydrogenase (IDH) mutations. Conclusion Parameters including ADC, RD, FA, rCBV, Ktrans, vp, and uptake of 18F-FET are useful for diagnosis, prognosis, and treatment response prediction in glioma. A significant correlation between molecular markers such as VEGF, MGMT, and IDH mutations with some diffusion and perfusion imaging parameters has been identified.
Collapse
Affiliation(s)
- Maryam Heidari
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Shokrani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Atallah O, Badary A, Almealawy YF, Sanker V, Andrew Awuah W, Abdul-Rahman T, Alrubaye SN, Chaurasia B. Non-colloid-cyst primary brain tumors: A systematic review of unexpected fatality. J Clin Neurosci 2024; 119:129-140. [PMID: 38029695 DOI: 10.1016/j.jocn.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE Primary brain tumors have the potential to present a substantial health hazard, ultimately resulting in unforeseen fatalities. Despite the enhanced comprehension of many diseases, the precise prediction of disease progression continues to pose a significant challenge. The objective of this study is to investigate cases of unexpected mortality resulting from primary brain tumors and analyze the variables that contribute to such occurrences. METHODS This systematic review explores research on individuals diagnosed with primary brain tumors who experienced unexpected deaths. It uses PRISMA standards and searches PubMed, Google Scholar, and Scopus. Variables considered include age, gender, symptoms, tumor type, WHO grade, postmortem findings, time of death - time taken from first medical presentation or hospital admission to death, comorbidity, and risk factors. RESULTS This study examined 46 studies to analyze patient-level data from 76 individuals with unexpected deaths attributed to intracranial lesions, deliberately excluding colloid cysts. The cohort's age distribution showed an average age of 37 years, with no significant gender preference. Headache was the most common initial symptom. Astrocytomas, meningiomas, and glioblastoma were the most common lesions, while the frontal lobe, temporal lobe, and cerebellum were common locations. Meningiomas and astrocytomas showed faster deaths within the first hour of hospital admission. CONCLUSION The etiology of unforeseen fatalities resulting from cerebral tumors elucidates an intricate and varied phenomenon. Although unexpected deaths account for a very tiny proportion of total fatalities, it is probable that their actual occurrence is underestimated as a result of underreporting and misdiagnosis.
Collapse
Affiliation(s)
- Oday Atallah
- Departemnt of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Amr Badary
- Departemnt of Neurosurgery, Klinikum Dessau, Dessau-Roßlau, Germany
| | | | - Vivek Sanker
- Department of Neurosurgery, Trivandrum Medical College, Kerala, India
| | | | | | | | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj ,Nepal.
| |
Collapse
|
4
|
Waqar M, Lewis D, Agushi E, Gittins M, Jackson A, Coope D. Cerebral and tumoral blood flow in adult gliomas: a systematic review of results from magnetic resonance imaging. Br J Radiol 2021; 94:20201450. [PMID: 34106749 PMCID: PMC9327770 DOI: 10.1259/bjr.20201450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objective: Blood flow is the rate of blood movement and relevant to numerous processes, though understudied in gliomas. The aim of this review was to pool blood flow metrics obtained from MRI modalities in adult supratentorial gliomas. Methods: MEDLINE, EMBASE and the Cochrane database were queried 01/01/2000–31/12/2019. Studies measuring blood flow in adult Grade II–IV supratentorial gliomas using dynamic susceptibility contrast (DSC) MRI, dynamic contrast enhanced MRI (DCE-MRI) or arterial spin labelling (ASL) were included. Absolute and relative cerebral blood flow (CBF), peritumoral blood flow and tumoral blood flow (TBF) were reported. Results: 34 studies were included with 1415 patients and 1460 scans. The mean age was 52.4 ± 7.3 years. Most patients had glioblastoma (n = 880, 64.6%). The most common imaging modality was ASL (n = 765, 52.4%) followed by DSC (n = 538, 36.8%). Most studies were performed pre-operatively (n = 1268, 86.8%). With increasing glioma grade (II vs IV), TBF increased (70.8 vs 145.5 ml/100 g/min, p < 0.001) and CBF decreased (85.3 vs 49.6 ml/100 g/min, p < 0.001). In Grade IV gliomas, following treatment, CBF increased in ipsilateral (24.9 ± 1.2 vs 26.1 ± 0.0 ml/100 g/min, p < 0.001) and contralateral white matter (25.6 ± 0.2 vs 26.0± 0.0 ml/100 g/min, p < 0.001). Conclusion: Our findings demonstrate that increased mass effect from high-grade gliomas impairs blood flow within the surrounding brain that can improve with surgery. Advances in knowledge: This systematic review demonstrates how mass effect from brain tumours impairs blood flow in the surrounding brain parenchyma that can improve with treatment.
Collapse
Affiliation(s)
- Mueez Waqar
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Daniel Lewis
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Erjon Agushi
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Matthew Gittins
- Department of Biostatistics, Division of Population Health, Health Services Research& Primary Care, The University of Manchester, Manchester, UK
| | - Alan Jackson
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neuroradiology, Salford Royal NHS Foundation Trust, Salford, UK
| | - David Coope
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, Manchester, UK
| |
Collapse
|
5
|
Azab MA, Ghozy S, Hassanein SF, Azzam AY. Specific Preoperative Dynamic Contrast-Enhanced MRI Semi-quantitative Markers Can Correlate With Vascularity in Specific Areas of Glioblastoma Tissue and Predict Recurrence. Cureus 2021; 13:e15528. [PMID: 34277164 PMCID: PMC8269995 DOI: 10.7759/cureus.15528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Glioblastoma is one of the most aggressive tumours despite all advanced therapies. We aimed to investigate the correlation between qualitative markers of dynamic contrast-enhanced magnetic resonance imaging and vascularity in different tumour regions and elucidate their potential in predicting recurrence. Methods: Radiological markers of vascularity as wash-in rate, washout rate, and capillary time to peak in different single tumour regions were extracted for all glioblastoma patients before being surgically resected using preoperative dynamic contrast-enhanced MRI (DCE-MRI). Tissue samples were obtained from different intratumoral regions and peritumoral oedema and evaluated for the vascular endothelial growth factor (VEGF). Results: Two hundred sixty individuals were included in the final analysis, with 180 dead ones and 80 survivors. Radio- and chemo-therapy were received by all surviving patients and 77.8% (n= 140) of the dead ones. The mean time to peak, in seconds, was longest at the peritumoral oedema region (71.7±23.5), followed by the tumour's necrotic centre (50.0±28.5) and its periphery (2.9±1.8). The expression of VEGF at the peritumoral edema region was inversely correlated to the washout rate at the periphery (r= -0.66; P-value= 0.014) and positively correlated to peritumoral TTP (r= 0.94; P-value< 0.001). Conclusion: Using DCE-MRI, VEGF expression may be used as a non-invasive marker to estimate tumour grade for clinical diagnosis and treatment. Moreover, the risk of glioblastoma recurrence could be determined by evaluating the washout rate at the tumour's periphery. Further large-scale studies are needed to validate the results and to have concrete evidence.
Collapse
Affiliation(s)
- Mohammed A Azab
- Department of Biochemistry, Boise State University, Boise, USA.,Neurological Surgery, Cairo University Hospital, Cairo, EGY
| | - Sherief Ghozy
- Neurological Surgery, Faculty of Medicine, Mansoura University, Mansoura, EGY
| | | | - Ahmed Y Azzam
- Neurological Surgery, October 6 University, 6th of October City, EGY
| |
Collapse
|
6
|
Vlaikou AM, Nussbaumer M, Komini C, Lambrianidou A, Konidaris C, Trangas T, Filiou MD. Exploring the crosstalk of glycolysis and mitochondrial metabolism in psychiatric disorders and brain tumours. Eur J Neurosci 2021; 53:3002-3018. [PMID: 33226682 DOI: 10.1111/ejn.15057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/13/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022]
Abstract
Dysfunction of metabolic pathways characterises a plethora of common pathologies and has emerged as an underlying hallmark of disease phenotypes. Here, we focus on psychiatric disorders and brain tumours and explore changes in the interplay between glycolysis and mitochondrial energy metabolism in the brain. We discuss alterations in glycolysis versus core mitochondrial metabolic pathways, such as the tricarboxylic acid cycle and oxidative phosphorylation, in major psychiatric disorders and brain tumours. We investigate potential common patterns of altered mitochondrial metabolism in different brain regions and sample types and explore how changes in mitochondrial number, shape and morphology affect disease-related manifestations. We also highlight the potential of pharmacologically targeting mitochondria to achieve therapeutic effects.
Collapse
Affiliation(s)
- Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Andromachi Lambrianidou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Constantinos Konidaris
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Theoni Trangas
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| |
Collapse
|
7
|
Application of Distributed Parameter Model to Assessment of Glioma IDH Mutation Status by Dynamic Contrast-Enhanced Magnetic Resonance Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:8843084. [PMID: 33299387 PMCID: PMC7704178 DOI: 10.1155/2020/8843084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/16/2020] [Accepted: 11/07/2020] [Indexed: 01/08/2023]
Abstract
Previous studies using contrast-enhanced imaging for glioma isocitrate dehydrogenase (IDH) mutation assessment showed promising yet inconsistent results, and this study attempts to explore this problem by using an advanced tracer kinetic model, the distributed parameter model (DP). Fifty-five patients with glioma examined using dynamic contrast-enhanced imaging sequence at a 3.0 T scanner were retrospectively reviewed. The imaging data were processed using DP, yielding the following parameters: blood flow F, permeability-surface area product PS, fractional volume of interstitial space Ve, fractional volume of intravascular space Vp, and extraction ratio E. The results were compared with the Tofts model. The Wilcoxon test and boxplot were utilized for assessment of differences of model parameters between IDH-mutant and IDH-wildtype gliomas. Spearman correlation r was employed to investigate the relationship between DP and Tofts parameters. Diagnostic performance was evaluated using receiver operating characteristic (ROC) curve analysis and quantified using the area under the ROC curve (AUC). Results showed that IDH-mutant gliomas were significantly lower in F (P = 0.018), PS (P < 0.001), Vp (P < 0.001), E (P < 0.001), and Ve (P = 0.002) than IDH-wildtype gliomas. In differentiating IDH-mutant and IDH-wildtype gliomas, Vp had the best performance (AUC = 0.92), and the AUCs of PS and E were 0.82 and 0.80, respectively. In comparison, Tofts parameters were lower in Ktrans (P = 0.013) and Ve (P < 0.001) for IDH-mutant gliomas. No significant difference was observed in Kep (P = 0.525). The AUCs of Ktrans, Ve, and Kep were 0.69, 0.79, and 0.55, respectively. Tofts-derived Ve showed a strong correlation with DP-derived Ve (r > 0.9, P < 0.001). Ktrans showed a weak correlation with F (r < 0.3, P > 0.16) and a very weak correlation with PS (r < 0.06, P > 0.8), both of which were not statistically significant. The findings by DP revealed a tissue environment with lower vascularity, lower vessel permeability, and lower blood flow in IDH-mutant than in IDH-wildtype gliomas, being hostile to cellular differentiation of oncogenic effects in IDH-mutated gliomas, which might help to explain the better outcomes in IDH-mutated glioma patients than in glioma patients of IDH-wildtype. The advantage of DP over Tofts in glioma DCE data analysis was demonstrated in terms of clearer elucidation of tissue microenvironment and better performance in IDH mutation assessment.
Collapse
|
8
|
Stokum JA, Gerzanich V, Sheth KN, Kimberly WT, Simard JM. Emerging Pharmacological Treatments for Cerebral Edema: Evidence from Clinical Studies. Annu Rev Pharmacol Toxicol 2020; 60:291-309. [PMID: 31914899 DOI: 10.1146/annurev-pharmtox-010919-023429] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral edema, a common and often fatal companion to most forms of acute central nervous system disease, has been recognized since the time of ancient Egypt. Unfortunately, our therapeutic armamentarium remains limited, in part due to historic limitations in our understanding of cerebral edema pathophysiology. Recent advancements have led to a number of clinical trials for novel therapeutics that could fundamentally alter the treatment of cerebral edema. In this review, we discuss these agents, their targets, and the data supporting their use, with a focus on agents that have progressed to clinical trials.
Collapse
Affiliation(s)
- Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA;
| | - Kevin N Sheth
- Department of Neurology, Division of Neurocritical Care and Emergency Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - W Taylor Kimberly
- Department of Neurology, Division of Neurocritical Care, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; .,Departments of Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
9
|
Cargnelutti E, Ius T, Skrap M, Tomasino B. What do we know about pre- and postoperative plasticity in patients with glioma? A review of neuroimaging and intraoperative mapping studies. NEUROIMAGE-CLINICAL 2020; 28:102435. [PMID: 32980599 PMCID: PMC7522801 DOI: 10.1016/j.nicl.2020.102435] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Brain reorganization can take place before and after surgery of low- and high-grade gliomas. Plasticity is observed for low-grade but also for high-grade gliomas. The contralesional hemisphere can be vital for successful compensation. There is evidence of plasticity for both the language system and the sensorimotor system. Partial compensation can also occur at the white-matter level. Subcortical connectivity is crucial for brain reorganization.
Brain plasticity potential is a central theme in neuro-oncology and is currently receiving increased attention. Advances in treatment have prolonged life expectancy in neuro-oncological patients and the long-term preservation of their quality of life is, therefore, a new challenge. To this end, a better understanding of brain plasticity mechanisms is vital as it can help prevent permanent deficits following neurosurgery. Indeed, reorganization processes can be fundamental to prevent or recover neurological and cognitive deficits by reallocating brain functions outside the lesioned areas. According to more recent studies in the literature, brain reorganization taking place following neurosurgery is associated with good neurofunctioning at follow-up. Interestingly, in the last few years, the number of reports on plasticity has notably increased. Aim of the current review was to provide a comprehensive overview of pre- and postoperative neuroplasticity patterns. Within this framework, we aimed to shed light on some tricky issues, including i) involvement of the contralateral healthy hemisphere, ii) role and potential changes of white matter and connectivity patterns, and iii) reorganization in low- versus high-grade gliomas. We finally discussed the practical implications of these aspects and role of additional potentially relevant factors to be explored. Final purpose was to provide a guideline helpful in promoting increase in the extent of tumor resection while preserving the patients’ neurological and cognitive functioning.
Collapse
Affiliation(s)
- Elisa Cargnelutti
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| | - Tamara Ius
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Miran Skrap
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy.
| |
Collapse
|
10
|
Mapelli P, Picchio M. 18F-FAZA PET imaging in tumor hypoxia: A focus on high-grade glioma. Int J Biol Markers 2020; 35:42-46. [DOI: 10.1177/1724600820905715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The presence of hypoxia is a typical feature of solid tumors and has been identified in many neoplasms, favouring the survival of malignant cells in a hostile environment and the expression of an aggressive phenotype. Malignant brain tumors have large proportions of hypoxic tissue, thus contributing to resistance to radiation and chemotherapy. Positron emission tomography (PET) is an attractive technique to gain a non-invasive assessment of tumor hypoxia within the whole tumor, with 18F-fluoromisonidazole (18F-FMISO) and 18F-flouroazomycin arabinoside (18F-FAZA) being the most promising radiotracers. In this short review, we aim to discuss the available clinical studies focused on the use of 18F-FAZA PET/computed tomography in patients affected by high-grade glioma.
Collapse
Affiliation(s)
- Paola Mapelli
- Vita-Salute San Raffaele University, Milan, Italy
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Picchio
- Vita-Salute San Raffaele University, Milan, Italy
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Abstract
Gliomas, the most common malignant primary brain tumours, remain universally lethal. Yet, seminal discoveries in the past 5 years have clarified the anatomy, genetics and function of the immune system within the central nervous system (CNS) and altered the paradigm for successful immunotherapy. The impact of standard therapies on the response to immunotherapy is now better understood, as well. This new knowledge has implications for a broad range of tumours that develop within the CNS. Nevertheless, the requirements for successful therapy remain effective delivery and target specificity, while the dramatic heterogeneity of malignant gliomas at the genetic and immunological levels remains a profound challenge.
Collapse
Affiliation(s)
- John H Sampson
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
| | - Michael D Gunn
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Peter E Fecci
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Duke Center for Brain and Spine Metastasis, Duke University Medical Center, Durham, NC, USA
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
12
|
Karlsson J, Rui Y, Kozielski KL, Placone AL, Choi O, Tzeng SY, Kim J, Keyes JJ, Bogorad MI, Gabrielson K, Guerrero-Cazares H, Quiñones-Hinojosa A, Searson PC, Green JJ. Engineered nanoparticles for systemic siRNA delivery to malignant brain tumours. NANOSCALE 2019; 11:20045-20057. [PMID: 31612183 PMCID: PMC6924015 DOI: 10.1039/c9nr04795f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Improved delivery materials are needed to enable siRNA transport across biological barriers, including the blood-brain barrier (BBB), to treat diseases like brain cancer. We engineered bioreducible nanoparticles for systemic siRNA delivery to patient-derived glioblastoma cells in an orthotopic mouse tumor model. We first utilized a newly developed biomimetic in vitro model to evaluate and optimize the performance of the engineered bioreducible nanoparticles at crossing the brain microvascular endothelium. We performed transmission electron microscopy imaging which indicated that the engineered nanoparticles are able to cross the BBB endothelium via a vesicular mechanism. The nanoparticle formulation engineered to best cross the BBB model in vitro led to safe delivery across the BBB to the brain in vivo. The nanoparticles were internalized by human brain cancer cells, released siRNA to the cytosol via environmentally-triggered degradation, and gene silencing was obtained both in vitro and in vivo. This study opens new frontiers for the in vitro evaluation and engineering of nanomedicines for delivery to the brain, and reports a systemically administered biodegradable nanocarrier for oligonucleotide delivery to treat glioma.
Collapse
Affiliation(s)
- Johan Karlsson
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA. and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yuan Rui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Kristen L Kozielski
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Amanda L Placone
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA. and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Olivia Choi
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Stephany Y Tzeng
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Jamal J Keyes
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Max I Bogorad
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA. and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA. and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jordan J Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA. and Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA. and Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA and Departments of Neurosurgery, Oncology, and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA and Sidney Kimmel Comprehensive Cancer Center and the Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
13
|
Ogura A, Maeda F, Yahata S, Koyama D, Tsunoda F, Hayashi N, Motegi S, Yamamura K. Slow component apparent diffusion coefficient for prostate cancer: Comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging. Magn Reson Imaging 2019; 58:14-17. [DOI: 10.1016/j.mri.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/10/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
|
14
|
Henrich-Noack P, Nikitovic D, Neagu M, Docea AO, Engin AB, Gelperina S, Shtilman M, Mitsias P, Tzanakakis G, Gozes I, Tsatsakis A. The blood–brain barrier and beyond: Nano-based neuropharmacology and the role of extracellular matrix. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:359-379. [DOI: 10.1016/j.nano.2019.01.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
|
15
|
Buck J, Larkin JR, Simard MA, Khrapitchev AA, Chappell MA, Sibson NR. Sensitivity of Multiphase Pseudocontinuous Arterial Spin Labelling (MP pCASL) Magnetic Resonance Imaging for Measuring Brain and Tumour Blood Flow in Mice. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4580919. [PMID: 30532663 PMCID: PMC6247770 DOI: 10.1155/2018/4580919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/28/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022]
Abstract
Brain and tumour blood flow can be measured noninvasively using arterial spin labelling (ASL) magnetic resonance imaging (MRI), but reliable quantification in mouse models remains difficult. Pseudocontinuous ASL (pCASL) is recommended as the clinical standard for ASL and can be improved using multiphase labelling (MP pCASL). The aim of this study was to optimise and validate MP pCASL MRI for cerebral blood flow (CBF) measurement in mice and to assess its sensitivity to tumour perfusion. Following optimization of the MP pCASL sequence, CBF data were compared with gold-standard autoradiography, showing close agreement. Subsequently, MP pCASL data were acquired at weekly intervals in models of primary and secondary brain tumours, and tumour microvessel density was determined histologically. MP pCASL measurements in a secondary brain tumour model revealed a significant reduction in blood flow at day 35 after induction, despite a higher density of blood vessels. Tumour core regions also showed reduced blood flow compared with the tumour rim. Similarly, significant reductions in CBF were found in a model of glioma 28 days after tumour induction, together with an increased density of blood vessels. These findings indicate that MP pCASL MRI provides accurate and robust measurements of cerebral blood flow in naïve mice and is sensitive to changes in tumour perfusion.
Collapse
Affiliation(s)
- Jessica Buck
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| | - James R. Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| | - Manon A. Simard
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| | - Alexandre A. Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| | - Michael A. Chappell
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, Oxford, UK
| | - Nicola R. Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, OX3 7LE, Oxford, UK
| |
Collapse
|
16
|
Johanns TM, Bowman-Kirigin JA, Liu C, Dunn GP. Targeting Neoantigens in Glioblastoma: An Overview of Cancer Immunogenomics and Translational Implications. Neurosurgery 2017; 64:165-176. [PMID: 28899059 PMCID: PMC6287409 DOI: 10.1093/neuros/nyx321] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/27/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Tanner M. Johanns
- Division of Oncology, Department of Medicine, Washington University School of
Medicine, St. Louis, Missouri
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington
Univer-sity School of Medicine, St. Louis, Missouri
| | - Jay A. Bowman-Kirigin
- Center for Human Immunology and Immunotherapy Prog-rams, Washington University
School of Medicine, St. Louis, Missouri
- Depart-ment of Neurological Surgery, Washing-ton University School of Medicine,
St. Louis, Missouri
| | - Connor Liu
- Center for Human Immunology and Immunotherapy Prog-rams, Washington University
School of Medicine, St. Louis, Missouri
- Depart-ment of Neurological Surgery, Washing-ton University School of Medicine,
St. Louis, Missouri
| | - Gavin P. Dunn
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington
Univer-sity School of Medicine, St. Louis, Missouri
- Depart-ment of Neurological Surgery, Washing-ton University School of Medicine,
St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of
Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Hypoxia 18F-FAZA PET/CT imaging in lung cancer and high-grade glioma: open issues in clinical application. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0240-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Choy W, Lagman C, Lee SJ, Bui TT, Safaee M, Yang I. Impact of Human Immunodeficiency Virus in the Pathogenesis and Outcome of Patients with Glioblastoma Multiforme. Brain Tumor Res Treat 2016; 4:77-86. [PMID: 27867916 PMCID: PMC5114196 DOI: 10.14791/btrt.2016.4.2.77] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/10/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Background Improvement in antiviral therapies have been accompanied by an increased frequency of non-Acquired Immune Deficiency Syndrome (AIDS) defining malignancies, such as glioblastoma multiforme. Here, we investigated all reported cases of human immunodeficiency virus (HIV)-positive patients with glioblastoma and evaluated their clinical outcomes. A comprehensive review of the molecular pathogenetic mechanisms underlying glioblastoma development in the setting of HIV/AIDS is provided. Methods We performed a PubMed search using keywords “HIV glioma” AND “glioblastoma,” and “AIDS glioma” AND “glioblastoma.” Case reports and series describing HIV-positive patients with glioblastoma (histologically-proven World Health Organization grade IV astrocytoma) and reporting on HAART treatment status, clinical follow-up, and overall survival (OS), were included for the purposes of quantitative synthesis. Patients without clinical follow-up data or OS were excluded. Remaining articles were assessed for data extraction eligibility. Results A total of 17 patients met our inclusion criteria. Of these patients, 14 (82.4%) were male and 3 (17.6%) were female, with a mean age of 39.5±9.2 years (range 19–60 years). Average CD4 count at diagnosis of glioblastoma was 358.9±193.4 cells/mm3. Tumor progression rather than AIDS-associated complications dictated patient survival. There was a trend towards increased median survival with HAART treatment (12.0 vs 7.5 months, p=0.10) Conclusion Our data suggests that HAART is associated with improved survival in patients with HIV-associated glioblastoma, although the precise mechanisms underlying this improvement remain unclear.
Collapse
Affiliation(s)
- Winward Choy
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Carlito Lagman
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Seung J Lee
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Timothy T Bui
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Safaee
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, USA.; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
19
|
Kimura M, da Cruz LCH. Multiparametric MR Imaging in the Assessment of Brain Tumors. Magn Reson Imaging Clin N Am 2016; 24:87-122. [PMID: 26613877 DOI: 10.1016/j.mric.2015.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Functional MR imaging methods make possible the quantification of dynamic physiologic processes that occur in the brain. Moreover, the use of these advanced imaging techniques in the setting of oncologic treatment of the brain is widely accepted and has found worldwide routine clinical use.
Collapse
Affiliation(s)
- Margareth Kimura
- Magnetic Resonance Department of Clínica de Diagnóstico por Imagem (CDPI), Centro Médico Barrashopping, Av. das Américas, 4666, grupo 325, Barra da Tijuca, Rio de Janeiro, RJ, CEP: 22649-900, Brazil.
| | - L Celso Hygino da Cruz
- Magnetic Resonance Department of Clínica de Diagnóstico por Imagem (CDPI), IRM Ressonância Magnética, Av. das Américas, 4666, grupo 325, Barra da Tijuca, Rio de Janeiro, RJ, CEP: 22649-900, Brazil
| |
Collapse
|
20
|
Dunn GP, Okada H. Principles of immunology and its nuances in the central nervous system. Neuro Oncol 2016; 17 Suppl 7:vii3-vii8. [PMID: 26516224 DOI: 10.1093/neuonc/nov175] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapy represents the biggest change in the cancer treatment landscape in the last several years. Indeed, the clinical successes in several cancer types have generated widespread enthusiasm that immune-based treatments may influence the management of patients with malignant brain tumors as well. A number of promising clinical trials in this area are currently ongoing in neuro-oncology, and a wave of additional efforts are sure to follow. However, the basic immunology underlying immunotherapy-and the nuances unique to the immunobiology in the central nervous system-is often not in the daily lexicon of the practicing neuro-oncologist and neurosurgeon. To this end, here we provide a timely and working overview of key principles of fundamental immunology as a pragmatic context for understanding where therapeutic efforts may act in the cellular dynamics of the immune response. Moreover, we review the issues of lymphatic drainage, antigen presentation, and the blood-brain barrier as considerations that are germane to thinking about immunity to tumors arising in the brain. Together, these topics will provide a foundation for the exciting efforts in immune-based treatments that will hopefully provide real benefit to brain tumor patients.
Collapse
Affiliation(s)
- Gavin P Dunn
- Department of Neurological Surgery, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri (G.P.D.); Department of Neurological Surgery, Brain Tumor Immunotherapy Center, University of California, San Francisco, Helen Diller Family Cancer Research Building HD 472, San Francisco, California (H.O.)
| | - Hideho Okada
- Department of Neurological Surgery, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri (G.P.D.); Department of Neurological Surgery, Brain Tumor Immunotherapy Center, University of California, San Francisco, Helen Diller Family Cancer Research Building HD 472, San Francisco, California (H.O.)
| |
Collapse
|
21
|
Dufort S, Le Duc G, Salomé M, Bentivegna V, Sancey L, Bräuer-Krisch E, Requardt H, Lux F, Coll JL, Perriat P, Roux S, Tillement O. The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors. Sci Rep 2016; 6:29678. [PMID: 27411781 PMCID: PMC4944127 DOI: 10.1038/srep29678] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/21/2016] [Indexed: 11/13/2022] Open
Abstract
We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps.
Collapse
Affiliation(s)
- Sandrine Dufort
- Thérapie ciblée, Diagnostic précoce et Imagerie du cancer, INSERM/UJF U823, Institut Albert Bonniot, 38706 La Tronche Cedex, France.,Nano-H S.A.S, 2 Place de l'Europe, 38070 Saint Quentin-Fallavier, France
| | - Géraldine Le Duc
- ID17 Biomedical Beamline and ID21 Beamline, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Murielle Salomé
- ID17 Biomedical Beamline and ID21 Beamline, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Valerie Bentivegna
- ID17 Biomedical Beamline and ID21 Beamline, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Lucie Sancey
- Institut Lumière Matière, UMR 5306 CNRS-UCBL, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
| | - Elke Bräuer-Krisch
- ID17 Biomedical Beamline and ID21 Beamline, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Herwig Requardt
- ID17 Biomedical Beamline and ID21 Beamline, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - François Lux
- Institut Lumière Matière, UMR 5306 CNRS-UCBL, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
| | - Jean-Luc Coll
- Thérapie ciblée, Diagnostic précoce et Imagerie du cancer, INSERM/UJF U823, Institut Albert Bonniot, 38706 La Tronche Cedex, France
| | - Pascal Perriat
- Matériaux Ingénierie et Science, UMR 5510 CNRS-INSA, INSA de Lyon, 69621 Villeurbanne Cedex, France
| | - Stéphane Roux
- Institut UTINAM, UMR 6213 CNRS-UFC, Université de Franche-Comté, 25030 Besançon Cedex, France
| | - Olivier Tillement
- Institut Lumière Matière, UMR 5306 CNRS-UCBL, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
| |
Collapse
|
22
|
Liu H, Zhang J, Chen X, Du XS, Zhang JL, Liu G, Zhang WG. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. NANOSCALE 2016; 8:7808-7826. [PMID: 27029509 DOI: 10.1039/c6nr00147e] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gliomas are the most common primary brain tumors and have a very dismal prognosis. However, recent advancements in nanomedicine and nanotechnology provide opportunities for personalized treatment regimens to improve the poor prognosis of patients suffering from glioma. This comprehensive review starts with an outline of the current status facing glioma. It then provides an overview of the state-of-the-art applications of iron oxide nanoparticles (IONPs) to glioma diagnostics and therapeutics, including MR contrast enhancement, drug delivery, cell labeling and tracking, magnetic hyperthermia treatment and magnetic particle imaging. It also addresses current challenges associated with the biological barriers and IONP design with an emphasis on recent advances and innovative approaches for glioma targeting strategies. Opportunities for future development are highlighted.
Collapse
Affiliation(s)
- Heng Liu
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China and State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China. and Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong 637007, China
| | - Xiao Chen
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xue-Song Du
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jin-Long Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Wei-Guo Zhang
- Department of Radiology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China and The State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
23
|
The “fate” of polymeric and lipid nanoparticles for brain delivery and targeting: Strategies and mechanism of blood–brain barrier crossing and trafficking into the central nervous system. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Verreault M, Wehbe M, Strutt D, Masin D, Anantha M, Walker D, Chu F, Backstrom I, Kalra J, Waterhouse D, Yapp DT, Bally MB. Determination of an optimal dosing schedule for combining Irinophore C™ and temozolomide in an orthotopic model of glioblastoma. J Control Release 2015; 220:348-357. [PMID: 26528901 DOI: 10.1016/j.jconrel.2015.10.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/22/2015] [Accepted: 10/28/2015] [Indexed: 12/30/2022]
Abstract
Our laboratory reported that Irinophore C™ (IrC™; a lipid-based nanoparticulate formulation of irinotecan) is effective against an orthotopic model of glioblastoma (GBM) and that treatment with IrC™ was associated with vascular normalization within the tumor. Here, the therapeutic effects of IrC™ when used in combination with temozolomide (TMZ) in concurrent and sequential treatment schedules were tested. It was anticipated that IrC™ engendered vascular normalization would increase the delivery of TMZ to the tumor and that this would be reflected by improved treatment outcomes. The approach compared equally efficacious doses of irinotecan (IRN; 50 mg/kg) and IrC™ (25 mg/kg) in order to determine if there was a unique advantage achieved when combining TMZ with IrC™. The TMZ sensitive U251MG(O) cell line (null expression of O-6-methylguanine-DNA methyltransferase (MGMT)) modified to express the fluorescent protein mKate2 was inoculated orthotopically into NOD.CB17-SCID mice and treatment was initiated 14 days later. Our results demonstrated that IrC™ and TMZ administered concurrently resulted in optimal treatment outcomes, with 50% long term survivors (>180 days) in comparison to 17% long term survivors in animals treated with IRN and TMZ or TMZ alone. Indeed, the different treatments resulted in a 353%, 222% and 280% increase in median survival time (MST) compared to untreated animals for, respectively, IrC™ combined with TMZ, IRN combined with TMZ, and TMZ alone. When TMZ was administered after completion of IRN or IrC™ dosing, an increase in median survival time of 167-174% was observed compared to untreated animals and of 67% and 74%, respectively, when IRN (50 mg/kg) and IrC™ (25mg/kg) were given as single agents. We confirmed in these studies that after completion of the Q7D×3 dosing of IrC™, but not IRN, the tumor-associated vascular was normalized as compared to untreated tumors. Specifically, reductions in the fraction of collagen IV-free CD31 staining (p<0.05) and reductions in tumor vessel diameter were observed in tumors from IrC™-treated animals when compared to tumors from untreated or IRN treated animals. Analysis by transmission electron microscopy of the ultra-structure of tumors from IrC™-treated and untreated animals revealed that tumor-associated vessels from treated animals were smaller, more organized and exhibited a morphology comparable to normal blood vessels. In conclusion, optimal treatment outcomes were achieved when IrC™ and TMZ were administered concurrently, whereas IrC™ followed by TMZ treatment given sequentially did not confer any therapeutic advantage.
Collapse
Affiliation(s)
- M Verreault
- Brain and Spine Institute Research Center, 47 Bd de l'Hopital, Paris, 75013, France.
| | - M Wehbe
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, V5Z 1L3, BC, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver V6T 1Z3, BC, Canada
| | - D Strutt
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, V5Z 1L3, BC, Canada
| | - D Masin
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, V5Z 1L3, BC, Canada
| | - M Anantha
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, V5Z 1L3, BC, Canada
| | - D Walker
- Ultrastructural Imaging, UBC James Hogg Research Laboratories (iCAPTURE), Providence Heart and Lung Institute, St. Paul's Hospital, Rm 166, 1081 Burrard St, Vancouver, BC, Canada
| | - F Chu
- Ultrastructural Imaging, UBC James Hogg Research Laboratories (iCAPTURE), Providence Heart and Lung Institute, St. Paul's Hospital, Rm 166, 1081 Burrard St, Vancouver, BC, Canada
| | - I Backstrom
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, V5Z 1L3, BC, Canada
| | - J Kalra
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, V5Z 1L3, BC, Canada
| | - D Waterhouse
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, V5Z 1L3, BC, Canada
| | - D T Yapp
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, V5Z 1L3, BC, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver V6T 1Z3, BC, Canada
| | - M B Bally
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, V5Z 1L3, BC, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver V6T 1Z3, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, 2211 Wesbrook Mall, Vancouver V6T 2B5, BC, Canada; Center for Drug Research and Development, Vancouver V6T 1Z4, BC, Canada.
| |
Collapse
|
25
|
Fecci PE, Heimberger AB, Sampson JH. Immunotherapy for primary brain tumors: no longer a matter of privilege. Clin Cancer Res 2015; 20:5620-9. [PMID: 25398845 DOI: 10.1158/1078-0432.ccr-14-0832] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunotherapy for cancer continues to gain both momentum and legitimacy as a rational mode of therapy and a vital treatment component in the emerging era of personalized medicine. Gliomas, and their most malignant form, glioblastoma, remain as a particularly devastating solid tumor for which standard treatment options proffer only modest efficacy and target specificity. Immunotherapy would seem a well-suited choice to address such deficiencies given both the modest inherent immunogenicity of gliomas and the strong desire for treatment specificity within the confines of the toxicity-averse normal brain. This review highlights the caveats and challenges to immunotherapy for primary brain tumors, as well as reviewing modalities that are currently used or are undergoing active investigation. Tumor immunosuppressive countermeasures, peculiarities of central nervous system immune access, and opportunities for rational treatment design are discussed.
Collapse
Affiliation(s)
- Peter E Fecci
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John H Sampson
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
26
|
Roundabout 4 regulates blood-tumor barrier permeability through the modulation of ZO-1, Occludin, and Claudin-5 expression. J Neuropathol Exp Neurol 2015; 74:25-37. [PMID: 25470344 DOI: 10.1097/nen.0000000000000146] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The blood-tumor barrier (BTB) restricts the delivery of chemotherapeutic drug molecules to tumor tissues. We found that the endothelial cell (EC) receptor molecule Roundabout 4 (Robo4) is endogenously expressed in human brain microvascular ECs and that it is upregulated in a BTB model of glioma cocultured ECs. Knockdown of Robo4 in this BTB model increased permeability; short hairpin RNA targeting Robo4 (shRobo4) led to decreased transendothelial electric resistance values, increased BTB permeability, and downregulated expression of the EC tight junction proteins ZO-1, occludin, and claudin-5. Roundabout 4 influenced BTB permeability via binding with its ligand, Slit2. Short hairpin RNA targeting Robo4 also increased matrix metalloproteinase-9 (MMP-9) activity and expression in glioma cocultured ECs; pretreatment with the MMP inhibitor GM6001 partially blocked the effects of shRobo4 on the transendothelial electric resistance values and ZO-1 and occludin expression. Short hairpin RNA targeting Robo4 also upregulated the phosphorylation of Src and Erk1/2; the Src inhibitor PP2 and the Erk1/2 inhibitor PD98059 blocked shRobo4-mediated alteration in ZO-1 and occludin expression. Together, our results indicate that knockdown of Robo4 increased BTB permeability by reducing EC tight junction protein expression, and that the Src-Erk1/2-MMP-9 signal pathways are involved in this process. Thus, Robo4 may represent a useful future therapeutic target for enhancing BTB permeability.
Collapse
|
27
|
Lee KM, Kim EJ, Jahng GH, Park BJ. Value of perfusion weighted magnetic resonance imaging in the diagnosis of supratentorial anaplastic astrocytoma. J Korean Neurosurg Soc 2014; 56:261-4. [PMID: 25368772 PMCID: PMC4217066 DOI: 10.3340/jkns.2014.56.3.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 11/27/2022] Open
Abstract
We report perfusion weighted imaging (PWI) findings of nonenhanced anaplastic astrocytoma in a 30-year-old woman. Brain magnetic resonance imaging showed a nonenhanced brain tumor with mild peritumoral edema on the right medial frontal lobe and right genu of corpus callosum, suggesting a low-grade glioma. However, PWI showed increased relative cerebral blood volume, relative cerebral blood flow, and permeability of nonenhanced brain tumor compared with contralateral normal brain parenchyma, suggesting a high-grade glioma. After surgery, final histopathological analysis revealed World Health Organization grade III anaplastic astrocytoma. This case demonstrates the importance of PWI for preoperative evaluation of nonenhanced brain tumors.
Collapse
Affiliation(s)
- Kyung Mi Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eui Jong Kim
- Department of Radiology, Kyung Hee University Hospital, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Bong Jin Park
- Department of Neurosurgery, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
28
|
Girolamo F, Dallatomasina A, Rizzi M, Errede M, Wälchli T, Mucignat MT, Frei K, Roncali L, Perris R, Virgintino D. Diversified expression of NG2/CSPG4 isoforms in glioblastoma and human foetal brain identifies pericyte subsets. PLoS One 2013; 8:e84883. [PMID: 24386429 PMCID: PMC3873429 DOI: 10.1371/journal.pone.0084883] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/19/2013] [Indexed: 01/16/2023] Open
Abstract
NG2/CSPG4 is a complex surface-associated proteoglycan (PG) recognized to be a widely expressed membrane component of glioblastoma (WHO grade IV) cells and angiogenic pericytes. To determine the precise expression pattern of NG2/CSPG4 on glioblastoma cells and pericytes, we generated a panel of >60 mouse monoclonal antibodies (mAbs) directed against the ectodomain of human NG2/CSPG4, partially characterized the mAbs, and performed a high-resolution distributional mapping of the PG in human foetal, adult and glioblastoma-affected brains. The reactivity pattern initially observed on reference tumour cell lines indicated that the mAbs recognized 48 immunologically distinct NG2/CSPG4 isoforms, and a total of 14 mAbs was found to identify NG2/CSPG4 isoforms in foetal and neoplastic cerebral sections. These were consistently absent in the adult brain, but exhibited a complementary expression pattern in angiogenic vessels of both tumour and foetal tissues. Considering the extreme pleomorphism of tumour areas, and with the aim of subsequently analysing the distributional pattern of the NG2/CSPG4 isoforms on similar histological vessel typologies, a preliminary study was carried out with endothelial cell and pericyte markers, and with selected vascular basement membrane (VBM) components. On both tumour areas characterized by 'glomeruloid' and 'garland vessels', which showed a remarkably similar cellular and molecular organization, and on developing brain vessels, spatially separated, phenotypically diversified pericyte subsets with a polarized expression of key surface components, including NG2/CSPG4, were disclosed. Interestingly, the majority of the immunolocalized NG2/CSPG4 isoforms present in glioblastoma tissue were present in foetal brain, except for one isoform that seemed to be exclusive of tumour cells, being absent in foetal brain. The results highlight an unprecedented, complex pattern of NG2/CSPG4 isoform expression in foetal and neoplastic CNS, discriminating between phenotype-specific and neoplastic versus non-neoplastic variants of the PG, thus opening up vistas for more selective immunotherapeutic targeting of brain tumours.
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Alice Dallatomasina
- COMT – Centre for Molecular and Translational Oncology and Department of Biosciences, University of Parma, Parma, Italy
| | - Marco Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Thomas Wälchli
- Brain Research Institute, University of Zurich, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Maria Teresa Mucignat
- S.O.C. for Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Aviano, Italy
| | - Karl Frei
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Luisa Roncali
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Roberto Perris
- COMT – Centre for Molecular and Translational Oncology and Department of Biosciences, University of Parma, Parma, Italy
- S.O.C. for Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Aviano, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
- * E-mail:
| |
Collapse
|
29
|
Jensen RL, Mumert ML, Gillespie DL, Kinney AY, Schabel MC, Salzman KL. Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome. Neuro Oncol 2013; 16:280-91. [PMID: 24305704 DOI: 10.1093/neuonc/not148] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Measures of tumor vascularity and hypoxia have been correlated with glioma grade and outcome. Dynamic contrast-enhanced (DCE) MRI can noninvasively map tumor blood flow, vascularity, and permeability. In this prospective observational cohort pilot study, preoperative imaging was correlated with molecular markers of hypoxia, vascularity, proliferation, and progression-free and overall patient survival. METHODS Pharmacokinetic modeling methods were used to generate maps of tumor blood flow, extraction fraction, permeability-surface area product, transfer constant, washout rate, interstitial volume, blood volume, capillary transit time, and capillary heterogeneity from preoperative DCE-MRI data in human glioma patients. Tissue was obtained from areas of peritumoral edema, active tumor, hypoxic penumbra, and necrotic core and evaluated for vascularity, proliferation, and expression of hypoxia-regulated molecules. DCE-MRI parameter values were correlated with hypoxia-regulated protein expression at tissue sample sites. RESULTS Patient survival correlated with DCE parameters in 2 cases: capillary heterogeneity in active tumor and interstitial volume in areas of peritumoral edema. Statistically significant correlations were observed between several DCE parameters and tissue markers. In addition, MIB-1 index was predictive of overall survival (P = .044) and correlated with vascular endothelial growth factor expression in hypoxic penumbra (r = 0.7933, P = .0071) and peritumoral edema (r = 0.4546). Increased microvessel density correlated with worse patient outcome (P = .026). CONCLUSIONS Our findings suggest that DCE-MRI may facilitate noninvasive preoperative predictions of areas of tumor with increased hypoxia and proliferation. Both imaging and hypoxia biomarkers are predictive of patient outcome. This has the potential to allow unprecedented prognostic decisions and to guide therapies to specific tumor areas.
Collapse
Affiliation(s)
- Randy L Jensen
- Corresponding author: Randy L. Jensen, MD, PhD, Huntsman Cancer Institute and Departments of Neurosurgery, Radiation Oncology, Oncological Sciences, Clinical Neuroscience Center, University of Utah, 175 North Medical Drive, Salt Lake City, Utah 84132.
| | | | | | | | | | | |
Collapse
|
30
|
Shevtsov MA, Yakovleva LY, Nikolaev BP, Marchenko YY, Dobrodumov AV, Onokhin KV, Onokhina YS, Selkov SA, Mikhrina AL, Guzhova IV, Martynova MG, Bystrova OA, Ischenko AM, Margulis BA. Tumor targeting using magnetic nanoparticle Hsp70 conjugate in a model of C6 glioma. Neuro Oncol 2013; 16:38-49. [PMID: 24305705 DOI: 10.1093/neuonc/not141] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Superparamagnetic iron oxide nanoparticles (SPIONs), due to their unique magnetic properties, have the ability to function both as magnetic resonance (MR) contrast agents, and can be used for thermotherapy. SPIONs conjugated to the heat shock protein Hsp70 that selectively binds to the CD40 receptor present on glioma cells, could be used for MR contrast enhancement of experimental C6 glioma. METHODS The magnetic properties of the Hsp70-SPIONs were measured by NMR relaxometry method. The uptake of nanoparticles was assessed on the C6 glioma cells by confocal and electron microscopes. The tumor selectivity of Hsp70-SPIONs being intravenously administered was analyzed in the experimental model of C6 glioma in the MRI scanner. RESULTS Hsp70-SPIONs relaxivity corresponded to the properties of negative contrast agents with a hypointensive change of resonance signal in MR imaging. A significant accumulation of the Hsp70-SPIONs but not the non-conjugated nanoparticles was observed by confocal microscopy within C6 cells. Negative contrast tumor enhancement in the T2-weighted MR images was higher in the case of Hsp70-SPIONs in comparison to non-modified SPIONs. Histological analysis of the brain sections confirmed the retention of the Hsp70-SPIONs in the glioma tumor but not in the adjacent normal brain tissues. CONCLUSION The study demonstrated that Hsp70-SPION conjugate intravenously administered in C6 glioma model accumulated in the tumors and enhanced the contrast of their MR images.
Collapse
Affiliation(s)
- Maxim A Shevtsov
- Corresponding author: Maxim A. Shevtsov, MD, PhD, Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064, St. Petersburg, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dunn GP, Fecci PE, Curry WT. Cancer immunoediting in malignant glioma. Neurosurgery 2013; 71:201-22; discussion 222-3. [PMID: 22353795 DOI: 10.1227/neu.0b013e31824f840d] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Significant work from many laboratories over the last decade in the study of cancer immunology has resulted in the development of the cancer immunoediting hypothesis. This contemporary framework of the naturally arising immune system-tumor interaction is thought to comprise 3 phases: elimination, wherein immunity subserves an extrinsic tumor suppressor function and destroys nascent tumor cells; equilibrium, wherein tumor cells are constrained in a period of latency under immune control; and escape, wherein tumor cells outpace immunity and progress clinically. In this review, we address in detail the relevance of the cancer immunoediting concept to neurosurgeons and neuro-oncologists treating and studying malignant glioma by exploring the de novo immune response to these tumors, how these tumors may persist in vivo, the mechanisms by which these cells may escape/attenuate immunity, and ultimately how this concept may influence our immunotherapeutic approaches.
Collapse
Affiliation(s)
- Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
32
|
Che H, Song J, Guo S, Wang W, Gao G. Inhibition of xenograft human glioma tumor growth by lentivirus-mediated gene transfer of alphastatin. Oncol Rep 2012; 29:1101-7. [PMID: 23242200 DOI: 10.3892/or.2012.2187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/09/2012] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis is crucial for the development and metastasis of human brain glioma. Based on our previous successful construction of a lentivirus-mediated alphastatin (an endogenous angiogenesis inhibitor) gene transfer system and our findings that alphastatin exhibited potent inhibitory effects on the migration and differentiation of human umbilical vein endothelial cell lines (HUVECs) induced by vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) in vitro, here, we investigated the effect of using lentiviral vectors to overexpress alphastatin in human glioma cells to show whether sustained long-term expression of alphastatin diminishes tumor growth in a xenograft glioma model. We found that the transduced glioma cells sustainedly secreted alphastatin, which did not affect the proliferative ability of the glioma cells. Furthermore, tumor xenografts treated with the recombinant lentivirus were significantly smaller compared to the control xenografts and vascularity within the treated tumors was evidently decreased. Our data suggest that stable expression of alphastatin inhibits human glioma growth by inhibiting angiogenesis, with a probable mechanism of suppressing the turnover of VE-cadherin membrane molecules.
Collapse
Affiliation(s)
- Hongmin Che
- Department of Neurosurgery, The Second Affiliated Hospital, the Fourth Military Medical University, Xi'an 710038, PR China
| | | | | | | | | |
Collapse
|
33
|
Rege A, Seifert AC, Schlattman D, Ouyang Y, Li KW, Basaldella L, Brem H, Tyler BM, Thakor NV. Longitudinal in vivo monitoring of rodent glioma models through thinned skull using laser speckle contrast imaging. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:126017. [PMID: 23235836 PMCID: PMC3519490 DOI: 10.1117/1.jbo.17.12.126017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 06/01/2023]
Abstract
Laser speckle contrast imaging (LSCI) is a contrast agent free imaging technique suited for longitudinal assessment of vascular remodeling that accompanies brain tumor growth. We report the use of LSCI to monitor vascular changes in a rodent glioma model. Ten rats are inoculated with 9L gliosarcoma cells, and the angiogenic response is monitored five times over two weeks through a thinned skull imaging window. We are able to visualize neovascularization and measure the number of vessels per unit area to assess quantitatively the microvessel density (MVD). Spatial spread of MVD reveals regions of high MVD that may correspond to tumor location. Whole-field average MVD values increase with time in the tumor group but are fairly stable in the control groups. Statistical analysis shows significant differences in MVD values between the tumor group and both saline-receiving and unperturbed control groups over the two-week period (p<0.05). In conclusion, LSCI is suitable for investigation of tumor angiogenesis in rodent models. In addition, the statistical difference (p<0.02) between MVD values of the tumor (24.40 ± 1.41) and control groups (15.40 ± 1.60) on the 14th day after inoculation suggests a potential use of LSCI in the clinic in distinguishing tumor environments from normal vasculature.
Collapse
Affiliation(s)
- Abhishek Rege
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland
| | | | - Dan Schlattman
- Infinite Biomedical Technologies LLC, Baltimore, Maryland
| | - Yu Ouyang
- Infinite Biomedical Technologies LLC, Baltimore, Maryland
| | - Khan W. Li
- Johns Hopkins University, Department of Neurosurgery, Baltimore, Maryland
| | - Luca Basaldella
- Johns Hopkins University, Department of Neurosurgery, Baltimore, Maryland
| | - Henry Brem
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland
- Johns Hopkins University, Department of Neurosurgery, Baltimore, Maryland
- Johns Hopkins University, Departments of Oncology and Ophthalmology, Baltimore, Maryland
| | - Betty M. Tyler
- Johns Hopkins University, Department of Neurosurgery, Baltimore, Maryland
| | - Nitish V. Thakor
- Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland
- Infinite Biomedical Technologies LLC, Baltimore, Maryland
| |
Collapse
|
34
|
Abstract
This article presents an overview of advanced magnetic resonance (MR) imaging techniques using contrast media in neuroimaging, focusing on T2*-weighted dynamic susceptibility contrast MR imaging and T1-weighted dynamic contrast-enhanced MR imaging. Image acquisition and data processing methods and their clinical application in brain tumors, stroke, dementia, and multiple sclerosis are discussed.
Collapse
Affiliation(s)
- Jean-Christophe Ferré
- Department of Radiology, Keck Medical Center of University of Southern California, Los Angeles, CA 90033, USA.
| | | | | |
Collapse
|
35
|
Thompson G, Mills SJ, Coope DJ, O'Connor JPB, Jackson A. Imaging biomarkers of angiogenesis and the microvascular environment in cerebral tumours. Br J Radiol 2012; 84 Spec No 2:S127-44. [PMID: 22433824 DOI: 10.1259/bjr/66316279] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Conventional contrast-enhanced CT and MRI are now in routine clinical use for the diagnosis, treatment and monitoring of diseases in the brain. The presence of contrast enhancement is a proxy for the pathological changes that occur in the normally highly regulated brain vasculature and blood-brain barrier. With recognition of the limitations of these techniques, and a greater appreciation for the nuanced mechanisms of microvascular change in a variety of pathological processes, novel techniques are under investigation for their utility in further interrogating the microvasculature of the brain. This is particularly important in tumours, where the reliance on angiogenesis (new vessel formation) is crucial for tumour growth, and the resulting microvascular configuration and derangement has profound implications for diagnosis, treatment and monitoring. In addition, novel therapeutic approaches that seek to directly modify the microvasculature require more sensitive and specific biological markers of baseline tumour behaviour and response. The currently used imaging biomarkers of angiogenesis and brain tumour microvascular environment are reviewed.
Collapse
Affiliation(s)
- G Thompson
- Wolfson Molecular Imaging Centre, University of Manchester, Withington, Manchester, UK
| | | | | | | | | |
Collapse
|
36
|
Nduom EK, Bouras A, Kaluzova M, Hadjipanayis CG. Nanotechnology applications for glioblastoma. Neurosurg Clin N Am 2012; 23:439-49. [PMID: 22748656 DOI: 10.1016/j.nec.2012.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. Although conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds promise in the use of multifunctional nanoparticles for imaging and targeted therapy of glioblastoma. This article examines the current state of nanotechnology in the treatment of glioblastoma and directions of further study.
Collapse
Affiliation(s)
- Edjah K Nduom
- Department of Neurosurgery, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
37
|
Waterhouse DN, Yapp D, Verreault M, Anantha M, Sutherland B, Bally MB. Lipid-based nanoformulation of irinotecan: dual mechanism of action allows for combination chemo/angiogenic therapy. Nanomedicine (Lond) 2012; 6:1645-54. [PMID: 22077466 DOI: 10.2217/nnm.11.140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A number of studies have outlined the antiangiogenic effects of cytotoxic agents when administered frequently at low doses. These studies suggest that the effect of the cytotoxic agent is on the vasculature within the tumor and it is assumed that there is little or negligible cytotoxicity. Liposomal drug delivery systems have the ability to provide a dual mechanism of activity where tumor accumulation can deliver high local concentrations of the drug at the site of action with concomitant slow release of the drug from carriers in the blood compartment that results in antivascular effects, similar to that achieved when dosing frequently at low levels. Although this dual mechanism of activity may be linked to other lipid nanoparticle formulations of anticancer drugs, this article summarizes the evidence supporting direct (cytotoxic) and indirect (antivascular) actions of a liposomal formulation of irinotecan.
Collapse
Affiliation(s)
- Dawn N Waterhouse
- BC Cancer Agency, Department of Experimental Therapeutics, 675 West 10th Avenue, Vancouver BC Canada, V5Z 1L3.
| | | | | | | | | | | |
Collapse
|
38
|
Wankhede M, Bouras A, Kaluzova M, Hadjipanayis CG. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol 2012; 5:173-86. [PMID: 22390560 PMCID: PMC3461264 DOI: 10.1586/ecp.12.1] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood-brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors.
Collapse
Affiliation(s)
- Mamta Wankhede
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Emory University School of Medicine, Winship Cancer Institute of Emory University, 1365B Clifton Road NE, Suite 6200, Atlanta, GA 30322, USA
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Emory University School of Medicine, Winship Cancer Institute of Emory University, 1365B Clifton Road NE, Suite 6200, Atlanta, GA 30322, USA
| | - Milota Kaluzova
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Emory University School of Medicine, Winship Cancer Institute of Emory University, 1365B Clifton Road NE, Suite 6200, Atlanta, GA 30322, USA
| | - Costas G Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Emory University School of Medicine, Winship Cancer Institute of Emory University, 1365B Clifton Road NE, Suite 6200, Atlanta, GA 30322, USA
| |
Collapse
|
39
|
Seo SJ, Sunaguchi N, Yuasa T, Huo Q, Ando M, Choi GH, Kim HT, Kim KH, Jeong EJ, Chang WS, Kim JK. Visualization of microvascular proliferation as a tumor infiltration structure in rat glioma specimens using the diffraction-enhanced imaging in-plane CT technique. Phys Med Biol 2012; 57:1251-62. [PMID: 22330695 DOI: 10.1088/0031-9155/57/5/1251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to study potent microenvironments of malignant gliomas with a high- resolution x-ray imaging technique, an injection orthotopic glioma model was made using the Sprague-Dawley rat. Total brain tissue, taken out as an ex vivo model, was examined with diffraction-enhanced imaging (DEI) computed tomography (CT) acquired with a 35 keV monochromatic x-ray. In the convolution-reconstructed 2D/3D images with a spatial resolution of 12.5 × 12.5 × 25 µm, distinction among necrosis, typical ring-shaped viable tumors, edemas and healthy tissues was clearly observed near the frontal lobe in front of the rat's caudate nucleus. Multiple microvascular proliferations (MVPs) were observed surrounding peritumoral edemas as a tumor infiltration structure. Typical dimensions of tubular MVPs were 130 (diameter) ×250 (length) µm with a partial sprout structure revealed in the 3D reconstructed image. Hyperplasia of cells around vessel walls was revealed with tumor cell infiltration along the perivascular space in microscopic observations of mild MVP during histological analysis. In conclusion, DEI-CT is capable of imaging potent tumor-infiltrating MVP structures surrounding high-grade gliomas.
Collapse
Affiliation(s)
- Seung-Jun Seo
- Biomedical Engineering and Radiology, School of Medicine, Catholic University of Daegu, Daegu 705-034, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Irinophore C™, a lipid-based nanoparticulate formulation of irinotecan, is more effective than free irinotecan when used to treat an orthotopic glioblastoma model. J Control Release 2012; 158:34-43. [DOI: 10.1016/j.jconrel.2011.09.095] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/27/2011] [Indexed: 11/24/2022]
|
41
|
Attenello F, Raza SM, Dimeco F, Olivi A. Chemotherapy for brain tumors with polymer drug delivery. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:339-53. [PMID: 22230452 DOI: 10.1016/b978-0-444-52138-5.00022-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Frank Attenello
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | | | | |
Collapse
|
42
|
Garzín B, Emblem KE, Mouridsen K, Nedregaard B, Due-Tønnessen P, Nome T, Hald JK, Bjørnerud A, Håberg AK, Kvinnsland Y. Multiparametric analysis of magnetic resonance images for glioma grading and patient survival time prediction. Acta Radiol 2011; 52:1052-60. [PMID: 21969702 DOI: 10.1258/ar.2011.100510] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND A systematic comparison of magnetic resonance imaging (MRI) options for glioma diagnosis is lacking. PURPOSE To investigate multiple MR-derived image features with respect to diagnostic accuracy in tumor grading and survival prediction in glioma patients. MATERIAL AND METHODS T1 pre- and post-contrast, T2 and dynamic susceptibility contrast scans of 74 glioma patients with histologically confirmed grade were acquired. For each patient, a set of statistical features was obtained from the parametric maps derived from the original images, in a region-of-interest encompassing the tumor volume. A forward stepwise selection procedure was used to find the best combinations of features for grade prediction with a cross-validated logistic model and survival time prediction with a cox proportional-hazards regression. RESULTS Presence/absence of enhancement paired with kurtosis of the FM (first moment of the first-pass curve) was the feature combination that best predicted tumor grade (grade II vs. grade III-IV; median AUC = 0.96), with the main contribution being due to the first of the features. A lower predictive value (median AUC = 0.82) was obtained when grade IV tumors were excluded. Presence/absence of enhancement alone was the best predictor for survival time, and the regression was significant (P < 0.0001). CONCLUSION Presence/absence of enhancement, reflecting transendothelial leakage, was the feature with highest predictive value for grade and survival time in glioma patients.
Collapse
Affiliation(s)
- Benjamón Garzín
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | - Kyrre E Emblem
- The Interventional Center, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Radiology, MGH-HST AA Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kim Mouridsen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Baard Nedregaard
- Department of Radiology and Nuclear Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Paulina Due-Tønnessen
- Department of Radiology and Nuclear Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Terje Nome
- Department of Radiology and Nuclear Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - John K Hald
- Department of Radiology and Nuclear Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Atle Bjørnerud
- The Interventional Center, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Asta K Håberg
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
- Department of Medical Imaging, St Olav's Hospital, Trondheim, Norway
| | | |
Collapse
|
43
|
Cunha AM, Nascimento FS, Amaral JCOF, Konig S, Takiya CM, M Neto V, Rocha E, Souza JPBM. A murine model of xenotransplantation of human glioblastoma with immunosuppression by orogastric cyclosporin. ARQUIVOS DE NEURO-PSIQUIATRIA 2011; 69:112-7. [PMID: 21359433 DOI: 10.1590/s0004-282x2011000100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 07/30/2010] [Indexed: 11/22/2022]
Abstract
Several animal experimental models have been used in the study of malignant gliomas. The objective of the study was to test the efficacy of a simple, reproducible and low cost animal model, using human cells of glioblastoma multiforme (GBM) xenotransplantated in subcutaneous tissue of Wistar rats, immunosuppressed with cyclosporin given by orogastric administration, controlled by nonimunosuppressed rats. The animals were sacrificed at weekly intervals and we have observed gradual growth of tumor in the immunosuppressed group. The average tumor volume throughout the experiment was 4.38 cm(3) in the immunosuppressed group, and 0.27 cm(3) in the control one (p<0.001). Tumors showed histopathological hallmarks of GBM and retained its glial identity verified by GFAP and vimentin immunoreaction. Immunosuppression of rats with cyclosporin was efficient in allowing the development of human glioblastoma cells in subcutaneous tissues. The model has demonstrated the maintenance of most of the histopathological characteristics of human glioblastoma in an heterotopic site and might by considered in research of molecular and proliferative pathways of malignant gliomas.
Collapse
Affiliation(s)
- Alexandre M Cunha
- Division of Neurosurgery, Department of Surgery, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pathak AP, Kim E, Zhang J, Jones MV. Three-dimensional imaging of the mouse neurovasculature with magnetic resonance microscopy. PLoS One 2011; 6:e22643. [PMID: 21818357 PMCID: PMC3144917 DOI: 10.1371/journal.pone.0022643] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 06/30/2011] [Indexed: 11/23/2022] Open
Abstract
Knowledge of the three-dimensional (3D) architecture of blood vessels in the brain is crucial because the progression of various neuropathologies ranging from Alzheimer's disease to brain tumors involves anomalous blood vessels. The challenges in obtaining such data from patients, in conjunction with development of mouse models of neuropathology, have made the murine brain indispensable for investigating disease induced neurovascular changes. Here we describe a novel method for “whole brain” 3D mapping of murine neurovasculature using magnetic resonance microscopy (μMRI). This approach preserves the vascular and white matter tract architecture, and can be combined with complementary MRI contrast mechanisms such as diffusion tensor imaging (DTI) to examine the interplay between the vasculature and white matter reorganization that often characterizes neuropathologies. Following validation with micro computed tomography (μCT) and optical microscopy, we demonstrate the utility of this method by: (i) combined 3D imaging of angiogenesis and white matter reorganization in both, invasive and non-invasive brain tumor models; (ii) characterizing the morphological heterogeneity of the vascular phenotype in the murine brain; and (iii) conducting “multi-scale” imaging of brain tumor angiogenesis, wherein we directly compared in vivo MRI blood volume measurements with ex vivo vasculature data.
Collapse
Affiliation(s)
- Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | |
Collapse
|
45
|
Arismendi-Morillo G. Electron microscopy morphology of the mitochondrial network in gliomas and their vascular microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:602-8. [PMID: 21692239 DOI: 10.1016/j.bbabio.2010.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gliomas still represent a serious and discouraging brain tumor; despite of the diversity of therapeutic modalities, the prognosis for patients is still poor. Understanding the structural and functional characteristics of the vascular microenvironment in gliomas is essential for the design of future therapeutic strategies. This review describes and analyzes the electron microscopy morphology of the mitochondrial network in human gliomas and their vascular microenvironment. Heterogenous mitochondrial network alterations in glioma cells and in microvascular environment are implicated directly and indirectly in the processes linked to hypoxia-tolerant and hypoxia-sensitive cells phenotype, effects of the hypoxia-inducible factor-1α, increased expression of several glycolytic protein isoforms as well as fatty acid synthase, and survivin. The prevalent existence of partial and total cristolysis observed suggests that oxidative phosphorylation is severely compromised. A mixed therapy emerged as the most appropriate.
Collapse
Affiliation(s)
- Gabriel Arismendi-Morillo
- Instituto de Investigaciones Biológicas, Facultad de Medicina, Universidad del Zulia, 526 Maracaibo, Venezuela.
| |
Collapse
|
46
|
Abstract
Abnormal vascular phenotypes have been implicated in neuropathologies ranging from Alzheimer's disease to brain tumors. The development of transgenic mouse models of such diseases has created a crucial need for characterizing the murine neurovasculature. Although histologic techniques are excellent for imaging the microvasculature at submicron resolutions, they offer only limited coverage. It is also challenging to reconstruct the three-dimensional (3D) vasculature and other structures, such as white matter tracts, after tissue sectioning. Here, we describe a novel method for 3D whole-brain mapping of the murine vasculature using magnetic resonance microscopy (μMRI), and its application to a preclinical brain tumor model. The 3D vascular architecture was characterized by six morphologic parameters: vessel length, vessel radius, microvessel density, length per unit volume, fractional blood volume, and tortuosity. Region-of-interest analysis showed significant differences in the vascular phenotype between the tumor and the contralateral brain, as well as between postinoculation day 12 and day 17 tumors. These results unequivocally show the feasibility of using μMRI to characterize the vascular phenotype of brain tumors. Finally, we show that combining these vascular data with coregistered images acquired with diffusion-weighted MRI provides a new tool for investigating the relationship between angiogenesis and concomitant changes in the brain tumor microenvironment.
Collapse
|
47
|
Verreault M, Strutt D, Masin D, Anantha M, Yung A, Kozlowski P, Waterhouse D, Bally MB, Yapp DT. Vascular normalization in orthotopic glioblastoma following intravenous treatment with lipid-based nanoparticulate formulations of irinotecan (Irinophore C™), doxorubicin (Caelyx®) or vincristine. BMC Cancer 2011; 11:124. [PMID: 21477311 PMCID: PMC3080346 DOI: 10.1186/1471-2407-11-124] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 04/08/2011] [Indexed: 02/21/2023] Open
Abstract
Background Chemotherapy for glioblastoma (GBM) patients is compromised in part by poor perfusion in the tumor. The present study evaluates how treatment with liposomal formulation of irinotecan (Irinophore C™), and other liposomal anticancer drugs, influence the tumor vasculature of GBM models grown either orthotopically or subcutaneously. Methods Liposomal vincristine (2 mg/kg), doxorubicin (Caelyx®; 15 mg/kg) and irinotecan (Irinophore C™; 25 mg/kg) were injected intravenously (i.v.; once weekly for 3 weeks) in Rag2M mice bearing U251MG tumors. Tumor blood vessel function was assessed using the marker Hoechst 33342 and by magnetic resonance imaging-measured changes in vascular permeability/flow (Ktrans). Changes in CD31 staining density, basement membrane integrity, pericyte coverage, blood vessel diameter were also assessed. Results The three liposomal drugs inhibited tumor growth significantly compared to untreated control (p < 0.05-0.001). The effects on the tumor vasculature were determined 7 days following the last drug dose. There was a 2-3 fold increase in the delivery of Hoechst 33342 observed in subcutaneous tumors (p < 0.001). In contrast there was a 5-10 fold lower level of Hoechst 33342 delivery in the orthotopic model (p < 0.01), with the greatest effect observed following treatment with Irinophore C. Following treatment with Irinophore C, there was a significant reduction in Ktrans in the orthotopic tumors (p < 0.05). Conclusion The results are consistent with a partial restoration of the blood-brain barrier following treatment. Further, treatment with the selected liposomal drugs gave rise to blood vessels that were morphologically more mature and a vascular network that was more evenly distributed. Taken together the results suggest that treatment can lead to normalization of GBM blood vessel the structure and function. An in vitro assay designed to assess the effects of extended drug exposure on endothelial cells showed that selective cytotoxic activity against proliferating endothelial cells could explain the effects of liposomal formulations on the angiogenic tumor vasculature.
Collapse
Affiliation(s)
- Maite Verreault
- Experimental Therapeutics, British Columbia Cancer Agency, 675 West 10thAvenue, Vancouver, BC V5Z 1L3, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
We present a case of sudden death of a 7-year-old boy who at autopsy was found to have an undiagnosed glioblastoma. The boy was asymptomatic until 2 hours before death complaining of a headache and was later found unresponsive in bed. A medicolegal autopsy was notable for a large hemorrhagic mass of the right frontal lobe, which on analysis was diagnostic of a glioblastoma. We feel that this is a unique case for 2 main reasons; high-grade gliomas of the cerebral cortex are rare in the pediatric population, and it is unusual for a large neoplasm to remain asymptomatic until 2 hours prior to death.
Collapse
|
49
|
David AE, Cole AJ, Chertok B, Park YS, Yang VC. A combined theoretical and in vitro modeling approach for predicting the magnetic capture and retention of magnetic nanoparticles in vivo. J Control Release 2011; 152:67-75. [PMID: 21295085 DOI: 10.1016/j.jconrel.2011.01.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 01/25/2011] [Indexed: 11/30/2022]
Abstract
Magnetic nanoparticles (MNP) continue to draw considerable attention as potential diagnostic and therapeutic tools in the fight against cancer. Although many interacting forces present themselves during magnetic targeting of MNP to tumors, most theoretical considerations of this process ignore all except for the magnetic and drag forces. Our validation of a simple in vitro model against in vivo data, and subsequent reproduction of the in vitro results with a theoretical model indicated that these two forces do indeed dominate the magnetic capture of MNP. However, because nanoparticles can be subject to aggregation, and large MNP experience an increased magnetic force, the effects of surface forces on MNP stability cannot be ignored. We accounted for the aggregating surface forces simply by measuring the size of MNP retained from flow by magnetic fields, and utilized this size in the mathematical model. This presumably accounted for all particle-particle interactions, including those between magnetic dipoles. Thus, our "corrected" mathematical model provided a reasonable estimate of not only fractional MNP retention, but also predicted the regions of accumulation in a simulated capillary. Furthermore, the model was also utilized to calculate the effects of MNP size and spatial location, relative to the magnet, on targeting of MNPs to tumors. This combination of an in vitro model with a theoretical model could potentially assist with parametric evaluations of magnetic targeting, and enable rapid enhancement and optimization of magnetic targeting methodologies.
Collapse
Affiliation(s)
- Allan E David
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
50
|
Iqbal U, Albaghdadi H, Luo Y, Arbabi M, Desvaux C, Veres T, Stanimirovic D, Abulrob A. Molecular imaging of glioblastoma multiforme using anti-insulin-like growth factor-binding protein-7 single-domain antibodies. Br J Cancer 2010; 103:1606-16. [PMID: 20959824 PMCID: PMC2990581 DOI: 10.1038/sj.bjc.6605937] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Insulin-like growth factor-binding protein 7 (IGFBP7) is an abundant, selective and accessible biomarker of glioblastoma multiforme (GBM) tumour vessels. In this study, an anti-IGFBP7 single-domain antibody (sdAb) was developed to target GBM vessels for molecular imaging applications. Methods: Human GBM was modelled in mice by intracranial implantation of U87MG.EGFRvIII cells. An anti-IGFBP7 sdAb, isolated from an immune llama library by panning, was assessed in vitro for its binding affinity using surface plasmon resonance and by ex vivo immunobinding on mouse and human GBM tissue. Tumour targeting by Cy5.5-labelled anti-IGFBP7 sdAb as well as by anti-IGFBP7 sdAb conjugated to PEGylated Fe3O4 nanoparticles (NPs)-Cy5.5 were assessed in U87MG.EGFRvIII tumour-bearing mice in vivo using optical imaging and in brain sections using fluorescent microscopy. Results: Surface plasmon resonance analyses revealed a medium affinity (KD=40–50 nM) binding of the anti-IGFBP7 sdAb to the purified antigen. The anti-IGFBP7 sdAb also selectively bound to both mouse and human GBM vessels, but not normal brain vessels in tissue sections. In vivo, intravenously injected anti-IGFBP7 sdAb-Cy5.5 bound to GBM vessels creating high imaging signal in the intracranial tumour. Similarly, the anti-IGFBP7 sdAb-functionalised PEGylated Fe3O4 NP-Cy5.5 demonstrated enhanced tumour signal compared with non-targeted NPs. Fluorescent microscopy confirmed the presence of anti-IGFBP7 sdAb and anti-IGFBP7 sdAb-PEGylated Fe3O4 NPs selectively in GBM vessels. Conclusions: Anti-IGFBP7 sdAbs are novel GBM vessel-targeting moieties suitable for molecular imaging.
Collapse
Affiliation(s)
- U Iqbal
- Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6
| | | | | | | | | | | | | | | |
Collapse
|