1
|
Lafferty DJ, Robison TA, Gunadi A, Schafran PW, Gunn LH, Van Eck J, Li FW. Biolistics-mediated transformation of hornworts and its application to study pyrenoid protein localization. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4760-4771. [PMID: 38779949 DOI: 10.1093/jxb/erae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Hornworts are a deeply diverged lineage of bryophytes and a sister lineage to mosses and liverworts. Hornworts have an array of unique features that can be leveraged to illuminate not only the early evolution of land plants, but also alternative paths for nitrogen and carbon assimilation via cyanobacterial symbiosis and a pyrenoid-based CO2-concentrating mechanism (CCM), respectively. Despite this, hornworts are one of the few plant lineages with limited available genetic tools. Here we report an efficient biolistics method for generating transient expression and stable transgenic lines in the model hornwort, Anthoceros agrestis. An average of 569 (±268) cells showed transient expression per bombardment, with green fluorescent protein expression observed within 48-72 h. A total of 81 stably transformed lines were recovered across three separate experiments, averaging six lines per bombardment. We followed the same method to transiently transform nine additional hornwort species, and obtained stable transformants from one. This method was further used to verify the localization of Rubisco and Rubisco activase in pyrenoids, which are central proteins for CCM function. Together, our biolistics approach offers key advantages over existing methods as it enables rapid transient expression and can be applied to widely diverse hornwort species.
Collapse
Affiliation(s)
| | - Tanner A Robison
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Laura H Gunn
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Plant Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Sahab S, Taylor N. Studies on Pure Mlb ® (Multiple Left Border) Technology and Its Impact on Vector Backbone Integration in Transgenic Cassava. FRONTIERS IN PLANT SCIENCE 2022; 13:816323. [PMID: 35185986 PMCID: PMC8855067 DOI: 10.3389/fpls.2022.816323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Imperfect T-DNA processing is common during Agrobacterium-mediated transformation, which integrates vector backbone sequences into the plant genome. However, regulatory restrictions prevent such transgenic plants from being developed for commercial deployment. The binary vector pCAMBIA2300 was modified by incorporating multiple left border (Mlb®) repeats and was tested in BY2 cells, tobacco, and cassava plants to address this issue. PCR analyses confirmed a twofold increase in the vector backbone free events in the presence of triple left borders in all three systems tested. Vector backbone read-through past the LB was reduced significantly; however, the inclusion of Mlbs® did not effectively address the beyond right border read-through. Also, Mlbs® increased the frequency of single-copy and vector backbone free events (clean events) twice compared to a single LB construct. Here, we briefly narrate the strength and limitations of using Mlb® technology and reporter genes in reducing the vector backbone transfer in transgenic events.
Collapse
Affiliation(s)
- Sareena Sahab
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Nigel Taylor
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| |
Collapse
|
3
|
Choudhury A, Rajam MV. Genetic transformation of legumes: an update. PLANT CELL REPORTS 2021; 40:1813-1830. [PMID: 34230986 DOI: 10.1007/s00299-021-02749-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
This review summarizes the recent advances in legume genetic transformation and provides an insight into the critical factors that play a major role in the process. It also sheds light on some of the potential areas which may ameliorate the transformation of legumes. Legumes are an important group of dicotyledonous plants, highly enriched in proteins and minerals. Majority of the legume plants are cultivated in the arid and semi-arid parts of the world, and hence said to be climate resilient. They have the capability of atmospheric nitrogen fixation and thus play a vital role in the ecological sphere. However, the worldwide production of legumes is somehow not up to the mark and the yields are greatly affected by various biotic and abiotic stress factors. Genetic engineering strategies have emerged as a core of plant biology and remarkably facilitate the crop improvement programmes. A significant progress has been made towards the optimization of efficient transformation system for legume plants over the years but this group is still underutilized in comparison to other crops. Among the variety of available DNA delivery systems, Agrobacterium-mediated and particle bombardment have been primarily deployed for optimization and trait improvement. However, recalcitrance and genotype-dependence are some of the major bottlenecks for successful transformation. In this context, the present review summarizes the advances taken place in the area of legume transformation and provides an insight into the present scenario. The challenges and future possibilities for yield improvement have also been discussed.
Collapse
Affiliation(s)
- Aparajita Choudhury
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manchikatla V Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
4
|
Particle bombardment technology and its applications in plants. Mol Biol Rep 2020; 47:9831-9847. [PMID: 33222118 DOI: 10.1007/s11033-020-06001-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Particle bombardment, or biolistics, has emerged as an excellent alternative approach for plant genetic transformation which circumvents the limitations of Agrobacterium-mediated genetic transformation. The method has no biological constraints and can transform a wide range of plant species. Besides, it has been the most efficient way to achieve organelle transformation (for both chloroplasts and mitochondria) so far. Along with the recent advances in genome editing technologies, conventional gene delivery tools are now being repurposed to deliver targeted gene editing reagents into the plants. One of the key advantages is that the particle bombardment allows DNA-free gene editing of the genome. It enables the direct delivery of proteins, RNAs, and RNPs into plants. Owing to the versatility and wide-range applicability of the particle bombardment, it will likely remain one of the major genetic transformation methods in the future. This article provides an overview of the current status of particle bombardment technology and its applications in the field of plant research and biotechnology.
Collapse
|
5
|
Miroshnichenko D, Klementyeva A, Pushin A, Dolgov S. A competence of embryo-derived tissues of tetraploid cultivated wheat species Triticum dicoccum and Triticum timopheevii for efficient and stable transgenesis mediated by particle inflow gun. BMC PLANT BIOLOGY 2020; 20:442. [PMID: 33050908 PMCID: PMC7557024 DOI: 10.1186/s12870-020-02580-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The ability to engineer cereal crops by gene transfer technology is a powerful and informative tool for discovering and studying functions of genes controlling environmental adaptability and nutritional value. Tetraploid wheat species such as emmer wheat and Timopheevi wheat are the oldest cereal crops cultivated in various world areas long before the Christian era. Nowadays, these hulled wheat species are gaining new interest as donors for gene pools responsible for the improved grain yield and quality, tolerance for abiotic and biotic stress, resistance to pests and disease. The establishing of efficient gene transfer techniques for emmer and Timopheevi wheat may help in creation of modern polyploid wheat varieties. RESULTS In the present study, we describe a robust protocol for the production of fertile transgenic plants of cultivated emmer wheat (Russian cv. 'Runo') using a biolistic delivery of a plasmid encoding the gene of green fluorescent protein (GFP) and an herbicide resistance gene (BAR). Both the origin of target tissues (mature or immature embryos) and the type of morphogenic calli (white or translucent) influenced the efficiency of stable transgenic plant production in emmer wheat. The bombardment of nodular white compact calluses is a major factor allowed to achieve the highest transformation efficiency of emmer wheat (on average, 12.9%) confirmed by fluorescence, PCR, and Southern blot. In the absence of donor plants for isolation of immature embryos, mature embryo-derived calluses could be used as alternative tissues for recovering transgenic emmer plants with a frequency of 2.1%. The biolistic procedure based on the bombardment of immature embryo-derived calluses was also successful for the generation of transgenic Triticum timopheevii wheat plants (transformation efficiency of 0.5%). Most of the primary events transmitted the transgene expression to the sexual progeny. CONCLUSION The procedures described here can be further used to study the functional biology and contribute to the agronomic improvement of wheat. We also recommend involving in such research the Russian emmer wheat cv. 'Runo', which demonstrates a high capacity for biolistic-mediated transformation, exceeding the previously reported values for different genotypes of polyploid wheat.
Collapse
Affiliation(s)
- Dmitry Miroshnichenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Moscow Region 142290 Russian Federation
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550 Russian Federation
- Kurchatov Genomics Center—ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550 Russian Federation
| | - Anna Klementyeva
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Moscow Region 142290 Russian Federation
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550 Russian Federation
| | - Alexander Pushin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Moscow Region 142290 Russian Federation
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550 Russian Federation
| | - Sergey Dolgov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino, Moscow Region 142290 Russian Federation
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, 127550 Russian Federation
| |
Collapse
|
6
|
Abe F, Nakamura S, Mori M, Ashikawa I. Low-temperature pretreatment of explants and high maltose concentration during callus culture improves particle-bombardment-mediated stable transgene expression in common wheat. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:177-184. [PMID: 32821225 PMCID: PMC7434674 DOI: 10.5511/plantbiotechnology.19.1216d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/16/2019] [Indexed: 06/11/2023]
Abstract
Biolistic transformation systems are widely used to introduce foreign genes into common wheat (Triticum aestivum L.); however, these techniques often generate high transgene copy numbers and complex transgene integration patterns that hinder the stable expression of the transgenes. To improve the efficiency of stable transgene expression, we examined the effect of low-temperature pretreatment of wheat flower spikes and of high maltose concentration (HMC) in the medium during the subsequent callus culture. Tillers of the spring wheat cultivar Bobwhite were stored at 5°C without water for one week before the isolation of their immature scutellar tissues, and the resulting particle-bombarded explants were cultured on 15% maltose for a month. Together, these treatments significantly increased the number of recovered transgenic lines expressing the reporter gene. The low-temperature pretreatment eliminated the negative effects of HMC, and HMC improved the efficiency of stable transgene expression. Southern blot analysis revealed that transgenic lines recovered after HMC treatment integrated a lower copy number of transgenes than those cultured at normal (4%) maltose concentration. These findings suggest that the HMC-mediated reduction of the transgene copy number results from the suppression of plasmid DNA rearrangement before or during transgene integration into the wheat genome.
Collapse
Affiliation(s)
- Fumitaka Abe
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai,Tsukuba, Ibaraki 305-8518, Japan
| | - Shingo Nakamura
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai,Tsukuba, Ibaraki 305-8518, Japan
| | - Masahiko Mori
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai,Tsukuba, Ibaraki 305-8518, Japan
| | - Ikuo Ashikawa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai,Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
7
|
Abstract
Genetic improvement of rice is crucial to achieve global food security as rice is an important staple crop for more than half of the global population. One of the methodologies for genetic improvement is biolistic delivery of genetic components into plant cells. In this chapter, we describe steps involved in introducing plasmid DNA carrying gene of interest into rice mature embryos using Biolistic® PDS-1000/He particle delivery system. We also provide information required for recovery of transformed plants and production of transgenic seed for next generation analysis. Using this protocol, typical 50-70 putative independent transgenic callus lines can be generated from 100 bombarded embryos. Transgenic rice plantlets can be produced within 2 months after the initiation of seed germination for transformation.
Collapse
|
8
|
Bhandawat A, Sharma V, Rishi V, K Roy J. Biolistic Delivery of Programmable Nuclease (CRISPR/Cas9) in Bread Wheat. Methods Mol Biol 2020; 2124:309-329. [PMID: 32277462 DOI: 10.1007/978-1-0716-0356-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The discovery of site-specific programmable nucleases has led to a major breakthrough in the area of genome editing. In the past few years, CRISPR/Cas system has been utilized for genome editing of a large number of crops including cereals like wheat, rice, maize, and barley. In terms of consumption, wheat is second only to rice as the most important crop of the world. In the present chapter, we describe biolistic delivery method of ribonucleoprotein (RNP) complexes of programmable nuclease (CRISPR/Cas9) for targeted genome editing and selection-free screening of transformants in wheat. The method not only overcomes the problem of random integration into the genome but also reduces the off-targets. Besides the step-by-step protocol, plausible challenges and ways to overcome them are also discussed. By using the described method of biolistic delivery of CRISPR/Cas9 in plant systems, genome-edited plants can be identified within 11 weeks.
Collapse
Affiliation(s)
- Abhishek Bhandawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Vinita Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Joy K Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.
| |
Collapse
|
9
|
Vaghchhipawala Z, Radke S, Nagy E, Russell ML, Johnson S, Gelvin SB, Gilbertson LA, Ye X. RepB C-terminus mutation of a pRi-repABC binary vector affects plasmid copy number in Agrobacterium and transgene copy number in plants. PLoS One 2018; 13:e0200972. [PMID: 30412579 PMCID: PMC6226153 DOI: 10.1371/journal.pone.0200972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
A native repABC replication origin from pRiA4b was previously reported as a single copy plasmid in Agrobacterium tumefaciens and can improve the production of transgenic plants with a single copy insertion of transgenes when it is used in binary vectors for Agrobacterium-mediated transformation. A high copy pRi-repABC variant plasmid, pTF::Ri, which does not improve the frequency of single copy transgenic plants, has been reported in the literature. Sequencing the high copy pTF::Ri repABC operon revealed the presence of two mutations: one silent mutation and one missense mutation that changes a tyrosine to a histidine (Y299H) in a highly conserved area of the C-terminus of the RepB protein (RepBY299H). Reproducing these mutations in the wild-type pRi-repABC binary vector showed that Agrobacterium cells with the RepBY299H mutation grow faster on both solidified and in liquid medium, and have higher plasmid copy number as determined by ddPCR. In order to investigate the impact of the RepBY299H mutation on transformation and quality plant production, the RepBY299H mutated pRi-repABC binary vector was compared with the original wild-type pRi-repABC binary vector and a multi-copy oriV binary vector in canola transformation. Molecular analyses of the canola transgenic plants demonstrated that the multi-copy pRi-repABC with the RepBY299H mutation provides no advantage in generating high frequency single copy, backbone-free transgenic plants in comparison with the single copy wild-type pRi-repABC binary vector.
Collapse
Affiliation(s)
| | - Sharon Radke
- Woodland Campus, Monsanto Company, Woodland, CA, United States of America
| | - Ervin Nagy
- Monsanto Company, St. Louis, MO, United States of America
| | - Mary L. Russell
- Woodland Campus, Monsanto Company, Woodland, CA, United States of America
| | - Susan Johnson
- Monsanto Company, St. Louis, MO, United States of America
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| | | | - Xudong Ye
- Monsanto Company, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ismagul A, Yang N, Maltseva E, Iskakova G, Mazonka I, Skiba Y, Bi H, Eliby S, Jatayev S, Shavrukov Y, Borisjuk N, Langridge P. A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions. BMC PLANT BIOLOGY 2018; 18:135. [PMID: 29940859 PMCID: PMC6020210 DOI: 10.1186/s12870-018-1326-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/24/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND The relatively low efficiency of biolistic transformation and subsequent integration of multiple copies of the introduced gene/s significantly complicate the genetic modification of wheat (Triticum aestivum) and other plant species. One of the key factors contributing to the reproducibility of this method is the uniformity of the DNA/gold suspension, which is dependent on the coating procedure employed. It was also shown recently that the relative frequency of single copy transgene inserts could be increased through the use of nanogram quantities of the DNA during coating. RESULTS A simplified DNA/gold coating method was developed to produce fertile transgenic plants, via microprojectile bombardment of callus cultures induced from immature embryos. In this method, polyethyleneglycol (PEG) and magnesium salt solutions were utilized in place of the spermidine and calcium chloride of the standard coating method, to precipitate the DNA onto gold microparticles. The prepared microparticles were used to generate transgenics from callus cultures of commercial bread wheat cv. Gladius resulting in an average transformation frequency of 9.9%. To increase the occurrence of low transgene copy number events, nanogram amounts of the minimal expression cassettes containing the gene of interest and the hpt gene were used for co-transformation. A total of 1538 transgenic wheat events were generated from 15,496 embryos across 19 independent experiments. The variation of single copy insert frequencies ranged from 16.1 to 73.5% in the transgenic wheat plants, which compares favourably to published results. CONCLUSIONS The DNA/gold coating procedure presented here allows efficient, large scale transformation of wheat. The use of nanogram amounts of vector DNA improves the frequency of single copy transgene inserts in transgenic wheat plants.
Collapse
Affiliation(s)
- Ainur Ismagul
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
| | - Nannan Yang
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Present address: NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Pine Gully Road, Wagga Wagga, NSW 2650 Australia
| | - Elina Maltseva
- Present address: Aytkhozhin Institute of Molecular Biology and Biochemistry, Almaty, 480012 Kazakhstan
| | - Gulnur Iskakova
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Present address: Aytkhozhin Institute of Molecular Biology and Biochemistry, Almaty, 480012 Kazakhstan
| | - Inna Mazonka
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
| | - Yuri Skiba
- Present address: Aytkhozhin Institute of Molecular Biology and Biochemistry, Almaty, 480012 Kazakhstan
| | - Huihui Bi
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Present address: National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002 China
| | - Serik Eliby
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
| | - Satyvaldy Jatayev
- S.Seifullin Kazakh AgroTechnical University, Astana, 010011 Kazakhstan
| | - Yuri Shavrukov
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- College of Science and Engineering, School of Biological Sciences, Flinders University, Bedford Park, SA 5042 Australia
| | - Nikolai Borisjuk
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
- Present address: School of Life Science, Huaiyin Normal University, Huaian, 223300 China
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064 Australia
| |
Collapse
|
11
|
Raji JA, Frame B, Little D, Santoso TJ, Wang K. Agrobacterium- and Biolistic-Mediated Transformation of Maize B104 Inbred. Methods Mol Biol 2018; 1676:15-40. [PMID: 28986902 DOI: 10.1007/978-1-4939-7315-6_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic transformation of maize inbred genotypes remains non-routine for many laboratories due to variations in cell competency to induce embryogenic callus, as well as the cell's ability to receive and incorporate transgenes into the genome. This chapter describes two transformation protocols using Agrobacterium- and biolistic-mediated methods for gene delivery. Immature zygotic embryos of maize inbred B104, excised from ears harvested 10-14 days post pollination, are used as starting explant material. Disarmed Agrobacterium strains harboring standard binary vectors and the biolistic gun system Bio-Rad PDS-1000/He are used as gene delivery systems. The herbicide resistant bar gene and selection agent bialaphos are used for identifying putative transgenic type I callus events. Using the step-by-step protocols described here, average transformation frequencies (number of bialaphos resistant T0 callus events per 100 explants infected or bombarded) of 4% and 8% can be achieved using the Agrobacterium- and biolistic-mediated methods, respectively. An estimated duration of 16-21 weeks is needed using either protocol from the start of transformation experiments to obtaining putative transgenic plantlets with established roots. In addition to laboratory in vitro procedures, detailed greenhouse protocols for producing immature ears as transformation starting material and caring for transgenic plants for seed production are also described.
Collapse
Affiliation(s)
- Jennifer A Raji
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA.,Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA, 50011-1010, USA
| | - Bronwyn Frame
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA.,Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA, 50011-1010, USA
| | - Daniel Little
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA.,Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA, 50011-1010, USA
| | - Tri Joko Santoso
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA.,Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA, 50011-1010, USA.,Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD-IAARD), Bogor, Indonesia
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA. .,Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA, 50011-1010, USA.
| |
Collapse
|
12
|
Partier A, Gay G, Tassy C, Beckert M, Feuillet C, Barret P. Molecular and FISH analyses of a 53-kbp intact DNA fragment inserted by biolistics in wheat (Triticum aestivum L.) genome. PLANT CELL REPORTS 2017; 36:1547-1559. [PMID: 28667403 DOI: 10.1007/s00299-017-2173-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
A large, 53-kbp, intact DNA fragment was inserted into the wheat ( Triticum aestivum L.) genome. FISH analyses of individual transgenic events revealed multiple insertions of intact fragments. Transferring large intact DNA fragments containing clusters of resistance genes or complete metabolic pathways into the wheat genome remains a challenge. In a previous work, we showed that the use of dephosphorylated cassettes for wheat transformation enabled the production of simple integration patterns. Here, we used the same technology to produce a cassette containing a 44-kb Arabidopsis thaliana BAC, flanked by one selection gene and one reporter gene. This 53-kb linear cassette was integrated in the bread wheat (Triticum aestivum L.) genome by biolistic transformation. Our results showed that transgenic plants harboring the entire cassette were generated. The inheritability of the cassette was demonstrated in the T1 and T2 generation. Surprisingly, FISH analysis performed on T1 progeny of independent events identified double genomic insertions of intact fragments in non-homoeologous positions. Inheritability of these double insertions was demonstrated by FISH analysis of the T1 generation. Relative conclusions that can be drawn from molecular or FISH analysis are discussed along with future prospects of the engineering of large fragments for wheat transformation or genome editing.
Collapse
Affiliation(s)
- A Partier
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - G Gay
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - C Tassy
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - M Beckert
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - C Feuillet
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France
| | - P Barret
- Unité Mixte de Recherche 1095-Institut National de la Recherche Agronomique-Génétique, Diversité et Écophysiologie des Céréales, Domaine de Crouël, 63039, Clermont-Ferrand Cedex 2, France.
| |
Collapse
|
13
|
Feng D, Wang Y, Wu J, Lu T, Zhang Z. Development and drought tolerance assay of marker-free transgenic rice with OsAPX2 using biolistic particle-mediated co-transformation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Effect of gene order in DNA constructs on gene expression upon integration into plant genome. 3 Biotech 2017; 7:94. [PMID: 28555430 DOI: 10.1007/s13205-017-0729-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/29/2017] [Indexed: 10/19/2022] Open
Abstract
Several plant biotechnology applications are based on the expression of multiple genes located on a single transformation vector. The principles of stable expression of foreign genes in plant cells include integration of full-length gene fragments consisting of promoter and transcription terminator sequences, and avoiding converging orientation of the gene transcriptional direction. Therefore, investigators usually generate constructs in which genes are assembled in the same orientation. However, no specific information is available on the effect of the order in which genes should be assembled in the construct to support optimum expression of each gene upon integration in the genome. While many factors, including genomic position and the integration structure, could affect gene expression, the investigators judiciously design DNA constructs to avoid glitches. However, the gene order in a multigene assembly remains an open question. This study addressed the effect of gene order in the DNA construct on gene expression in rice using a simple design of two genes placed in two possible orders with respect to the genomic context. Transgenic rice lines containing green fluorescent protein (GFP) and β-glucuronidase (GUS) genes in two distinct orders were developed by Cre-lox-mediated site-specific integration. Gene expression analysis of transgenic lines showed that both genes were expressed at similar levels in either orientation, and different transgenic lines expressed each gene within 1-2× range. Thus, no significant effect of the gene order on gene expression was found in the transformed rice lines containing precise site-specific integrations and stable gene expression in plant cells could be obtained with altered gene orders. Therefore, gene orientation and integration structures are more important factors governing gene expression than gene orders in the genomic context.
Collapse
|
15
|
Yadava P, Abhishek A, Singh R, Singh I, Kaul T, Pattanayak A, Agrawal PK. Advances in Maize Transformation Technologies and Development of Transgenic Maize. FRONTIERS IN PLANT SCIENCE 2017; 7:1949. [PMID: 28111576 PMCID: PMC5216042 DOI: 10.3389/fpls.2016.01949] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/07/2016] [Indexed: 05/20/2023]
Abstract
Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium-mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area.
Collapse
Affiliation(s)
- Pranjal Yadava
- Indian Council of Agricultural Research – Indian Institute of Maize ResearchNew Delhi, India
| | - Alok Abhishek
- Indian Council of Agricultural Research – Indian Institute of Maize ResearchNew Delhi, India
| | - Reeva Singh
- Indian Council of Agricultural Research – Indian Institute of Maize ResearchNew Delhi, India
| | - Ishwar Singh
- Indian Council of Agricultural Research – Indian Institute of Maize ResearchNew Delhi, India
| | - Tanushri Kaul
- International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Arunava Pattanayak
- Indian Council of Agricultural Research – Vivekananda Parvatiya Krishi Anusandhan SansthanAlmora, India
| | - Pawan K. Agrawal
- Indian Council of Agricultural Research – National Agricultural Science FundNew Delhi, India
| |
Collapse
|
16
|
Wu H, Acanda Y, Jia H, Wang N, Zale J. Biolistic transformation of Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.). PLANT CELL REPORTS 2016; 35:1955-62. [PMID: 27277128 DOI: 10.1007/s00299-016-2010-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/01/2016] [Indexed: 05/21/2023]
Abstract
The development of transgenic citrus plants by the biolistic method. A protocol for the biolistic transformation of epicotyl explants and transgenic shoot regeneration of immature citrange rootstock, cv. Carrizo (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.) and plant regeneration is described. Immature epicotyl explants were bombarded with a vector containing the nptII selectable marker and the gfp reporter. The number of independent, stably transformed tissues/total number of explants, recorded by monitoring GFP fluorescence 4 weeks after bombardment was substantial at 18.4 %, and some fluorescing tissues regenerated into shoots. Fluorescing GFP, putative transgenic shoots were micro-grafted onto immature Carrizo rootstocks in vitro, confirmed by PCR amplification of nptII and gfp coding regions, followed by secondary grafting onto older rootstocks grown in soil. Southern blot analysis indicated that all the fluorescing shoots were transgenic. Multiple and single copies of nptII integrations were confirmed in five regenerated transgenic lines. There is potential to develop a higher throughput biolistics transformation system by optimizing the tissue culture medium to improve shoot regeneration and narrowing the window for plant sampling. This system will be appropriate for transformation with minimal cassettes.
Collapse
Affiliation(s)
- Hao Wu
- Plant Pathology Department, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| | - Yosvanis Acanda
- Plant Pathology Department, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Hongge Jia
- Plant Pathology Department, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Nian Wang
- Plant Pathology Department, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Janice Zale
- Plant Pathology Department, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
17
|
Głowacka K, Kromdijk J, Leonelli L, Niyogi KK, Clemente TE, Long SP. An evaluation of new and established methods to determine T-DNA copy number and homozygosity in transgenic plants. PLANT, CELL & ENVIRONMENT 2016; 39:908-17. [PMID: 26670088 PMCID: PMC5021166 DOI: 10.1111/pce.12693] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 05/23/2023]
Abstract
Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL-)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T-DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL-PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T1 progeny from 26 T0 plants showed that at least 19% of the lines carried multiple T-DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T-DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided.
Collapse
Affiliation(s)
- Katarzyna Głowacka
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W Gregory Drive, Urbana, IL, 61801, USA
- Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - Johannes Kromdijk
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W Gregory Drive, Urbana, IL, 61801, USA
| | - Lauriebeth Leonelli
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, 111 Koshland Hall, University of California Berkeley, Berkeley, CA, 94720-3102, USA
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, 111 Koshland Hall, University of California Berkeley, Berkeley, CA, 94720-3102, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tom E Clemente
- Center for Plant Science Innovation, E324 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W Gregory Drive, Urbana, IL, 61801, USA
| |
Collapse
|
18
|
Kira N, Ohnishi K, Miyagawa-Yamaguchi A, Kadono T, Adachi M. Nuclear transformation of the diatom Phaeodactylum tricornutum using PCR-amplified DNA fragments by microparticle bombardment. Mar Genomics 2016; 25:49-56. [DOI: 10.1016/j.margen.2015.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/30/2015] [Accepted: 12/13/2015] [Indexed: 11/29/2022]
|
19
|
Rajeevkumar S, Anunanthini P, Sathishkumar R. Epigenetic silencing in transgenic plants. FRONTIERS IN PLANT SCIENCE 2015; 6:693. [PMID: 26442010 PMCID: PMC4564723 DOI: 10.3389/fpls.2015.00693] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/21/2015] [Indexed: 05/18/2023]
Abstract
Epigenetic silencing is a natural phenomenon in which the expression of genes is regulated through modifications of DNA, RNA, or histone proteins. It is a mechanism for defending host genomes against the effects of transposable elements and viral infection, and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was the discovery of silencing in transgenic tobacco plants due to the interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, that is, transcriptional gene silencing, which is associated with heavy methylation of promoter regions and blocks the transcription of transgenes, and post-transcriptional gene silencing (PTGS), the basic mechanism is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of major concern in the transgenic technologies used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes is required. The current status of epigenetic silencing in transgenic technology is discussed and summarized in this mini-review.
Collapse
Affiliation(s)
- Sarma Rajeevkumar
- Molecular Plant Biology and Biotechnology Division, Central Institute of Medicinal and Aromatic Plants Research Centre, BangaloreIndia
| | - Pushpanathan Anunanthini
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, CoimbatoreIndia
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, CoimbatoreIndia
| |
Collapse
|
20
|
Zhang K, Liu J, Zhang Y, Yang Z, Gao C. Biolistic genetic transformation of a wide range of Chinese elite wheat (Triticum aestivum L.) varieties. J Genet Genomics 2014; 42:39-42. [PMID: 25619601 DOI: 10.1016/j.jgg.2014.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/10/2014] [Accepted: 11/19/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Kang Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China; The State Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinxing Liu
- The State Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Zhang
- The State Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhimin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Caixia Gao
- The State Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Jelly NS, Valat L, Walter B, Maillot P. Transient expression assays in grapevine: a step towards genetic improvement. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1231-45. [PMID: 25431200 DOI: 10.1111/pbi.12294] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/26/2014] [Accepted: 10/16/2014] [Indexed: 05/06/2023]
Abstract
In the past few years, the usefulness of transient expression assays has continuously increased for the characterization of unknown gene function and metabolic pathways. In grapevine (Vitis vinifera L.), one of the most economically important fruit crops in the world, recent systematic sequencing projects produced many gene data sets that require detailed analysis. Due to their rapid nature, transient expression assays are well suited for large-scale genetic studies. Although genes and metabolic pathways of any species can be analysed by transient expression in model plants, a need for homologous systems has emerged to avoid the misinterpretation of results due to a foreign genetic background. Over the last 10 years, various protocols have thus been developed to apply this powerful technology to grapevine. Using cell suspension cultures, somatic embryos, leaves or whole plantlets, transient expression assays enabled the study of the function, regulation and subcellular localization of genes involved in specific metabolic pathways such as the biosynthesis of phenylpropanoids. Disease resistance genes that could be used for marker-assisted selection in conventional breeding or for stable transformation of elite cultivars have also been characterized. Additionally, transient expression assays have proved useful for shaping new tools for grapevine genetic improvement: synthetic promoters, silencing constructs, minimal linear cassettes or viral vectors. This review provides an update on the different tools (DNA constructs, reporter genes, vectors) and methods (Agrobacterium-mediated and direct gene transfer methods) available for transient gene expression in grapevine. The most representative results published thus far are then described.
Collapse
Affiliation(s)
- Noémie S Jelly
- Laboratoire Vigne, Biotechnologies & Environnement-EA 3991, Université de Haute Alsace, Colmar Cedex, France
| | | | | | | |
Collapse
|
22
|
Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, Gu W, Chen Z, Chilton MDM. Maize transformation technology development for commercial event generation. FRONTIERS IN PLANT SCIENCE 2014; 5:379. [PMID: 25140170 PMCID: PMC4122164 DOI: 10.3389/fpls.2014.00379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/17/2014] [Indexed: 05/22/2023]
Abstract
Maize is an important food and feed crop in many countries. It is also one of the most important target crops for the application of biotechnology. Currently, there are more biotech traits available on the market in maize than in any other crop. Generation of transgenic events is a crucial step in the development of biotech traits. For commercial applications, a high throughput transformation system producing a large number of high quality events in an elite genetic background is highly desirable. There has been tremendous progress in Agrobacterium-mediated maize transformation since the publication of the Ishida et al. (1996) paper and the technology has been widely adopted for transgenic event production by many labs around the world. We will review general efforts in establishing efficient maize transformation technologies useful for transgenic event production in trait research and development. The review will also discuss transformation systems used for generating commercial maize trait events currently on the market. As the number of traits is increasing steadily and two or more modes of action are used to control key pests, new tools are needed to efficiently transform vectors containing multiple trait genes. We will review general guidelines for assembling binary vectors for commercial transformation. Approaches to increase transformation efficiency and gene expression of large gene stack vectors will be discussed. Finally, recent studies of targeted genome modification and transgene insertion using different site-directed nuclease technologies will be reviewed.
Collapse
Affiliation(s)
- Qiudeng Que
- Syngenta Biotechnology, Inc.Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lao J, Oikawa A, Bromley JR, McInerney P, Suttangkakul A, Smith-Moritz AM, Plahar H, Chiu TY, González Fernández-Niño SM, Ebert B, Yang F, Christiansen KM, Hansen SF, Stonebloom S, Adams PD, Ronald PC, Hillson NJ, Hadi MZ, Vega-Sánchez ME, Loqué D, Scheller HV, Heazlewood JL. The plant glycosyltransferase clone collection for functional genomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:517-29. [PMID: 24905498 DOI: 10.1111/tpj.12577] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/25/2014] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate-Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell-wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full-length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/.
Collapse
Affiliation(s)
- Jeemeng Lao
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
King ZR, Bray AL, Lafayette PR, Parrott WA. Biolistic transformation of elite genotypes of switchgrass (Panicum virgatum L.). PLANT CELL REPORTS 2014; 33:313-22. [PMID: 24177598 DOI: 10.1007/s00299-013-1531-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/25/2013] [Accepted: 10/18/2013] [Indexed: 05/07/2023]
Abstract
Transformation of elite switchgrass (Panicum virgatum L.) genotypes would facilitate the characterization of genes related to cell wall recalcitrance to saccharification. However, transformation of explants from switchgrass plants has remained difficult. Therefore, the objective of this study was to develop a biolistic transformation protocol for elite genotypes. Three switchgrass genotypes (ST1, ST2, and AL2) were previously selected for tissue culture responsiveness. One genotype, SA37, was selected for further use due to its improved formation of callus amenable to transformation. Various medium sets were compared and a previously published medium set provided cultures with >96 % embryogenic callus, and data on transient and stable gene expression of RFP were used to optimize biolistic parameters, and further validate the switchgrass (PvUbi1) promoter. SA37 proved to be the most transformable, whereas eight transgenic calli on average were recovered per bombardment of 20 calli (40 % efficiency) when using a three-day day preculture step, 0.6 M osmotic adjustment medium, 4,482 kPa rupture disks and 0.4 μm gold particles which traveled 9 cm before hitting the target callus tissue. Regenerability was high, especially for ST2, for which it is possible to recover on average over 400 plants per half-gram callus tissue. It is now possible to routinely and efficiently engineer elite switchgrass genotypes using biolistic transformation.
Collapse
Affiliation(s)
- Zachary R King
- Institute for Plant Breeding, Genetics and Genomics, The University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA,
| | | | | | | |
Collapse
|
25
|
Abstract
Since its first invention in the late 1980s the particle gun has evolved from a basic gunpowder driven machine firing tungsten particles to one more refined which uses helium gas as the propellant to launch alternative heavy metal particles such as gold and silver. The simple principle is that DNA-coated microscopic particles (microcarriers) are accelerated at high speed by helium gas within a vacuum and travel at such a velocity as to penetrate target cells. However, the process itself involves a range of parameters which are open to variation: microparticle type and size, gun settings (rupture pressure, target distance, vacuum drawn, etc.), preparation of components (e.g., gold coating), and preparation of plant tissues. Here is presented a method optimized for transformation of wheat immature embryos using the Bio-Rad PDS-1000/He particle gun to deliver gold particles coated with a gene of interest and the selectable marker gene bar at 650 psi rupture pressure. Following bombardment, various tissue culture phases are used to encourage embryogenic callus formation and regeneration of plantlets and subsequent selection using glufosinate ammonium causes suppression of non-transformed tissues, thus assisting the detection of transformed plants. This protocol has been used successfully to generate transgenic plants for a wide range of wheat varieties, both spring and winter bread wheats (T. aestivum L.) and durum wheats (T. turgidum L.).
Collapse
|
26
|
Sparks CA, Doherty A, Jones HD. Genetic transformation of wheat via Agrobacterium-mediated DNA delivery. Methods Mol Biol 2014; 1099:235-250. [PMID: 24243208 DOI: 10.1007/978-1-62703-715-0_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The method described involves an initial incubation of wheat immature embryos in a liquid culture of Agrobacterium tumefaciens. The Agrobacterium strain is engineered to contain a binary vector with a gene of interest and a selectable marker gene placed between the T-DNA borders; the T-DNA is the region transferred to the plant cells, thus harnessing the bacterium's natural ability to deliver specific DNA into host cells. Following the initial inoculation with the Agrobacterium, the embryos are co-cultivated for several days after which the Agrobacterium is selectively destroyed using an antibiotic. Tissue culture of the embryos on plant media with a correct balance of hormones allows embryogenic callus formation followed by regeneration of plantlets, and in the later stages of tissue culture a selectable marker (herbicide) is included to minimize the incidence of non-transformed plants. This protocol has been used successfully to generate transformed plants of a wide range of wheat varieties, both spring and winter bread wheats (T. aestivum L.) and durum wheats (T. turgidum L.).
Collapse
Affiliation(s)
- Caroline A Sparks
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | | |
Collapse
|
27
|
Genetic transformation of grapevine cells using the minimal cassette technology: The need of 3′-end protection. J Biotechnol 2013; 163:386-90. [DOI: 10.1016/j.jbiotec.2012.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 11/22/2022]
|
28
|
Gao C, Nielsen KK. Comparison between Agrobacterium-mediated and direct gene transfer using the gene gun. Methods Mol Biol 2013; 940:3-16. [PMID: 23104329 DOI: 10.1007/978-1-62703-110-3_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Agrobacterium-mediated transformation and direct gene transfer using the gene gun (microparticle -bombardment) are the two most widely used methods for plant genetic modification. The Agrobacterium method has been successfully practiced in dicots for many years, but only recently have efficient protocols been developed for grasses. Microparticle bombardment has evolved as a method delivering exogenous nucleic acids into plant genome and is a commonly employed technique in plant science. Here these two systems are compared for transformation efficiency, transgene integration, and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The tall fescue transformation protocols lead to the production of large numbers of fertile, independent transgenic lines.
Collapse
Affiliation(s)
- Caixia Gao
- The State Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | | |
Collapse
|
29
|
Mehrotra S, Goyal V. Agrobacterium-mediated gene transfer in plants and biosafety considerations. Appl Biochem Biotechnol 2012; 168:1953-75. [PMID: 23090683 DOI: 10.1007/s12010-012-9910-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/03/2012] [Indexed: 12/21/2022]
Abstract
Agrobacterium, the natures' genetic engineer, has been used as a vector to create transgenic plants. Agrobacterium-mediated gene transfer in plants is a highly efficient transformation process which is governed by various factors including genotype of the host plant, explant, vector, plasmid, bacterial strain, composition of culture medium, tissue damage, and temperature of co-cultivation. Agrobacterium has been successfully used to transform various economically and horticulturally important monocot and dicot species by standard tissue culture and in planta transformation techniques like floral or seedling infilteration, apical meristem transformation, and the pistil drip methods. Monocots have been comparatively difficult to transform by Agrobacterium. However, successful transformations have been reported in the last few years based on the adjustment of the parameters that govern the responses of monocots to Agrobacterium. A novel Agrobacterium transferred DNA-derived nanocomplex method has been developed which will be highly valuable for plant biology and biotechnology. Agrobacterium-mediated genetic transformation is known to be the preferred method of creating transgenic plants from a commercial and biosafety perspective. Agrobacterium-mediated gene transfer predominantly results in the integration of foreign genes at a single locus in the host plant, without associated vector backbone and is also known to produce marker free plants, which are the prerequisites for commercialization of transgenic crops. Research in Agrobacterium-mediated transformation can provide new and novel insights into the understanding of the regulatory process controlling molecular, cellular, biochemical, physiological, and developmental processes occurring during Agrobacterium-mediated transformation and also into a wide range of aspects on biological safety of transgenic crops to improve crop production to meet the demands of ever-growing world's population.
Collapse
Affiliation(s)
- Shweta Mehrotra
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi 110012, India.
| | | |
Collapse
|
30
|
Jackson MA, Anderson DJ, Birch RG. Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res 2012; 22:143-51. [PMID: 22869288 DOI: 10.1007/s11248-012-9639-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/20/2012] [Indexed: 11/28/2022]
Abstract
Transgene integration complexity in the recipient genome can be an important determinant of transgene expression and field performance in transgenic crops. We provide the first direct comparison of Agrobacterium-mediated transformation (AMT) and particle bombardment using whole plasmid (WP) and excised minimal cassettes (MC), for transformation efficiency, transgene integration complexity and transgene expression in plants. To enable direct comparison, a selectable marker and a luciferase reporter gene were linked in identical configurations in plasmids suitable for AMT or direct gene transfer into sugarcane. Transformation efficiencies were similar between WP and MC when equal molar DNA quantities were delivered. When the MC concentration was reduced from 66 to 6.6 ng per shot, transformation efficiency dropped fourfold, to a level equivalent with AMT in amenable genotype Q117. The highest proportion of transformants combining low copy number (estimated below two integrated copies by qPCR) with expression of the non-selected reporter gene was obtained using AMT (55 %) or MC at low DNA concentration (30 %). In sugarcane, both of these methods yielded high-expressing, single-copy transgenic plant lines at a workable efficiency for practical plant improvement; but AMT is currently limited to a few amenable genotypes. These methods are best coupled with rapid early screens for desired molecular characteristics of transformants, e.g. PCR screens for low copy number and/or transcription of the gene of practical interest.
Collapse
Affiliation(s)
- Mark A Jackson
- The University of Queensland, Hines Plant Science Building, Mansfield Place, Brisbane, QLD, 4072, Australia
| | | | | |
Collapse
|
31
|
Zhang Q, Zhang JF, Fu WF, Zhang HJ, Yuan WJ. [Advances on transgene containment technologies]. YI CHUAN = HEREDITAS 2011; 33:437-42. [PMID: 21586390 DOI: 10.3724/sp.j.1005.2011.00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The biosecurity of transgenic organism has been widely concerned and extremely restricted its application. Recently, many technological strategies have been developed to ensure its biosecurity. Thus, transgene containment technologies have become one of the hotspots in current transgenic research. In this paper, several transgene containment technologies, such as marker-free transgenic technology, safety marker transgenic technology, chloroplast transgenic technologies, terminator technology, male sterility technology, and 'GM-gene-deletor'technology were reviewed and evaluated. 'GM-gene-deletor' technology, as one of these technologies, demonstrated a prosperous future for safe application of transgenic organisms. Finally, the strategies for developing new transgene containment technologies have been suggested.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory for Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, the Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, Beijing Forestry University, Beijing 100083, China.
| | | | | | | | | |
Collapse
|
32
|
Ye XG, Chen M, DU LP, Xu HJ. [Description and evaluation of transformation approaches used in wheat]. YI CHUAN = HEREDITAS 2011; 33:422-30. [PMID: 21586388 DOI: 10.3724/sp.j.1005.2011.00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genetic transformation is a valuable tool for direct crop improvement and functional genomics study. Unfortunately, wheat is considered as a recalcitrant plant to genetic transformation due to its low efficiency and genotype dependency. To overcome these problems, various transformation methods such as biolistic bombardment, Agrobacterium tumefaciens, pollen-tube pathway, ion implantation, laser microbeams puncture, treatment with polyethylene glycol and ultrasonic wave, and electroporation have been reported in wheat using various types of explants including immature embryos, mature embryos, anthers derived calluses, inflorescences, apical meristems, and other floral organs. In this review, several major transformation approaches and their applications in wheat are reviewed, and potential strategies for the development of safe transgenic wheat plants are discussed. The objective of this review is to provide an update on current status of wheat trans-formation, and to stimulate further research for improving transformation efficiency in wheat.
Collapse
Affiliation(s)
- Xing-Guo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | | | | | | |
Collapse
|
33
|
Peterhansel C. Best practice procedures for the establishment of a C(4) cycle in transgenic C(3) plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3011-3019. [PMID: 21335437 DOI: 10.1093/jxb/err027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
C(4) plants established a mechanism for the concentration of CO(2) in the vicinity of ribulose-1,5-bisphosphate carboxylase/oxygenase in order to saturate the enzyme with substrate and substantially to reduce the alternative fixation of O(2) that results in energy losses. Transfer of the C(4) mechanism to C(3) plants has been repeatedly tested, but none of the approaches so far resulted in transgenic plants with enhanced photosynthesis or growth. Instead, often deleterious effects were observed. A true C(4) cycle requires the co-ordinated activity of multiple enzymes in different cell types and in response to diverse environmental and metabolic stimuli. This review summarizes our current knowledge about the most appropriate regulatory elements and coding sequences for the establishment of C(4) protein activities in C(3) plants. In addition, technological breakthroughs for the efficient transfer of the numerous genes probably required to transform a C(3) plant into a C(4) plant will be discussed.
Collapse
Affiliation(s)
- Christoph Peterhansel
- Institute of Botany, Leibniz University Hannover, Herrenhaeuser Straße 2, D-30419 Hannover, Germany.
| |
Collapse
|
34
|
Vianna GR, Aragão FJL, Rech EL. A minimal DNA cassette as a vector for genetic transformation of soybean (Glycine max). GENETICS AND MOLECULAR RESEARCH 2011; 10:382-90. [PMID: 21365554 DOI: 10.4238/vol10-1gmr1058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Currently, the market demands products committed to protecting human health and the environment, known as clean products. We developed a protocol using DNA fragments containing only the gene sequence of interest, to replace the circular vectors containing genes for antibiotic resistance and other undesirable sequences, for obtaining transgenic soybeans for microparticle bombardment. Vector pAC321 was digested with the restriction enzyme PvuII to produce the 6159 bp ahas fragment, which contains the mutated ahas gene from Arabidopsis thaliana (Brassicaceae), under the control of its own promoter and terminator. This gene confers resistance against imazapyr, a herbicidal molecule of the imidazolinone class, capable of systemically translocating and concentrating in the apical meristematic region of the plant, the same region used for the introduction of the transgenes. This fragment was used to generate 10 putative transgenic soybean lines.
Collapse
Affiliation(s)
- G R Vianna
- Embrapa Recursos Genéticos e Biotecnologia, Laboratório de Transferência e Expressão de Genes, Parque Estação Biológica, Brasília, DF, Brasil.
| | | | | |
Collapse
|
35
|
Liu X, Jin W, Liu J, Zhao H, Guo A. Transformation of wheat with the HMW-GS 1Bx14 gene without markers. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411010066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Biolistic-mediated transformation protocols for maize and pearl millet using pre-cultured immature zygotic embryos and embryogenic tissue. Methods Mol Biol 2011; 710:343-54. [PMID: 21207279 DOI: 10.1007/978-1-61737-988-8_23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maize (Zea mays L.) is the most important cereal food crop in sub-Saharan Africa and Latin America, and a key feed crop in Asia, whereas pearl millet (Pennisetum glaucum (L.) R. Br.) is a staple food that supplies a major proportion of calories and protein to large segments of the populations living in the semi-arid tropical regions of Africa and Asia. The limitations of biological gene transfer with Agrobacterium tumefaciens specifically related to recalcitrant cereal crops, led to the development of alternative methods of which high-velocity microprojectiles, biolistic genetic transfer is the most successful and also the most widely employed. Agrobacterium facilitated transformation is the method of choice especially for deregulation of commercial transgenic food crop products, but biolistic-mediated transformation is still valid for proof of concept and functional genomics applications. Biolistic-mediated transformation and the production of transgenic plantlets via somatic embryogenesis of two maize strains viz. Hi-II (a laboratory strain) and M37W (a South African elite white maize genotype) as well as a pearl millet strain (842B) are described in this chapter. The stages described include: (1) proliferation of immature zygotic embryos for biolistic-mediated transformation, (2) induction and maintenance of transgenic embryogenic tissue on selection medium; (3) maturation (both morphological and physiological) of transgenic somatic embryos; and (4) germination of the somatic embryos to putative transgenic primary events. Maize and pearl millet cultures were regenerated via somatic embryogenesis as they are bipolar structures that shoot and root simultaneously. The culture media described in this chapter rarely induced or regenerated plantlets via organogenesis.
Collapse
|
37
|
Abstract
Plant genetic engineering has become one of the most important molecular tools in the modern molecular breeding of crops. Over the last decade, significant progress has been made in the development of new and efficient transformation methods in plants. Despite a variety of available DNA delivery methods, Agrobacterium- and biolistic-mediated transformation remain the two predominantly employed approaches. In particular, progress in Agrobacterium-mediated transformation of cereals and other recalcitrant dicot species has been quite remarkable. In the meantime, other transgenic-enabling technologies have emerged, including generation of marker-free transgenics, gene targeting, and chromosomal engineering. Although transformation of some plant species or elite germplasm remains a challenge, further advancement in transformation technology is expected because the mechanisms of governing the regeneration and transformation processes are now better understood and are being creatively applied to designing improved transformation methods or to developing new enabling technologies.
Collapse
|
38
|
Beyene G, Buenrostro-Nava MT, Damaj MB, Gao SJ, Molina J, Mirkov TE. Unprecedented enhancement of transient gene expression from minimal cassettes using a double terminator. PLANT CELL REPORTS 2011; 30:13-25. [PMID: 20967448 DOI: 10.1007/s00299-010-0936-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/16/2010] [Accepted: 09/24/2010] [Indexed: 05/24/2023]
Abstract
The potential of using vector-free minimal gene cassettes (MGCs) with a double terminator for the enhancement and stabilization of transgene expression was tested in sugarcane biolistic transformation. The MGC system used consisted of the enhanced yellow fluorescent protein (EYFP) reporter gene driven by the maize ubiquitin-1 (Ubi) promoter and a single or double terminator from nopaline synthase (Tnos) or/and Cauliflower mosaic virus 35S (35ST). Transient EYFP expression from Tnos or 35ST single terminator MGC was very low and unstable, typically peaking early (8-16 h) and diminishing rapidly (48-72 h) after bombardment. Addition of a ~260 bp vector sequence (VS) to the single MGC downstream of Tnos (Tnos + VS) or 35ST (35ST + VS) enhanced EYFP expression by 1.25- to 25-fold. However, a much more significant increase in EYFP expression was achieved when the VS in 35ST + VS was replaced by Tnos to generate a 35ST-Tnos double terminator MGC, reaching its maximum at 24 h post-bombardment. The enhanced EYFP expression from the double terminator MGC was maintained for a long period of time (168 h), resulting in an overall increase of 5- to 65-fold and 10- to 160-fold as compared to the 35ST and Tnos single terminator MGCs, respectively. The efficiency of the double terminator MGC in enhancing EYFP expression was also demonstrated in sorghum and tobacco, suggesting that the underlying mechanism is highly conserved among monocots and dicots. Our results also suggest the involvement of posttranscriptional gene silencing in the reduced and unstable transgene expression from single terminator MGCs in plants.
Collapse
Affiliation(s)
- Getu Beyene
- Department of Plant Pathology and Microbiology, Texas AgriLife Research, Texas A&M System, Weslaco, TX 78596-8344, USA
| | | | | | | | | | | |
Collapse
|
39
|
Hernandez-Garcia CM, Bouchard RA, Rushton PJ, Jones ML, Chen X, Timko MP, Finer JJ. High level transgenic expression of soybean (Glycine max) GmERF and Gmubi gene promoters isolated by a novel promoter analysis pipeline. BMC PLANT BIOLOGY 2010; 10:237. [PMID: 21050446 PMCID: PMC3095320 DOI: 10.1186/1471-2229-10-237] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/04/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Although numerous factors can influence gene expression, promoters are perhaps the most important component of the regulatory control process. Promoter regions are often defined as a region upstream of the transcriptional start. They contain regulatory elements that interact with regulatory proteins to modulate gene expression. Most genes possess their own unique promoter and large numbers of promoters are therefore available for study. Unfortunately, relatively few promoters have been isolated and characterized; particularly from soybean (Glycine max). RESULTS In this research, a bioinformatics approach was first performed to identify members of the Gmubi (G.max ubiquitin) and the GmERF (G. max Ethylene Response Factor) gene families of soybean. Ten Gmubi and ten GmERF promoters from selected genes were cloned upstream of the gfp gene and successfully characterized using rapid validation tools developed for both transient and stable expression. Quantification of promoter strength using transient expression in lima bean (Phaseolus lunatus) cotyledonary tissue and stable expression in soybean hairy roots showed that the intensity of gfp gene expression was mostly conserved across the two expression systems. Seven of the ten Gmubi promoters yielded from 2- to 7-fold higher expression than a standard CaMV35S promoter while four of the ten GmERF promoters showed from 1.5- to 2.2-times higher GFP levels compared to the CaMV35S promoter. Quantification of GFP expression in stably-transformed hairy roots of soybean was variable among roots derived from different transformation events but consistent among secondary roots, derived from the same primary transformation events. Molecular analysis of hairy root events revealed a direct relationship between copy number and expression intensity; higher copy number events displayed higher GFP expression. CONCLUSION In this study, we present expression intensity data on 20 novel soybean promoters from two different gene families, ubiquitin and ERF. We also demonstrate the utility of lima bean cotyledons and soybean hairy roots for rapid promoter analyses and provide novel insights towards the utilization of these expression systems. The soybean promoters characterized here will be useful for production of transgenic soybean plants for both basic research and commercial plant improvement.
Collapse
Affiliation(s)
- Carlos M Hernandez-Garcia
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH 44691 USA
| | - Robert A Bouchard
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH 44691 USA
| | - Paul J Rushton
- Department of Biology, University of Virginia, Charlottesville, VA 22904 USA
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007 USA
| | - Michelle L Jones
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH 44691 USA
| | - Xianfeng Chen
- Department of Microbiology, University of Virginia Health Systems, Charlottesville, VA 22908 USA
- USACE, Environmental Lab, ERDC, 3909 Halls Ferry Road, Vicksburg, MS 39180 USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904 USA
| | - John J Finer
- Department of Horticulture and Crop Science, OARDC/The Ohio State University, 1680 Madison Ave., Wooster, OH 44691 USA
| |
Collapse
|
40
|
Hao J, Niu Y, Yang B, Gao F, Zhang L, Wang J, Hasi A. Transformation of a marker-free and vector-free antisense ACC oxidase gene cassette into melon via the pollen-tube pathway. Biotechnol Lett 2010; 33:55-61. [DOI: 10.1007/s10529-010-0398-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 08/27/2010] [Indexed: 12/01/2022]
|
41
|
Generation of marker-free Bt transgenicindica rice and evaluation of its yellow stem borer resistance. J Appl Genet 2010; 51:243-57. [DOI: 10.1007/bf03208854] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Peremarti A, Bassie L, Yuan D, Pelacho A, Christou P, Capell T. Transcriptional regulation of the rice arginine decarboxylase (Adc1) and S-adenosylmethionine decarboxylase (Samdc) genes by methyl jasmonate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:553-559. [PMID: 20156691 DOI: 10.1016/j.plaphy.2010.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/15/2010] [Accepted: 01/18/2010] [Indexed: 05/28/2023]
Abstract
We investigated the effect of methyl jasmonate (MeJa) treatment on the expression of two genes in the rice polyamine biosynthesis pathway and on the polyamine content in wild type plants and transgenic rice plants expressing a Datura stramonium (Ds) Adc cDNA, the latter accumulating up to three-fold the normal level of putrescine. Exogenous MeJa transiently inhibited the expression of OsAdc1, OsSamdc and Spermidine synthase (OsSpds) genes in the polyamine biosynthesis pathway, probably through transcriptional repression. There was also a similar negative impact on the DsAdc transgene in transgenic plants, even though a constitutive promoter was used to drive transgene expression. The free putrescine content was reduced significantly in the leaves of both wild type and transgenic plants in response to MeJa, although the magnitude of the effect was greater in wild type plants. We discuss our findings with respect to the previously proposed threshold model of polyamine metabolism in plants subjected to abiotic stress.
Collapse
Affiliation(s)
- Ariadna Peremarti
- Departament de Producció Vegetal i Ciència Forestal, ETSEA, Universitat de Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain
| | | | | | | | | | | |
Collapse
|
43
|
De Guglielmo-Cróquer Z, Altosaar I, Zaidi M, Menéndez-Yuffá A. Transformation of coffee (Coffea Arabica L. cv. Catimor) with the cry1ac gene by biolistic, without the use of markers. BRAZ J BIOL 2010; 70:387-93. [DOI: 10.1590/s1519-69842010000200022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 06/01/2009] [Indexed: 12/24/2022] Open
Abstract
The transformation of coffee plantlets with the cry1ac gene of Bacillus thuringiensis was achieved by biolistic using either the whole pUBC plasmid or only the ubi-cry1ac-nos genetic cassette. The cry1ac gene was inserted into coffee plants in order to confer resistance to the leaf miner Leucoptera coffeella, an insect responsible for considerable losses in coffee crops. Bearing in mind that the genetic cassettes used for this study lack reporter genes and/or selection marker genes, the parameters for the transformation procedure by biolistic were previously standardised with a plasmid carrying the gus reporter gene. The presence of the cry1ac gene in young plantlet tissues was determined by PCR, Southern blot and reverse transcription-PCR. Our results show that the obtainment of viable coffee plantlets, transformed by bombardment with the cry1ac gene and without selection markers nor reporter genes, is feasible.
Collapse
|
44
|
|
45
|
Shiva Prakash N, Bhojaraja R, Shivbachan SK, Hari Priya GG, Nagraj TK, Prasad V, Srikanth Babu V, Jayaprakash TL, Dasgupta S, Spencer TM, Boddupalli RS. Marker-free transgenic corn plant production through co-bombardment. PLANT CELL REPORTS 2009; 28:1655-1668. [PMID: 19701639 DOI: 10.1007/s00299-009-0765-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/31/2009] [Accepted: 08/06/2009] [Indexed: 05/28/2023]
Abstract
The use of particle gun for the production of marker-free plants is scant in published literature. Perhaps this is a reflection of the widely held notion that the events generated through bombardment tend to have multiple copies of transgenes, usually integrated at a single locus, features which precludes segregating away the selectable marker gene. However, our previous studies have shown that single-copy integrants are obtained at a high frequency if limited quantity of DNA is used for bombardment. Also, the concatemerized insertion of transgenes has been demonstrated to be greatly reduced if "cassette DNA" is employed in place of whole plasmid DNA for bombardment. Based on the above findings, in the present study the feasibility of co-bombardment was evaluated for the production of marker-free plants in corn, employing a combination of limited quantity DNA and cassette DNA approaches for bombardment. Transgenic events were generated after co-bombardment of a selectable marker cassette containing the nptII gene (2.5 ng per shot) and a GUS gene cassette (15 ng per shot). Among these events single-copy integrants for nptII gene occurred at an average frequency of 68% within which the co-expression frequency of GUS and nptII genes ranged from 41% to 80%. Marker-free corn plants could be identified from the progeny of 28 out of the 103 R0 co-expressing events screened. The results demonstrate that by using cassette DNA and low quantities of DNA for bombardment, marker-free plants are produced at efficiencies comparable to that of Agrobacterium-based co-transformation methods.
Collapse
|
46
|
Greer MS, Kovalchuk I, Eudes F. Ammonium nitrate improves direct somatic embryogenesis and biolistic transformation of Triticum aestivum. N Biotechnol 2009; 26:44-52. [DOI: 10.1016/j.nbt.2009.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/16/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
|
47
|
Rojas-Anaya E, Loza-Rubio E, Olivera-Flores MT, Gomez-Lim M. Expression of rabies virus G protein in carrots (Daucus carota). Transgenic Res 2009; 18:911-9. [PMID: 19479338 DOI: 10.1007/s11248-009-9278-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 04/30/2009] [Indexed: 11/26/2022]
Abstract
Antigens derived from various pathogens can readily be synthesized at high levels in plants in their authentic forms. Such antigens administered orally can induce an immune response and, in some cases, result in protection against a subsequent challenge. We here report the expression of rabies virus G protein into carrots. The G gene was subcloned into the pUCpSSrabG vector and then used to transform carrot embryogenic cells by particle bombardment. The carrot cells were selected in liquid medium, a method previously unreported. The presence of the transgene was verified by PCR, and by RT-PCR. By western blot, G protein transgene was identified in 93.3% of adult carrot roots. The G protein was quantified by densitometric analysis (range 0.4-1.2%). The expressed protein was antigenic in mice. This confirms that the carrot is an adequate system for antigen expression.
Collapse
Affiliation(s)
- Edith Rojas-Anaya
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico, México DF
| | | | | | | |
Collapse
|
48
|
Enhanced single copy integration events in corn via particle bombardment using low quantities of DNA. Transgenic Res 2009; 18:831-40. [PMID: 19381853 DOI: 10.1007/s11248-009-9265-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
Transgene copy number is an important criterion for determining the utility of transgenic events. Single copy integration events are highly desirable when the objective is to produce marker free plants through segregation or when it is necessary to introgress different transgenes into commercial cultivars from different transgenic events. In contrast multi-copy events are advocated by several authors for higher expression of the transgene. Till recently, it was thought that employment of the particle gun for transformation results in the production of a high proportion of multi-copy events often with complex integration pattern when compared to Agrobacterium-mediated transformation. However, it has been demonstrated that usage of cassette DNA for bombardment in place of whole plasmids would result in simple insertion pattern of the transgenes. While investigating the effect of varying the cassette DNA amount on stable transformation, the frequency of occurrence of low copy events was observed to increase when lower doses of cassette DNA was employed for bombardment. Large scale experimentation with rigorous statistical analysis performed to verify the above observations employing Helium gun and the Electric discharge gun for gene delivery confirmed the above observations. Helium gun experiments involving production of more than 1,600 corn events consistently yielded single copy events at higher frequencies at lower cassette DNA load (46% at 2.5 ng/shot) as compared to higher cassette DNA load (29% at 25 ng/shot) across 18 independent experiments. Results were nearly identical with the Electric discharge particle gun device where single copy events were recovered at frequencies of 54% at 2.5 ng cassettes DNA per shot as compared to 18% at 25 ng cassette DNA per shot. The transformation frequency declined from 41 to 34% (Helium gun) and from 48 to 31% (Electric discharge gun) with reduction in cassette DNA quantity from 25 to 2.5 ng per shot. This reduction in the transformation frequency is more than compensated by the savings in time and effort involved in the production and screening of events if the desired outcome is single copy events. These results demonstrate the flexibility of the particle gun method for controlling the frequency of production of either low copy or high copy events by altering the quantity of cassette DNA used for bombardment. The transgene expression levels over generations in relation to its integration need further investigations.
Collapse
|
49
|
Yang A, Su Q, An L. Ovary-drip transformation: a simple method for directly generating vector- and marker-free transgenic maize (Zea mays L.) with a linear GFP cassette transformation. PLANTA 2009; 229:793-801. [PMID: 19107510 DOI: 10.1007/s00425-008-0871-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 11/24/2008] [Indexed: 05/08/2023]
Abstract
The presence of selectable marker genes and vector backbone sequences has affected the safe assessment of transgenic plants. In this study, the ovary-drip method for directly generating vector- and selectable marker-free transgenic plants was described, by which maize was transformed with a linear GFP cassette (Ubi-GFP-nos). The key features of this method center on the complete removal of the styles and the subsequent application of a DNA solution directly to the ovaries. The movement of the exogenous DNA was monitored using fluorescein isothiocyanate-labeled DNA, which showed that the time taken by the exogenous DNA to enter the ovaries was shortened compared to that of the pollen-tube pathway. This led to an improved transformation frequency of 3.38% compared to 0.86% for the pollen-tube pathway as determined by PCR analysis. The use of 0.05% surfactant Silwet L-77 + 5% sucrose as a transformation solution further increased the transformation frequency to 6.47%. Southern blot analysis showed that the transgenic plants had low transgene copy number and simple integration pattern. Green fluorescence was observed in roots and immature embryos of transgenic plants by fluorescence microscopy. Progeny analysis showed that GFP insertions were inherited in T(1) generation. The ovary-drip method would become a favorable choice for directly generating vector- and marker-free transgenic maize expressing functional genes of agronomic interest.
Collapse
Affiliation(s)
- Aifu Yang
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| | | | | |
Collapse
|
50
|
Detection of vector- and selectable marker-free transgenic maize with a linear GFP cassette transformation via the pollen-tube pathway. J Biotechnol 2009; 139:1-5. [DOI: 10.1016/j.jbiotec.2008.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 07/04/2008] [Accepted: 08/31/2008] [Indexed: 11/18/2022]
|