1
|
Roca Paixao JF, Déléris A. Epigenetic control of T-DNA during transgenesis and pathogenesis. PLANT PHYSIOLOGY 2024; 197:kiae583. [PMID: 39498848 DOI: 10.1093/plphys/kiae583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 11/07/2024]
Abstract
Mobile elements known as T-DNAs are transferred from pathogenic Agrobacterium to plants and reprogram the host cell to form hairy roots or tumors. Disarmed nononcogenic T-DNAs are extensively used to deliver transgenes in plant genetic engineering. Such T-DNAs were the first known targets of RNA silencing mechanisms, which detect foreign RNA in plant cells and produce small RNAs that induce transcript degradation. These T-DNAs can also be transcriptionally silenced by the deposition of epigenetic marks such as DNA methylation and the dimethylation of lysine 9 (H3K9me2) in plants. Here, we review the targeting and the roles of RNA silencing and DNA methylation on T-DNAs in transgenic plants as well as during pathogenesis. In addition, we discuss the crosstalk between T-DNAs and genome-wide changes in DNA methylation during pathogenesis. We also cover recently discovered regulatory phenomena, such as T-DNA suppression and RNA silencing-independent and epigenetic-independent mechanisms that can silence T-DNAs. Finally, we discuss the implications of findings on T-DNA silencing for the improvement of plant genetic engineering.
Collapse
Affiliation(s)
- Joaquin Felipe Roca Paixao
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Angélique Déléris
- Université Paris-Saclay, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Battulin N, Korablev A, Ryzhkova A, Smirnov A, Kabirova E, Khabarova A, Lagunov T, Serova I, Serov O. The human EF1a promoter does not provide expression of the transgene in mice. Transgenic Res 2022; 31:525-535. [PMID: 35960480 PMCID: PMC9372930 DOI: 10.1007/s11248-022-00319-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
Abstract
In this work, we set out to create mice susceptible to the SARS-CoV-2 coronavirus. To ensure the ubiquitous expression of the human ACE2 gene we used the human EF1a promoter. Using pronuclear microinjection of the transgene construct, we obtained six founders with the insertion of the EF1a-hACE2 transgene, from which four independent mouse lines were established. Unfortunately, only one line had low levels of hACE2 expression in some organs. In addition, we did not detect the hACE2 protein in primary lung fibroblasts from any of the transgenic lines. Bisulfite sequencing analysis revealed that the EF1a promoter was hypermethylated in the genomes of transgenic animals. Extensive analysis of published works about transgenic animals indicated that EF1a transgenic constructs are frequently inactive. Thus, our case cautions against using the EF1a promoter to generate transgenic animals, as it is prone to epigenetic silencing.
Collapse
Affiliation(s)
- Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090. .,Institute of Genetic Technologies, Novosibirsk State University, Novosibirsk, Russia, 630090.
| | - Alexey Korablev
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Anastasia Ryzhkova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Evelyn Kabirova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Anna Khabarova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Timofey Lagunov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Irina Serova
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| | - Oleg Serov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia, 630090
| |
Collapse
|
3
|
Chandana BS, Mahto RK, Singh RK, Ford R, Vaghefi N, Gupta SK, Yadav HK, Manohar M, Kumar R. Epigenomics as Potential Tools for Enhancing Magnitude of Breeding Approaches for Developing Climate Resilient Chickpea. Front Genet 2022; 13:900253. [PMID: 35937986 PMCID: PMC9355295 DOI: 10.3389/fgene.2022.900253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Epigenomics has become a significant research interest at a time when rapid environmental changes are occurring. Epigenetic mechanisms mainly result from systems like DNA methylation, histone modification, and RNA interference. Epigenetic mechanisms are gaining importance in classical genetics, developmental biology, molecular biology, cancer biology, epidemiology, and evolution. Epigenetic mechanisms play important role in the action and interaction of plant genes during development, and also have an impact on classical plant breeding programs, inclusive of novel variation, single plant heritability, hybrid vigor, plant-environment interactions, stress tolerance, and performance stability. The epigenetics and epigenomics may be significant for crop adaptability and pliability to ambient alterations, directing to the creation of stout climate-resilient elegant crop cultivars. In this review, we have summarized recent progress made in understanding the epigenetic mechanisms in plant responses to biotic and abiotic stresses and have also tried to provide the ways for the efficient utilization of epigenomic mechanisms in developing climate-resilient crop cultivars, especially in chickpea, and other legume crops.
Collapse
Affiliation(s)
- B. S. Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | | | - Rebecca Ford
- Center for Planetary Health and Food Security, Griffith University, Brisbane, QLD, Australia
| | - Niloofar Vaghefi
- School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | | | | | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
4
|
Cuerda-Gil D, Hung YH, Panda K, Slotkin RK. A plant tethering system for the functional study of protein-RNA interactions in vivo. PLANT METHODS 2022; 18:75. [PMID: 35658900 PMCID: PMC9166424 DOI: 10.1186/s13007-022-00907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The sorting of RNA transcripts dictates their ultimate post-transcriptional fates, such as translation, decay or degradation by RNA interference (RNAi). This sorting of RNAs into distinct fates is mediated by their interaction with RNA-binding proteins. While hundreds of RNA binding proteins have been identified, which act to sort RNAs into different pathways is largely unknown. Particularly in plants, this is due to the lack of reliable protein-RNA artificial tethering tools necessary to determine the mechanism of protein action on an RNA in vivo. Here we generated a protein-RNA tethering system which functions on an endogenous Arabidopsis RNA that is tracked by the quantitative flowering time phenotype. Unlike other protein-RNA tethering systems that have been attempted in plants, our system circumvents the inadvertent triggering of RNAi. We successfully in vivo tethered a protein epitope, deadenylase protein and translation factor to the target RNA, which function to tag, decay and boost protein production, respectively. We demonstrated that our tethering system (1) is sufficient to engineer the downstream fate of an RNA, (2) enables the determination of any protein's function upon recruitment to an RNA, and (3) can be used to discover new interactions with RNA-binding proteins.
Collapse
Affiliation(s)
- Diego Cuerda-Gil
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Yu-Hung Hung
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kaushik Panda
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
5
|
Kar S, Bordiya Y, Rodriguez N, Kim J, Gardner EC, Gollihar JD, Sung S, Ellington AD. Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors. PLANT METHODS 2022; 18:42. [PMID: 35351174 PMCID: PMC8966344 DOI: 10.1186/s13007-022-00867-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The construction and application of synthetic genetic circuits is frequently improved if gene expression can be orthogonally controlled, relative to the host. In plants, orthogonality can be achieved via the use of CRISPR-based transcription factors that are programmed to act on natural or synthetic promoters. The construction of complex gene circuits can require multiple, orthogonal regulatory interactions, and this in turn requires that the full programmability of CRISPR elements be adapted to non-natural and non-standard promoters that have few constraints on their design. Therefore, we have developed synthetic promoter elements in which regions upstream of the minimal 35S CaMV promoter are designed from scratch to interact via programmed gRNAs with dCas9 fusions that allow activation of gene expression. RESULTS A panel of three, mutually orthogonal promoters that can be acted on by artificial gRNAs bound by CRISPR regulators were designed. Guide RNA expression targeting these promoters was in turn controlled by either Pol III (U6) or ethylene-inducible Pol II promoters, implementing for the first time a fully artificial Orthogonal Control System (OCS). Following demonstration of the complete orthogonality of the designs, the OCS was tied to cellular metabolism by putting gRNA expression under the control of an endogenous plant signaling molecule, ethylene. The ability to form complex circuitry was demonstrated via the ethylene-driven, ratiometric expression of fluorescent proteins in single plants. CONCLUSIONS The design of synthetic promoters is highly generalizable to large tracts of sequence space, allowing Orthogonal Control Systems of increasing complexity to potentially be generated at will. The ability to tie in several different basal features of plant molecular biology (Pol II and Pol III promoters, ethylene regulation) to the OCS demonstrates multiple opportunities for engineering at the system level. Moreover, given the fungibility of the core 35S CaMV promoter elements, the derived synthetic promoters can potentially be utilized across a variety of plant species.
Collapse
Affiliation(s)
- Shaunak Kar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| | - Yogendra Bordiya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Life Sciences Solutions Group, Thermo Fisher Scientific, Austin, TX, USA
| | - Nestor Rodriguez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Junghyun Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elizabeth C Gardner
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Sibum Sung
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Wang L, Xu D, Scharf K, Frank W, Leister D, Kleine T. The RNA-binding protein RBP45D of Arabidopsis promotes transgene silencing and flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1397-1415. [PMID: 34919766 DOI: 10.1111/tpj.15637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
RNA-directed DNA methylation (RdDM) helps to defend plants against invasive nucleic acids. In the canonical form of RdDM, 24-nt small interfering RNAs (siRNAs) are produced by DICER-LIKE 3 (DCL3). The siRNAs are loaded onto ARGONAUTE (AGO) proteins leading ultimately to de novo DNA methylation. Here, we introduce the Arabidopsis thaliana prors1 (LUC) transgenic system, in which 24-nt siRNAs are generated to silence the promoter-LUC construct. A forward genetic screen performed with this system identified, besides known components of RdDM (NRPD2A, RDR2, AGO4 and AGO6), the RNA-binding protein RBP45D. RBP45D is involved in CHH (where H is A, C or T) DNA methylation, and maintains siRNA production originating from the LUC transgene. RBP45D is localized to the nucleus, where it is associated with small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). RNA-Seq analysis showed that in CRISPR/Cas-mediated rbp-ko lines FLOWERING LOCUS C (FLC) mRNA levels are upregulated and several loci differentially spliced, among them FLM. In consequence, loss of RBP45D delays flowering, presumably mediated by the release of FLC levels and/or alternative splicing of FLM. Moreover, because levels and processing of transcripts of known RdDM genes are not altered in rbp-ko lines, RBP45D should have a more direct function in transgene silencing, probably independent of the canonical RdDM pathway. We suggest that RBP45D facilitates siRNA production by stabilizing either the precursor RNA or the slicer protein. Alternatively, RBP45D could be involved in chromatin modifications, participate in retention of Pol IV transcripts and/or in Pol V-dependent lncRNA retention in chromatin to enable their scaffold function.
Collapse
Affiliation(s)
- Liangsheng Wang
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Duorong Xu
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Kristin Scharf
- Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Eun K, Hwang SU, Kim M, Yoon JD, Kim E, Choi H, Kim G, Jeon HY, Kim JK, Kim JY, Hong N, Park MG, Jang J, Jeong HJ, Kim SJ, Ko BW, Lee SC, Kim H, Hyun SH. Generation of reproductive transgenic pigs of a CRISPR-Cas9-based oncogene-inducible system by somatic cell nuclear transfer. Biotechnol J 2022; 17:e2100434. [PMID: 35233982 DOI: 10.1002/biot.202100434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/06/2022]
Abstract
Alternative cancer models that are close to humans are required to create more valuable preclinical results during oncology studies. Here, we developed a new onco-pig model via developing a CRISPR-Cas9-based Conditional Polycistronic gene expression Cassette (CRI-CPC) system to control the tumor inducing simian virus 40 large T antigen (SV40LT) and oncogenic HRASG12V. After conducting somatic cell nuclear transfer (SCNT), transgenic embryos were transplanted into surrogate mothers and five male piglets were born. Umbilical cord analysis confirmed that all piglets were transgenic. Two of them survived, and they expressed a detectable green fluorescence. We tested whether our CRI-CPC models were naturally fertile and whether the CRI-CPC system was stably transferred to the offspring. By mating with a normal female pig, four offspring piglets were successfully produced. Among them, only three male piglets were transgenic. Finally, we tested their applicability as cancer models after transduction of Cas9 into fibroblasts from each CRI-CPC pig in vitro, resulting in cell acquisition of cancerous characteristics via the induction of oncogene expression. These results showed that our new CRISPR-Cas9-based onco-pig model was successfully developed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kiyoung Eun
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Junchul David Yoon
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Gahye Kim
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| | - Hee-Young Jeon
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun-Kyum Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung Yun Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Nayoung Hong
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min-Gi Park
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Junseok Jang
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyeon Ju Jeong
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sung Jin Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Bong-Woo Ko
- Songbaek Pig Farm, Jeju, 63014, Republic of Korea
| | - Sang Chul Lee
- Cronex Corporation, Cheongju, 28174, Republic of Korea
| | - Hyunggee Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.,Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Korea University, Seongbuk-gu.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, 28644, Republic of Korea
| |
Collapse
|
8
|
Zhao H, Wang C, Lan H. A bHLH transcription factor from Chenopodium glaucum confers drought tolerance to transgenic maize by positive regulation of morphological and physiological performances and stress-responsive genes' expressions. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:74. [PMID: 37309519 PMCID: PMC10236094 DOI: 10.1007/s11032-021-01267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factor has been shown to play an important role in various physiological processes. However, its functions and mechanisms in drought tolerance still remain poorly understood. Here, we reported a bHLH transcription factor - CgbHLH001 - from Chenopodium glaucum, which was able to confer drought tolerance in maize. CgbHLH001-overexpressed maize lines exhibited drought-tolerant phenotype and improved ear traits by accumulating the contents of soluble sugar and proline and elevating the activities of antioxidant enzymes (SOD, POD, and CAT) under drought stress, accompanying with the upregulation of some stress-related genes, which may balance the redox and osmotic homeostasis compared with the non-transgenic and CgbHLH001-RNAi plants. These findings suggest that CgbHLH001 can confer drought tolerance and has the potential for utilization in improving drought resistance in maize breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01267-4.
Collapse
Affiliation(s)
- Haiju Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Changhai Wang
- Join Hope Seeds Industry Co., Ltd., Changji, 831199 China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| |
Collapse
|
9
|
Yakovenko I, Agronin J, Smith LC, Oren M. Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination. Front Immunol 2021; 12:709165. [PMID: 34394111 PMCID: PMC8355894 DOI: 10.3389/fimmu.2021.709165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
The appearance of adaptive immunity in jawed vertebrates is termed the immunological 'Big Bang' because of the short evolutionary time over which it developed. Underlying it is the recombination activating gene (RAG)-based V(D)J recombination system, which initiates the sequence diversification of the immunoglobulins and lymphocyte antigen receptors. It was convincingly argued that the RAG1 and RAG2 genes originated from a single transposon. The current dogma postulates that the V(D)J recombination system was established by the split of a primordial vertebrate immune receptor gene into V and J segments by a RAG1/2 transposon, in parallel with the domestication of the same transposable element in a separate genomic locus as the RAG recombinase. Here, based on a new interpretation of previously published data, we propose an alternative evolutionary hypothesis suggesting that two different elements, a RAG1/2 transposase and a Transib transposon invader with RSS-like terminal inverted repeats, co-evolved to work together, resulting in a functional recombination process. This hypothesis offers an alternative understanding of the acquisition of recombinase function by RAGs and the origin of the V(D)J system.
Collapse
Affiliation(s)
- Iryna Yakovenko
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Jacob Agronin
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
10
|
Kang DR, Zhu Y, Li SL, Ai PH, Khan MA, Ding HX, Wang Y, Wang ZC. Transcriptome analysis of differentially expressed genes in chrysanthemum MET1 RNA interference lines. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1455-1468. [PMID: 34366589 PMCID: PMC8295425 DOI: 10.1007/s12298-021-01022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 05/14/2023]
Abstract
UNLABELLED DNA methylation is the most important epigenetic modification involved in many essential biological processes. MET1 is one of DNA methyltransferases that affect the level of methylation in the entire genome. To explore the effect of MET1 gene silencing on gene expression profile of Chrysanthemum × morifolium 'Zijingling'. The stem section and leaves at the young stage were taken for transcriptome sequencing. MET1-RNAi leaves had 8 differentially expressed genes while 156 differentially expressed genes were observed in MET1-RNAi stem compared with control leaves and stem. These genes encode many key proteins in plant biological processes, such as transcription factors, signal transduction mechanisms, secondary metabolite synthesis, transport and catabolism and interaction. In general, 34.58% of the differentially expressed genes in leaves and stems were affected by the reduction of the MET1 gene. The differentially expressed genes in stem and leaves of transgenic plants went through significant changes. We found adequate amount of candidate genes associated with flowering, however, the number of genes with significant differences between transgenic and control lines was not too high. Several flowering related genes were screened out for gene expression verification and all of them were obseved as consistent with transcriptome data. These candidate genes may play important role in flowering variation of chrysanthemum. This study reveals the mechanism of CmMET1 interference on the growth and development of chrysanthemum at the transcriptional level, which provides the basis for further research on the epigenetic regulation mechanism in flower induction and development. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01022-1.
Collapse
Affiliation(s)
- Dong-ru Kang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Yi Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Shuai-lei Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Peng-hui Ai
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Muhammad Ayoub Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Hong-xu Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Ying Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| | - Zi-cheng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Plant Germplasm Resources and Genetic Laboratory, Kaifeng Key Laboratory of Chrysanthemum Biology, School of Life Sciences, Henan University. Jinming Road, Kaifeng, 475004 Henan China
| |
Collapse
|
11
|
Saad B, Ghareeb B, Kmail A. Metabolic and Epigenetics Action Mechanisms of Antiobesity Medicinal Plants and Phytochemicals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9995903. [PMID: 34211580 PMCID: PMC8208872 DOI: 10.1155/2021/9995903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
Abstract
Ever-growing research efforts are demonstrating the potential of medicinal plants and their phytochemicals to prevent and manage obesity, either individually or synergistically. Multiple combinations of phytochemicals can result in a synergistic activity that increases their beneficial effects at molecular, cellular, metabolic, and temporal levels, offering advantages over chemically synthesized drug-based treatments. Herbs and their derived compounds have the potential for controlling appetite, inhibiting pancreatic lipase activity, stimulating thermogenesis and lipid metabolism, increasing satiety, promoting lipolysis, regulating adipogenesis, and inducing apoptosis in adipocytes. Furthermore, targeting adipocyte life cycle using various dietary bioactives that affect different stages of adipocyte life cycle represents also an important target in the development of new antiobesity drugs. In this regard, different stages of adipocyte development that are targeted by antiobesity drugs can include preadipocytes, maturing preadipocytes, and mature adipocytes. Various herbal-derived active compounds, such as capsaicin, genistein, apigenin, luteolin, kaempferol, myricetin, quercetin, docosahexaenoic acid, quercetin, resveratrol, and ajoene, affect adipocytes during specific stages of development, resulting in either inhibition of adipogenesis or induction of apoptosis. Although numerous molecular targets that can be used for both treatment and prevention of obesity have been identified, targeted single cellular receptor or pathway has resulted in limited success. In this review, we discuss the state-of-the-art knowledge about antiobesity medicinal plants and their active compounds and their effects on several cellular, molecular, and metabolic pathways simultaneously with multiple phytochemicals through synergistic functioning which might be an appropriate approach to better management of obesity. In addition, epigenetic mechanisms (acetylation, methylation, miRNAs, ubiquitylation, phosphorylation, and chromatin packaging) of phytochemicals and their preventive and therapeutic perspective are explored in this review.
Collapse
Affiliation(s)
- Bashar Saad
- Faculties of Medicine and Arts and Sciences, Arab American University, P.O. Box 240, Jenin, State of Palestine
- Qasemi Research Center, Al-Qasemi Academy, P.O. Box 124, 30100 Baqa Al-Gharbia, Israel
| | - Bilal Ghareeb
- Faculties of Medicine and Arts and Sciences, Arab American University, P.O. Box 240, Jenin, State of Palestine
| | - Abdalsalam Kmail
- Faculties of Medicine and Arts and Sciences, Arab American University, P.O. Box 240, Jenin, State of Palestine
| |
Collapse
|
12
|
Sharma S, Sundaresha S, Bhardwaj V. Biotechnological approaches in management of oomycetes diseases. 3 Biotech 2021; 11:274. [PMID: 34040923 DOI: 10.1007/s13205-021-02810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/24/2021] [Indexed: 11/26/2022] Open
Abstract
Plant pathogenic oomycetes cause significant impact on agriculture and, therefore, their management is utmost important. Though conventional methods to combat these pathogens (resistance breeding and use of fungicides) are available but these are limited by the availability of resistant cultivars due to evolution of new pathogenic races, development of resistance in the pathogens against agrochemicals and their potential hazardous effects on the environment and human health. This has fuelled a continual search for novel and alternate strategies for management of phytopathogens. The recent advances in oomycetes genome (Phytophthora infestans, P. ramorum, P. sojae, Pythium ultimum, Albugo candida etc.) would further help in understanding host-pathogen interactions essentially needed for designing effective management strategies. In the present communication the novel and alternate strategies for the management of oomycetes diseases are discussed.
Collapse
Affiliation(s)
- Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - S Sundaresha
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| |
Collapse
|
13
|
Ma M, Chen X, Yin Y, Fan R, Li B, Zhan Y, Zeng F. DNA Methylation Silences Exogenous Gene Expression in Transgenic Birch Progeny. FRONTIERS IN PLANT SCIENCE 2020; 11:523748. [PMID: 33414793 PMCID: PMC7783445 DOI: 10.3389/fpls.2020.523748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/28/2020] [Indexed: 05/04/2023]
Abstract
The genetic stability of exogenous genes in the progeny of transgenic trees is extremely important in forest breeding; however, it remains largely unclear. We selected transgenic birch (Betula platyphylla) and its hybrid F1 progeny to investigate the expression stability and silencing mechanism of exogenous genes. We found that the exogenous genes of transgenic birch could be transmitted to their offspring through sexual reproduction. The exogenous genes were segregated during genetic transmission. The hybrid progeny of transgenic birch WT1×TP22 (184) and WT1×TP23 (212) showed higher Bgt expression and greater insect resistance than their parents. However, the hybrid progeny of transgenic birch TP23×TP49 (196) showed much lower Bgt expression, which was only 13.5% of the expression in its parents. To elucidate the mechanism underlying the variation in gene expression between the parents and progeny, we analyzed the methylation rates of Bgt in its promoter and coding regions. The hybrid progeny with normally expressed exogenous genes showed much lower methylation rates (0-29%) than the hybrid progeny with silenced exogenous genes (32.35-45.95%). These results suggest that transgene silencing in the progeny is mainly due to DNA methylation at cytosine residues. We further demonstrated that methylation in the promoter region, rather than in the coding region, leads to gene silencing. We also investigated the relative expression levels of three methyltransferase genes: BpCMT, BpDRM, and BpMET. The transgenic birch line 196 with a silenced Gus gene showed, respectively, 2.54, 9.92, and 4.54 times higher expression levels of BpCMT, BpDRM, and BpMET than its parents. These trends are consistent with and corroborate the high methylation levels of exogenous genes in the transgenic birch line 196. Therefore, our study suggests that DNA methylation in the promoter region leads to silencing of exogenous genes in transgenic progeny of birch.
Collapse
Affiliation(s)
- Minghao Ma
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xiaohui Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yibo Yin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ruixin Fan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Bo Li
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yaguang Zhan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Fansuo Zeng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
14
|
Belcher MS, Vuu KM, Zhou A, Mansoori N, Agosto Ramos A, Thompson MG, Scheller HV, Loqué D, Shih PM. Design of orthogonal regulatory systems for modulating gene expression in plants. Nat Chem Biol 2020; 16:857-865. [PMID: 32424304 DOI: 10.1038/s41589-020-0547-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/09/2020] [Indexed: 11/08/2022]
Abstract
Agricultural biotechnology strategies often require the precise regulation of multiple genes to effectively modify complex plant traits. However, most efforts are hindered by a lack of characterized tools that allow for reliable and targeted expression of transgenes. We have successfully engineered a library of synthetic transcriptional regulators that modulate expression strength in planta. By leveraging orthogonal regulatory systems from Saccharomyces spp., we have developed a strategy for the design of synthetic activators, synthetic repressors, and synthetic promoters and have validated their use in Nicotiana benthamiana and Arabidopsis thaliana. This characterization of contributing genetic elements that dictate gene expression represents a foundation for the rational design of refined synthetic regulators. Our findings demonstrate that these tools provide variation in transcriptional output while enabling the concerted expression of multiple genes in a tissue-specific and environmentally responsive manner, providing a basis for generating complex genetic circuits that process endogenous and environmental stimuli.
Collapse
Affiliation(s)
- Michael S Belcher
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Khanh M Vuu
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andy Zhou
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Nasim Mansoori
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Amanda Agosto Ramos
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mitchell G Thompson
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Henrik V Scheller
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dominique Loqué
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Patrick M Shih
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Plant Biology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
15
|
Eun K, Hong N, Jeong YW, Park MG, Hwang SU, Jeong YIK, Choi EJ, Olsson PO, Hwang WS, Hyun SH, Kim H. Transcriptional activities of human elongation factor-1α and cytomegalovirus promoter in transgenic dogs generated by somatic cell nuclear transfer. PLoS One 2020; 15:e0233784. [PMID: 32492024 PMCID: PMC7269240 DOI: 10.1371/journal.pone.0233784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Recent advances in somatic cell nuclear transfer (SCNT) in canines facilitate the production of canine transgenic models. Owing to the importance of stable and strong promoter activity in transgenic animals, we tested human elongation factor 1α (hEF1α) and cytomegalovirus (CMV) promoter sequences in SCNT transgenic dogs. After transfection, transgenic donor fibroblasts with the hEF1α-enhanced green fluorescence protein (EGFP) transgene were successfully isolated using fluorescence-activated cell sorting (FACS). We obtained four puppies, after SCNT, and identified three puppies as being transgenic using PCR analysis. Unexpectedly, EGFP regulated by hEF1α promoter was not observed at the organismal and cellular levels in these transgenic dogs. EGFP expression was rescued by the inhibition of DNA methyltransferases, implying that the hEF1α promoter is silenced by DNA methylation. Next, donor cells with CMV-EGFP transgene were successfully established and SCNT was performed. Three puppies of six born puppies were confirmed to be transgenic. Unlike hEF1α-regulated EGFP, CMV-regulated EGFP was strongly detectable at both the organismal and cellular levels in all transgenic dogs, even after 19 months. In conclusion, our study suggests that the CMV promoter is more suitable, than the hEF1α promoter, for stable transgene expression in SCNT-derived transgenic canine model.
Collapse
Affiliation(s)
- Kiyoung Eun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Nayoung Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Yeon Woo Jeong
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Min Gi Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Seowon-gu, Cheongju, Republic of Korea
| | - Yeon I. K. Jeong
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Eun Ji Choi
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - P. Olof Olsson
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Woo Suk Hwang
- Sooam Biotech Research Foundation, Guro-gu, Seoul, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Seowon-gu, Cheongju, Republic of Korea
- Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Seowon-gu, Cheongju, Republic of Korea
- * E-mail: (SHH); (HK)
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- Institute of Animal Molecular Biotechnology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
- * E-mail: (SHH); (HK)
| |
Collapse
|
16
|
Fan X, Chen J, Wu Y, Teo C, Xu G, Fan X. Genetic and Global Epigenetic Modification, Which Determines the Phenotype of Transgenic Rice? Int J Mol Sci 2020; 21:E1819. [PMID: 32155767 PMCID: PMC7084647 DOI: 10.3390/ijms21051819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/17/2023] Open
Abstract
Transgenic technologies have been applied to a wide range of biological research. However, information on the potential epigenetic effects of transgenic technology is still lacking. Here, we show that the transgenic process can simultaneously induce both genetic and epigenetic changes in rice. We analyzed genetic, epigenetic, and phenotypic changes in plants subjected to tissue culture regeneration, using transgenic lines expressing the same coding sequence from two different promoters in transgenic lines of two rice cultivars: Wuyunjing7 (WYJ7) and Nipponbare (NP). We determined the expression of OsNAR2.1 in two overexpression lines generated from the two cultivars, and in the RNA interference (RNAi) OsNAR2.1 line in NP. DNA methylation analyses were performed on wild-type cultivars (WYJ7 and NP), regenerated lines (CK, T0 plants), segregation-derived wild-type from pOsNAR2.1-OsNAR2.1 (SDWT), pOsNAR2.1-OsNAR2.1, pUbi-OsNAR2.1, and RNAi lines. Interestingly, we observed global methylation decreased in the T0 regenerated line of WYJ7 (CK-WJY7) and pOsNAR2.1-OsNAR2.1 lines but increased in pUbi-OsNAR2.1 and RNAi lines of NP. Furthermore, the methylation pattern in SDWT returned to the WYJ7 level after four generations. Phenotypic changes were detected in all the generated lines except for SDWT. Global methylation was found to decrease by 13% in pOsNAR2.1-OsNAR2.1 with an increase in plant height of 4.69% compared with WYJ7, and increased by 18% in pUbi-OsNAR2.1 with an increase of 17.36% in plant height compared with NP. This suggests an absence of a necessary link between global methylation and the phenotype of transgenic plants with OsNAR2.1 gene over-expression. However, epigenetic changes can influence phenotype during tissue culture, as seen in the massive methylation in CK-WYJ7, T0 regenerated lines, resulting in decreased plant height compared with the wild-type, in the absence of a transformed gene. We conclude that in the transgenic lines the phenotype is mainly determined by the nature and function of the transgene after four generations of transformation, while the global epigenetic modification is dependent on the genetic background. Our research suggests an innovative insight in explaining the reason behind the occurrence of transgenic plants with random and undesirable phenotypes.
Collapse
Affiliation(s)
- Xiaoru Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China; (X.F.); (J.C.); (G.X.)
| | - Jingguang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China; (X.F.); (J.C.); (G.X.)
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Yufeng Wu
- Bioinformatics Center, Nanjing Agricultural University, Nanjing 210095, China;
| | - CheeHow Teo
- Centre of Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia;
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China; (X.F.); (J.C.); (G.X.)
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China; (X.F.); (J.C.); (G.X.)
| |
Collapse
|
17
|
Choudhary MN, Friedman RZ, Wang JT, Jang HS, Zhuo X, Wang T. Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biol 2020; 21:16. [PMID: 31973766 PMCID: PMC6979391 DOI: 10.1186/s13059-019-1916-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/08/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) make up half of mammalian genomes and shape genome regulation by harboring binding sites for regulatory factors. These include binding sites for architectural proteins, such as CTCF, RAD21, and SMC3, that are involved in tethering chromatin loops and marking domain boundaries. The 3D organization of the mammalian genome is intimately linked to its function and is remarkably conserved. However, the mechanisms by which these structural intricacies emerge and evolve have not been thoroughly probed. RESULTS Here, we show that TEs contribute extensively to both the formation of species-specific loops in humans and mice through deposition of novel anchoring motifs, as well as to the maintenance of conserved loops across both species through CTCF binding site turnover. The latter function demonstrates the ability of TEs to contribute to genome plasticity and reinforce conserved genome architecture as redundant loop anchors. Deleting such candidate TEs in human cells leads to the collapse of conserved loop and domain structures. These TEs are also marked by reduced DNA methylation and bear mutational signatures of hypomethylation through evolutionary time. CONCLUSIONS TEs have long been considered a source of genetic innovation. By examining their contribution to genome topology, we show that TEs can contribute to regulatory plasticity by inducing redundancy and potentiating genetic drift locally while conserving genome architecture globally, revealing a paradigm for defining regulatory conservation in the noncoding genome beyond classic sequence-level conservation.
Collapse
Affiliation(s)
- Mayank Nk Choudhary
- The Edison Family Center for Genome Sciences & Systems Biology, Department of Genetics, Washington University, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63110, USA
| | - Ryan Z Friedman
- The Edison Family Center for Genome Sciences & Systems Biology, Department of Genetics, Washington University, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63110, USA
| | - Julia T Wang
- The Edison Family Center for Genome Sciences & Systems Biology, Department of Genetics, Washington University, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63110, USA
| | - Hyo Sik Jang
- The Edison Family Center for Genome Sciences & Systems Biology, Department of Genetics, Washington University, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63110, USA
| | - Xiaoyu Zhuo
- The Edison Family Center for Genome Sciences & Systems Biology, Department of Genetics, Washington University, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63110, USA
| | - Ting Wang
- The Edison Family Center for Genome Sciences & Systems Biology, Department of Genetics, Washington University, 4515 McKinley Avenue, Campus Box 8510, St. Louis, MO, 63110, USA.
| |
Collapse
|
18
|
Taranenko AM. GENETIC TRANSFORMATION OF PLANTS CONTAINING THE SYNTHETIC cry1Ab GENE ENCODING RESISTANCE TO LEPIDOPTERAN PESTS. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.06.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
19
|
Maurer-Alcalá XX, Nowacki M. Evolutionary origins and impacts of genome architecture in ciliates. Ann N Y Acad Sci 2019; 1447:110-118. [PMID: 31074010 PMCID: PMC6767857 DOI: 10.1111/nyas.14108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/18/2019] [Accepted: 04/03/2019] [Indexed: 01/24/2023]
Abstract
Genome architecture is well diversified among eukaryotes in terms of size and content, with many being radically shaped by ancient and ongoing genome conflicts with transposable elements (e.g., the large transposon‐rich genomes common among plants). In ciliates, a group of microbial eukaryotes with distinct somatic and germ‐line genomes present in a single cell, the consequences of these genome conflicts are most apparent in their developmentally programmed genome rearrangements. This complicated developmental phenomenon has largely overshadowed and outpaced our understanding of how germ‐line and somatic genome architectures have influenced the evolutionary dynamism and potential in these taxa. In our review, we highlight three central concepts: how the evolution of atypical ciliate germ‐line genome architectures is linked to ancient genome conflicts; how the complex, epigenetically guided transformation of germline to soma during development can generate widespread genetic variation; and how these features, coupled with their unusual life cycle, have increased the rate of molecular evolution linked to genome architecture in these taxa.
Collapse
Affiliation(s)
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Stochasticity in transcriptional expression of a negative regulator of Arabidopsis ABA network. 3 Biotech 2019; 9:15. [PMID: 30622853 DOI: 10.1007/s13205-018-1542-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/16/2018] [Indexed: 10/27/2022] Open
Abstract
Stably heritable spatiotemporal co/over-expression of distinct transcriptional regulators across generations is a desired target as they signal traffic in the cell. Here, the stability and expression pattern of AtHB7 (Arabidopsis homeodomain-leucine zipper class I) cDNA was characterized in 220 random population of transformed tomato clones where no AtHB7 orthologous has been identified in to date. Integration of p35S::AtHB7 casette was tested by the amplification of the stretches (700/425 bp) in the target by NPT II/AtHB7 oligos. Transcriptional expression pattern for the amplicons of the specific transcripts in the leaf tissues of transformants were determined by qRT-PCR. Transgene copy number was negatively correlated with transgene expression level, yet a majority of transformants (78%) carried single-copy of transgene. About 1:3 of the lines containing two-copy inserts showed less transcript expression. Heterologous CaMV 35S promoter drove AtHB7, illuminated no penalty on transgene expression levels, stability or plant phenotype under drought stress. Integration and expression analysis of transcription factors is of great significance for reliable prediction of gene dosing/functions in plant genomes so as to sustain breeding under abiotic stress to guarantee food security.
Collapse
|
21
|
Alhaji SY, Ngai SC, Abdullah S. Silencing of transgene expression in mammalian cells by DNA methylation and histone modifications in gene therapy perspective. Biotechnol Genet Eng Rev 2018; 35:1-25. [PMID: 30514178 DOI: 10.1080/02648725.2018.1551594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.
Collapse
Affiliation(s)
- Suleiman Yusuf Alhaji
- a Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Universiti Putra Malaysia, UPM , Serdang , Malaysia.,b Department of Human Anatomy , College of Medical Sciences, Abubakar Tafawa Balewa University Bauchi, ATBU , Bauchi , Nigeria
| | - Siew Ching Ngai
- c School of Biosciences, Faculty of Science , University of Nottingham Malaysia , Semenyih , Malaysia
| | - Syahril Abdullah
- a Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Universiti Putra Malaysia, UPM , Serdang , Malaysia.,d UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience , Universiti Putra Malaysia, UPM , Serdang , Malaysia
| |
Collapse
|
22
|
Pascual MB, Molina-Rueda JJ, Cánovas FM, Gallardo F. Overexpression of a cytosolic NADP+-isocitrate dehydrogenase causes alterations in the vascular development of hybrid poplars. TREE PHYSIOLOGY 2018; 38:992-1005. [PMID: 29920606 DOI: 10.1093/treephys/tpy044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Cytosolic NADP+-isocitrate dehydrogenase (ICDH) is one of the major enzymes involved in the production of 2-oxoglutarate for amino acid biosynthesis in plants. In most plants studied, ICDH is encoded by either one gene or a small gene family, and the protein sequence has been highly conserved during evolution, suggesting it plays different and essential roles in metabolism and differentiation. To elucidate the role of ICDH in hybrid poplar (Populus tremula x P. alba), transgenic plants overexpressing the Pinus pinaster gene were generated. Overexpression of ICDH resulted in hybrid poplar (Populus tremula × P. alba) trees with higher expression levels of the endogenous ICDH gene and higher enzyme content than control untransformed plants. Transgenic poplars also showed an increased expression of glutamine synthetase (GS1.3), glutamate decarboxylase (GAD) and other genes associated with vascular differentiation. Furthermore, these plants exhibited increased growth in height, longer internodes and enhanced vascular development in young leaves and the apical region of stem. Modifications in amino acid and organic acid content were observed in young leaves of the transgenic lines, suggesting an increased biosynthesis of amino acids for building new structures and also for transport to other sink organs, as expanding leaves or young stems. Taken together, these results support an important role of ICDH in plant growth and vascular development.
Collapse
Affiliation(s)
- María Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Juan Jesús Molina-Rueda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Fernando Gallardo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|
23
|
El Baidouri M, Kim KD, Abernathy B, Li YH, Qiu LJ, Jackson SA. Genic C-Methylation in Soybean Is Associated with Gene Paralogs Relocated to Transposable Element-Rich Pericentromeres. MOLECULAR PLANT 2018; 11:485-495. [PMID: 29476915 DOI: 10.1016/j.molp.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Most plants are polyploid due to whole-genome duplications (WGD) and can thus have duplicated genes. Following a WGD, paralogs are often fractionated (lost) and few duplicate pairs remain. Little attention has been paid to the role of DNA methylation in the functional divergence of paralogous genes. Using high-resolution methylation maps of accessions of domesticated and wild soybean, we show that in soybean, a recent paleopolyploid with many paralogs, DNA methylation likely contributed to the elimination of genetic redundancy of polyploidy-derived gene paralogs. Transcriptionally silenced paralogs exhibit particular genomic features as they are often associated with proximal transposable elements (TEs) and are preferentially located in pericentromeres, likely due to gene movement during evolution. Additionally, we provide evidence that gene methylation associated with proximal TEs is implicated in the divergence of expression profiles between orthologous genes of wild and domesticated soybean, and within populations.
Collapse
Affiliation(s)
- Moaine El Baidouri
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA.
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA; Corporate R&D, LG Chem, LG Science Park, 30 Magokjungang 10-ro, Gangseo-gu, Seoul 07796, Republic of Korea.
| | - Brian Abernathy
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA.
| |
Collapse
|
24
|
Advancing Agrobacterium-Based Crop Transformation and Genome Modification Technology for Agricultural Biotechnology. Curr Top Microbiol Immunol 2018; 418:489-507. [PMID: 29959543 DOI: 10.1007/82_2018_97] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The last decade has seen significant strides in Agrobacterium-mediated plant transformation technology. This has not only expanded the number of crop species that can be transformed by Agrobacterium, but has also made it possible to routinely transform several recalcitrant crop species including cereals (e.g., maize, sorghum, and wheat). However, the technology is limited by the random nature of DNA insertions, genotype dependency, low frequency of quality events, and variation in gene expression arising from genomic insertion sites. A majority of these deficiencies have now been addressed by improving the frequency of quality events, developing genotype-independent transformation capability in maize, developing an Agrobacterium-based site-specific integration technology for precise gene targeting, and adopting Agrobacterium-delivered CRISPR-Cas genes for gene editing. These improved transformation technologies are discussed in detail in this chapter.
Collapse
|
25
|
Tian ZW, Xu DH, Wang TY, Wang XY, Xu HY, Zhao CP, Xu GH. Identification of a potent MAR element from the human genome and assessment of its activity in stably transfected CHO cells. J Cell Mol Med 2017; 22:1095-1102. [PMID: 29077269 PMCID: PMC5783848 DOI: 10.1111/jcmm.13361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/25/2017] [Indexed: 01/23/2023] Open
Abstract
Low-level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR-6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR-6 on transgene expression in recombinant CHO cells and found one potent MAR element that can significantly increase transgene expression. Two MARs, including the human CSP-B MAR element and DHFR intron MAR element from CHO cells, were cloned and inserted downstream of the poly(A) site in a eukaryotic vector. The constructs were transfected into CHO cells, and the expression levels and stability of eGFP were detected by flow cytometry. The three MAR sequences can be ranked in terms of overall eGFP expression, in decreasing order, as follows: human CSP-B, DHFR intron MAR element and MAR-6. Additionally, as expected, the three MAR-containing vectors showed higher transfection efficiencies and transient transgene expression in comparison with those of the non-MAR-containing vector. Bioinformatics analysis indicated that the NFAT and VIBP elements within MAR sequences may contribute to the enhancement of eGFP expression. In conclusion, the human CSP-B MAR element can improve transgene expression and its effects may be related to the NFAT and VIBP elements.
Collapse
Affiliation(s)
- Zheng-Wei Tian
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dan-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hong-Yan Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Guang-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
26
|
Zhao CP, Guo X, Chen SJ, Li CZ, Yang Y, Zhang JH, Chen SN, Jia YL, Wang TY. Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells. Sci Rep 2017; 7:42805. [PMID: 28216629 PMCID: PMC5316954 DOI: 10.1038/srep42805] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022] Open
Abstract
Matrix attachment regions (MARs) are cis-acting DNA elements that can increase transgene expression levels in a CHO cell expression system. To investigate the effects of MAR combinations on transgene expression and the underlying regulatory mechanisms, we generated constructs in which the enhanced green fluorescent protein (eGFP) gene flanked by different combinations of human β-interferon and β-globin MAR (iMAR and gMAR, respectively), which was driven by the cytomegalovirus (CMV) or simian virus (SV) 40 promoter. These were transfected into CHO-K1 cells, which were screened with geneticin; eGFP expression was detected by flow cytometry. The presence of MAR elements increased transfection efficiency and transient and stably expression of eGFP expression under both promoters; the level was higher when the two MARs differed (i.e., iMAR and gMAR) under the CMV but not the SV40 promoter. For the latter, two gMARs showed the highest activity. We also found that MARs increased the ratio of stably transfected positive colonies. These results indicate that combining the CMV promoter with two different MAR elements or the SV40 promoter with two gMARs is effective for inducing high expression level and stability of transgenes.
Collapse
Affiliation(s)
- Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Xiao Guo
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Si-Jia Chen
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Chang-Zheng Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Yun Yang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Jun-He Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Shao-Nan Chen
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Yan-Long Jia
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| |
Collapse
|
27
|
Kurniasih SD, Yamasaki T, Kong F, Okada S, Widyaningrum D, Ohama T. UV-mediated Chlamydomonas mutants with enhanced nuclear transgene expression by disruption of DNA methylation-dependent and independent silencing systems. PLANT MOLECULAR BIOLOGY 2016; 92:629-641. [PMID: 27761764 DOI: 10.1007/s11103-016-0529-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/10/2016] [Indexed: 06/06/2023]
Abstract
In this investigation, we succeeded to generate Chlamydomonas mutants that bear dramatically enhanced ability for transgene expression. To yield these mutants, we utilized DNA methyltransferase deficient strain. These mutants must be useful as a plant cell factory. Chlamydomonas reinhardtii (hereafter Chlamydomonas) is a green freshwater microalga. It is a promising cell factory for the production of recombinant proteins because it rapidly grows in simple salt-based media. However, expression of transgenes integrated into the nuclear genome of Chlamydomonas is very poor, probably because of severe transcriptional silencing irrespective of the genomic position. In this study, we generated Chlamydomonas mutants by ultraviolet (UV)-mediated mutagenesis of maintenance-type DNA methyltransferase gene (MET1)-null mutants to overcome this disadvantage. We obtained several mutants with an enhanced ability to overexpress various transgenes irrespective of their integrated genomic positions. In addition, transformation efficiencies were significantly elevated. Our findings indicate that in addition to mechanisms involving MET1, transgene expression is regulated by a DNA methylation-independent transgene silencing system in Chlamydomonas. This is in agreement with the fact that DNA methylation occurs rarely in this organism. The generated mutants may be useful for the low-cost production of therapeutic proteins and eukaryotic enzymes based on their rapid growth in simple salt-based media.
Collapse
Affiliation(s)
- Sari Dewi Kurniasih
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kochi, 782-8502, Japan
| | - Tomohito Yamasaki
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kochi, 782-8502, Japan
| | - Fantao Kong
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kochi, 782-8502, Japan
| | - Sigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural & Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Dwiyantari Widyaningrum
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kochi, 782-8502, Japan
| | - Takeshi Ohama
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kochi, 782-8502, Japan.
| |
Collapse
|
28
|
Szitenberg A, Cha S, Opperman CH, Bird DM, Blaxter ML, Lunt DH. Genetic Drift, Not Life History or RNAi, Determine Long-Term Evolution of Transposable Elements. Genome Biol Evol 2016; 8:2964-2978. [PMID: 27566762 PMCID: PMC5635653 DOI: 10.1093/gbe/evw208] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2016] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) are a major source of genome variation across the branches of life. Although TEs may play an adaptive role in their host's genome, they are more often deleterious, and purifying selection is an important factor controlling their genomic loads. In contrast, life history, mating system, GC content, and RNAi pathways have been suggested to account for the disparity of TE loads in different species. Previous studies of fungal, plant, and animal genomes have reported conflicting results regarding the direction in which these genomic features drive TE evolution. Many of these studies have had limited power, however, because they studied taxonomically narrow systems, comparing only a limited number of phylogenetically independent contrasts, and did not address long-term effects on TE evolution. Here, we test the long-term determinants of TE evolution by comparing 42 nematode genomes spanning over 500 million years of diversification. This analysis includes numerous transitions between life history states, and RNAi pathways, and evaluates if these forces are sufficiently persistent to affect the long-term evolution of TE loads in eukaryotic genomes. Although we demonstrate statistical power to detect selection, we find no evidence that variation in these factors influence genomic TE loads across extended periods of time. In contrast, the effects of genetic drift appear to persist and control TE variation among species. We suggest that variation in the tested factors are largely inconsequential to the large differences in TE content observed between genomes, and only by these large-scale comparisons can we distinguish long-term and persistent effects from transient or random changes.
Collapse
Affiliation(s)
- Amir Szitenberg
- Evolutionary Biology Group, School of Environmental Sciences, University of Hull, England, United Kingdom The Dead Sea and Arava Science Center, Israel
| | - Soyeon Cha
- Department of Plant Pathology, North Carolina State University
| | | | - David M Bird
- Department of Plant Pathology, North Carolina State University
| | - Mark L Blaxter
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Scotland
| | - David H Lunt
- Evolutionary Biology Group, School of Environmental Sciences, University of Hull, England, United Kingdom
| |
Collapse
|
29
|
Yusibov V, Kushnir N, Streatfield SJ. Antibody Production in Plants and Green Algae. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:669-701. [PMID: 26905655 DOI: 10.1146/annurev-arplant-043015-111812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware 19711; , ,
| | | |
Collapse
|
30
|
Okumura A, Shimada A, Yamasaki S, Horino T, Iwata Y, Koizumi N, Nishihara M, Mishiba KI. CaMV-35S promoter sequence-specific DNA methylation in lettuce. PLANT CELL REPORTS 2016; 35:43-51. [PMID: 26373653 DOI: 10.1007/s00299-015-1865-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/08/2015] [Accepted: 09/03/2015] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE We found 35S promoter sequence-specific DNA methylation in lettuce. Additionally, transgenic lettuce plants having a modified 35S promoter lost methylation, suggesting the modified sequence is subjected to the methylation machinery. We previously reported that cauliflower mosaic virus 35S promoter-specific DNA methylation in transgenic gentian (Gentiana triflora × G. scabra) plants occurs irrespective of the copy number and the genomic location of T-DNA, and causes strong gene silencing. To confirm whether 35S-specific methylation can occur in other plant species, transgenic lettuce (Lactuca sativa L.) plants with a single copy of the 35S promoter-driven sGFP gene were produced and analyzed. Among 10 lines of transgenic plants, 3, 4, and 3 lines showed strong, weak, and no expression of sGFP mRNA, respectively. Bisulfite genomic sequencing of the 35S promoter region showed hypermethylation at CpG and CpWpG (where W is A or T) sites in 9 of 10 lines. Gentian-type de novo methylation pattern, consisting of methylated cytosines at CpHpH (where H is A, C, or T) sites, was also observed in the transgenic lettuce lines, suggesting that lettuce and gentian share similar methylation machinery. Four of five transgenic lettuce lines having a single copy of a modified 35S promoter, which was modified in the proposed core target of de novo methylation in gentian, exhibited 35S hypomethylation, indicating that the modified sequence may be the target of the 35S-specific methylation machinery.
Collapse
Affiliation(s)
- Azusa Okumura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
- Miyoshi Co., Ltd., 187 Kamisasao, Kobuchizawa, Hokuto, Yamanashi, 408-0041, Japan
| | - Asahi Shimada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Satoshi Yamasaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
- Tempstaff People Co., Ltd, 1-5 Shinsakae, Naka-ku, Nagoya, Aichi, 460-8482, Japan
| | - Takuya Horino
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Yuji Iwata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Nozomu Koizumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitami, Iwate, 024-0003, Japan
| | - Kei-ichiro Mishiba
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen, Nakaku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
31
|
Nguyen QA, Lee DS, Jung J, Bae HJ. Phenotypic Changes in Transgenic Tobacco Plants Overexpressing Vacuole-Targeted Thermotoga maritima BglB Related to Elevated Levels of Liberated Hormones. Front Bioeng Biotechnol 2015; 3:181. [PMID: 26618153 PMCID: PMC4642495 DOI: 10.3389/fbioe.2015.00181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022] Open
Abstract
The hyperthermostable β-glucosidase BglB of Thermotoga maritima was modified by adding a short C-terminal tetrapeptide (AFVY, which transports phaseolin to the vacuole, to its C-terminal sequence). The modified β-glucosidase BglB was transformed into tobacco (Nicotiana tabacum L.) plants. We observed a range of significant phenotypic changes in the transgenic plants compared to the wild-type (WT) plants. The transgenic plants had faster stem growth, earlier flowering, enhanced root systems development, an increased biomass biosynthesis rate, and higher salt stress tolerance in young plants compared to WT. In addition, programed cell death was enhanced in mature plants. Furthermore, the C-terminal AFVY tetrapeptide efficiently sorted T. maritima BglB into the vacuole, which was maintained in an active form and could perform its glycoside hydrolysis function on hormone conjugates, leading to elevated hormone [abscisic acid (ABA), indole 3-acetic acid (IAA), and cytokinin] levels that likely contributed to the phenotypic changes in the transgenic plants. The elevation of cytokinin led to upregulation of the transcription factor WUSCHELL, a homeodomain factor that regulates the development, division, and reproduction of stem cells in the shoot apical meristems. Elevation of IAA led to enhanced root development, and the elevation of ABA contributed to enhanced tolerance to salt stress and programed cell death. These results suggest that overexpressing vacuole-targeted T. maritima BglB may have several advantages for molecular farming technology to improve multiple targets, including enhanced production of the β-glucosidase BglB, increased biomass, and shortened developmental stages, that could play pivotal roles in bioenergy and biofuel production.
Collapse
Affiliation(s)
- Quynh Anh Nguyen
- Department of Bioenergy Science and Technology, Chonnam National University , Gwangju , South Korea
| | - Dae-Seok Lee
- Bio-Energy Research Center, Chonnam National University , Gwangju , South Korea
| | - Jakyun Jung
- Department of Bioenergy Science and Technology, Chonnam National University , Gwangju , South Korea
| | - Hyeun-Jong Bae
- Department of Bioenergy Science and Technology, Chonnam National University , Gwangju , South Korea ; Bio-Energy Research Center, Chonnam National University , Gwangju , South Korea
| |
Collapse
|
32
|
Streatfield SJ, Kushnir N, Yusibov V. Plant-produced candidate countermeasures against emerging and reemerging infections and bioterror agents. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1136-59. [PMID: 26387510 PMCID: PMC7167919 DOI: 10.1111/pbi.12475] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/19/2015] [Indexed: 05/20/2023]
Abstract
Despite progress in the prevention and treatment of infectious diseases, they continue to present a major threat to public health. The frequency of emerging and reemerging infections and the risk of bioterrorism warrant significant efforts towards the development of prophylactic and therapeutic countermeasures. Vaccines are the mainstay of infectious disease prophylaxis. Traditional vaccines, however, are failing to satisfy the global demand because of limited scalability of production systems, long production timelines and product safety concerns. Subunit vaccines are a highly promising alternative to traditional vaccines. Subunit vaccines, as well as monoclonal antibodies and other therapeutic proteins, can be produced in heterologous expression systems based on bacteria, yeast, insect cells or mammalian cells, in shorter times and at higher quantities, and are efficacious and safe. However, current recombinant systems have certain limitations associated with production capacity and cost. Plants are emerging as a promising platform for recombinant protein production due to time and cost efficiency, scalability, lack of harboured mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modification. So far, a variety of subunit vaccines, monoclonal antibodies and therapeutic proteins (antivirals) have been produced in plants as candidate countermeasures against emerging, reemerging and bioterrorism-related infections. Many of these have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, we overview ongoing efforts to producing such plant-based countermeasures.
Collapse
Affiliation(s)
| | - Natasha Kushnir
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| | - Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, USA
| |
Collapse
|
33
|
Prokopuk L, Western PS, Stringer JM. Transgenerational epigenetic inheritance: adaptation through the germline epigenome? Epigenomics 2015; 7:829-46. [PMID: 26367077 DOI: 10.2217/epi.15.36] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Epigenetic modifications direct the way DNA is packaged into the nucleus, making genes more or less accessible to transcriptional machinery and influencing genomic stability. Environmental factors have the potential to alter the epigenome, allowing genes that are silenced to be activated and vice versa. This ultimately influences disease susceptibility and health in an individual. Furthermore, altered chromatin states can be transmitted to subsequent generations, thus epigenetic modifications may provide evolutionary mechanisms that impact on adaptation to changed environments. However, the mechanisms involved in establishing and maintaining these epigenetic modifications during development remain unclear. This review discusses current evidence for transgenerational epigenetic inheritance, confounding issues associated with its study, and the biological relevance of altered epigenetic states for subsequent generations.
Collapse
Affiliation(s)
- Lexie Prokopuk
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Molecular & Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Patrick S Western
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Molecular & Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - Jessica M Stringer
- Centre for Genetic Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.,Molecular & Translational Science, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
34
|
Rajeevkumar S, Anunanthini P, Sathishkumar R. Epigenetic silencing in transgenic plants. FRONTIERS IN PLANT SCIENCE 2015; 6:693. [PMID: 26442010 PMCID: PMC4564723 DOI: 10.3389/fpls.2015.00693] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/21/2015] [Indexed: 05/18/2023]
Abstract
Epigenetic silencing is a natural phenomenon in which the expression of genes is regulated through modifications of DNA, RNA, or histone proteins. It is a mechanism for defending host genomes against the effects of transposable elements and viral infection, and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was the discovery of silencing in transgenic tobacco plants due to the interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, that is, transcriptional gene silencing, which is associated with heavy methylation of promoter regions and blocks the transcription of transgenes, and post-transcriptional gene silencing (PTGS), the basic mechanism is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of major concern in the transgenic technologies used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes is required. The current status of epigenetic silencing in transgenic technology is discussed and summarized in this mini-review.
Collapse
Affiliation(s)
- Sarma Rajeevkumar
- Molecular Plant Biology and Biotechnology Division, Central Institute of Medicinal and Aromatic Plants Research Centre, BangaloreIndia
| | - Pushpanathan Anunanthini
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, CoimbatoreIndia
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, CoimbatoreIndia
| |
Collapse
|
35
|
A Mouse Model for Imprinting of the Human Retinoblastoma Gene. PLoS One 2015; 10:e0134672. [PMID: 26275142 PMCID: PMC4537222 DOI: 10.1371/journal.pone.0134672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
The human RB1 gene is imprinted due to integration of the PPP1R26P1 pseudogene into intron 2. PPP1R26P1 harbors the gametic differentially methylated region of the RB1 gene, CpG85, which is methylated in the female germ line. The paternally unmethylated CpG85 acts as promoter for the alternative transcript 2B of RB1, which interferes with expression of full-length RB1 in cis. In mice, PPP1R26P1 is not present in the Rb1 gene and Rb1 is not imprinted. Assuming that the mechanisms responsible for genomic imprinting are conserved, we investigated if imprinting of mouse Rb1 can be induced by transferring human PPP1R26P1 into mouse Rb1. We generated humanized Rb1_PPP1R26P1 knock-in mice that pass human PPP1R26P1 through the mouse germ line. We found that the function of unmethylated CpG85 as promoter for an alternative Rb1 transcript and as cis-repressor of the main Rb1 transcript is maintained in mouse tissues. However, CpG85 is not recognized as a gametic differentially methylated region in the mouse germ line. DNA methylation at CpG85 is acquired only in tissues of neuroectodermal origin, independent of parental transmission of PPP1R26P1. Absence of CpG85 methylation in oocytes and sperm implies a failure of imprint methylation establishment in the germ line. Our results indicate that site-specific integration of a proven human gametic differentially methylated region is not sufficient for acquisition of DNA methylation in the mouse germ line, even if promoter function of the element is maintained. This suggests a considerable dependency of DNA methylation induction on the surrounding sequence. However, our model is suited to determine the cellular function of the alternative Rb1 transcript.
Collapse
|
36
|
Covelo-Soto L, Leunda PM, Pérez-Figueroa A, Morán P. Genome-wide methylation study of diploid and triploid brown trout (Salmo trutta L.). Anim Genet 2015; 46:280-8. [PMID: 25917300 DOI: 10.1111/age.12287] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Abstract
The induction of triploidization in fish is a very common practice in aquaculture. Although triploidization has been applied successfully in many salmonid species, little is known about the epigenetic mechanisms implicated in the maintenance of the normal functions of the new polyploid genome. By means of methylation-sensitive amplified polymorphism (MSAP) techniques, genome-wide methylation changes associated with triploidization were assessed in DNA samples obtained from diploid and triploid siblings of brown trout (Salmo trutta). Simple comparative body measurements showed that the triploid trout used in the study were statistically bigger, however, not heavier than their diploid counterparts. The statistical analysis of the MSAP data showed no significant differences between diploid and triploid brown trout in respect to brain, gill, heart, liver, kidney or muscle samples. Nonetheless, local analysis pointed to the possibility of differences in connection with concrete loci. This is the first study that has investigated DNA methylation alterations associated with triploidization in brown trout. Our results set the basis for new studies to be undertaken and provide a new approach concerning triploidization effects of the salmonid genome while also contributing to the better understanding of the genome-wide methylation processes.
Collapse
Affiliation(s)
- L Covelo-Soto
- Dpto Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, Vigo, 36210, Spain
| | | | | | | |
Collapse
|
37
|
Yan S, Wang Z, Liu Y, Li W, Wu F, Lin X, Meng Z. Functional architecture of two exclusively late stage pollen-specific promoters in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2015; 88:415-428. [PMID: 25991036 DOI: 10.1007/s11103-015-0331-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
Late stage pollen-specific promoters are important tools in crop molecular breeding. Several such promoters, and their functional motifs, have been well characterized in dicotyledonous plants such as tomato and tobacco. However, knowledge about the functional architecture of such promoters is limited in the monocotyledonous plant rice. Here, pollen-late-stage-promoter 1 (PLP1) and pollen-late-stage-promoter 2 (PLP2) were characterized using a stable transformation system in rice. Histochemical staining showed that the two promoters exclusively drive GUS expression in late-stage pollen grains in rice. 5' deletion analysis revealed that four regions, including the -1159 to -720 and the -352 to -156 regions of PLP1 and the -740 to -557 and the -557 to -339 regions of PLP2, are important in maintaining the activity and specificity of these promoters. Motif mutation analysis indicated that 'AGAAA' and 'CAAT' motifs in the -740 to -557 region of PLP2 act as enhancers in the promoter. Gain of function experiments indicated that the novel TA-rich motif 'TACATAA' and 'TATTCAT' in the core region of the PLP1 and PLP2 promoters is necessary, but not sufficient, for pollen-specific expression in rice. Our results provide evidence that the enhancer motif 'AGAAA' is conserved in the pollen-specific promoters of both monocots and eudicots, but that some functional architecture characteristics are different.
Collapse
Affiliation(s)
- Shuo Yan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Ni JZ, Chen E, Gu SG. Complex coding of endogenous siRNA, transcriptional silencing and H3K9 methylation on native targets of germline nuclear RNAi in C. elegans. BMC Genomics 2014; 15:1157. [PMID: 25534009 PMCID: PMC4367959 DOI: 10.1186/1471-2164-15-1157] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/10/2014] [Indexed: 11/14/2022] Open
Abstract
Background Small RNA-guided transcriptional silencing (nuclear RNAi) is fundamental to genome integrity and epigenetic inheritance. Despite recent progress in identifying the capability and genetic requirements for nuclear RNAi in Caenorhabditis elegans, the natural targets and cellular functions of nuclear RNAi remain elusive. Methods To resolve this gap, we coordinately examined the genome-wide profiles of transcription, histone H3 lysine 9 methylation (H3K9me) and endogenous siRNAs of a germline nuclear Argonaute (hrde-1/wago-9) mutant and identified regions on which transcription activity is markedly increased and/or H3K9me level is markedly decreased relative to wild type animals. Results Our data revealed a distinct set of native targets of germline nuclear RNAi, with the H3K9me response exhibiting both overlapping and non-overlapping distribution with the transcriptional silencing response. Interestingly LTR retrotransposons, but not DNA transposons, are highly enriched in the targets of germline nuclear RNAi. The genomic distribution of the native targets is highly constrained, with >99% of the identified targets present in five autosomes but not in the sex chromosome. By contrast, HRDE-1-associated small RNAs correspond to all chromosomes. In addition, we found that the piRNA pathway is not required for germline nuclear RNAi activity on native targets. Conclusion Germline nuclear RNAi in C. elegans is required to silence retrotransposons but not DNA transposon. Transcriptional silencing and H3K9me can occur independently of each other on the native targets of nuclear RNAi in C. elegans. Our results rule out a simple model in which nuclear Argonaute protein-associated-small RNAs are sufficient to trigger germline nuclear RNAi responses. In addition, the piRNA pathway and germline nuclear RNAi are specialized to target different types of foreign genetic elements for genome surveillance in C. elegans. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1157) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Nelson Labs A125, 604 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
39
|
Yusibov V, Kushnir N, Streatfield SJ. Advances and challenges in the development and production of effective plant-based influenza vaccines. Expert Rev Vaccines 2014; 14:519-35. [PMID: 25487788 DOI: 10.1586/14760584.2015.989988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Influenza infections continue to present a major threat to public health. Traditional modes of influenza vaccine manufacturing are failing to satisfy the global demand because of limited scalability and long production timelines. In contrast, subunit vaccines (SUVs) can be produced in heterologous expression systems in shorter times and at higher quantities. Plants are emerging as a promising platform for SUV production due to time efficiency, scalability, lack of harbored mammalian pathogens and possession of the machinery for eukaryotic post-translational protein modifications. So far, several organizations have utilized plant-based transient expression systems to produce SUVs against influenza, including vaccines based on virus-like particles. Plant-produced influenza SUV candidates have been extensively evaluated in animal models and some have shown safety and immunogenicity in clinical trials. Here, the authors review ongoing efforts and challenges to producing influenza SUV candidates in plants and discuss the likelihood of bringing these products to the market.
Collapse
Affiliation(s)
- Vidadi Yusibov
- Fraunhofer USA Center for Molecular Biotechnology, 9 Innovation Way, Suite 200, Newark, DE 19711, USA
| | | | | |
Collapse
|
40
|
Cytogenetic evidences of genome rearrangement and differential epigenetic chromatin modification in the sea lamprey (Petromyzon marinus). Genetica 2014; 142:545-54. [PMID: 25432678 DOI: 10.1007/s10709-014-9802-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/22/2014] [Indexed: 10/24/2022]
Abstract
This work explores both the chromatin loss and the differential genome methylation in the sea lamprey (Petromyzon marinus) from a molecular cytogenetic point of view. Fluorescent in situ hybridization experiments on meiotic bivalents and mitotic chromosomes corroborate the chromatin loss previously observed during the development of the sea lamprey and demonstrate that the elimination affects not only to Germ1 sequences but also to the rpt200 satellite DNA and most part of the major ribosomal DNA present on the germinal line. 5-Methylcytosine immunolocation revealed that the GC-rich heterochromatin is highly methylated in the germ line but significantly less in somatic chromosomes. These findings not only support previous observations about genome rearrangements but also give new information about epigenetic changes in P. marinus. The key position of lampreys in the vertebrate phylogenetic tree makes them an interesting taxon to provide relevant information about genome evolution in vertebrates.
Collapse
|
41
|
Dong Q, Jiang H, Xu Q, Li X, Peng X, Yu H, Xiang Y, Cheng B. Cloning and characterization of a multifunctional promoter from maize (Zea mays L.). Appl Biochem Biotechnol 2014; 175:1344-57. [PMID: 25391545 DOI: 10.1007/s12010-014-1277-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
The use of tissue-specific promoters to drive the expression of target genes during certain developmental stages or in specific organs can prevent unnecessary gene expression caused by constitutive promoters. Utilizing heterologous promoters to regulate the expression of genes in transgenic receptors can help prevent gene silencing. Here, we engineered heterologous maize promoters that regulate gene-specific expression in rice plant receptors. We performed a histochemical and quantitative β-glucuronidase (GUS) analysis of the Zea mays legumin1 (ZM-LEGF) gene promoter and detailed detection of stably transformed rice expressing the GUS gene under the control of the promoter of ZM-LEGF (pZM-LEGF) and its truncated promoters throughout development. When the promoter sequence was truncated, the location and intensity of GUS expression changed. The results suggest that the sequence from -140 to +41 is a critical region that confers the expression of the entire promoter. Truncation of pZM-LEG (3'-deleted region of pZM-LEGF) markedly increased the GUS activity, with the core cis-elements located in the -273 to -140 regions, namely pZM-LEG6. Detailed analysis of pZM-LEG6::GUS T2 transformant rice seeds and plant tissues at different developmental stages indicated that this promoter is an ideal vegetative tissue-specific promoter that can serve as a valuable tool for transgenic rice breeding and genetic engineering studies.
Collapse
Affiliation(s)
- Qing Dong
- Key Lab of Biomass Improvement and Conversion, Anhui Agricultural University, Hefei, 230036, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Tiwari V, Chaturvedi AK, Mishra A, Jha B. The Transcriptional Regulatory Mechanism of the Peroxisomal Ascorbate Peroxidase (pAPX) Gene Cloned from an Extreme Halophyte, Salicornia brachiata. ACTA ACUST UNITED AC 2013; 55:201-17. [DOI: 10.1093/pcp/pct172] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Delporte F, Muhovski Y, Pretova A, Watillon B. Analysis of expression profiles of selected genes associated with the regenerative property and the receptivity to gene transfer during somatic embryogenesis in Triticum aestivum L. Mol Biol Rep 2013; 40:5883-906. [PMID: 24078158 PMCID: PMC3825128 DOI: 10.1007/s11033-013-2696-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 09/14/2013] [Indexed: 12/26/2022]
Abstract
The physiological, biochemical and molecular mechanisms regulating the initiation of a regenerative pathway remain partially unknown. Efforts to identify the biological features that confer transformation ability, or the tendency of some cells to induce transgene silencing, would help to improve plant genetic engineering. The objective of our study was to monitor the evolution of plant cell competencies in relation to both in vitro tissue culture regeneration and the genetic transformation properties. We used a simple wheat regeneration procedure as an experimental model for studying the regenerative capacity of plant cells and their receptivity to direct gene transfer over the successive steps of the regenerative pathway. Target gene profiling studies and biochemical assays were conducted to follow some of the mechanisms triggered during the somatic-to-embryogenic transition (i.e. dedifferentiation, cell division activation, redifferentiation) and affecting the accessibility of plant cells to receive and stably express the exogenous DNA introduced by bombardment. Our results seem to indicate that the control of cell-cycle (S-phase) and host defense strategies can be crucial determinants of genetic transformation efficiency. The results from studies conducted at macro-, micro- and molecular scales are then integrated into a holistic approach that addresses the question of tissue culture and transgenesis competencies more broadly. Through this multilevel analysis we try to establish functional links between both regenerative capacity and transformation receptiveness, and thereby to provide a more global and integrated vision of both processes, at the core of defense/adaptive mechanisms and survival, between undifferentiated cell proliferation and organization.
Collapse
Affiliation(s)
- Fabienne Delporte
- Department of Life Sciences, Bioengineering Unit, Walloon Agricultural Research Centre (CRAw), Chaussée de Charleroi 234, 5030 Gembloux, Belgium
| | - Yordan Muhovski
- Department of Life Sciences, Bioengineering Unit, Walloon Agricultural Research Centre (CRAw), Chaussée de Charleroi 234, 5030 Gembloux, Belgium
| | - Anna Pretova
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Akademicka 2, P.O. Box 39 A, 950 07 Nitra, Slovakia
| | - Bernard Watillon
- Department of Life Sciences, Bioengineering Unit, Walloon Agricultural Research Centre (CRAw), Chaussée de Charleroi 234, 5030 Gembloux, Belgium
| |
Collapse
|
44
|
Weinhold A, Kallenbach M, Baldwin IT. Progressive 35S promoter methylation increases rapidly during vegetative development in transgenic Nicotiana attenuata plants. BMC PLANT BIOLOGY 2013; 13:99. [PMID: 23837904 PMCID: PMC3716894 DOI: 10.1186/1471-2229-13-99] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/06/2013] [Indexed: 05/23/2023]
Abstract
BACKGROUND Genetically modified plants are widely used in agriculture and increasingly in ecological research to enable the selective manipulation of plant traits in the field. Despite their broad usage, many aspects of unwanted transgene silencing throughout plant development are still poorly understood. A transgene can be epigenetically silenced by a process called RNA directed DNA methylation (RdDM), which can be seen as a heritable loss of gene expression. The spontaneous nature of transgene silencing has been widely reported, but patterns of acquirement remain still unclear. RESULTS Transgenic wild tobacco plants (Nicotiana attenuata) expressing heterologous genes coding for antimicrobial peptides displayed an erratic and variable occurrence of transgene silencing. We focused on three independently transformed lines (PNA 1.2, PNA 10.1 and ICE 4.4) as they rapidly lost the expression of the resistance marker and down-regulated transgene expression by more than 200 fold after only one plant generation. Bisulfite sequencing indicated hypermethylation within the 35S and NOS promoters of these lines. To shed light on the progress of methylation establishment, we successively sampled leaf tissues from different stages during plant development and found a rapid increase in 35S promoter methylation during vegetative growth (up to 77% absolute increase within 45 days of growth). The levels of de novo methylation were inherited by the offspring without any visible discontinuation. A secondary callus regeneration step could interfere with the establishment of gene silencing and we found successfully restored transgene expression in the offspring of several regenerants. CONCLUSIONS The unpredictability of the gene silencing process requires a thorough selection and early detection of unstable plant lines. De novo methylation of the transgenes was acquired solely during vegetative development and did not require a generational change for its establishment or enhancement. A secondary callus regeneration step provides a convenient way to rescue transgene expression without causing undesirable morphological effects, which is essential for experiments that use transformed plants in the analysis of ecologically important traits.
Collapse
Affiliation(s)
- Arne Weinhold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Mario Kallenbach
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| | - Ian Thomas Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena 07745, Germany
| |
Collapse
|
45
|
De Paepe A, De Buck S, Nolf J, Van Lerberge E, Depicker A. Site-specific T-DNA integration in Arabidopsis thaliana mediated by the combined action of CRE recombinase and ϕC31 integrase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:172-184. [PMID: 23574114 DOI: 10.1111/tpj.12202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Random T-DNA integration into the plant host genome can be problematic for a variety of reasons, including potentially variable transgene expression as a result of different integration positions and multiple T-DNA copies, the risk of mutating the host genome and the difficulty of stacking well-defined traits. Therefore, recombination systems have been proposed to integrate the T-DNA at a pre-selected site in the host genome. Here, we demonstrate the capacity of the ϕC31 integrase (INT) for efficient targeted T-DNA integration. Moreover, we show that the iterative site-specific integration system (ISSI), which combines the activities of the CRE recombinase and INT, enables the targeting of genes to a pre-selected site with the concomitant removal of the resident selectable marker. To begin, plants expressing both the CRE and INT recombinase and containing the target attP site were constructed. These plants were supertransformed with a T-DNA vector harboring the loxP site, the attB sites, a selectable marker and an expression cassette encoding a reporter protein. Three out of the 35 transformants obtained (9%) showed transgenerational site-specific integration (SSI) of this T-DNA and removal of the resident selectable marker, as demonstrated by PCR, Southern blot and segregation analysis. In conclusion, our results show the applicability of the ISSI system for precise and targeted Agrobacterium-mediated integration, allowing the serial integration of transgenic DNA sequences in plants.
Collapse
Affiliation(s)
- Annelies De Paepe
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Sylvie De Buck
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jonah Nolf
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Els Van Lerberge
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
46
|
Magaña-Ortíz D, Coconi-Linares N, Ortiz-Vazquez E, Fernández F, Loske AM, Gómez-Lim MA. A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol 2013; 56:9-16. [DOI: 10.1016/j.fgb.2013.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/09/2023]
|
47
|
Dhadi SR, Deshpande A, Driscoll K, Ramakrishna W. Major cis-regulatory elements for rice bidirectional promoter activity reside in the 5'-untranslated regions. Gene 2013; 526:400-10. [PMID: 23756196 DOI: 10.1016/j.gene.2013.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
Bidirectional promoters are defined as those that regulate adjacent genes organized in a divergent fashion (head to head orientation) and separated by <1 kb. In order to dissect bidirectional promoter activity in a model plant, deletion analysis was performed for seven rice promoters using promoter-reporter gene constructs, which identified three promoters to be bidirectional. Regulatory elements located in or close to the 5'-untranslated regions (UTR) of one of the genes (divergent gene pair) were found to be responsible for their bidirectional activity. DNA footprinting analysis identified unique protein binding sites in these promoters. Deletion/alteration of these motifs resulted in significant loss of expression of the reporter genes on either side of the promoter. Changes in the motifs at both the positions resulted in a remarkable decrease in bidirectional activity of the reporter genes flanking the promoter. Based on our results, we propose a novel mechanism for the bidirectionality of rice bidirectional promoters.
Collapse
Affiliation(s)
- Surendar Reddy Dhadi
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | |
Collapse
|
48
|
Cho YS, Kim DS, Nam YK. Characterization of estrogen-responsive transgenic marine medaka Oryzias dancena germlines harboring red fluorescent protein gene under the control by endogenous choriogenin H promoter. Transgenic Res 2013; 22:501-17. [PMID: 22972478 DOI: 10.1007/s11248-012-9650-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
Transgenic marine medaka (Oryzias dancena) germlines were generated by the microinjection of the red fluorescent protein (RFP) reporter gene (rfp) driven by the endogenous choriogenin H gene (chgH) promoter. The selected transgenic lines contained multiple copies of the transgene (3-42 copies per cell) in their genomes. Although all the founders were mosaic, the transgene was stably transmitted from the F1 generation to all subsequent generations following a Mendelian pattern. Different transgenic lines showed different responsiveness to estradiol-17β (E2) exposure at the mRNA and protein levels, and the expression efficiency was dependent upon the transgene copy number. The induction of RFP was significantly affected by the developmental stage of transgenic larvae: later-stage larvae (older than 7 days post-hatching) showed higher sensitivity to E2 exposure than earlier-stage larvae. The response of transgenic expression to E2 was fairly dependent upon the E2 dose (200-3,200 ng/L) and exposure period (1-7 days), according to both a microscopic examination of RFP intensity and a qRT-PCR assay. The transgenic marine medaka showed similar transgenic responses to E2 under freshwater, brackish, and seawater conditions. In addition to E2, the transgenic RFP signal was also successfully induced during 1-week exposure to various other natural (1 μg/L estrone and 10 μg/L estriol) and synthetic (xeno)estrogens (0.1 μg/L 17α-ethynylestradiol, 1 μg/L diethylstilbestrol, and 10 mg/L bisphenol A). The efficiency of transgene expression varied greatly among the chemicals tested. The results of this study suggest that the chgH-rfp transgenic marine medaka species will be useful in the in vivo detection of waterborne estrogens under a wide range of salinity conditions.
Collapse
Affiliation(s)
- Young Sun Cho
- Institute of Marine Living Modified Organisms, Pukyong National University, Busan 608-737, South Korea
| | | | | |
Collapse
|
49
|
Renfree MB, Suzuki S, Kaneko-Ishino T. The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120151. [PMID: 23166401 DOI: 10.1098/rstb.2012.0151] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genomic imprinting is widespread in eutherian mammals. Marsupial mammals also have genomic imprinting, but in fewer loci. It has long been thought that genomic imprinting is somehow related to placentation and/or viviparity in mammals, although neither is restricted to mammals. Most imprinted genes are expressed in the placenta. There is no evidence for genomic imprinting in the egg-laying monotreme mammals, despite their short-lived placenta that transfers nutrients from mother to embryo. Post natal genomic imprinting also occurs, especially in the brain. However, little attention has been paid to the primary source of nutrition in the neonate in all mammals, the mammary gland. Differentially methylated regions (DMRs) play an important role as imprinting control centres in each imprinted region which usually comprises both paternally and maternally expressed genes (PEGs and MEGs). The DMR is established in the male or female germline (the gDMR). Comprehensive comparative genome studies demonstrated that two imprinted regions, PEG10 and IGF2-H19, are conserved in both marsupials and eutherians and that PEG10 and H19 DMRs emerged in the therian ancestor at least 160 Ma, indicating the ancestral origin of genomic imprinting during therian mammal evolution. Importantly, these regions are known to be deeply involved in placental and embryonic growth. It appears that most maternal gDMRs are always associated with imprinting in eutherian mammals, but emerged at differing times during mammalian evolution. Thus, genomic imprinting could evolve from a defence mechanism against transposable elements that depended on DNA methylation established in germ cells.
Collapse
Affiliation(s)
- Marilyn B Renfree
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
50
|
Gohlke J, Scholz CJ, Kneitz S, Weber D, Fuchs J, Hedrich R, Deeken R. DNA methylation mediated control of gene expression is critical for development of crown gall tumors. PLoS Genet 2013; 9:e1003267. [PMID: 23408907 PMCID: PMC3567176 DOI: 10.1371/journal.pgen.1003267] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene expression, physiological processes, and the development of crown gall tumors.
Collapse
Affiliation(s)
- Jochen Gohlke
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Claus-Juergen Scholz
- IZKF Laboratory for Microarray Applications, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry I, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Dana Weber
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Rainer Hedrich
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Rosalia Deeken
- Julius-von-Sachs-Institute, Department of Molecular Plant Physiology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|