1
|
Moss WJ, Griffin DE. What's going on with measles? J Virol 2024; 98:e0075824. [PMID: 39041786 PMCID: PMC11334507 DOI: 10.1128/jvi.00758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Measles is a highly transmissible systemic viral infection associated with substantial mortality primarily due to secondary infections. Measles induces lifelong immunity to reinfection but loss of immunity to other pathogens. An attenuated live virus vaccine is highly effective, but lapses in delivery have resulted in increasing cases worldwide. Although the primary cause of failure to control measles is failure to vaccinate, waning vaccine-induced immunity and the possible emergence of more virulent virus strains may also contribute.
Collapse
Affiliation(s)
- William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
May AJ, Acharya P. Structural Studies of Henipavirus Glycoproteins. Viruses 2024; 16:195. [PMID: 38399971 PMCID: PMC10892422 DOI: 10.3390/v16020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Henipaviruses are a genus of emerging pathogens that includes the highly virulent Nipah and Hendra viruses that cause reoccurring outbreaks of disease. Henipaviruses rely on two surface glycoproteins, known as the attachment and fusion proteins, to facilitate entry into host cells. As new and divergent members of the genus have been discovered and structurally characterized, key differences and similarities have been noted. This review surveys the available structural information on Henipavirus glycoproteins, complementing this with information from related biophysical and structural studies of the broader Paramyxoviridae family of which Henipaviruses are members. The process of viral entry is a primary focus for vaccine and drug development, and this review aims to identify critical knowledge gaps in our understanding of the mechanisms that drive Henipavirus fusion.
Collapse
Affiliation(s)
- Aaron J. May
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
| |
Collapse
|
3
|
Wagner A, Mutschler H. Design principles and applications of synthetic self-replicating RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1803. [PMID: 37264531 DOI: 10.1002/wrna.1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023]
Abstract
With the advent of ever more sophisticated methods for the in vitro synthesis and the in vivo delivery of RNAs, synthetic mRNAs have gained substantial interest both for medical applications, as well as for biotechnology. However, in most biological systems exogeneous mRNAs possess only a limited half-life, especially in fast dividing cells. In contrast, viral RNAs can extend their lifetime by actively replicating inside their host. As such they may serve as scaffolds for the design of synthetic self-replicating RNAs (srRNA), which can be used to increase both the half-life and intracellular concentration of coding RNAs. Synthetic srRNAs may be used to enhance recombinant protein expression or induce the reprogramming of differentiated cells into pluripotent stem cells but also to create cell-free systems for research based on experimental evolution. In this article, we discuss the applications and design principles of srRNAs used for cellular reprogramming, mRNA-based vaccines and tools for synthetic biology. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Alexander Wagner
- Biomimetic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Hannes Mutschler
- Biomimetic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
4
|
Sakamoto K, Konami M, Kameda S, Satoh Y, Wakimoto H, Kitagawa Y, Gotoh B, Jiang DP, Hotta H, Itoh M. Suppression of viral RNA polymerase activity is necessary for persistent infection during the transformation of measles virus into SSPE virus. PLoS Pathog 2023; 19:e1011528. [PMID: 37494386 PMCID: PMC10406308 DOI: 10.1371/journal.ppat.1011528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/07/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by measles virus (MV), which typically develops 7 to 10 years after acute measles. During the incubation period, MV establishes a persistent infection in the brain and accumulates mutations that generate neuropathogenic SSPE virus. The neuropathogenicity is closely associated with enhanced propagation mediated by cell-to-cell fusion in the brain, which is principally regulated by hyperfusogenic mutations of the viral F protein. The molecular mechanisms underlying establishment and maintenance of persistent infection are unclear because it is impractical to isolate viruses before the appearance of clinical signs. In this study, we found that the L and P proteins, components of viral RNA-dependent RNA polymerase (RdRp), of an SSPE virus Kobe-1 strain did not promote but rather attenuated viral neuropathogenicity. Viral RdRp activity corresponded to F protein expression; the suppression of RdRp activity in the Kobe-1 strain because of mutations in the L and P proteins led to restriction of the F protein level, thereby reducing cell-to-cell fusion mediated propagation in neuronal cells and decreasing neuropathogenicity. Therefore, the L and P proteins of Kobe-1 did not contribute to progression of SSPE. Three mutations in the L protein strongly suppressed RdRp activity. Recombinant MV harboring the three mutations limited viral spread in neuronal cells while preventing the release of infectious progeny particles; these changes could support persistent infection by enabling host immune escape and preventing host cell lysis. Therefore, the suppression of RdRp activity is necessary for the persistent infection of the parental MV on the way to transform into Kobe-1 SSPE virus. Because mutations in the genome of an SSPE virus reflect the process of SSPE development, mutation analysis will provide insight into the mechanisms underlying persistent infection.
Collapse
Affiliation(s)
- Kento Sakamoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Miho Konami
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Shinra Kameda
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuto Satoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Hiroshi Wakimoto
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Bin Gotoh
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Da-Peng Jiang
- Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Hak Hotta
- Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Masae Itoh
- Department of Microbiology, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| |
Collapse
|
5
|
Suwanmanee S, Ghimire S, Edwards J, Griffin DE. Infection of Pro- and Anti-Inflammatory Macrophages by Wild Type and Vaccine Strains of Measles Virus: NLRP3 Inflammasome Activation Independent of Virus Production. Viruses 2023; 15:v15020260. [PMID: 36851476 PMCID: PMC9961283 DOI: 10.3390/v15020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
In humans and non-human primates, wild type (WT) measles virus (MeV) replicates extensively in lymphoid tissue and induces an innate response characteristic of NF-κB and inflammasome activation without type I interferon. In contrast, the live attenuated MeV vaccine (LAMV) replicates poorly in lymphoid tissue with little detectable in vivo cytokine production. To characterize the innate responses of macrophages to WT MeV and LAMV infection, we analyzed primary human monocyte-derived macrophages and phorbol myristic acid-matured monocytic THP-1 cells (M0) polarized to inflammatory (M1) and anti-inflammatory (M2) phenotypes 24 h after MeV infection. LAMV infected macrophages more efficiently than WT MeV but produced less virus than WT MeV-infected macrophages. Both strains induced production of NF-κB-responsive cytokines IL-6 and TNFα and inflammasome products IL-1β and IL-18 without evidence of pyroptosis. Analysis of THP-1 cells deficient in inflammasome sensors NOD-like receptor pyrin (NLRP)3, IFN-γ-inducible protein 16 (IFI16) or absent in melanoma (AIM)2; adaptor apoptosis-associated speck-like protein containing a CARD (ASC) or effector caspase 1 showed that IL-18 production was dependent on NLRP3, ASC, and caspase 1. However, M1 cells produced IL-1β in the absence of ASC or caspase 1 indicating alternate pathways for MeV-induced pro-IL-1β processing. Therefore, the innate response to in vitro infection of macrophages with both LAMV and WT MeV includes production of IL-6 and TNFα and activation of the NLRP3 inflammasome to release IL-1β and IL-18. LAMV attenuation impairs production of infectious virus but does not reduce ability to infect macrophages or innate responses to infection.
Collapse
|
6
|
Type I and Type II Interferon Antagonism Strategies Used by Paramyxoviridae: Previous and New Discoveries, in Comparison. Viruses 2022; 14:v14051107. [PMID: 35632848 PMCID: PMC9145045 DOI: 10.3390/v14051107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Paramyxoviridae is a viral family within the order of Mononegavirales; they are negative single-strand RNA viruses that can cause significant diseases in both humans and animals. In order to replicate, paramyxoviruses–as any other viruses–have to bypass an important protective mechanism developed by the host’s cells: the defensive line driven by interferon. Once the viruses are recognized, the cells start the production of type I and type III interferons, which leads to the activation of hundreds of genes, many of which encode proteins with the specific function to reduce viral replication. Type II interferon is produced by active immune cells through a different signaling pathway, and activates a diverse range of genes with the same objective to block viral replication. As a result of this selective pressure, viruses have evolved different strategies to avoid the defensive function of interferons. The strategies employed by the different viral species to fight the interferon system include a number of sophisticated mechanisms. Here we analyzed the current status of the various strategies used by paramyxoviruses to subvert type I, II, and III interferon responses.
Collapse
|
7
|
Siering O, Cattaneo R, Pfaller CK. C Proteins: Controllers of Orderly Paramyxovirus Replication and of the Innate Immune Response. Viruses 2022; 14:v14010137. [PMID: 35062341 PMCID: PMC8778822 DOI: 10.3390/v14010137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 01/07/2023] Open
Abstract
Particles of many paramyxoviruses include small amounts of proteins with a molecular weight of about 20 kDa. These proteins, termed “C”, are basic, have low amino acid homology and some secondary structure conservation. C proteins are encoded in alternative reading frames of the phosphoprotein gene. Some viruses express nested sets of C proteins that exert their functions in different locations: In the nucleus, they interfere with cellular transcription factors that elicit innate immune responses; in the cytoplasm, they associate with viral ribonucleocapsids and control polymerase processivity and orderly replication, thereby minimizing the activation of innate immunity. In addition, certain C proteins can directly bind to, and interfere with the function of, several cytoplasmic proteins required for interferon induction, interferon signaling and inflammation. Some C proteins are also required for efficient virus particle assembly and budding. C-deficient viruses can be grown in certain transformed cell lines but are not pathogenic in natural hosts. C proteins affect the same host functions as other phosphoprotein gene-encoded proteins named V but use different strategies for this purpose. Multiple independent systems to counteract host defenses may ensure efficient immune evasion and facilitate virus adaptation to new hosts and tissue environments.
Collapse
Affiliation(s)
- Oliver Siering
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, 63225 Langen, Germany;
| | - Roberto Cattaneo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55906, USA
- Correspondence: (R.C.); (C.K.P.)
| | - Christian K. Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, 63225 Langen, Germany;
- Correspondence: (R.C.); (C.K.P.)
| |
Collapse
|
8
|
Abstract
The genomes of 15 measles viruses isolated in 2006 to 2017 from patients <16 years of age with fever and skin rashes from four states and two union territories of India were sequenced. Study genomes were phylogenetically analyzed using 143 Indian and global genomes. The study reconfirms two lineages of D4 isolates and three lineages of D8 isolates from India.
Collapse
|
9
|
Azarm KD, Lee B. Differential Features of Fusion Activation within the Paramyxoviridae. Viruses 2020; 12:v12020161. [PMID: 32019182 PMCID: PMC7077268 DOI: 10.3390/v12020161] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Paramyxovirus (PMV) entry requires the coordinated action of two envelope glycoproteins, the receptor binding protein (RBP) and fusion protein (F). The sequence of events that occurs during the PMV entry process is tightly regulated. This regulation ensures entry will only initiate when the virion is in the vicinity of a target cell membrane. Here, we review recent structural and mechanistic studies to delineate the entry features that are shared and distinct amongst the Paramyxoviridae. In general, we observe overarching distinctions between the protein-using RBPs and the sialic acid- (SA-) using RBPs, including how their stalk domains differentially trigger F. Moreover, through sequence comparisons, we identify greater structural and functional conservation amongst the PMV fusion proteins, as compared to the RBPs. When examining the relative contributions to sequence conservation of the globular head versus stalk domains of the RBP, we observe that, for the protein-using PMVs, the stalk domains exhibit higher conservation and find the opposite trend is true for SA-using PMVs. A better understanding of conserved and distinct features that govern the entry of protein-using versus SA-using PMVs will inform the rational design of broader spectrum therapeutics that impede this process.
Collapse
|
10
|
Eloiflin RJ, Boyer M, Kwiatek O, Guendouz S, Loire E, Servan de Almeida R, Libeau G, Bataille A. Evolution of Attenuation and Risk of Reversal in Peste des Petits Ruminants Vaccine Strain Nigeria 75/1. Viruses 2019; 11:E724. [PMID: 31394790 PMCID: PMC6724400 DOI: 10.3390/v11080724] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022] Open
Abstract
Peste des Petits Ruminants (PPR) is a highly infectious disease caused by a virus of the Morbillivirus genus. The current PPR eradication effort relies mainly on the implementation of massive vaccination campaigns. One of the most widely used PPR vaccines is the Nigeria 75/1 strain obtained after attenuation by 75 serial passages of the wild type isolate in cell cultures. Here we use high throughput deep sequencing of the historical passages that led to the Nigeria 75/1 attenuated strain to understand the evolution of PPRV attenuation and to assess the risk of reversal in different cell types. Comparison of the consensus sequences of the wild type and vaccine strains showed that only 18 fixed mutations separate the two strains. At the earliest attenuation passage at our disposal (passage 47), 12 out of the 18 mutations were already present at a frequency of 100%. Low-frequency variants were identified along the genome in all passages. Sequencing of passages after the vaccine strain showed evidence of genetic drift during cell passages, especially in cells expressing the SLAM receptor targeted by PPRV. However, 15 out of the 18 mutations related to attenuation remained fixed in the population. In vitro experiments suggest that one mutation in the leader region of the PPRV genome affects virus replication. Our results suggest that only a few mutations can have a serious impact on the pathogenicity of PPRV. Risk of reversion to virulence of the attenuated PPRV strain Nigeria 75/1 during serial passages in cell cultures seems low but limiting the number of passages during vaccine production is recommended.
Collapse
Affiliation(s)
- Roger-Junior Eloiflin
- CIRAD, UMR ASTRE, F-34398 Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Marie Boyer
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Olivier Kwiatek
- CIRAD, UMR ASTRE, F-34398 Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Samia Guendouz
- CIRAD, UMR ASTRE, F-34398 Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Etienne Loire
- CIRAD, UMR ASTRE, F-34398 Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Renata Servan de Almeida
- CIRAD, UMR ASTRE, F-34398 Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Geneviève Libeau
- CIRAD, UMR ASTRE, F-34398 Montpellier, France
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
| | - Arnaud Bataille
- CIRAD, UMR ASTRE, F-34398 Montpellier, France.
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France.
| |
Collapse
|
11
|
Abstract
Measles remains an important cause of child morbidity and mortality worldwide despite the availability of a safe and efficacious vaccine. The current measles virus (MeV) vaccine was developed empirically by attenuation of wild-type (WT) MeV by in vitro passage in human and chicken cells and licensed in 1963. Additional passages led to further attenuation and the successful vaccine strains in widespread use today. Attenuation is associated with decreased replication in lymphoid tissue, but the molecular basis for this restriction has not been identified. The immune response is age dependent, inhibited by maternal antibody (Ab) and involves induction of both Ab and T cell responses that resemble the responses to WT MeV infection, but are lower in magnitude. Protective immunity is correlated with levels of neutralizing Ab, but the actual immunologic determinants of protection are not known. Because measles is highly transmissible, control requires high levels of population immunity. Delivery of the two doses of vaccine needed to achieve >90% immunity is accomplished by routine immunization of infants at 9-15 months of age followed by a second dose delivered before school entry or by periodic mass vaccination campaigns. Because delivery by injection creates hurdles to sustained high coverage, there are efforts to deliver MeV vaccine by inhalation. In addition, the safety record for the vaccine combined with advances in reverse genetics for negative strand viruses has expanded proposed uses for recombinant versions of measles vaccine as vectors for immunization against other infections and as oncolytic agents for a variety of tumors.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| |
Collapse
|
12
|
Beaty SM, Lee B. Constraints on the Genetic and Antigenic Variability of Measles Virus. Viruses 2016; 8:109. [PMID: 27110809 PMCID: PMC4848602 DOI: 10.3390/v8040109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Antigenic drift and genetic variation are significantly constrained in measles virus (MeV). Genetic stability of MeV is exceptionally high, both in the lab and in the field, and few regions of the genome allow for rapid genetic change. The regions of the genome that are more tolerant of mutations (i.e., the untranslated regions and certain domains within the N, C, V, P, and M proteins) indicate genetic plasticity or structural flexibility in the encoded proteins. Our analysis reveals that strong constraints in the envelope proteins (F and H) allow for a single serotype despite known antigenic differences among its 24 genotypes. This review describes some of the many variables that limit the evolutionary rate of MeV. The high genomic stability of MeV appears to be a shared property of the Paramyxovirinae, suggesting a common mechanism that biologically restricts the rate of mutation.
Collapse
Affiliation(s)
- Shannon M Beaty
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
13
|
Kanduc D. Measles virus hemagglutinin epitopes are potential hotspots for crossreactions with immunodeficiency-related proteins. Future Microbiol 2016; 10:503-15. [PMID: 25865190 DOI: 10.2217/fmb.14.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Measles virus (MV) infection induces a protective immunity that is accompanied by a transient pathologic suppression of the immune system. This immunologic paradox remains unexplained in spite of the numerous hypotheses that have been advanced (i.e., cytokine production, soluble immunosuppressive factor, cell cycle block, signaling lymphocyte activation molecule receptor and MV infection of dendritic cells, among others). METHODS Searching for molecular link(s) between MV infection and host immunodeficiency, this study used the Immune Epitope DataBase to analyze the peptide sharing between the antigenic MV hemagglutinin (H) protein and human proteins associated with immunodeficiency. RESULTS It was found that the majority of MVH derived epitopes share several exact pentapeptide sequences with numerous human proteins involved in immune functions and immunodeficiency, such as B- and T-cell antigens, and complement components. CONCLUSION The data suggest that crossreactivity might contribute to our understanding of the link between MV immunogenicity and MV-induced immunosuppression, and highlight peptides unique to MV as a basis for developing effective and safe anti-MV vaccines.
Collapse
|
14
|
Measles Virus: Identification in the M Protein Primary Sequence of a Potential Molecular Marker for Subacute Sclerosing Panencephalitis. Adv Virol 2015; 2015:769837. [PMID: 26587021 PMCID: PMC4637438 DOI: 10.1155/2015/769837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 09/06/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022] Open
Abstract
Subacute Sclerosing Panencephalitis (SSPE), a rare lethal disease of children and young adults due to persistence of measles virus (MeV) in the brain, is caused by wild type (wt) MeV. Why MeV vaccine strains never cause SSPE is completely unknown. Hypothesizing that this phenotypic difference could potentially be represented by a molecular marker, we compared glycoprotein and matrix (M) genes from SSPE cases with those from the Moraten vaccine strain, searching for differential structural motifs. We observed that all known SSPE viruses have residues P64, E89, and A209 (PEA) in their M proteins whereas the equivalent residues for vaccine strains are either S64, K89, and T209 (SKT) as in Moraten or PKT. Through the construction of MeV recombinants, we have obtained evidence that the wt MeV-M protein PEA motif, in particular A209, is linked to increased viral spread. Importantly, for the 10 wt genotypes (of 23) that have had their M proteins sequenced, 9 have the PEA motif, the exception being B3, which has PET. Interestingly, cases of SSPE caused by genotype B3 have yet to be reported. In conclusion, our results strongly suggest that the PEA motif is a molecular marker for wt MeV at risk to cause SSPE.
Collapse
|
15
|
Palgen JL, Jurgens EM, Moscona A, Porotto M, Palermo LM. Unity in diversity: shared mechanism of entry among paramyxoviruses. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:1-32. [PMID: 25595799 DOI: 10.1016/bs.pmbts.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Paramyxoviridae family includes many viruses that are pathogenic in humans, including parainfluenza viruses, measles virus, respiratory syncytial virus, and the emerging zoonotic Henipaviruses. No effective treatments are currently available for these viruses, and there is a need for efficient antiviral therapies. Paramyxoviruses enter the target cell by binding to a cell surface receptor and then fusing the viral envelope with the target cell membrane, allowing the release of the viral genome into the cytoplasm. Blockage of these crucial steps prevents infection and disease. Binding and fusion are driven by two virus-encoded glycoproteins, the receptor-binding protein and the fusion protein, that together form the viral "fusion machinery." The development of efficient antiviral drugs requires a deeper understanding of the mechanism of action of the Paramyxoviridae fusion machinery, which is still controversial. Here, we review recent structural and functional data on these proteins and the current understanding of the mechanism of the paramyxovirus cell entry process.
Collapse
Affiliation(s)
- Jean-Louis Palgen
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Biology, Ecole Normale Supérieure, Lyon, France
| | - Eric M Jurgens
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA
| | - Anne Moscona
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| | - Matteo Porotto
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA.
| | - Laura M Palermo
- Department of Pediatrics, Weill Cornell Medical College, Cornell University, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA
| |
Collapse
|
16
|
Wild-type measles viruses with non-standard genome lengths. PLoS One 2014; 9:e95470. [PMID: 24748123 PMCID: PMC3991672 DOI: 10.1371/journal.pone.0095470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/27/2014] [Indexed: 12/13/2022] Open
Abstract
The length of the single stranded, negative sense RNA genome of measles virus (MeV) is highly conserved at 15,894 nucleotides (nt). MeVs can be grouped into 24 genotypes based on the highly variable 450 nucleotides coding for the carboxyl-terminus of the nucleocapsid protein (N-450). Here, we report the genomic sequences of 2 wild-type viral isolates of genotype D4 with genome lengths of 15,900 nt. Both genomes had a 7 nt insertion in the 3′ untranslated region (UTR) of the matrix (M) gene and a 1 nt deletion in the 5′ UTR of the fusion (F) gene. The net gain of 6 nt complies with the rule-of-six required for replication competency of the genomes of morbilliviruses. The insertions and deletion (indels) were confirmed in a patient sample that was the source of one of the viral isolates. The positions of the indels were identical in both viral isolates, even though epidemiological data and the 3 nt differences in N-450 between the two genomes suggested that the viruses represented separate chains of transmission. Identical indels were found in the M-F intergenic regions of 14 additional genotype D4 viral isolates that were imported into the US during 2007–2010. Viral isolates with and without indels produced plaques of similar size and replicated efficiently in A549/hSLAM and Vero/hSLAM cells. This is the first report of wild-type MeVs with genome lengths other than 15,894 nt and demonstrates that the length of the M-F UTR of wild-type MeVs is flexible.
Collapse
|
17
|
Ishida H, Ayata M, Shingai M, Matsunaga I, Seto Y, Katayama Y, Iritani N, Seya T, Yanagi Y, Matsuoka O, Yamano T, Ogura H. Infection of Different Cell Lines of Neural Origin with Subacute Sclerosing Panencephalitis (SSPE) Virus. Microbiol Immunol 2013; 48:277-87. [PMID: 15107538 DOI: 10.1111/j.1348-0421.2004.tb03524.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Measles virus is the causative agent of subacute sclerosing panencephalitis (SSPE). The viruses isolated from brain cells of patients with SSPE (called SSPE viruses) are defective in cell-free virus production in vitro. To investigate the cell tropism of three strains of SSPE virus (Osaka-1, Osaka-2, Osaka-3), SSPE virus-infected cell cultures were treated with cytochalasin D to prepare virus-like particles (CD-VLPs). All CD-VLPs formed syncytia after infection in CHO cells expressing CD150 but not in those expressing CD46. In addition, an antibody to CD46 did not block the infection of Vero cells by SSPE CDVLPs. The results were consistent with our previous suggestion that one or more unidentified receptors might be involved in the entry process. Infection with the CD-VLPs from three SSPE strains was further examined in different human cell lines, including those of neural origin, and was found to induce syncytia in epithelial cells (HeLa and 293T) as well as neuroblastoma cells (IMR-32 and SK-N-SH) with varying efficiency. SSPE CD-VLPs also infected glioblastoma cells (A172) and astrocytoma cells (U-251) but syncytial formation was rarely induced. These epithelial and neural cell lines were not permissive for the replication of wild-type MV. Together with our previous observations, these results suggest that the cell entry receptor is the major factor determining the cell tropism of SSPE viruses. Further studies are necessary to identify other viral and/or cellular factors that might be involved in the replication of SSPE virus in specific neural cells and in the brain.
Collapse
Affiliation(s)
- Hiroshi Ishida
- Department of Virology, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Otsuki N, Sekizuka T, Seki F, Sakai K, Kubota T, Nakatsu Y, Chen S, Fukuhara H, Maenaka K, Yamaguchi R, Kuroda M, Takeda M. Canine distemper virus with the intact C protein has the potential to replicate in human epithelial cells by using human nectin4 as a receptor. Virology 2013; 435:485-92. [PMID: 23174504 DOI: 10.1016/j.virol.2012.10.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 09/11/2012] [Accepted: 10/26/2012] [Indexed: 12/13/2022]
Abstract
Recent outbreaks in monkeys have proven that canine distemper virus (CDV) causes diseases in a wide range of mammals. CDV uses SLAM and nectin4 as receptors to replicate in susceptible animals. Here, we show that human nectin4, but not human SLAM, is fully functional as a CDV receptor. The CDV Ac96I strain hardly replicated in nectin4-expressing human epithelial NCI-H358 cells, but readily adapted to grow in them. Unsurprisingly, no amino acid change in the H protein was required for the adaptation. The original Ac96I strain possessed a truncated C protein, and a subpopulation possessing the intact C protein was selected after growth in NCI-H358 cells. Other CDV strains possessing the intact C protein showed significantly higher growth abilities in NCI-H358 cells than the Ac96I strain with the truncated C protein. These findings suggest that the C protein is functional in human epithelial cells and critical for CDV replication in them.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Chlorocebus aethiops
- Distemper/virology
- Distemper Virus, Canine/genetics
- Distemper Virus, Canine/metabolism
- Distemper Virus, Canine/physiology
- Dogs
- Epithelial Cells/virology
- Humans
- Molecular Sequence Data
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Sequence Analysis, DNA
- Signaling Lymphocytic Activation Molecule Family Member 1
- Vero Cells
- Virus Replication
Collapse
Affiliation(s)
- Noriyuki Otsuki
- Department of Virology 3, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
F-actin modulates measles virus cell-cell fusion and assembly by altering the interaction between the matrix protein and the cytoplasmic tail of hemagglutinin. J Virol 2012; 87:1974-84. [PMID: 23221571 DOI: 10.1128/jvi.02371-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Actin filament (F-actin) is believed to be involved in measles virus (MV) assembly as a cellular factor, but the precise roles remain unknown. Here we show that Phe at position 50 of the MV matrix (M) protein is important for its association with F-actin, through which the function of the M protein is regulated. In plasmid-expressed or MV-infected cells, a coimmunoprecipitation study revealed that the wild-type M (M-WT) protein associated strongly with F-actin but only weakly with the cytoplasmic tail of the hemagglutinin (H) protein. Since the F50P mutation allowed the M protein the enhanced interaction with the H protein in return for the sharply declined association with F-actin, the mutant M (M-F50P) protein strongly inhibited MV cell-cell fusion and promoted the uptake of the H protein into virus particles. The abundantly incorporated H protein resulted in the increase in infectivity of the F50P virus, although the virus contained a level of genome RNA equal to that of the WT virus. When the structure of F-actin was disrupted with cytochalasin D, the M-WT protein liberated from F-actin interacted with the H protein as tightly as the M-F50P protein, suppressing cell-cell fusion and promoting virus assembly comparably efficiently as the M-F50P protein. The cell-cell fusion activity of the WT virus appeared to be upheld by F-actin, which prevents the M protein interaction with the H protein. Our results indicate that F-actin in association with the M protein alters the interaction between the M and H proteins, thereby modulating MV cell-cell fusion and assembly.
Collapse
|
21
|
Kato SI, Nagata K, Takeuchi K. Cell tropism and pathogenesis of measles virus in monkeys. Front Microbiol 2012; 3:14. [PMID: 22363320 PMCID: PMC3277276 DOI: 10.3389/fmicb.2012.00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/09/2012] [Indexed: 02/01/2023] Open
Abstract
Measles virus (MV) is an enveloped negative strand RNA virus belonging to the family of Paramyxoviridae, genus Morbillivirus, and causes one of the most contagious diseases in humans. Experimentally infected non-human primates are used as animal models for studies of the pathogenesis of human measles. We established a reverse genetics system based on a highly pathogenic wild-type MV. Infection of monkeys with recombinant MV strains generated by reverse genetics enabled analysis of the molecular basis of MV pathogenesis. The essential in vivo function of accessory genes was indicated by infecting monkeys with recombinant MV strains deficient in the expression of accessory genes. Furthermore, recombinant wild-type MV strains expressing enhanced green fluorescent protein enabled visual tracking of MV-infected cells in vitro and in vivo. To date, three different molecules have been identified as receptors for MV. Signaling lymphocyte activation molecule (SLAM, also called CD150), expressed on immune cells, is a major receptor for MV. CD46, ubiquitously expressed in all nucleated cells in humans and monkeys, is a receptor for vaccine and laboratory-adapted strains of MV. The newly identified nectin-4 (also called poliovirus-receptor-like-4) is an epithelial cell receptor for MV. However, recent findings have indicated that CD46 acts as an MV receptor in vitro but not in vivo. The impact of the receptor usage of MV in vivo on the disease outcome is now under investigation.
Collapse
Affiliation(s)
- Sei-ich Kato
- Division of Biomedical Science, Department of Infection Biology, Faculty of Medicine, University of TsukubaTsukuba, Japan
| | - Kyosuke Nagata
- Division of Biomedical Science, Department of Infection Biology, Faculty of Medicine, University of TsukubaTsukuba, Japan
| | - Kaoru Takeuchi
- Division of Biomedical Science, Department of Infection Biology, Faculty of Medicine, University of TsukubaTsukuba, Japan
| |
Collapse
|
22
|
Wild-type measles virus with the hemagglutinin protein of the edmonston vaccine strain retains wild-type tropism in macaques. J Virol 2012; 86:3027-37. [PMID: 22238320 DOI: 10.1128/jvi.06517-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major difference between vaccine and wild-type strains of measles virus (MV) in vitro is the wider cell specificity of vaccine strains, resulting from the receptor usage of the hemagglutinin (H) protein. Wild-type H proteins recognize the signaling lymphocyte activation molecule (SLAM) (CD150), which is expressed on certain cells of the immune system, whereas vaccine H proteins recognize CD46, which is ubiquitously expressed on all nucleated human and monkey cells, in addition to SLAM. To examine the effect of the H protein on the tropism and attenuation of MV, we generated enhanced green fluorescent protein (EGFP)-expressing recombinant wild-type MV strains bearing the Edmonston vaccine H protein (MV-EdH) and compared them to EGFP-expressing wild-type MV strains. In vitro, MV-EdH replicated in SLAM(+) as well as CD46(+) cells, including primary cell cultures from cynomolgus monkey tissues, whereas the wild-type MV replicated only in SLAM(+) cells. However, in macaques, both wild-type MV and MV-EdH strains infected lymphoid and respiratory organs, and widespread infection of MV-EdH was not observed. Flow cytometric analysis indicated that SLAM(+) lymphocyte cells were infected preferentially with both strains. Interestingly, EGFP expression of MV-EdH in tissues and lymphocytes was significantly weaker than that of the wild-type MV. Taken together, these results indicate that the CD46-binding activity of the vaccine H protein is important for determining the cell specificity of MV in vitro but not the tropism in vivo. They also suggest that the vaccine H protein attenuates MV growth in vivo.
Collapse
|
23
|
The SI strain of measles virus derived from a patient with subacute sclerosing panencephalitis possesses typical genome alterations and unique amino acid changes that modulate receptor specificity and reduce membrane fusion activity. J Virol 2011; 85:11871-82. [PMID: 21917959 DOI: 10.1128/jvi.05067-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Subacute sclerosing panencephalitis (SSPE) is a fatal sequela associated with measles and is caused by persistent infection of the brain with measles virus (MV). The SI strain was isolated in 1976 from a patient with SSPE and shows neurovirulence in animals. Genome nucleotide sequence analyses showed that the SI strain genome possesses typical genome alterations for SSPE-derived strains, namely, accumulated amino acid substitutions in the M protein and cytoplasmic tail truncation of the F protein. Through the establishment of an efficient reverse genetics system, a recombinant SI strain expressing a green fluorescent protein (rSI-AcGFP) was generated. The infection of various cell types with rSI-AcGFP was evaluated by fluorescence microscopy. rSI-AcGFP exhibited limited syncytium-forming activity and spread poorly in cells. Analyses using a recombinant MV possessing a chimeric genome between those of the SI strain and a wild-type MV strain indicated that the membrane-associated protein genes (M, F, and H) were responsible for the altered growth phenotype of the SI strain. Functional analyses of viral glycoproteins showed that the F protein of the SI strain exhibited reduced fusion activity because of an E300G substitution and that the H protein of the SI strain used CD46 efficiently but used the original MV receptors on immune and epithelial cells poorly because of L482F, S546G, and F555L substitutions. The data obtained in the present study provide a new platform for analyses of SSPE-derived strains as well as a clear example of an SSPE-derived strain that exhibits altered receptor specificity and limited fusion activity.
Collapse
|
24
|
Bankamp B, Takeda M, Zhang Y, Xu W, Rota PA. Genetic characterization of measles vaccine strains. J Infect Dis 2011; 204 Suppl 1:S533-48. [PMID: 21666210 DOI: 10.1093/infdis/jir097] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The complete genomic sequences of 9 measles vaccine strains were compared with the sequence of the Edmonston wild-type virus. AIK-C, Moraten, Rubeovax, Schwarz, and Zagreb are vaccine strains of the Edmonston lineage, whereas CAM-70, Changchun-47, Leningrad-4 and Shanghai-191 were derived from 4 different wild-type isolates. Nucleotide substitutions were found in the noncoding regions of the genomes as well as in all coding regions, leading to deduced amino acid substitutions in all 8 viral proteins. Although the precise mechanisms involved in the attenuation of individual measles vaccines remain to be elucidated, in vitro assays of viral protein functions and recombinant viruses with defined genetic modifications have been used to characterize the differences between vaccine and wild-type strains. Although almost every protein contributes to an attenuated phenotype, substitutions affecting host cell tropism, virus assembly, and the ability to inhibit cellular antiviral defense mechanisms play an especially important role in attenuation.
Collapse
Affiliation(s)
- Bettina Bankamp
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
25
|
Xin JY, Ihara T, Komase K, Nakayama T. Amino Acid Substitutions in Matrix, Fusion and Hemagglutinin Proteins of Wild Measles Virus for Adaptation to Vero Cells. Intervirology 2011; 54:217-28. [DOI: 10.1159/000319844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 07/26/2010] [Indexed: 01/01/2023] Open
|
26
|
Nakatsu Y, Takeda M, Iwasaki M, Yanagi Y. A highly attenuated measles virus vaccine strain encodes a fully functional C protein. J Virol 2009; 83:11996-2001. [PMID: 19726523 PMCID: PMC2772723 DOI: 10.1128/jvi.00791-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 08/20/2009] [Indexed: 01/29/2023] Open
Abstract
The P, V, and C proteins of measles virus are encoded in overlapping reading frames of the P gene, which makes it difficult to analyze the functions of the individual proteins in the context of virus infection. We established a system to analyze the C protein independently from the P and V proteins by placing its gene in an additional transcription unit between the H and L genes. Analyses with this system indicated that a highly attenuated Edmonston lineage vaccine strain encodes a fully functional C protein, and the P and/or V protein is involved in the attenuated phenotype.
Collapse
Affiliation(s)
- Yuichiro Nakatsu
- Department of Virology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Iwasaki
- Department of Virology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
27
|
Okada H, Itoh M, Nagata K, Takeuchi K. Previously unrecognized amino acid substitutions in the hemagglutinin and fusion proteins of measles virus modulate cell-cell fusion, hemadsorption, virus growth, and penetration rate. J Virol 2009; 83:8713-21. [PMID: 19553316 PMCID: PMC2738167 DOI: 10.1128/jvi.00741-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/17/2009] [Indexed: 12/11/2022] Open
Abstract
Wild-type measles virus (MV) isolated in B95a cells could be adapted to Vero cells after several blind passages. In this study, we have determined the complete nucleotide sequences of the genomes of the wild type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strain and identified amino acid substitutions R516G, E271K, D439E and G464W (D439E/G464W), N481Y/H495R, and Y187H/L204F in the nucleocapsid, V, fusion (F), hemagglutinin (H), and large proteins, respectively. Expression of mutated H and F proteins from cDNA revealed that the H495R substitution, in addition to N481Y, in the H protein was necessary for the wild-type H protein to use CD46 efficiently as a receptor and that the G464W substitution in the F protein was important for enhanced cell-cell fusion. Recombinant wild-type MV strains harboring the F protein with the mutations D439E/G464W [F(D439E/G464W)] and/or H(N481Y/H495R) protein revealed that both mutated F and H proteins were required for efficient syncytium formation and virus growth in Vero cells. Interestingly, a recombinant wild-type MV strain harboring the H(N481Y/H495R) protein penetrated slowly into Vero cells, while a recombinant wild-type MV strain harboring both the F(D439E/G464W) and H(N481Y/H495R) proteins penetrated efficiently into Vero cells, indicating that the F(D439E/G464W) protein compensates for the inefficient penetration of a wild-type MV strain harboring the H(N481Y/H495R) protein. Thus, the F and H proteins synergistically function to ensure efficient wild-type MV growth in Vero cells.
Collapse
Affiliation(s)
- Hiromi Okada
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | |
Collapse
|
28
|
Yanagi Y, Takeda M, Ohno S, Hashiguchi T. Measles virus receptors. Curr Top Microbiol Immunol 2009; 329:13-30. [PMID: 19198560 DOI: 10.1007/978-3-540-70523-9_2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Measles virus (MV) has two envelope glycoproteins, the hemagglutinin (H) and fusion protein, which are responsible for attachment and membrane fusion, respectively. Signaling lymphocyte activation molecule (SLAM, also called CD150), a membrane glycoprotein expressed on immune cells, acts as the principal cellular receptor for MV, accounting for its lymphotropism and immunosuppressive nature. MV also infects polarized epithelial cells via an as yet unknown receptor molecule, thereby presumably facilitating transmission via aerosol droplets. Vaccine and laboratory-adapted strains of MV use ubiquitously expressed CD46 as an alternate receptor through amino acid substitutions in the H protein. The crystal structure of the H protein indicates that the putative binding sites for SLAM, CD46, and the epithelial cell receptor are strategically located in different positions of the H protein. Other molecules have also been implicated in MV infection, although their relevance remains to be determined. The identification of MV receptors has advanced our understanding of MV tropism and pathogenesis.
Collapse
Affiliation(s)
- Y Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, 812-8582, Fukuoka, Japan.
| | | | | | | |
Collapse
|
29
|
Abstract
Because viruses are obligate parasites, numerous partnerships between measles virus and cellular molecules can be expected. At the entry level, measles virus uses at least two cellular receptors, CD150 and a yet to be identified epithelial receptor to which the virus H protein binds. This dual receptor strategy illuminates the natural infection and inter-human propagation of this lymphotropic virus. The attenuated vaccine strains use CD46 as an additional receptor, which results in a tropism alteration. Surprisingly, the intracellular viral and cellular protein partnership leading to optimal virus life cycle remains mostly a black box, while the interactions between viral proteins that sustain the RNA-dependant RNA polymerase activity (i.e., transcription and replication), the particle assembly and the polarised virus budding are documented. Hsp72 is the only cellular protein that is known to regulate the virus transcription and replication through its interaction with the viral N protein. The viral P protein is phosphorylated by the casein kinase II with undetermined functional consequences. The cellular partnership that controls the intracellular trafficking of viral components, the assembly and/or the budding of measles virus, remains unknown. The virus to cell innate immunity war is better documented. The 5' triphosphate-ended virus leader transcript is recognised by RIG-I, a cellular helicase, and induces the interferon response. Measles virus V protein binds to the MDAS helicase and prevents the MDA5-mediated activation of interferon. By interacting with STAT1 and Jak1, the viral P and V proteins prevent the type I interferon receptor (IFNAR) signalling. The virus N protein interacts with eIF3-p40 to inhibit the translation of cellular mRNA. The H protein binds to TLR2, which then transduces an activation signal and CD150 expression in monocytes. The P protein activates the expression of the ubiquitin modifier A20, thus blocking the TLR4-mediated signalling. Few other partnerships between measles virus components and cellular proteins have been postulated or demonstrated, and they need further investigations to understand their physiopathological outcome.
Collapse
|
30
|
Bankamp B, Fontana JM, Bellini WJ, Rota PA. Adaptation to cell culture induces functional differences in measles virus proteins. Virol J 2008; 5:129. [PMID: 18954437 PMCID: PMC2582235 DOI: 10.1186/1743-422x-5-129] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 10/27/2008] [Indexed: 11/10/2022] Open
Abstract
Background Live, attenuated measles virus (MeV) vaccine strains were generated by adaptation to cell culture. The genetic basis for the attenuation of the vaccine strains is unknown. We previously reported that adaptation of a pathogenic, wild-type MeV to Vero cells or primary chicken embryo fibroblasts (CEFs) resulted in a loss of pathogenicity in rhesus macaques. The CEF-adapted virus (D-CEF) contained single amino acid changes in the C and matrix (M) proteins and two substitutions in the shared amino terminal domain of the phosphoprotein (P) and V protein. The Vero-adapted virus (D-VI) had a mutation in the cytoplasmic tail of the hemagglutinin (H) protein. Results In vitro assays were used to test the functions of the wild-type and mutant proteins. The substitution in the C protein of D-CEF decreased its ability to inhibit mini-genome replication, while the wild-type and mutant M proteins inhibited replication to the same extent. The substitution in the cytoplasmic tail of the D-VI H protein resulted in reduced fusion in a quantitative fusion assay. Co-expression of M proteins with wild-type fusion and H proteins decreased fusion activity, but the mutation in the M protein of D-CEF did not affect this function. Both mutations in the P and V proteins of D-CEF reduced the ability of these proteins to inhibit type I and II interferon signaling. Conclusion Adaptation of a wild-type MeV to cell culture selected for genetic changes that caused measurable functional differences in viral proteins.
Collapse
Affiliation(s)
- Bettina Bankamp
- Measles, Mumps, Rubella and Herpesvirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, MS C-22, 1600 Clifton Road, Atlanta, Georgia 30333, USA.
| | | | | | | |
Collapse
|
31
|
Hagiwara K, Sato H, Inoue Y, Watanabe A, Yoneda M, Ikeda F, Fujita K, Fukuda H, Takamura C, Kozuka-Hata H, Oyama M, Sugano S, Ohmi S, Kai C. Phosphorylation of measles virus nucleoprotein upregulates the transcriptional activity of minigenomic RNA. Proteomics 2008; 8:1871-9. [DOI: 10.1002/pmic.200701051] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Measles virus infects both polarized epithelial and immune cells by using distinctive receptor-binding sites on its hemagglutinin. J Virol 2008; 82:4630-7. [PMID: 18287234 DOI: 10.1128/jvi.02691-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measles is one of the most contagious human infectious diseases and remains a major cause of childhood morbidity and mortality worldwide. The signaling lymphocyte activation molecule (SLAM), also called CD150, is a cellular receptor for measles virus (MV), presumably accounting for its tropism for immune cells and its immunosuppressive properties. On the other hand, pathological studies have shown that MV also infects epithelial cells at a later stage of infection, although its mechanism has so far been unknown. In this study, we show that wild-type MV can infect and produce syncytia in human polarized epithelial cell lines independently of SLAM and CD46 (a receptor for the vaccine strains of MV). Progeny viral particles are released exclusively from the apical surface of these polarized epithelial cell lines. We have also identified amino acid residues on the MV attachment protein that are likely to interact with a putative receptor on epithelial cells. All of these residues have aromatic side chains and may form a receptor-binding pocket located in a different position from the putative SLAM- and CD46-binding sites on the MV attachment protein. Thus, our results indicate that MV has an intrinsic ability to infect both polarized epithelial and immune cells by using distinctive receptor-binding sites on the attachment protein corresponding to each of their respective receptors. The ability of MV to infect polarized epithelial cells and its exclusive release from the apical surface may facilitate its efficient transmission via aerosol droplets, resulting in its highly contagious nature.
Collapse
|
33
|
Druelle J, Sellin CI, Waku-Kouomou D, Horvat B, Wild FT. Wild type measles virus attenuation independent of type I IFN. Virol J 2008; 5:22. [PMID: 18241351 PMCID: PMC2275253 DOI: 10.1186/1743-422x-5-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 02/03/2008] [Indexed: 11/16/2022] Open
Abstract
Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). Results The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system.
Collapse
|
34
|
Measles vaccine. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
35
|
Bankamp B, Hodge G, McChesney MB, Bellini WJ, Rota PA. Genetic changes that affect the virulence of measles virus in a rhesus macaque model. Virology 2007; 373:39-50. [PMID: 18155263 DOI: 10.1016/j.virol.2007.11.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/19/2007] [Accepted: 11/19/2007] [Indexed: 12/18/2022]
Abstract
To identify genetic changes that lead to the attenuation of measles virus (MV), a strain of MV that is pathogenic in rhesus macaques was adapted to grow in Vero cells, Vero/hSLAM cells and, to simulate the process used to derive live attenuated vaccines, in primary chicken embryo fibroblasts (CEF). Comparison of the complete genomic sequences of the pathogenic wild-type (Davis87-wt) and four cell culture-adapted strains derived from it showed complete conservation of sequence in the Vero/hSLAM-passaged virus. Viruses adapted to Vero cells and CEF had predicted amino acid changes in the nucleocapsid protein, phosphoprotein, V protein, C protein, matrix protein, and the cytoplasmic tail of the hemagglutinin protein. All four cell culture-adapted strains, including the Vero/hSLAM cell-passaged virus, were able to productively infect Vero cells, but the peak viral titers differed. The Vero cell-adapted strains were unable to replicate in Chinese Hamster Ovary cells expressing CD46, indicating that they had not adapted to use the CD46 receptor. The Vero/hSLAM cell-passaged virus retained pathogenicity in rhesus macaques as measured by the appearance of a skin rash while the Vero cell-adapted and CEF-adapted strains had lost the ability to cause a rash. There were no significant differences in viral titers in peripheral blood mononuclear cells among monkeys infected with any of the viral stocks tested. These results identify a limited number of genetic changes in the genome of MV that lead to attenuation in vivo.
Collapse
Affiliation(s)
- Bettina Bankamp
- Measles, Mumps, Rubella and Herpes Viruses Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
36
|
Tahara M, Takeda M, Yanagi Y. Altered interaction of the matrix protein with the cytoplasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell-cell fusion. J Virol 2007; 81:6827-36. [PMID: 17442724 PMCID: PMC1933271 DOI: 10.1128/jvi.00248-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical isolates of measles virus (MV) use signaling lymphocyte activation molecule (SLAM) as a cellular receptor, whereas vaccine and laboratory strains may utilize the ubiquitously expressed CD46 as an additional receptor. MVs also infect, albeit inefficiently, SLAM(-) cells, via a SLAM- and CD46-independent pathway. Our previous study with recombinant chimeric viruses revealed that not only the receptor-binding hemagglutinin (H) but also the matrix (M) protein of the Edmonston vaccine strain can confer on an MV clinical isolate the ability to grow well in SLAM(-) Vero cells. Two substitutions (P64S and E89K) in the M protein which are present in many vaccine strains were found to be responsible for the efficient growth of recombinant virus in Vero cells. Here we show that the P64S and E89K substitutions allow a strong interaction of the M protein with the cytoplasmic tail of the H protein, thereby enhancing the assembly of infectious particles in Vero cells. These substitutions, however, are not necessarily advantageous for MVs, as they inhibit SLAM-dependent cell-cell fusion, thus reducing virus growth in SLAM(+) B-lymphoblastoid B95a cells. When the cytoplasmic tail of the H protein is deleted, a virus with an M protein possessing the P64S and E89K substitutions no longer grows well in Vero cells yet causes cell-cell fusion and replicates efficiently in B95a cells. These results reveal a novel mechanism of adaptation and attenuation of MV in which the altered interaction of the M protein with the cytoplasmic tail of the H protein modulates MV growth in different cell types.
Collapse
Affiliation(s)
- Maino Tahara
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
37
|
Tahara M, Takeda M, Seki F, Hashiguchi T, Yanagi Y. Multiple amino acid substitutions in hemagglutinin are necessary for wild-type measles virus to acquire the ability to use receptor CD46 efficiently. J Virol 2006; 81:2564-72. [PMID: 17182683 PMCID: PMC1865989 DOI: 10.1128/jvi.02449-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Measles virus (MV) possesses two envelope glycoproteins, namely, the receptor-binding hemagglutinin (H) and fusion proteins. Wild-type MV strains isolated in B-lymphoid cell lines use signaling lymphocyte activation molecule (SLAM), but not CD46, as a cellular receptor, whereas MV vaccine strains of the Edmonston lineage use both SLAM and CD46 as receptors. Studies have shown that the residue at position 481 of the H protein is critical in determining the use of CD46 as a receptor. However, the wild-type IC-B strain with a single N481Y substitution in the H protein utilizes CD46 rather inefficiently. In this study, a number of chimeric and mutant H proteins, and recombinant viruses harboring them, were generated to determine which residues of the Edmonston H protein are responsible for its efficient use of CD46. Our results show that three substitutions (N390I and E492G plus N416D or T446S), in addition to N481Y, are necessary for the IC-B H protein to use CD46 efficiently as a receptor. The N390I, N416D, and T446S substitutions are present in the H proteins of all strains of the Edmonston lineage, whereas the E492G substitution is found only in the H protein of the Edmonston tag strain generated from cDNAs. The T484N substitution, found in some of the Edmonston-lineage strains, resulted in a similar effect on the use of CD46 to that caused by the E492G substitution. Thus, multiple residues in the H protein that have not previously been implicated have important roles in the interaction with CD46.
Collapse
Affiliation(s)
- Maino Tahara
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
38
|
Yanagi Y, Takeda M, Ohno S. Measles virus: cellular receptors, tropism and pathogenesis. J Gen Virol 2006; 87:2767-2779. [PMID: 16963735 DOI: 10.1099/vir.0.82221-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Measles virus(MV), a member of the genusMorbillivirusin the familyParamyxoviridae, is an enveloped virus with a non-segmented, negative-strand RNA genome. It has two envelope glycoproteins, the haemagglutinin (H) and fusion proteins, which are responsible for attachment and membrane fusion, respectively. Human signalling lymphocyte activation molecule (SLAM; also called CD150), a membrane glycoprotein of the immunoglobulin superfamily, acts as a cellular receptor for MV. SLAM is expressed on immature thymocytes, activated lymphocytes, macrophages and dendritic cells and regulates production of interleukin (IL)-4 and IL-13 by CD4+T cells, as well as production of IL-12, tumour necrosis factor alpha and nitric oxide by macrophages. The distribution of SLAM is in accord with the lymphotropism and immunosuppressive nature of MV.Canine distemper virusandRinderpest virus, other members of the genusMorbillivirus, also use canine and bovine SLAM as receptors, respectively. Laboratory-adapted MV strains may use the ubiquitously expressed CD46, a complement-regulatory molecule, as an alternative receptor through amino acid substitutions in the H protein. Furthermore, MV can infect SLAM−cells, albeit inefficiently, via the SLAM- and CD46-independent pathway, which may account for MV infection of epithelial, endothelial and neuronal cellsin vivo. MV infection, however, is not determined entirely by the H protein–receptor interaction, and other MV proteins can also contribute to its efficient growth by facilitating virus replication at post-entry steps. Identification of SLAM as the principal receptor for MV has provided us with an important clue for better understanding of MV tropism and pathogenesis.
Collapse
Affiliation(s)
- Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinji Ohno
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
39
|
Liu X, Bankamp B, Xu W, Bellini WJ, Rota PA. The genomic termini of wild-type and vaccine strains of measles virus. Virus Res 2006; 122:78-84. [PMID: 16889863 DOI: 10.1016/j.virusres.2006.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 06/15/2006] [Accepted: 06/28/2006] [Indexed: 11/23/2022]
Abstract
The genomic termini from 18 strains of measles virus (MV) including wild-type MVs from the pre-vaccine period, recent wild-type isolates and various vaccine strains were sequenced. The first 25 nucleotides of the 3' terminus and last 52 nucleotides of the 5' terminus were conserved in all of the viruses examined. Nucleotides 26 and 42 of the 3' leader were A and G, respectively, in all genotype A viruses except Edmonston wild-type (Ed-WT). All non-genotype A viruses and Ed-WT had U in both positions. No consistent substitution pattern was found in the 5' trailer region of the genome. The nucleotide substitutions at positions 26 and 42 in the 3' leader region were introduced into a MV-CAT mini-genome to test for their effect on the production of reporter protein in both a vaccinia T7-driven, plasmid-based replication assay as well as in a helper virus system. Regardless of the source of the polymerase proteins or the natural leader sequence of the helper viruses, the mini-genome 26A42G produced more CAT protein than 26U42U. The nucleotide substitution at 26 had the greatest effect on CAT production. These results indicated that naturally occurring nucleotide variations in the 3' leader region can affect the levels of reporter protein synthesis, and presumably affected the level of replication of the virus.
Collapse
Affiliation(s)
- Xin Liu
- Measles, Mumps, Rubella and Herpesvirus Branch, Centers for Disease Control and Prevention, MS-C-22, 1600 Clifton Rd., Atlanta, GA 30333, USA
| | | | | | | | | |
Collapse
|
40
|
Takeda M, Nakatsu Y, Ohno S, Seki F, Tahara M, Hashiguchi T, Yanagi Y. Generation of measles virus with a segmented RNA genome. J Virol 2006; 80:4242-8. [PMID: 16611883 PMCID: PMC1472037 DOI: 10.1128/jvi.80.9.4242-4248.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses classified in the order Mononegavirales have a single nonsegmented RNA molecule as the genome and employ similar strategies for genome replication and gene expression. Infectious particles of Measles virus (MeV), a member of the family Paramyxoviridae in the order Mononegavirales, with two or three RNA genome segments (2 seg- or 3 seg-MeV) were generated using a highly efficient reverse genetics system. All RNA segments of the viruses were designed to have authentic 3' and 5' self-complementary termini, similar to those of negative-stranded RNA viruses that intrinsically have multiple RNA genome segments. The 2 seg- and 3 seg-MeV were viable and replicated well in cultured cells. 3 seg-MeV could accommodate up to six additional transcriptional units, five of which were shown to be capable of expressing foreign proteins efficiently. These data indicate that the MeV genome can be segmented, providing an experimental insight into the divergence of the negative-stranded RNA viruses with nonsegmented or segmented RNA genomes. They also illustrate a new strategy to develop mononegavirus-derived vectors harboring multiple additional transcriptional units.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Tahara M, Takeda M, Yanagi Y. Contributions of matrix and large protein genes of the measles virus edmonston strain to growth in cultured cells as revealed by recombinant viruses. J Virol 2006; 79:15218-25. [PMID: 16306593 PMCID: PMC1316043 DOI: 10.1128/jvi.79.24.15218-15225.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Edmonston strain of measles virus (MV) was obtained by sequential passages of the original isolate in various cultured cells. Although attenuated in vivo, it grows efficiently in most primate cell lines. Previous studies have revealed that MV tropism cannot be solely explained by the use of CD150 and/or CD46 as a cellular receptor. In order to evaluate the contributions of individual genes of the Edmonston strain to growth in cultured cells, we generated a series of recombinant viruses in which part of the genome of the clinical isolate IC-B (which uses CD150 as a receptor) was replaced with the corresponding sequences of the Edmonston strain. The recombinant virus possessing the Edmonston hemagglutinin (H) gene (encoding the receptor-binding protein) grew as efficiently in Vero cells as the Edmonston strain. Those viruses having either the matrix (M) or large (L) protein gene from the Edmonston strain could also replicate well in Vero cells, although they entered them at low efficiencies. P64S and E89K substitutions were responsible for the ability of the M protein to make virus grow efficiently in Vero cells, while the first half of the Edmonston L gene was important for better replication. Despite efficient growth in Vero cells, the recombinant viruses with these mutations had growth disadvantage in CD150-positive lymphoid B95a cells. Thus, not only the H gene but also the M and L genes contribute to efficient replication of the Edmonston strain in some cultured cells.
Collapse
Affiliation(s)
- Maino Tahara
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
42
|
Shingai M, Inoue N, Okuno T, Okabe M, Akazawa T, Miyamoto Y, Ayata M, Honda K, Kurita-Taniguchi M, Matsumoto M, Ogura H, Taniguchi T, Seya T. Wild-type measles virus infection in human CD46/CD150-transgenic mice: CD11c-positive dendritic cells establish systemic viral infection. THE JOURNAL OF IMMUNOLOGY 2005; 175:3252-61. [PMID: 16116216 DOI: 10.4049/jimmunol.175.5.3252] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We generated transgenic (TG) mice that constitutively express human CD46 (huCD46) and/or TLR-inducible CD150 (huCD150), which serve as receptors for measles virus (MV). These mice were used to study the spreading and pathogenicity of GFP-expressing or intact laboratory-adapted Edmonston and wild-type Ichinose (IC) strains of MV. Irrespective of the route of administration, neither type of MV was pathogenic to these TG mice. However, in ex vivo, limited replication of IC was observed in the spleen lymphocytes from huCD46/huCD150 TG and huCD150 TG, but not in huCD46 TG and non-TG mice. In huCD150-positive TG mouse cells, CD11c-positive bone marrow-derived myeloid dendritic cells (mDC) participated in MV-mediated type I IFN induction. The level and induction profile of IFN-beta was higher in mDC than the profile of IFN-alpha. Wild-type IC induced markedly high levels of IFN-beta compared with Edmonston in mDC, as opposed to human dendritic cells. We then generated huCD46/huCD150 TG mice with type I IFN receptor (IFNAR1)-/- mice. MV-bearing mDCs spreading to draining lymph nodes were clearly observed in these triple mutant mice in vivo by i.p. MV injection. Infectious lymph nodes were also detected in the double TG mice into which MV-infected CD11c-positive mDCs were i.v. transferred. This finding suggests that in the double TG mouse model mDCs once infected facilitate systemic MV spreading and infection, which depend on mDC MV permissiveness determined by the level of type I IFN generated via IFNAR1. Although these results may not simply reflect human MV infection, the huCD150/huCD46 TG mice may serve as a useful model for the analysis of MV-dependent modulation of mDC response.
Collapse
Affiliation(s)
- Masashi Shingai
- Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kadota SI, Kanayama T, Miyajima N, Takeuchi K, Nagata K. Enhancing of measles virus infection by magnetofection. J Virol Methods 2005; 128:61-6. [PMID: 15904981 DOI: 10.1016/j.jviromet.2005.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 04/11/2005] [Accepted: 04/12/2005] [Indexed: 11/23/2022]
Abstract
Magnetofection is a viral and non-viral gene delivery method using polyethyleneimine-conjugated super-paramagnetic nanoparticle under a magnetic field. Previous studies have indicated that magnetofection enhanced the infection of adenoviruses and retroviruses. It is shown that magnetofection enhances the infection of measles virus, a paramyxovirus. When cells expressing a measles virus receptor human SLAM were infected with a measles virus that encodes green fluorescent protein gene, magnetofection enhanced measles virus infection by 30- to 70-fold. The infection of SLAM-negative cells with measles virus was also enhanced by magnetofection, but to a lesser extent. These results indicate that magnetofection could be useful for isolation of measles virus from clinical specimens.
Collapse
Affiliation(s)
- Shin-ichi Kadota
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | | | |
Collapse
|
44
|
Bankamp B, Wilson J, Bellini WJ, Rota PA. Identification of naturally occurring amino acid variations that affect the ability of the measles virus C protein to regulate genome replication and transcription. Virology 2005; 336:120-9. [PMID: 15866077 DOI: 10.1016/j.virol.2005.03.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 02/17/2005] [Accepted: 03/10/2005] [Indexed: 11/24/2022]
Abstract
The C protein of measles virus (MV C) is a basic protein of 186 amino acids (aa) that plays at least two roles in infected cells, interference with the innate immune response and modulation of viral polymerase activity. In this study, Northern blots were used to demonstrate that C proteins from three vaccine strains and three wild-type isolates of MV downregulated both mRNA transcription and genome replication in a plasmid-based mini-genome assay. The effect on transcription always paralleled the effect on replication; however, the six MV C proteins varied considerably in their ability to inhibit polymerase activity. Though the amino-terminal 45 aa of the C protein are more variable among different MV strains than the remaining 75% of the protein, the ability of the MV C proteins to inhibit polymerase activity was not regulated by substitutions in the amino terminus, but rather by the more conserved region containing aa 46-167. Naturally occurring substitutions at positions 147 and 166, but not 88 and 186, were found to regulate MV C protein activity. Deletion of the carboxyl-terminal 19 aa did not affect the polymerase-modulating activity. Though we did not find a link between the aa changes in MV C and attenuation, these data provide new information regarding the functions of this non-structural protein.
Collapse
Affiliation(s)
- Bettina Bankamp
- Measles, Mumps, Rubella and Herpes Virus Team, Centers for Disease Control and Prevention, Mail-stop C-22, 1600 Clifton Road, Atlanta, GA 30333, USA
| | | | | | | |
Collapse
|
45
|
Takeuchi K, Takeda M, Miyajima N, Ami Y, Nagata N, Suzaki Y, Shahnewaz J, Kadota SI, Nagata K. Stringent requirement for the C protein of wild-type measles virus for growth both in vitro and in macaques. J Virol 2005; 79:7838-44. [PMID: 15919937 PMCID: PMC1143652 DOI: 10.1128/jvi.79.12.7838-7844.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/26/2005] [Indexed: 11/20/2022] Open
Abstract
The P gene of measles virus (MV) encodes the P protein and three accessory proteins (C, V, and R). However, the role of these accessory proteins in the natural course of MV infection remains unclear. For this study, we generated a recombinant wild-type MV lacking the C protein, called wtMV(C-), by using a reverse genetics system (M. Takeda, K. Takeuchi, N. Miyajima, F. Kobune, Y. Ami, N. Nagata, Y. Suzaki, Y. Nagai, and M. Tashiro, J. Virol. 74:6643-6647). When 293 cells expressing the MV receptor SLAM (293/hSLAM) were infected with wtMV(C-) or parental wild-type MV (wtMV), the growth of wtMV(C-) was restricted, particularly during late stages. Enhanced green fluorescent protein-expressing wtMV(C-) consistently induced late-stage cell rounding and cell death in the presence of a fusion-inhibiting peptide, suggesting that the C protein can prevent cell death and is required for long-term MV infection. Neutralizing antibodies against alpha/beta interferon did not restore the growth restriction of wtMV(C-) in 293/hSLAM cells. When cynomolgus monkeys were infected with wtMV(C-) or wtMV, the number of MV-infected cells in the thymus was >1,000-fold smaller for wtMV(C-) than for wtMV. Immunohistochemical analyses showed strong expression of an MV antigen in the spleen, lymph nodes, tonsils, and larynx of a cynomolgus monkey infected with wtMV but dramatically reduced expression in the same tissues in a cynomolgus monkey infected with wtMV(C-). These data indicate that the MV C protein is necessary for efficient MV replication both in vitro and in cynomolgus monkeys.
Collapse
Affiliation(s)
- Kaoru Takeuchi
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Miyajima N, Takeda M, Tashiro M, Hashimoto K, Yanagi Y, Nagata K, Takeuchi K. Cell tropism of wild-type measles virus is affected by amino acid substitutions in the P, V and M proteins, or by a truncation in the C protein. J Gen Virol 2004; 85:3001-3006. [PMID: 15448363 DOI: 10.1099/vir.0.80287-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two nucleotide differences in the P/C/V and M genes between B95a cell- and Vero cell-isolated wild-type measles viruses (MV) have previously been found from the same patient. The nucleotide difference in the P/C/V gene resulted in an amino acid difference (M175I) in the P and V proteins and a 19 aa deletion in the C protein. The nucleotide difference in the M gene resulted in an amino acid difference (P64H) in the M protein. To verify this result and to examine further whether the amino acid difference or truncation is important for MV cell tropism, recombinant MV strains containing one of the two nucleotide substitutions, or both, were generated. It was found that the P64H substitution in the M protein was important for efficient virus growth and dissemination in Vero cells and that the M175I substitution in the P and V protein or truncation of the C protein was required for optimal growth.
Collapse
Affiliation(s)
- Naoko Miyajima
- Department of Virology 3, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Masato Tashiro
- Department of Virology 3, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Koji Hashimoto
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Kaoru Takeuchi
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| |
Collapse
|
47
|
Ohno S, Ono N, Takeda M, Takeuchi K, Yanagi Y. Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J Gen Virol 2004; 85:2991-2999. [PMID: 15448362 DOI: 10.1099/vir.0.80308-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interferon (IFN)-alpha and -beta are the main cytokines for innate immune responses against viral infections. To replicate efficiently in the hosts, viruses have evolved various countermeasures to the IFN response. The V protein of measles virus (MV) has been shown to block IFN-alpha/beta signalling. Here, the wild-type IC-B strain of MV was shown to grow comparably in the presence and absence of IFN-alpha, whereas replication of the Edmonston tag strain recovered from cloned DNA was strongly suppressed in its presence. The V protein of the IC-B strain, but not the Edmonston tag strain, blocked IFN-alpha signalling. The V protein of the Edmonston strain from the ATCC also inhibited IFN-alpha signalling. There were three amino acid differences between the V proteins of the Edmonston ATCC and tag strains, and substitutions of both residues at positions 110 and 272 were required for the Edmonston ATCC V protein to lose IFN-antagonist activity. The P protein of the IC-B strain, which shares the N-terminal 231 aa residues with the V protein, also inhibited IFN-alpha signalling. Indeed, fragments comprising only those 231 residues of the IC-B and Edmonston ATCC V proteins, but not the Edmonston tag V protein, were able to block IFN-alpha signalling. However, the N-terminal region of the Edmonston tag V protein, when attached to the C-terminal region of the Edmonston ATCC V protein, inhibited IFN-alpha signalling. Taken together, our results indicate that both the N- and C-terminal regions contribute to the IFN-antagonist activity of the MV V protein.
Collapse
Affiliation(s)
- Shinji Ohno
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Nobuyuki Ono
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Kaoru Takeuchi
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
48
|
Plattet P, Zweifel C, Wiederkehr C, Belloy L, Cherpillod P, Zurbriggen A, Wittek R. Recovery of a persistent Canine distemper virus expressing the enhanced green fluorescent protein from cloned cDNA. Virus Res 2004; 101:147-53. [PMID: 15041182 DOI: 10.1016/j.virusres.2004.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 12/20/2003] [Accepted: 01/06/2004] [Indexed: 10/26/2022]
Abstract
Wild-type A75/17-Canine distemper virus (CDV) is a highly virulent strain, which induces a persistent infection in the central nervous system (CNS) with demyelinating disease. Wild-type A75/17-CDV, which is unable to replicate in cell lines to detectable levels, was adapted to grow in Vero cells and was designated A75/17-V. Sequence comparison between the two genomes revealed seven nucleotide differences located in the phosphoprotein (P), the matrix (M) and the large (L) genes. The P gene is polycistronic and encodes two auxiliary proteins, V and C, besides the P protein. The mutations resulted in amino acid changes in the P and V, but not in the C protein, as well as in the M and L proteins. Here, a rescue system was developed for the A75/17-V strain, which was shown to be attenuated in vivo, but retains a persistent infection phenotype in Vero cells. In order to track the recombinant virus, an additional transcription unit coding for the enhanced green fluorescent protein (eGFP) was inserted at the 3' proximal position in the A75/17-V cDNA clone. Reverse genetics technology will allow us to characterize the genetic determinants of A75/17-V CDV persistent infection in cell culture.
Collapse
Affiliation(s)
- Philippe Plattet
- Institut de Biotechnologie, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
49
|
Kumada A, Komase K, Nakayama T. Recombinant measles AIK-C strain expressing current wild-type hemagglutinin protein. Vaccine 2004; 22:309-16. [PMID: 14670311 DOI: 10.1016/j.vaccine.2003.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We constructed a recombinant measles virus cDNA, pIC-MVAIK-H/87-K, in which the hemagglutinin (H) gene of the AIK-C vaccine strain was replaced by the wild-type (MVi/Tokyo.JPN/87-K: genotype D3) H gene and the remaining genes were the same as the AIK-C vaccine strain. To investigate the feasibility of the recombinant vaccine strain expressing wild-type H protein instead of the AIK-C H protein, we constructed two recombinant measles cDNA, having Leu (small plaque-type) and Phe (large plaque-type) at position 278 of the F protein. Infectious chimeric virus strains, MVAIK-H/87-K/S (small plaque-type) and MVAIK-H/87-K/L (large plaque-type), were recovered, which were designed to induce small (S) and large (L) plaques in Vero cells. The MVAIK-H/87-K/S and MVAIK-H/87-K/L did not grow at 39-40 degrees C, similar to the original AIK-C strain, and retained the temperature sensitivity (ts) characteristics. They did not induce cytopathic effect (CPE) in Vero cells but produced CPE in B95a cells, similar to the current wild-type measles MVi/Tokyo.JPN/87-K. From the results of Western blotting, the mobility of the H protein of MVAIK-H/87-K/S and MVAIK-H/87-K/L was similar to that of MVi/Tokyo.JPN/87-K. Hyper-immune sera raised by MVAIK-H/87-K/S neutralized all types of current wild strains. Thus, the chimeric measles virus expressing the current wild H protein demonstrated wild-type H properties with ts characteristics of the vaccine strain, indicating that the construction strategy of recombinant measles virus can cope with the hyper-mutated measles virus.
Collapse
Affiliation(s)
- Atsushi Kumada
- Department of Pediatrics, Tokyo Medical College, 160-0023 Tokyo, Japan
| | | | | |
Collapse
|
50
|
Combredet C, Labrousse V, Mollet L, Lorin C, Delebecque F, Hurtrel B, McClure H, Feinberg MB, Brahic M, Tangy F. A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice. J Virol 2003; 77:11546-54. [PMID: 14557640 PMCID: PMC229349 DOI: 10.1128/jvi.77.21.11546-11554.2003] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live attenuated RNA viruses make highly efficient vaccines. Among them, measles virus (MV) vaccine has been given to a very large number of children and has been shown to be highly efficacious and safe. Therefore, this vaccine might be a very promising vector to immunize children against both measles and other infectious agents, such as human immunodeficiency virus. A vector was previously derived from the Edmonston B strain of MV, a vaccine strain abandoned 25 years ago. Sequence analysis revealed that the genome of this vector diverges from Edmonston B by 10 amino acid substitutions not related to any Edmonston subgroup. Here we describe an infectious cDNA for the Schwarz/Moraten strain, a widely used MV vaccine. This cDNA was constructed from a batch of commercial vaccine. The extremities of the cDNA were engineered in order to maximize virus yield during rescue. A previously described helper cell-based rescue system was adapted by cocultivating transfected cells on primary chicken embryo fibroblasts, the cells used to produce the Schwarz/Moraten vaccine. After two passages the sequence of the rescued virus was identical to that of the cDNA and of the published Schwarz/Moraten sequence. Two additional transcription units were introduced in the cDNA for cloning foreign genetic material. The immunogenicity of rescued virus was studied in macaques and in mice transgenic for the CD46 MV receptor. Antibody titers and T-cell responses (ELISpot) in animals inoculated with low doses of rescued virus were identical to those obtained with commercial Schwarz MV vaccine. In contrast, the immunogenicity of the previously described Edmonston B strain-derived MV clone was much lower. This new molecular clone will allow for the production of MV vaccine without having to rely on seed stocks. The additional transcription units allow expressing heterologous antigens, thereby providing polyvalent vaccines based on an approved, safe, and efficient MV vaccine strain that is used worldwide.
Collapse
|