1
|
Rute-Pérez S, Rodríguez-Domínguez C, Sáez-Sanz N, Pérez-García M, Caracuel A. Computerized Evaluation of Attention, Learning-Memory, and Executive Function in People with Disability Caused by Injury: A Pilot Study. J Clin Med 2025; 14:2153. [PMID: 40217605 PMCID: PMC11989807 DOI: 10.3390/jcm14072153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: This study aims to validate the tests in the VIRTRAEL assessment module for individuals in the chronic stage of Acquired Brain Injury (ABI). Methods: A total of 32 participants (81.3% male) were assessed, including 20 individuals who had experienced a stroke (62.5%) and 12 who had experienced a traumatic brain injury (TBI). Cognitive functions such as attention (d2 Attention Test and Digit Subscale of the WAIS-III), learning-memory (HVLT-R and Letters and Numbers Subscale of the WAIS-III), and executive function (Similarities and Matrices Subscales of the WAIS-III and the Zoo Map Test, version 1 of the BADS Battery) were evaluated using standardized paper-and-pencil tests and computerized tests from the VIRTRAEL online platform. Convergent and divergent correlation analyses were conducted using SPSS version 28. Results: Significant correlations were observed between scores in both formats (ranging from r = 0.408 in planning to r = 0.818 in delayed verbal recall), except in reasoning and verbal memory recognition. Conclusions: The tests from the free online platform VIRTRAEL demonstrate adequate validity for the cognitive assessment of individuals with ABI. This suggests that VIRTRAEL is a valuable, accessible tool for monitoring cognitive status, potentially benefiting health, education, and social and occupational reintegration.
Collapse
Affiliation(s)
- Sandra Rute-Pérez
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, 18011 Granada, Spain
- Department of Developmental and Educational Psychology, Faculty of Education Sciences, University of Granada, 18011 Granada, Spain
| | - Carlos Rodríguez-Domínguez
- Department of Computer Languages and Systems, Faculty of Education, Economy and Technology of Ceuta, University of Granada, 18011 Granada, Spain
| | - Noelia Sáez-Sanz
- Department of Developmental and Educational Psychology, Faculty of Education Sciences, University of Valladolid, 47002 Valladolid, Spain
| | - Miguel Pérez-García
- Department of Personality, Assessment and Psychological Treatment, Faculty of Psychology, University of Granada, 18011 Granada, Spain
| | - Alfonso Caracuel
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, 18011 Granada, Spain
- Department of Developmental and Educational Psychology, Faculty of Education Sciences, University of Granada, 18011 Granada, Spain
| |
Collapse
|
2
|
Belding JN, Bonkowski J, Englert R, Grimes Stanfill A, Tsao JW. Associations between concussion and more severe TBIs, mild cognitive impairment, and early-onset dementia among military retirees over 40 years. Front Neurol 2024; 15:1442715. [PMID: 39296958 PMCID: PMC11408918 DOI: 10.3389/fneur.2024.1442715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Background and objectives As the population of U.S. service members (SMs) who have sustained concussions and more severe traumatic brain injuries (TBIs) during military service ages, understanding the long-term outcomes associated with such injuries will provide critical information that may promote long-term assessment, support, and rehabilitation following military service. The objective of this research was to examine whether concussion and more severe TBIs are associated with greater risk of precursors to dementia (i.e., mild cognitive impairment, memory loss), early-onset dementia, and any dementia. Methods This study used a retrospective cohort design wherein archival medical and career records from 1980 to 2020 identified U.S. military personnel who retired from military service and their corresponding Tricare-reimbursable medical encounters in inpatient and/or outpatient settings in military treatment facilities and/or purchased care settings both before and after retirement. All military personnel who served on active duty between 1980 and 2020 and were at least 45 years of age by 2020 were eligible for inclusion (N = 6,092,432). Those who were discharged from military service with a retirement designation, and were thus eligible for Tricare for Life, were included in the analytic sample (N = 1,211,972). Diagnoses of concussion and more severe TBI during active duty service recorded in inpatient settings between 1980 and 2020 and in outpatient settings from 2001 to 2020 were identified. Focal outcomes of interest included memory loss, mild cognitive impairment, Alzheimer's, Lewy Body dementia, frontotemporal dementia, and vascular dementia. Dementia diagnoses before age 65 were labeled early-onset. Results Those with (vs. without) concussion diagnoses during military service were significantly more likely to be diagnosed with memory loss and mild cognitive impairment and any of the dementias examined. However, they were not at greater risk of being diagnosed with early-onset dementia. Discussion Military SMs diagnosed with concussion may be at elevated risk for long-term neurodegenerative outcomes including memory loss, mild cognitive impairment, and dementia. As the population of SMs who sustained TBI during the Global War on Terror continue to age, the prevalence of dementia will increase and may bring a unique burden to the VHA.
Collapse
Affiliation(s)
- Jennifer N Belding
- Leidos Inc., San Diego, CA, United States
- Psychological Health and Readiness Department, Naval Health Research Center, San Diego, CA, United States
| | - James Bonkowski
- Leidos Inc., San Diego, CA, United States
- Psychological Health and Readiness Department, Naval Health Research Center, San Diego, CA, United States
| | - Robyn Englert
- Leidos Inc., San Diego, CA, United States
- Psychological Health and Readiness Department, Naval Health Research Center, San Diego, CA, United States
| | - Ansley Grimes Stanfill
- College of Nursing, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jack W Tsao
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Karakaya E, Oleinik N, Edwards J, Tomberlin J, Barker RB, Berber B, Ericsson M, Alsudani H, Ergul A, Beyaz S, Lemasters JJ, Ogretmen B, Albayram O. p17/C18-ceramide-mediated mitophagy is an endogenous neuroprotective response in preclinical and clinical brain injury. PNAS NEXUS 2024; 3:pgae018. [PMID: 38328780 PMCID: PMC10847724 DOI: 10.1093/pnasnexus/pgae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Repeat concussions (or repetitive mild traumatic brain injury [rmTBI]) are complex pathological processes consisting of a primary insult and long-term secondary complications and are also a prerequisite for chronic traumatic encephalopathy (CTE). Recent evidence implies a significant role of autophagy-mediated dysfunctional mitochondrial clearance, mitophagy, in the cascade of secondary deleterious events resulting from TBI. C18-ceramide, a bioactive sphingolipid produced in response to cell stress and damage, and its synthesizing enzyme (CerS1) are precursors to selective stress-mediated mitophagy. A transporter, p17, mediates the trafficking of CerS1, induces C18-ceramide synthesis in the mitochondrial membrane, and acts as an elimination signal in cell survival. Whether p17-mediated mitophagy occurs in the brain and plays a causal role in mitochondrial quality control in secondary disease development after rmTBI are unknown. Using a novel repetitive less-than-mild TBI (rlmTBI) injury paradigm, ablation of mitochondrial p17/C18-ceramide trafficking in p17 knockout (KO) mice results in a loss of C18-ceramide-induced mitophagy, which contributes to susceptibility and recovery from long-term secondary complications associated with rlmTBI. Using a ceramide analog with lipid-selenium conjugate drug, LCL768 restored mitophagy and reduced long-term secondary complications, improving cognitive deficits in rlmTBI-induced p17KO mice. We obtained a significant reduction of p17 expression and a considerable decrease of CerS1 and C18-ceramide levels in cortical mitochondria of CTE human brains compared with age-matched control brains. These data demonstrated that p17/C18-ceramide trafficking is an endogenous neuroprotective mitochondrial stress response following rlmTBI, thus suggesting a novel prospective strategy to interrupt the CTE consequences of concussive TBI.
Collapse
Affiliation(s)
- Eda Karakaya
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jazlyn Edwards
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jensen Tomberlin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Randy Bent Barker
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Burak Berber
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biology, Eskisehir Technical University, Tepebasi/Eskisehir 26555, Turkey
| | - Maria Ericsson
- Electron Microscopy Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Habeeb Alsudani
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- College of Science, University of Basrah, Basra 61004, Iraq
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Jackson Department of Veterans Affairs Medical Center, Charleston, SC 29425, USA
| | - Semir Beyaz
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - John J Lemasters
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Onder Albayram
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Jackson Department of Veterans Affairs Medical Center, Charleston, SC 29425, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Yip PK, Liu ZH, Hasan S, Pepys MB, Uff CEG. Serum amyloid P component accumulates and persists in neurones following traumatic brain injury. Open Biol 2023; 13:230253. [PMID: 38052249 DOI: 10.1098/rsob.230253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
The mechanisms underlying neurodegenerative sequelae of traumatic brain injury (TBI) are poorly understood. The normal plasma protein, serum amyloid P component (SAP), which is normally rigorously excluded from the brain, is directly neurocytotoxic for cerebral neurones and also binds to Aβ amyloid fibrils and neurofibrillary tangles, promoting formation and persistence of Aβ fibrils. Increased brain exposure to SAP is common to many risk factors for dementia, including TBI, and dementia at death in the elderly is significantly associated with neocortical SAP content. Here, in 18 of 30 severe TBI cases, we report immunohistochemical staining for SAP in contused brain tissue with blood-brain barrier disruption. The SAP was localized to neurofilaments in a subset of neurones and their processes, particularly damaged axons and cell bodies, and was present regardless of the time after injury. No SAP was detected on astrocytes, microglia, cerebral capillaries or serotoninergic neurones and was absent from undamaged brain. C-reactive protein, the control plasma protein most closely similar to SAP, was only detected within capillary lumina. The appearance of neurocytotoxic SAP in the brain after TBI, and its persistent, selective deposition in cerebral neurones, are consistent with a potential contribution to subsequent neurodegeneration.
Collapse
Affiliation(s)
- Ping K Yip
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Zhou-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shumaila Hasan
- Department of Neurosurgery, Royal London Hospital, Whitechapel, London E1 1FR, UK
| | - Mark B Pepys
- Wolfson Drug Discovery Unit, University College London, London NW3 2PG, UK
| | - Christopher E G Uff
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Department of Neurosurgery, Royal London Hospital, Whitechapel, London E1 1FR, UK
| |
Collapse
|
5
|
Mehla J, Deibel SH, Karem H, Hong NS, Hossain SR, Lacoursiere SG, Sutherland RJ, Mohajerani MH, McDonald RJ. Repeated multi-domain cognitive training prevents cognitive decline, anxiety and amyloid pathology found in a mouse model of Alzheimer disease. Commun Biol 2023; 6:1145. [PMID: 37950055 PMCID: PMC10638434 DOI: 10.1038/s42003-023-05506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Education, occupation, and an active lifestyle, comprising enhanced social, physical, and mental components are associated with improved cognitive functions in aged people and may delay the progression of various neurodegenerative diseases including Alzheimer's disease. To investigate this protective effect, 3-month-old APPNL-G-F/NL-G-F mice were exposed to repeated single- or multi-domain cognitive training. Cognitive training was given at the age of 3, 6, & 9 months. Single-domain cognitive training was limited to a spatial navigation task. Multi-domain cognitive training consisted of a spatial navigation task, object recognition, and fear conditioning. At the age of 12 months, behavioral tests were completed for all groups. Then, mice were sacrificed, and their brains were assessed for pathology. APPNL-G-F/NL-G-F mice given multi-domain cognitive training compared to APPNL-G-F/NL-G-F control group showed an improvement in cognitive functions, reductions in amyloid load and microgliosis, and a preservation of cholinergic function. Additionally, multi-domain cognitive training improved anxiety in APPNL-G-F/NL-G-F mice as evidenced by measuring thigmotaxis behavior in the Morris water maze. There were mild reductions in microgliosis in the brain of APPNL-G-F/NL-G-F mice with single-domain cognitive training. These findings provide causal evidence for the potential of certain forms of cognitive training to mitigate the cognitive deficits in Alzheimer disease.
Collapse
Affiliation(s)
- Jogender Mehla
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Department of Psychology, University of New Brunswick, POB 4400, Fredericton, NB, E3B 3A1, Canada
| | - Hadil Karem
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Nancy S Hong
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Shakhawat R Hossain
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Sean G Lacoursiere
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J Sutherland
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
6
|
Hashmi MU, Ahmed R, Mahmoud S, Ahmed K, Bushra NM, Ahmed A, Elwadie B, Madni A, Saad AB, Abdelrahman N. Exploring Methylene Blue and Its Derivatives in Alzheimer's Treatment: A Comprehensive Review of Randomized Control Trials. Cureus 2023; 15:e46732. [PMID: 38022191 PMCID: PMC10631450 DOI: 10.7759/cureus.46732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Methylene blue (MB) and its compounds are investigated for their potential benefits in the management of Alzheimer's disease (AD). AD is a widely seen neuropathological disorder characterized by the gradual decline of cognitive abilities, ultimately leading to the development of severe dementia. It is anticipated that there will be a significant increase in the prevalence of AD due to the aging population. Histopathologically, AD is distinguished by the presence of intracellular tangles of neurofibrillary tissues (NFTs) and extracellular amyloid plaques within the brain. MB is a thiophenazine dye with FDA approval for treating several illnesses. Its ease in crossing the blood-brain barrier and potential therapeutic use in central nervous system diseases have increased interest in its application for treating AD. The literature review includes randomized clinical trials investigating MB's potential benefits in treating AD. The findings of the studies indicate that the administration of MB has demonstrated enhancements in cognitive function, reductions in the accumulation of plaques containing beta-amyloid, improvements in memory and cognitive function in animal subjects, and possesses antioxidant properties that can mitigate oxidative stress and inflammation within the brain. This review evaluates the modern and latest research on the application of MB for treating AD.
Collapse
Affiliation(s)
| | - Ragda Ahmed
- Internal Medicine, White River Health, Batesville, USA
| | - Sulafa Mahmoud
- Internal Medicine, Michigan State University, East Lansing, USA
| | - Kholood Ahmed
- Internal Medicine, College of Human Medicine, Michigan State University, East Lansing, USA
| | - Noura M Bushra
- Internal Medicine, Michigan State University, East Lansing, USA
| | - Areeg Ahmed
- Nephrology, Harlem Hospital Center, Columbia University, New York, USA
| | - Batran Elwadie
- Internal Medicine, Michigan State University, East Lansing, USA
| | - Amna Madni
- Internal Medicine, Michigan State University, East Lansing, USA
| | - Amel B Saad
- Internal Medicine, Michigan State University, East Lansing, USA
| | - Nadir Abdelrahman
- Family Medicine, College of Human Medicine, Michigan State University, East Lansing, USA
| |
Collapse
|
7
|
Rowe CJ, Mang J, Huang B, Dommaraju K, Potter BK, Schobel SA, Gann ER, Davis TA. Systemic inflammation induced from remote extremity trauma is a critical driver of secondary brain injury. Mol Cell Neurosci 2023; 126:103878. [PMID: 37451414 DOI: 10.1016/j.mcn.2023.103878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Blast exposure, commonly experienced by military personnel, can cause devastating life-threatening polysystem trauma. Despite considerable research efforts, the impact of the systemic inflammatory response after major trauma on secondary brain injury-inflammation is largely unknown. The aim of this study was to identify markers underlying the susceptibility and early onset of neuroinflammation in three rat trauma models: (1) blast overpressure exposure (BOP), (2) complex extremity trauma (CET) involving femur fracture, crush injury, tourniquet-induced ischemia, and transfemoral amputation through the fracture site, and (3) BOP+CET. Six hours post-injury, intact brains were harvested and dissected to obtain biopsies from the prefrontal cortex, striatum, neocortex, hippocampus, amygdala, thalamus, hypothalamus, and cerebellum. Custom low-density microarray datasets were used to identify, interpret and visualize genes significant (p < 0.05 for differential expression [DEGs]; 86 neuroinflammation-associated) using a custom python-based computer program, principal component analysis, heatmaps and volcano plots. Gene set and pathway enrichment analyses of the DEGs was performed using R and STRING for protein-protein interaction (PPI) to identify and explore key genes and signaling networks. Transcript profiles were similar across all regions in naïve brains with similar expression levels involving neurotransmission and transcription functions and undetectable to low-levels of inflammation-related mediators. Trauma-induced neuroinflammation across all anatomical brain regions correlated with injury severity (BOP+CET > CET > BOP). The most pronounced differences in neuroinflammatory-neurodegenerative gene regulation were between blast-associated trauma (BOP, BOP+CET) and CET. Following BOP, there were few DEGs detected amongst all 8 brain regions, most were related to cytokines/chemokines and chemokine receptors, where PPI analysis revealed Il1b as a potential central hub gene. In contrast, CET led to a more excessive and diverse pro-neuroinflammatory reaction in which Il6 was identified as the central hub gene. Analysis of the of the BOP+CET dataset, revealed a more global heightened response (Cxcr2, Il1b, and Il6) as well as the expression of additional functional regulatory networks/hub genes (Ccl2, Ccl3, and Ccl4) which are known to play a critical role in the rapid recruitment and activation of immune cells via chemokine/cytokine signaling. These findings provide a foundation for discerning pathophysiological consequences of acute extremity injury and systemic inflammation following various forms of trauma in the brain.
Collapse
Affiliation(s)
- Cassie J Rowe
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| | - Josef Mang
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA.
| | - Benjamin Huang
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA.
| | - Kalpana Dommaraju
- Student Bioinformatics Initiative (SBI), Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Benjamin K Potter
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Seth A Schobel
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; Surgical Critical Care Initiative (SC2i), Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Eric R Gann
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; Surgical Critical Care Initiative (SC2i), Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Thomas A Davis
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
8
|
Juan SMA, Daglas M, Truong PH, Mawal C, Adlard PA. Alterations in iron content, iron-regulatory proteins and behaviour without tau pathology at one year following repetitive mild traumatic brain injury. Acta Neuropathol Commun 2023; 11:118. [PMID: 37464280 PMCID: PMC10353227 DOI: 10.1186/s40478-023-01603-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI) has increasingly become recognised as a risk factor for the development of neurodegenerative diseases, many of which are characterised by tau pathology, metal dyshomeostasis and behavioural impairments. We aimed to characterise the status of tau and the involvement of iron dyshomeostasis in repetitive controlled cortical impact injury (5 impacts, 48 h apart) in 3-month-old C57Bl6 mice at the chronic (12-month) time point. We performed a battery of behavioural tests, characterised the status of neurodegeneration-associated proteins (tau and tau-regulatory proteins, amyloid precursor protein and iron-regulatory proteins) via western blot; and metal levels using bulk inductively coupled plasma-mass spectrometry (ICP-MS). We report significant changes in various ipsilateral iron-regulatory proteins following five but not a single injury, and significant increases in contralateral iron, zinc and copper levels following five impacts. There was no evidence of tau pathology or changes in tau-regulatory proteins following five impacts, although some changes were observed following a single injury. Five impacts resulted in significant gait deficits, mild anhedonia and mild cognitive deficits at 9-12 months post-injury, effects not seen following a single injury. To the best of our knowledge, we are the first to describe chronic changes in metals and iron-regulatory proteins in a mouse model of r-mTBI, providing a strong indication towards an overall increase in brain iron levels (and other metals) in the chronic phase following r-mTBI. These results bring to question the relevance of tau and highlight the involvement of iron dysregulation in the development and/or progression of neurodegeneration following injury, which may lead to new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Phan H Truong
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Celeste Mawal
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
9
|
Agrawal RR, Larrea D, Xu Y, Shi L, Zirpoli H, Cummins LG, Emmanuele V, Song D, Yun TD, Macaluso FP, Min W, Kernie SG, Deckelbaum RJ, Area-Gomez E. Alzheimer's-Associated Upregulation of Mitochondria-Associated ER Membranes After Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:2219-2241. [PMID: 36571634 PMCID: PMC10287820 DOI: 10.1007/s10571-022-01299-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 10/04/2022] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) can lead to neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that remain incompletely characterized. Similar to AD, TBI models present with cellular metabolic alterations and modulated cleavage of amyloid precursor protein (APP). Specifically, AD and TBI tissues display increases in amyloid-β as well as its precursor, the APP C-terminal fragment of 99 a.a. (C99). Our recent data in cell models of AD indicate that C99, due to its affinity for cholesterol, induces the formation of transient lipid raft domains in the ER known as mitochondria-associated endoplasmic reticulum (ER) membranes ("MAM" domains). The formation of these domains recruits and activates specific lipid metabolic enzymes that regulate cellular cholesterol trafficking and sphingolipid turnover. Increased C99 levels in AD cell models promote MAM formation and significantly modulate cellular lipid homeostasis. Here, these phenotypes were recapitulated in the controlled cortical impact (CCI) model of TBI in adult mice. Specifically, the injured cortex and hippocampus displayed significant increases in C99 and MAM activity, as measured by phospholipid synthesis, sphingomyelinase activity and cholesterol turnover. In addition, our cell type-specific lipidomics analyses revealed significant changes in microglial lipid composition that are consistent with the observed alterations in MAM-resident enzymes. Altogether, we propose that alterations in the regulation of MAM and relevant lipid metabolic pathways could contribute to the epidemiological connection between TBI and AD.
Collapse
Affiliation(s)
- Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Delfina Larrea
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Yimeng Xu
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Lingyan Shi
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Hylde Zirpoli
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
| | - Leslie G Cummins
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Valentina Emmanuele
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Donghui Song
- Department of Chemistry, Columbia University, 3000 Broadway, Havemeyer Hall, New York, NY, 10027, USA
| | - Taekyung D Yun
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
| | - Frank P Macaluso
- Analytical Imaging Facility, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - Wei Min
- Biomarkers Core Laboratory, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 10-105, New York, NY, 10032, USA
| | - Steven G Kernie
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, 622 W. 168th St., Presbyterian Hospital 17, New York, NY, 10032, USA
| | - Estela Area-Gomez
- Institute of Human Nutrition, Columbia University Irving Medical Center, 630 W. 168th St., Presbyterian Hospital 15E-1512, New York, NY, 10032, USA.
- Department of Neurology, Neurological Institute, Columbia University Irving Medical Center, 710 W. 168th St., New York, NY, 10032, USA.
- Centro de Investigaciones Biológicas Margarita Salas - CSIC, C. Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
10
|
Lu Y, Jarrahi A, Moore N, Bartoli M, Brann DW, Baban B, Dhandapani KM. Inflammaging, cellular senescence, and cognitive aging after traumatic brain injury. Neurobiol Dis 2023; 180:106090. [PMID: 36934795 PMCID: PMC10763650 DOI: 10.1016/j.nbd.2023.106090] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration. Inflammation correlates with neurodegenerative changes and cognitive dysfunction for years post-TBI, suggesting a potential association between immune activation and both age- and TBI-induced cognitive decline. Inflammaging, a chronic, low-grade sterile inflammation associated with natural aging, promotes cognitive decline. Cellular senescence and the subsequent development of a senescence associated secretory phenotype (SASP) promotes inflammaging and cognitive aging, although the functional association between senescent cells and neurodegeneration is poorly defined after TBI. In this mini-review, we provide an overview of the pre-clinical and clinical evidence linking cellular senescence with poor TBI outcomes. We also discuss the current knowledge and future potential for senotherapeutics, including senolytics and senomorphics, which kill and/or modulate senescent cells, as potential therapeutics after TBI.
Collapse
Affiliation(s)
- Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| | - Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Nicholas Moore
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Darrell W Brann
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Babak Baban
- Department of Oral Biology and Diagnostic Services, Dental College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
11
|
Barker S, Paul BD, Pieper AA. Increased Risk of Aging-Related Neurodegenerative Disease after Traumatic Brain Injury. Biomedicines 2023; 11:1154. [PMID: 37189772 PMCID: PMC10135798 DOI: 10.3390/biomedicines11041154] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Traumatic brain injury (TBI) survivors frequently suffer from chronically progressive complications, including significantly increased risk of developing aging-related neurodegenerative disease. As advances in neurocritical care increase the number of TBI survivors, the impact and awareness of this problem are growing. The mechanisms by which TBI increases the risk of developing aging-related neurodegenerative disease, however, are not completely understood. As a result, there are no protective treatments for patients. Here, we review the current literature surrounding the epidemiology and potential mechanistic relationships between brain injury and aging-related neurodegenerative disease. In addition to increasing the risk for developing all forms of dementia, the most prominent aging-related neurodegenerative conditions that are accelerated by TBI are amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Parkinson's disease (PD), and Alzheimer's disease (AD), with ALS and FTD being the least well-established. Mechanistic links between TBI and all forms of dementia that are reviewed include oxidative stress, dysregulated proteostasis, and neuroinflammation. Disease-specific mechanistic links with TBI that are reviewed include TAR DNA binding protein 43 and motor cortex lesions in ALS and FTD; alpha-synuclein, dopaminergic cell death, and synergistic toxin exposure in PD; and brain insulin resistance, amyloid beta pathology, and tau pathology in AD. While compelling mechanistic links have been identified, significantly expanded investigation in the field is needed to develop therapies to protect TBI survivors from the increased risk of aging-related neurodegenerative disease.
Collapse
Affiliation(s)
- Sarah Barker
- Center for Brain Health Medicines, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA;
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21211, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A. Pieper
- Center for Brain Health Medicines, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Translational Therapeutics Core, Cleveland Alzheimer’s Disease Research Center, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Akushevich I, Yashkin A, Kovtun M, Kravchenko J, Arbeev K, Yashin AI. Forecasting prevalence and mortality of Alzheimer's disease using the partitioning models. Exp Gerontol 2023; 174:112133. [PMID: 36842469 PMCID: PMC10103071 DOI: 10.1016/j.exger.2023.112133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
OBJECTIVES Health forecasting is an important aspect of ensuring that the health system can effectively respond to the changing epidemiological environment. Common models for forecasting Alzheimer's disease and related dementias (AD/ADRD) are based on simplifying methodological assumptions, applied to limited population subgroups, or do not allow analysis of medical interventions. This study uses 5 %-Medicare data (1991-2017) to identify, partition, and forecast age-adjusted prevalence and incidence-based mortality of AD as well as their causal components. METHODS The core underlying methodology is the partitioning analysis that calculates the relative impact each component has on the overall trend as well as intertemporal changes in the strength and direction of these impacts. B-spline functions estimated for all parameters of partitioning models represent the basis for projections of these parameters in future. RESULTS Prevalence of AD is predicted to be stable between 2017 and 2028 primarily due to a decline in the prevalence of pre-AD-diagnosis stroke. Mortality, on the other hand, is predicted to increase. In all cases the resulting patterns come from a trade-off of two disadvantageous processes: increased incidence and disimproved survival. Analysis of health interventions demonstrates that the projected burden of AD differs significantly and leads to alternative policy implications. DISCUSSION We developed a forecasting model of AD/ADRD risks that involves rigorous mathematical models and incorporation of the dynamics of important determinative risk factors for AD/ADRD risk. The applications of such models for analyses of interventions would allow for predicting future burden of AD/ADRD conditional on a specific treatment regime.
Collapse
Affiliation(s)
- I Akushevich
- Biodemography of Aging Research Unit, Center for Population Health and Aging, Duke University, Durham, NC, USA.
| | - A Yashkin
- Biodemography of Aging Research Unit, Center for Population Health and Aging, Duke University, Durham, NC, USA
| | - M Kovtun
- Biodemography of Aging Research Unit, Center for Population Health and Aging, Duke University, Durham, NC, USA
| | - J Kravchenko
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - K Arbeev
- Biodemography of Aging Research Unit, Center for Population Health and Aging, Duke University, Durham, NC, USA
| | - A I Yashin
- Biodemography of Aging Research Unit, Center for Population Health and Aging, Duke University, Durham, NC, USA
| |
Collapse
|
13
|
Novoa C, Salazar P, Cisternas P, Gherardelli C, Vera-Salazar R, Zolezzi JM, Inestrosa NC. Inflammation context in Alzheimer's disease, a relationship intricate to define. Biol Res 2022; 55:39. [PMID: 36550479 PMCID: PMC9784299 DOI: 10.1186/s40659-022-00404-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by the accumulation of amyloid β (Aβ) and hyperphosphorylated tau protein aggregates. Importantly, Aβ and tau species are able to activate astrocytes and microglia, which release several proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), together with reactive oxygen (ROS) and nitrogen species (RNS), triggering neuroinflammation. However, this inflammatory response has a dual function: it can play a protective role by increasing Aβ degradation and clearance, but it can also contribute to Aβ and tau overproduction and induce neurodegeneration and synaptic loss. Due to the significant role of inflammation in the pathogenesis of AD, several inflammatory mediators have been proposed as AD markers, such as TNF-α, IL-1β, Iba-1, GFAP, NF-κB, TLR2, and MHCII. Importantly, the use of anti-inflammatory drugs such as NSAIDs has emerged as a potential treatment against AD. Moreover, diseases related to systemic or local inflammation, including infections, cerebrovascular accidents, and obesity, have been proposed as risk factors for the development of AD. In the following review, we focus on key inflammatory processes associated with AD pathogenesis.
Collapse
Affiliation(s)
- Catalina Novoa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Roberto Vera-Salazar
- Facultad de Ciencias Médicas, Escuela de Kinesiología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
14
|
Juan SMA, Daglas M, Gunn AP, Lago L, Adlard PA. Characterization of the spatial distribution of metals and profile of metalloprotein complexes in a mouse model of repetitive mild traumatic brain injury. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6865363. [PMID: 36460052 DOI: 10.1093/mtomcs/mfac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
Metal dyshomeostasis is a well-established consequence of neurodegenerative diseases and traumatic brain injury. While the significance of metals continues to be uncovered in many neurological disorders, their implication in repetitive mild traumatic brain injury remains uncharted. To address this gap, we characterized the spatial distribution of metal levels (iron, zinc, and copper) using laser ablation-inductively coupled plasma-mass spectrometry, the profile of metal-binding proteins via size exclusion chromatography-inductively coupled plasma-mass spectrometry and the expression of the major iron storing protein ferritin via western blotting. Using a mouse model of repetitive mild traumatic brain injury, 3-month-old male and female C57Bl6 mice received one or five impacts (48 h apart). At 1 month following 5× TBI (traumatic brain injury), iron and ferritin levels were significantly elevated in the contralateral cortex. There was a trend toward increased iron levels in the entire contralateral hemisphere and a reduction in contralateral cortical iron-binding proteins following 1× TBI. No major changes in zinc levels were seen in both hemispheres following 5× or 1× TBI, although there was a reduction in ipsilateral zinc-binding proteins following 5× TBI and a contralateral increase in zinc-binding proteins following 1× TBI. Copper levels were significantly increased in both hemispheres following 5× TBI, without changes in copper-binding proteins. This study shows for the first time that repetitive mild TBI (r-mTBI) leads to metal dyshomeostasis, highlighting its potential involvement in promoting neurodegeneration, which provides a rationale for examining the benefit of metal-targeting drugs, which have shown promising results in neurodegenerative conditions and single TBI, but have yet to be tested following r-mTBI.
Collapse
Affiliation(s)
- Sydney M A Juan
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Maria Daglas
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Adam P Gunn
- Neuropathology Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Larissa Lago
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| | - Paul A Adlard
- Synaptic Neurobiology Laboratory, The Florey Institute of Neuroscience and Mental Health, The Melbourne Dementia Research Centre and The University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
Wang H, Chen X, Qi Y, Wang C, Huang L, Wang R, Li J, Xu X, Zhou Y, Liu Y, Xue X. Self-Propelled Nanomotors with an Alloyed Engine for Emergency Rescue of Traumatic Brain Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206779. [PMID: 36189876 DOI: 10.1002/adma.202206779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In severe traumatic brain injury (sTBI), acute oxidative stress and inflammatory cascades rapidly spread to cause irreversible brain damage and low survival rate within minutes. Therefore, developing a feasible solution for the quick-treatment of life-threatening emergency is urgently demanded to earn time for hospital treatment. Herein, Janus catalysis-driven nanomotors (JCNs) are carefully constructed via plasma-induced alloying technology and sputtering-caused half-coating strategy. The theoretical calculation and experiment results indicate that the heteroatom-doping alloyed engine endows JCNs with much higher catalytic activity for removing reactive oxygen species and reactive nitrogen species than common Pt-based engines. When JCNs are dropped to the surface of the ruptured skull, they can effectively catalyze endogenous hydrogen peroxide, which induces movement as fuels to promote JCNs to deep brain lesions for further nanocatalyst-mediated cascade-blocking therapy. The results demonstrate that the JCNs successfully block the inflammatory cascades, thereby reversing multiple behavioral defects and dramatically declining the mortality of sTBI mice. This work provides a revolutionary nanomotor-based strategy to sense brain injury and scavenge oxidative stress. Meanwhile, the JCNs provide a feasible strategy to adapt various first-aid scenarios due to their self-propelled movement combined with highly multienzyme-like catalytic activity, exhibiting tremendous therapeutic potential to help people for emergency pretreatment.
Collapse
Affiliation(s)
- Heping Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Chunxiao Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Liwen Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Ran Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Jiamin Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Xihan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Yutong Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China
| |
Collapse
|
16
|
Naseer S, Abelleira-Hervas L, Savani D, de Burgh R, Aleksynas R, Donat CK, Syed N, Sastre M. Traumatic Brain Injury Leads to Alterations in Contusional Cortical miRNAs Involved in Dementia. Biomolecules 2022; 12:1457. [PMID: 36291666 PMCID: PMC9599474 DOI: 10.3390/biom12101457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 09/29/2023] Open
Abstract
There is compelling evidence that head injury is a significant environmental risk factor for Alzheimer's disease (AD) and that a history of traumatic brain injury (TBI) accelerates the onset of AD. Amyloid-β plaques and tau aggregates have been observed in the post-mortem brains of TBI patients; however, the mechanisms leading to AD neuropathology in TBI are still unknown. In this study, we hypothesized that focal TBI induces changes in miRNA expression in and around affected areas, resulting in the altered expression of genes involved in neurodegeneration and AD pathology. For this purpose, we performed a miRNA array in extracts from rats subjected to experimental TBI, using the controlled cortical impact (CCI) model. In and around the contusion, we observed alterations of miRNAs associated with dementia/AD, compared to the contralateral side. Specifically, the expression of miR-9 was significantly upregulated, while miR-29b, miR-34a, miR-106b, miR-181a and miR-107 were downregulated. Via qPCR, we confirmed these results in an additional group of injured rats when compared to naïve animals. Interestingly, the changes in those miRNAs were concomitant with alterations in the gene expression of mRNAs involved in amyloid generation and tau pathology, such as β-APP cleaving enzyme (BACE1) and Glycogen synthase-3-β (GSK3β). In addition increased levels of neuroinflammatory markers (TNF-α), glial activation, neuronal loss, and tau phosphorylation were observed in pericontusional areas. Therefore, our results suggest that the secondary injury cascade in TBI affects miRNAs regulating the expression of genes involved in AD dementia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
17
|
Mehla J, Deibel SH, Karem H, Hossain S, Lacoursiere SG, Sutherland RJ, Mohajerani MH, McDonald RJ. Dramatic impacts on brain pathology, anxiety, and cognitive function in the knock-in APPNL-G-F mouse model of Alzheimer disease following long-term voluntary exercise. Alzheimers Res Ther 2022; 14:143. [PMID: 36180883 PMCID: PMC9526288 DOI: 10.1186/s13195-022-01085-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Background An active lifestyle is associated with improved cognitive functions in aged people and may prevent or slow down the progression of various neurodegenerative diseases including Alzheimer’s disease (AD). To investigate these protective effects, male APPNL-G-F mice were exposed to long-term voluntary exercise. Methods Three-month-old AD mice were housed in a cage supplemented with a running wheel for 9 months for long-term exercise. At the age of 12 months, behavioral tests were completed for all groups. After completing behavioral testing, their brains were assessed for amyloid pathology, microgliosis, and cholinergic cells. Results The results showed that APPNL-G-F mice allowed to voluntarily exercise showed an improvement in cognitive functions. Furthermore, long-term exercise also improved anxiety in APPNL-G-F mice as assessed by measuring thigmotaxis in the Morris water task. We also found reductions in amyloid load and microgliosis, and a preservation of cholinergic cells in the brain of APPNL-G-F mice allowed to exercise in their home cages. These profound reductions in brain pathology associated with AD are likely responsible for the observed improvement of learning and memory functions following extensive and regular exercise. Conclusion These findings suggest the potential of physical exercise to mitigate the cognitive deficits in AD.
Collapse
|
18
|
Alorfi NM. Public Awareness of Alzheimer’s Disease: A Cross-Sectional Study from Saudi Arabia. Int J Gen Med 2022; 15:7535-7546. [PMID: 36199585 PMCID: PMC9527696 DOI: 10.2147/ijgm.s373447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 12/04/2022] Open
Abstract
Background Alzheimer’s disease is considered the most common neurodegenerative and progressive illness. It is also a common type of dementia characterized by brain atrophy, neuronal tissue loss, and the formation of amyloid plaques. Mild memory loss is a commonly expected start of the disease, which can progress to loss of capacity to carry on a conversation and react to certain situations. Objective This study aimed to measure knowledge about Alzheimer’s disease in Saudi Arabia through the use of the Alzheimer’s Disease Knowledge Scale (ADKS) and measure the association between the ADKS with relevant demographic variables. Methods A pre-validated questionnaire containing 30 questions was distributed electronically to anyone older than 18 years old living in Saudi Arabia. Items regarding socio-demographic characteristics and the Alzheimer’s Disease Knowledge Scale (ADKS) were also included. Results Participants did not have a high enough mean score to be regarded as appropriately knowledgeable (mean = 17.35). Higher knowledge scores on Life impact, Risk factors, Assessment and diagnosis, Caregiving, Treatment and management, and ADKS were associated with the female gender. Higher knowledge of caregiving was associated with a postgraduate academic qualification. Higher knowledge on Assessment and Diagnosis was associated with higher age. Higher knowledge on risk factors was associated with having relatives diagnosed with Alzheimer’s disease. Higher knowledge on life impact was associated with having newspaper and journal articles as the source of medical information. Conclusion National awareness campaigns for the community and continuing education courses for caregivers must be placed to aid in increasing awareness regarding Alzheimer’s disease.
Collapse
Affiliation(s)
- Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Correspondence: Nasser M Alorfi, Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia, Tel +966500644261, Email
| |
Collapse
|
19
|
Akushevich I, Kolpakov S, Yashkin AP, Kravchenko J. Vulnerability to Hypertension Is a Major Determinant of Racial Disparities in Alzheimer's Disease Risk. Am J Hypertens 2022; 35:745-751. [PMID: 35581146 PMCID: PMC9340628 DOI: 10.1093/ajh/hpac063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/15/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Higher incidence levels of Alzheimer's disease (AD) in Black Americans are well documented. However, quantitative explanations of this disparity in terms of risk-factor diseases acting through well-defined pathways are lacking. METHODS We applied a Blinder-Oaxaca-based algorithm modified for censored data to a 5% random sample of Medicare beneficiaries age 65+ to explain Black/White disparities in AD risk in terms of differences in exposure and vulnerability to morbidity profiles based on 10 major AD-risk-related diseases. RESULTS The primary contribution to racial disparities in AD risk comes from morbidity profiles that included hypertension with about 1/5th of their contribution due to differences in prevalence (exposure effect) and 4/5ths to differences in the effects of the morbidity profile on AD risk (vulnerability effect). In total, disease-related effects explained a higher proportion of AD incidence in Black Americans than in their White counterparts. CONCLUSIONS Disease-related causes may represent some of the most straightforward targets for targeted interventions aimed at the reduction of racial disparities in health among US older adults. Hypertension is a manageable and potentially preventable condition responsible for the majority of the Black/White differences in AD risk, making mitigation of the role of this disease in engendering higher AD incidence in Black Americans a prominent concern.
Collapse
Affiliation(s)
| | - Stanislav Kolpakov
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, USA
| | | | - Julia Kravchenko
- Department of Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
20
|
Delventhal R, Wooder ER, Basturk M, Sattar M, Lai J, Bolton D, Muthukumar G, Ulgherait M, Shirasu-Hiza MM. Dietary restriction ameliorates TBI-induced phenotypes in Drosophila melanogaster. Sci Rep 2022; 12:9523. [PMID: 35681073 PMCID: PMC9184478 DOI: 10.1038/s41598-022-13128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions annually and is associated with long-term health decline. TBI also shares molecular and cellular hallmarks with neurodegenerative diseases (NDs), typically increasing in prevalence with age, and is a major risk factor for developing neurodegeneration later in life. While our understanding of genes and pathways that underlie neurotoxicity in specific NDs has advanced, we still lack a complete understanding of early molecular and physiological changes that drive neurodegeneration, particularly as an individual ages following a TBI. Recently Drosophila has been introduced as a model organism for studying closed-head TBI. In this paper, we deliver a TBI to flies early in adult life, and then measure molecular and physiological phenotypes at short-, mid-, and long-term timepoints following the injury. We aim to identify the timing of changes that contribute to neurodegeneration. Here we confirm prior work demonstrating a TBI-induced decline in lifespan, and present evidence of a progressive decline in locomotor function, robust acute and modest chronic neuroinflammation, and a late-onset increase in protein aggregation. We also present evidence of metabolic dysfunction, in the form of starvation sensitivity and decreased lipids, that persists beyond the immediate injury response, but does not differ long-term. An intervention of dietary restriction (DR) partially ameliorates some TBI-induced phenotypes, including lifespan and locomotor function, though it does not alter the pattern of starvation sensitivity of injured flies. In the future, molecular pathways identified as altered following TBI—particularly in the short-, or mid-term—could present potential therapeutic targets.
Collapse
Affiliation(s)
- Rebecca Delventhal
- Department of Biology, Lake Forest College, Lake Forest, IL, 60045, USA.
| | - Emily R Wooder
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Maylis Basturk
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mohima Sattar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jonathan Lai
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Danielle Bolton
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Gayathri Muthukumar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mimi M Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
21
|
Bogdanovic B, Eftimov T, Simjanoska M. In-depth insights into Alzheimer's disease by using explainable machine learning approach. Sci Rep 2022; 12:6508. [PMID: 35444165 PMCID: PMC9021280 DOI: 10.1038/s41598-022-10202-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease is still a field of research with lots of open questions. The complexity of the disease prevents the early diagnosis before visible symptoms regarding the individual's cognitive capabilities occur. This research presents an in-depth analysis of a huge data set encompassing medical, cognitive and lifestyle's measurements from more than 12,000 individuals. Several hypothesis were established whose validity has been questioned considering the obtained results. The importance of appropriate experimental design is highly stressed in the research. Thus, a sequence of methods for handling missing data, redundancy, data imbalance, and correlation analysis have been applied for appropriate preprocessing of the data set, and consequently XGBoost model has been trained and evaluated with special attention to the hyperparameters tuning. The model was explained by using the Shapley values produced by the SHAP method. XGBoost produced a f1-score of 0.84 and as such is considered to be highly competitive among those published in the literature. This achievement, however, was not the main contribution of this paper. This research's goal was to perform global and local interpretability of the intelligent model and derive valuable conclusions over the established hypothesis. Those methods led to a single scheme which presents either positive, or, negative influence of the values of each of the features whose importance has been confirmed by means of Shapley values. This scheme might be considered as additional source of knowledge for the physicians and other experts whose concern is the exact diagnosis of early stage of Alzheimer's disease. The conclusions derived from the intelligent model's data-driven interpretability confronted all the established hypotheses. This research clearly showed the importance of explainable Machine learning approach that opens the black box and clearly unveils the relationships among the features and the diagnoses.
Collapse
Affiliation(s)
- Bojan Bogdanovic
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia.
| | - Tome Eftimov
- Computer Systems Department, Jozef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Monika Simjanoska
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
- iReason, LLC, Skopje, 1000, North Macedonia
| |
Collapse
|
22
|
Srinivasan G, Brafman DA. The Emergence of Model Systems to Investigate the Link Between Traumatic Brain Injury and Alzheimer's Disease. Front Aging Neurosci 2022; 13:813544. [PMID: 35211003 PMCID: PMC8862182 DOI: 10.3389/fnagi.2021.813544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous epidemiological studies have demonstrated that individuals who have sustained a traumatic brain injury (TBI) have an elevated risk for developing Alzheimer's disease and Alzheimer's-related dementias (AD/ADRD). Despite these connections, the underlying mechanisms by which TBI induces AD-related pathology, neuronal dysfunction, and cognitive decline have yet to be elucidated. In this review, we will discuss the various in vivo and in vitro models that are being employed to provide more definite mechanistic relationships between TBI-induced mechanical injury and AD-related phenotypes. In particular, we will highlight the strengths and weaknesses of each of these model systems as it relates to advancing the understanding of the mechanisms that lead to TBI-induced AD onset and progression as well as providing platforms to evaluate potential therapies. Finally, we will discuss how emerging methods including the use of human induced pluripotent stem cell (hiPSC)-derived cultures and genome engineering technologies can be employed to generate better models of TBI-induced AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
23
|
Wang XQ, Li H, Li XN, Yuan CH, Zhao H. Gut-Brain Axis: Possible Role of Gut Microbiota in Perioperative Neurocognitive Disorders. Front Aging Neurosci 2022; 13:745774. [PMID: 35002672 PMCID: PMC8727913 DOI: 10.3389/fnagi.2021.745774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022] Open
Abstract
Aging is becoming a severe social phenomenon globally, and the improvements in health care and increased health awareness among the elderly have led to a dramatic increase in the number of surgical procedures. Because of the degenerative changes in the brain structure and function in the elderly, the incidence of perioperative neurocognitive disorders (PND) is much higher in elderly patients than in young people following anesthesia/surgery. PND is attracting more and more attention, though the exact mechanisms remain unknown. A growing body of evidence has shown that the gut microbiota is likely involved. Recent studies have indicated that the gut microbiota may affect postoperative cognitive function via the gut-brain axis. Nonetheless, understanding of the mechanistic associations between the gut microbiota and the brain during PND progression remains very limited. In this review, we begin by providing an overview of the latest progress concerning the gut-brain axis and PND, and then we summarize the influence of perioperative factors on the gut microbiota. Next, we review the literature on the relationship between gut microbiota and PND and discuss how gut microbiota affects cognitive function during the perioperative period. Finally, we explore effective early interventions for PND to provide new ideas for related clinical research.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - He Li
- Department of Anesthesiology, Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Nan Li
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Cong-Hu Yuan
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Hang Zhao
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| |
Collapse
|
24
|
Hyun J, Hall CB, Katz MJ, Derby CA, Lipnicki DM, Crawford JD, Guaita A, Vaccaro R, Davin A, Kim KW, Han JW, Bae JB, Röhr S, Riedel-Heller S, Ganguli M, Jacobsen E, Hughes TF, Brodaty H, Kochan NA, Trollor J, Lobo A, Santabarbara J, Lopez-Anton R, Sachdev PS, Lipton RB. Education, Occupational Complexity, and Incident Dementia: A COSMIC Collaborative Cohort Study. J Alzheimers Dis 2022; 85:179-196. [PMID: 34776437 PMCID: PMC8748312 DOI: 10.3233/jad-210627] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Education and occupational complexity are main sources of mental engagement during early life and adulthood respectively, but research findings are not conclusive regarding protective effects of these factors against late-life dementia. OBJECTIVE This project aimed to examine the unique contributions of education and occupational complexity to incident dementia, and to assess the mediating effects of occupational complexity on the association between education and dementia across diverse cohorts. METHOD We used data from 10,195 participants (median baseline age = 74.1, range = 58∼103), representing 9 international datasets from 6 countries over 4 continents. Using a coordinated analysis approach, the accelerated failure time model was applied to each dataset, followed by meta-analysis. In addition, causal mediation analyses were performed. RESULT The meta-analytic results indicated that both education and occupational complexity were independently associated with increased dementia-free survival time, with 28%of the effect of education mediated by occupational complexity. There was evidence of threshold effects for education, with increased dementia-free survival time associated with 'high school completion' or 'above high school' compared to 'middle school completion or below'. CONCLUSION Using datasets from a wide range of geographical regions, we found that both early life education and adulthood occupational complexity were independently predictive of dementia. Education and occupational experiences occur during early life and adulthood respectively, and dementia prevention efforts could thus be made at different stages of the life course.
Collapse
Affiliation(s)
- Jinshil Hyun
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Charles B. Hall
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mindy J. Katz
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carol A. Derby
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Darren M. Lipnicki
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, New South Wales, Australia
| | - John D. Crawford
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Ji Won Han
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul, South Korea
| | - Jong Bin Bae
- Department of Brain & Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Susanne Röhr
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health (ISAP), University of Leipzig, Leipzig, Germany
| | | | | | | | - Henry Brodaty
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, New South Wales, Australia
- Dementia Collaborative Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicole A. Kochan
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, New South Wales, Australia
| | - Julian Trollor
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, New South Wales, Australia
- Department of Developmental Disability Neuropsychiatry, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Antonio Lobo
- Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Ministry of Science and Innovation, Spain
- Department of Medicine and Psychiatry, Universidad de Zaragoza, Zaragoza, Spain
| | - Javier Santabarbara
- Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Ministry of Science and Innovation, Spain
- Department of Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Raul Lopez-Anton
- Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, Ministry of Science and Innovation, Spain
- Department of Psychology and Sociology, Universidad de Zaragoza, Teruel, Spain
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, New South Wales, Australia
- Dementia Collaborative Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard B. Lipton
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
25
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. Beta Amyloid, Tau Protein, and Neuroinflammation: An Attempt to Integrate Different Hypotheses of Alzheimer’s Disease Pathogenesis. Mol Biol 2021. [DOI: 10.1134/s002689332104004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that inevitably results in dementia and death. Currently, there are no pathogenetically grounded methods for the prevention and treatment of AD, and all current treatment regimens are symptomatic and unable to significantly delay the development of dementia. The accumulation of β-amyloid peptide (Aβ), which is a spontaneous, aggregation-prone, and neurotoxic product of the processing of signaling protein APP (Amyloid Precursor Protein), in brain tissues, primarily in the hippocampus and the frontal cortex, was for a long time considered the main cause of neurodegenerative changes in AD. However, attempts to treat AD based on decreasing Aβ production and aggregation did not bring significant clinical results. More and more arguments are arising in favor of the fact that the overproduction of Aβ in most cases of AD is not the initial cause, but a concomitant event of pathological processes in the course of the development of sporadic AD. The concept of neuroinflammation has come to the fore, suggesting that inflammatory responses play the leading role in the initiation and development of AD, both in brain tissue and in the periphery. The hypothesis about the key role of neuroinflammation in the pathogenesis of AD opens up new opportunities in the search for ways to treat and prevent this socially significant disease.
Collapse
|
26
|
Anderson EN, Morera AA, Kour S, Cherry JD, Ramesh N, Gleixner A, Schwartz JC, Ebmeier C, Old W, Donnelly CJ, Cheng JP, Kline AE, Kofler J, Stein TD, Pandey UB. Traumatic injury compromises nucleocytoplasmic transport and leads to TDP-43 pathology. eLife 2021; 10:e67587. [PMID: 34060470 PMCID: PMC8169113 DOI: 10.7554/elife.67587] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a predisposing factor for many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although defects in nucleocytoplasmic transport (NCT) is reported ALS and other neurodegenerative diseases, whether defects in NCT occur in TBI remains unknown. We performed proteomic analysis on Drosophila exposed to repeated TBI and identified resultant alterations in several novel molecular pathways. TBI upregulated nuclear pore complex (NPC) and nucleocytoplasmic transport (NCT) proteins as well as alter nucleoporin stability. Traumatic injury disrupted RanGAP1 and NPC protein distribution in flies and a rat model and led to coaggregation of NPC components and TDP-43. In addition, trauma-mediated NCT defects and lethality are rescued by nuclear export inhibitors. Importantly, genetic upregulation of nucleoporins in vivo and in vitro triggered TDP-43 cytoplasmic mislocalization, aggregation, and altered solubility and reduced motor function and lifespan of animals. We also found NUP62 pathology and elevated NUP62 concentrations in postmortem brain tissues of patients with mild or severe CTE as well as co-localization of NUP62 and TDP-43 in CTE. These findings indicate that TBI leads to NCT defects, which potentially mediate the TDP-43 pathology in CTE.
Collapse
Affiliation(s)
- Eric N Anderson
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Andrés A Morera
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Sukhleen Kour
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Jonathan D Cherry
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Nandini Ramesh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
| | - Amanda Gleixner
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of ArizonaTucsonUnited States
| | - Christopher Ebmeier
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - William Old
- Molecular, Cellular & Developmental Biology, University of ColoradoBoulderUnited States
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of MedicinePittsburghUnited States
- LiveLike Lou Center for ALS Research, Brain Institute, University of Pittsburgh School of MedicinePittsburghUnited States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
| | - Anthony E Kline
- Physical Medicine & Rehabilitation; Safar Center for Resuscitation Research, University of PittsburghPittsburghUnited States
- Center for Neuroscience; Center for the Neural Basis of Cognition; Critical Care Medicine, University of PittsburghPittsburghUnited States
| | - Julia Kofler
- Department of Pathology, University of PittsburghPittsburghUnited States
| | - Thor D Stein
- Department of Pathology and Laboratory Medicine, Boston University School of MedicineBostonUnited States
- Boston VA Healthcare SystemBostonUnited States
| | - Udai Bhan Pandey
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical CenterPittsburghUnited States
- Department of Human Genetics, University of Pittsburgh School of Public HealthPittsburghUnited States
| |
Collapse
|
27
|
Zhuo J, Jiang L, Rhodes CS, Roys S, Shanmuganathan K, Chen H, Prince JL, Badjatia N, Gullapalli RP. Early Stage Longitudinal Subcortical Volumetric Changes following Mild Traumatic Brain Injury. Brain Inj 2021; 35:725-733. [PMID: 33822686 PMCID: PMC8207827 DOI: 10.1080/02699052.2021.1906445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 01/07/2023]
Abstract
Objective: To investigate early brain volumetric changes from acute to 6 months following mild traumatic brain injury (mTBI) in deep gray matter regions and their association with patient 6-month outcome.Methods: Fifty-six patients with mTBI underwent MRI and behavioral evaluation at acute (<10 days) and approximately 1 and 6 months post injury. Regional volume changes were investigated in key gray matter regions: thalamus, hippocampus, putamen, caudate, pallidum, and amygdala, and compared with volumes from 34 healthy control subjects. In patients with mTBI, we further assessed associations between longitudinal regional volume changes with patient outcome measures at 6 months including post-concussive symptoms, cognitive performance, and overall satisfaction with life.Results: Reduction in thalamic and hippocampal volumes was observed at 1 month among patients with mTBI. Such volume reduction persisted in the thalamus until 6 months. Changes in thalamic volumes also correlated with multiple symptom and functional outcome measures in patients at 6 months.Conclusion: Our results indicate that the thalamus may be differentially affected among patients with mTBI, resulting in both structural and functional deficits with subsequent post-concussive sequelae and may serve as a biomarker for the assessment of efficacy of novel therapeutic interventions.
Collapse
Affiliation(s)
- Jiachen Zhuo
- Center for Advanced Imaging Research, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Li Jiang
- Center for Advanced Imaging Research, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Chandler Sours Rhodes
- Center for Advanced Imaging Research, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD
| | - Steven Roys
- Center for Advanced Imaging Research, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Karthikamanthan Shanmuganathan
- Center for Advanced Imaging Research, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Hegang Chen
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Jerry L. Prince
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD
| | - Neeraj Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD
| | - Rao P. Gullapalli
- Center for Advanced Imaging Research, Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
28
|
Duncan KA, Garijo-Garde S. Sex, Genes, and Traumatic Brain Injury (TBI): A Call for a Gender Inclusive Approach to the Study of TBI in the Lab. Front Neurosci 2021; 15:681599. [PMID: 34025346 PMCID: PMC8131651 DOI: 10.3389/fnins.2021.681599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kelli A Duncan
- Department of Biology, Vassar College, Poughkeepsie, NY, United States.,Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, United States
| | - Sarah Garijo-Garde
- Program in Neuroscience and Behavior, Vassar College, Poughkeepsie, NY, United States
| |
Collapse
|
29
|
Acute cognitive impairment after traumatic brain injury predicts the occurrence of brain atrophy patterns similar to those observed in Alzheimer's disease. GeroScience 2021; 43:2015-2039. [PMID: 33900530 DOI: 10.1007/s11357-021-00355-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
Traumatic brain injuries (TBIs) are often followed by persistent structural brain alterations and by cognitive sequalae, including memory deficits, reduced neural processing speed, impaired social function, and decision-making difficulties. Although mild TBI (mTBI) is a risk factor for Alzheimer's disease (AD), the extent to which these conditions share patterns of macroscale neurodegeneration has not been quantified. Comparing such patterns can not only reveal how the neurodegenerative trajectories of TBI and AD are similar, but may also identify brain atrophy features which can be leveraged to prognosticate AD risk after TBI. The primary aim of this study is to systematically map how TBI affects white matter (WM) and gray matter (GM) properties in AD-analogous patterns. Our findings identify substantial similarities in the regional macroscale neurodegeneration patterns associated with mTBI and AD. In cerebral GM, such similarities are most extensive in brain areas involved in memory and executive function, such as the temporal poles and orbitofrontal cortices, respectively. Our results indicate that the spatial pattern of cerebral WM degradation observed in AD is broadly similar to the pattern of diffuse axonal injury observed in TBI, which frequently affects WM structures like the fornix, corpus callosum, and corona radiata. Using machine learning, we find that the severity of AD-like brain changes observed during the chronic stage of mTBI can be accurately prognosticated based on acute assessments of post-traumatic mild cognitive impairment. These findings suggest that acute post-traumatic cognitive impairment predicts the magnitude of AD-like brain atrophy, which is itself associated with AD risk.
Collapse
|
30
|
Smith DH, Dollé JP, Ameen-Ali KE, Bretzin A, Cortes E, Crary JF, Dams-O’Connor K, Diaz-Arrastia R, Edlow BL, Folkerth R, Hazrati LN, Hinds SR, Iacono D, Johnson VE, Keene CD, Kofler J, Kovacs GG, Lee EB, Manley G, Meaney D, Montine T, Okonkwo DO, Perl DP, Trojanowski JQ, Wiebe DJ, Yaffe K, McCabe T, Stewart W. COllaborative Neuropathology NEtwork Characterizing ouTcomes of TBI (CONNECT-TBI). Acta Neuropathol Commun 2021; 9:32. [PMID: 33648593 PMCID: PMC7919306 DOI: 10.1186/s40478-021-01122-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Efforts to characterize the late effects of traumatic brain injury (TBI) have been in progress for some time. In recent years much of this activity has been directed towards reporting of chronic traumatic encephalopathy (CTE) in former contact sports athletes and others exposed to repetitive head impacts. However, the association between TBI and dementia risk has long been acknowledged outside of contact sports. Further, growing experience suggests a complex of neurodegenerative pathologies in those surviving TBI, which extends beyond CTE. Nevertheless, despite extensive research, we have scant knowledge of the mechanisms underlying TBI-related neurodegeneration (TReND) and its link to dementia. In part, this is due to the limited number of human brain samples linked to robust demographic and clinical information available for research. Here we detail a National Institutes for Neurological Disease and Stroke Center Without Walls project, the COllaborative Neuropathology NEtwork Characterizing ouTcomes of TBI (CONNECT-TBI), designed to address current limitations in tissue and research access and to advance understanding of the neuropathologies of TReND. As an international, multidisciplinary collaboration CONNECT-TBI brings together multiple experts across 13 institutions. In so doing, CONNECT-TBI unites the existing, comprehensive clinical and neuropathological datasets of multiple established research brain archives in TBI, with survivals ranging minutes to many decades and spanning diverse injury exposures. These existing tissue specimens will be supplemented by prospective brain banking and contribute to a centralized route of access to human tissue for research for investigators. Importantly, each new case will be subject to consensus neuropathology review by the CONNECT-TBI Expert Pathology Group. Herein we set out the CONNECT-TBI program structure and aims and, by way of an illustrative case, the approach to consensus evaluation of new case donations.
Collapse
|
31
|
Montivero AJ, Ghersi MS, Catalán-Figueroa J, Formica ML, Camacho N, Culasso AF, Hereñú CB, Palma SD, Pérez MF. Beyond Acute Traumatic Brain Injury: Molecular Implications of Associated Neuroinflammation in Higher-Order Cognitive Processes. PSYCHIATRY AND NEUROSCIENCE UPDATE 2021:237-259. [DOI: 10.1007/978-3-030-61721-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
32
|
Joseph JR, Swallow JS, Willsey K, Almeida AA, Lorincz MT, Fraumann RK, Oppenlander ME, Szerlip NJ, Broglio SP. Pupillary changes after clinically asymptomatic high-acceleration head impacts in high school football athletes. J Neurosurg 2020; 133:1886-1891. [PMID: 31770721 DOI: 10.3171/2019.7.jns191272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/26/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Previous studies have shown that clinically asymptomatic high-acceleration head impacts (HHIs) may be associated with neuronal and axonal injury, as measured by advanced imaging and biomarkers. Unfortunately, these methods of measurement are time-consuming, invasive, and costly. A quick noninvasive measurement tool is needed to aid studies of head injury and its biological impact. Quantitative pupillometry is a potential objective, rapid, noninvasive measurement tool that may be used to assess the neurological effects of HHIs. In this study, the authors investigated the effect of HHIs on pupillary metrics, as measured using a pupillometer, in the absence of a diagnosed concussion. METHODS A prospective observational cohort study involving 18 high school football athletes was performed. These athletes were monitored for both the frequency and magnitude of head impacts that they sustained throughout a playing season by using the Head Impact Telemetry System. An HHI was defined as an impact exceeding 95g linear acceleration and 3760 rad/sec2 rotational acceleration. Pupillary assessments were performed at baseline, midseason, after occurrence of an HHI, and at the end of the season by using the NeurOptics NPi-200 pupillometer. The Sport Concussion Assessment Tool, 5th Edition (SCAT5), was also used at each time point. Comparisons of data obtained at the various time points were calculated using a repeated-measures analysis of variance and a t-test. RESULTS Seven athletes sustained HHIs without a related diagnosed concussion. Following these HHIs, the athletes demonstrated decreases in pupil dilation velocity (mean difference 0.139 mm/sec; p = 0.048), percent change in pupil diameter (mean difference 3.643%; p = 0.002), and maximum constriction velocity (mean difference 0.744 mm/sec; p = 0.010), compared to measurements obtained at the athletes' own midseason evaluations. No significant changes occurred between the SCAT5 subtest scores calculated at midseason and those after a high impact, although the effect sizes (Cohen's d) on individual components ranged from 0.41 to 0.65. CONCLUSIONS Measurable changes in pupil response were demonstrated following an HHI. These results suggest that clinically asymptomatic HHIs may affect brain reflex pathways, reflecting a biological injury previously seen when more invasive methods were applied.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert K Fraumann
- 5Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | | | | | | |
Collapse
|
33
|
George EK, Reddy PH. Can Healthy Diets, Regular Exercise, and Better Lifestyle Delay the Progression of Dementia in Elderly Individuals? J Alzheimers Dis 2020; 72:S37-S58. [PMID: 31227652 DOI: 10.3233/jad-190232] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and multiple cognitive impairments. Current healthcare costs for over 50 million people afflicted with AD are about $818 million and are projected to be $2 billion by 2050. Unfortunately, there are no drugs currently available that can delay and/or prevent the progression of disease in elderly individuals and in AD patients. Loss of synapses and synaptic damage are largely correlated with cognitive decline in AD patients. Women are at a higher lifetime risk of developing AD encompassing two-thirds of the total AD afflicted population. Only about 1-2% of total AD patients can be explained by genetic mutations in APP, PS1, and PS2 genes. Several risk factors have been identified, such as Apolipoprotein E4 genotype, type 2 diabetes, traumatic brain injury, depression, and hormonal imbalance, are reported to be associated with late-onset AD. Strong evidence reveals that antioxidant enriched diets and regular exercise reduces toxic radicals, enhances mitochondrial function and synaptic activity, and improves cognitive function in elderly populations. Current available data on the use of antioxidants in mouse models of AD and antioxidant(s) supplements in diets of elderly individuals were investigated. The use of antioxidants in randomized clinical trials in AD patients was also critically assessed. Based on our survey of current literature and findings, we cautiously conclude that healthy diets, regular exercise, and improved lifestyle can delay dementia progression and reduce the risk of AD in elderly individuals and reverse subjects with mild cognitive impairment to a non-demented state.
Collapse
Affiliation(s)
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Speech, Language and Hearing Sciences Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Public Health, Graduate School of Biomedical Sciences, Lubbock, TX, USA
| |
Collapse
|
34
|
Faroqi AH, Lim MJ, Kee EC, Lee JH, Burgess JD, Chen R, Di Virgilio F, Delenclos M, McLean PJ. In Vivo Detection of Extracellular Adenosine Triphosphate in a Mouse Model of Traumatic Brain Injury. J Neurotrauma 2020; 38:655-664. [PMID: 32935624 PMCID: PMC7898407 DOI: 10.1089/neu.2020.7226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is traditionally characterized by primary and secondary injury phases, both contributing to pathological and morphological changes. The mechanisms of damage and chronic consequences of TBI remain to be fully elucidated, but synaptic homeostasis disturbances and impaired energy metabolism are proposed to be a major contributor. It has been proposed that an increase of extracellular (eATP) adenosine triphosphate (ATP) in the area immediately surrounding impact may play a pivotal role in this sequence of events. After tissue injury, rupture of cell membranes allows release of intracellular ATP into the extracellular space, triggering a cascade of toxic events and inflammation. ATP is a ubiquitous messenger; however, simple and reliable techniques to measure its concentration have proven elusive. Here, we integrate a sensitive bioluminescent eATP sensor known as pmeLUC, with a controlled cortical impact mouse model to monitor eATP changes in a living animal after injury. Using the pmeLUC probe, a rapid increase of eATP is observed proximal to the point of impact within minutes of the injury. This event is significantly attenuated when animals are pretreated with an ATP hydrolyzing agent (apyrase) before surgery, confirming the contribution of eATP. This new eATP reporter could be useful for understanding the role of eATP in the pathogenesis in TBI and may identify a window of opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Ayman H Faroqi
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Melina J Lim
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Emma C Kee
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Jannifer H Lee
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Ridong Chen
- APT Therapeutics, Inc., St. Louis, Missouri, USA
| | - Francesco Di Virgilio
- Department of Morphology Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
35
|
Ruiz-Muelle A, López-Rodríguez MM. Dance for People with Alzheimer's Disease: A Systematic Review. Curr Alzheimer Res 2020; 16:919-933. [PMID: 31345149 DOI: 10.2174/1567205016666190725151614] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/07/2019] [Accepted: 07/04/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND In recent years, several reviews have addressed the effectiveness of dance therapy in dementia, healthy older adults, or the elderly in general. However, reviews regarding the effect of this therapy exclusively on patients diagnosed with Alzheimer's disease have not been found. OBJECTIVE The purpose of this study is to review the available literature describing clinical trials which explore the effects of dancing on psychological and physical outcomes, functionality, cognitive function, and quality of life in patients diagnosed with Alzheimer's disease. In addition, this review aims to assess the quality of studies that perform dance therapy interventions in these patients. METHODS This study is a systematic review of randomized and non-randomized clinical trials regarding the effect of intervention including a dancing activity in people diagnosed with Alzheimer's disease. RESULTS In total, the evidence for this review rests on 12 studies with a total of 349 participants. The findings of this mini-review confirm the positive effect of dance therapy on physical and cognitive function, functionality, psychological outcomes, and quality of life in people with Alzheimer's disease. CONCLUSION Most of the studies implementing dance as part of the therapeutic treatment has shown to improve or slow the worsening in the quality of life of patients with Alzheimer's disease and their caregivers. Future research focused on these patients should use a more exhaustive methodology and make a more detailed description of these kind of interventions.
Collapse
Affiliation(s)
- Alicia Ruiz-Muelle
- Department of Nursing, Physiotherapy and Medicine, Health Sciences Faculty, University of Almería, Almeria, Spain
| | - María Mar López-Rodríguez
- Department of Nursing, Physiotherapy and Medicine, Health Sciences Faculty, University of Almería, Almeria, Spain
| |
Collapse
|
36
|
Silhan D, Bartos A, Mrzilkova J, Pashkovska O, Ibrahim I, Tintera J. The Parietal Atrophy Score on Brain Magnetic Resonance Imaging is a Reliable Visual Scale. Curr Alzheimer Res 2020; 17:534-539. [PMID: 32851946 PMCID: PMC7569282 DOI: 10.2174/1567205017666200807193957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 06/28/2020] [Indexed: 11/22/2022]
Abstract
Aims The purpose of the study was to evaluate the reliability of our new visual scale for a quick atrophy assessment of parietal lobes on brain Magnetic Resonance Imaging (MRI) among different professionals. A good agreement would justify its use for differential diagnosis of neurodegenerative dementias, especially early-onset Alzheimer’s Disease (AD), in clinical settings. Methods The visual scale named the Parietal Atrophy Score (PAS) is based on a semi-quantitative assessment ranging from 0 (no atrophy) to 2 (prominent atrophy) in three parietal structures (sulcus cingularis posterior, precuneus, parietal gyri) on T1-weighted MRI coronal slices through the whole parietal lobes. We used kappa statistics to evaluate intra-rater and inter-rater agreement among four raters who independently scored parietal atrophy using PAS. Rater 1 was a neuroanatomist (JM), rater 2 was an expert in MRI acquisition and analysis (II), rater 3 was a medical student (OP) and rater 4 was a neurologist (DS) who evaluated parietal atrophy twice in a 3-month interval to assess intra-rater agreement. All raters evaluated the same 50 parietal lobes on brain MRI of 25 cognitively normal individuals with even distribution across all atrophy degrees from none to prominent according to the neurologist’s rating. Results Intra-rater agreement was almost perfect with the kappa value of 0.90. Inter-rater agreement was moderate to substantial with kappa values ranging from 0.43-0.86. Conclusion The Parietal Atrophy Score is the reliable visual scale among raters of different professions for a quick evaluation of parietal lobes on brain MRI within 1-2 minutes. We believe it could be used as an adjunct measure in differential diagnosis of dementias, especially early-onset AD.
Collapse
Affiliation(s)
- David Silhan
- Department of Neurology, Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Ales Bartos
- Department of Neurology, Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Jana Mrzilkova
- Department of Anatomy, Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Olga Pashkovska
- Department of Neurology, Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Ibrahim Ibrahim
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jaroslav Tintera
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
37
|
Khalid S, Sambamoorthi U, Innes KE. Non-Cancer Chronic Pain Conditions and Risk for Incident Alzheimer's Disease and Related Dementias in Community-Dwelling Older Adults: A Population-Based Retrospective Cohort Study of United States Medicare Beneficiaries, 2001-2013. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5454. [PMID: 32751107 PMCID: PMC7432104 DOI: 10.3390/ijerph17155454] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 01/02/2023]
Abstract
Accumulating evidence suggests that certain chronic pain conditions may increase risk for incident Alzheimer's disease and related dementias (ADRD). Rigorous longitudinal research remains relatively sparse, and the relation of overall chronic pain condition burden to ADRD risk remains little studied, as has the potential mediating role of sleep and mood disorders. In this retrospective cohort study, we investigated the association of common non-cancer chronic pain conditions (NCPC) at baseline to subsequent risk for incident ADRD, and assessed the potential mediating effects of mood and sleep disorders, using baseline and 2-year follow-up data using 11 pooled cohorts (2001-2013) drawn from the U.S. Medicare Current Beneficiaries Survey (MCBS). The study sample comprised 16,934 community-dwelling adults aged ≥65 and ADRD-free at baseline. NCPC included: headache, osteoarthritis, joint pain, back or neck pain, and neuropathic pain, ascertained using claims data; incident ADRD (N = 1149) was identified using claims and survey data. NCPC at baseline remained associated with incident ADRD after adjustment for sociodemographics, lifestyle characteristics, medical history, medications, and other factors (adjusted odds ratio (AOR) for any vs. no NCPC = 1.21, 95% confidence interval (CI) = 1.04-1.40; p = 0.003); the strength and magnitude of this association rose significantly with increasing number of diagnosed NCPCs (AOR for 4+ vs. 0 conditions = 1.91, CI = 1.31-2.80, p-trend < 0.00001). Inclusion of sleep disorders and/or depression/anxiety modestly reduced these risk estimates. Sensitivity analyses yielded similar findings. NCPC was significantly and positively associated with incident ADRD; this association may be partially mediated by mood and sleep disorders. Additional prospective studies with longer-term follow-up are warranted to confirm and extend our findings.
Collapse
Affiliation(s)
- Sumaira Khalid
- Department of Epidemiology, West Virginia University School of Public Health, Morgantown, WV 26506, USA;
| | - Usha Sambamoorthi
- Department of Pharmaceutical Systems and Policy, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA;
| | - Kim E. Innes
- Department of Epidemiology, West Virginia University School of Public Health, Morgantown, WV 26506, USA;
| |
Collapse
|
38
|
Balasubramanian N, Srivastava A, Pawar N, Sagarkar S, Sakharkar AJ. Repeated mild traumatic brain injury induces persistent variations in mitochondrial DNA copy number in mesocorticolimbic neurocircuitry of the rat. Neurosci Res 2020; 155:34-42. [DOI: 10.1016/j.neures.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022]
|
39
|
Adamson MM, Shakil S, Sultana T, Hasan MA, Mubarak F, Enam SA, Parvaz MA, Razi A. Brain Injury and Dementia in Pakistan: Current Perspectives. Front Neurol 2020; 11:299. [PMID: 32425875 PMCID: PMC7205019 DOI: 10.3389/fneur.2020.00299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, accounting for 50-75% of all cases, with a greater proportion of individuals affected at older age range. A single moderate or severe traumatic brain injury (TBI) is associated with accelerated aging and increased risk for dementia. The fastest growth in the elderly population is taking place in China, Pakistan, and their south Asian neighbors. Current clinical assessments are based on data collected from Caucasian populations from wealthy backgrounds giving rise to a "diversity" crisis in brain research. Pakistan is a lower-middle income country (LMIC) with an estimated one million people living with dementia. Pakistan also has an amalgamation of risk factors that lead to brain injuries such as lack of road legislations, terrorism, political instability, and domestic and sexual violence. Here, we provide an initial and current assessment of the incidence and management of dementia and TBI in Pakistan. Our review demonstrates the lack of resources in terms of speciality trained clinician staff, medical equipment, research capabilities, educational endeavors, and general awareness in the fields of dementia and TBI. Pakistan also lacks state-of-the-art assessment of dementia and its risk factors, such as neuroimaging of brain injury and aging. We provide recommendations for improvement in this arena that include the recent creation of Pakistan Brain Injury Consortium (PBIC). This consortium will enhance international collaborative efforts leading to capacity building for innovative research, clinician and research training and developing databases to bring Pakistan into the international platform for dementia and TBI research.
Collapse
Affiliation(s)
- Maheen M Adamson
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States.,Department of Rehabilitation, VA Palo Alto, Palo Alto, CA, United States
| | - Sadia Shakil
- Department of Electrical Engineering, Institute of Space Technology, Islamabad, Pakistan.,Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Tajwar Sultana
- Department of Biomedical Engineering, NED University of Engineering and Technology, Karachi, Pakistan.,Neurocomputation Laboratory, National Centre for Artificial Intelligence, NED University of Engineering and Technology, Karachi, Pakistan.,Department of Computer and Information Systems Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Muhammad Abul Hasan
- Department of Biomedical Engineering, NED University of Engineering and Technology, Karachi, Pakistan.,Neurocomputation Laboratory, National Centre for Artificial Intelligence, NED University of Engineering and Technology, Karachi, Pakistan
| | - Fatima Mubarak
- Department of Radiology, Aga Khan University, Karachi, Pakistan
| | - Syed Ather Enam
- Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Muhammad A Parvaz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia.,The Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom.,Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| |
Collapse
|
40
|
Abrahamson EE, Poloyac SM, Dixon CE, Dekosky ST, Ikonomovic MD. Acute and chronic effects of single dose memantine after controlled cortical impact injury in adult rats. Restor Neurol Neurosci 2020; 37:245-263. [PMID: 31177251 DOI: 10.3233/rnn-190909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Altered glutamatergic neurotransmission after traumatic brain injury (TBI) contributes to excitotoxic cell damage and death. Prevention or suppression of such changes is a desirable goal for treatment of TBI. Memantine (3,5-dimethyl-1-adamantanamine), an uncompetitive NMDA receptor antagonist with voltage-dependent open channel blocking kinetics, was reported to be neuroprotective in preclinical models of excitotoxicity, brain ischemia, and in TBI when administered prophylactically, immediately, or within minutes after injury. METHODS The current study examined effects of memantine administered by single intraperitoneal injection to adult male rats at a more clinically relevant delay of one hour after moderate-severe controlled cortical impact (CCI) injury or sham surgery. Histopathology was assessed on days 1, 7, 21, and 90, vestibulomotor function (beam balance and beam walk) was assessed on days 1-5 and 71-75, and spatial memory (Morris water maze test, MWM) was assessed on days 14-21 and 83-90 after CCI injury or sham surgery. RESULTS When administered at 10 mg/kg, but not 2.5 or 5 mg/kg, memantine preserved cortical tissue and reduced neuronal degeneration 1 day after injury, and attenuated loss of synaptophysin immunoreactivity in the hippocampus 7 days after injury. No effects of 10 mg/kg memantine were observed on histopathology at 21 and 90 days after CCI injury or sham surgery, or on vestibulomotor function and spatial memory acquisition assessed during any of the testing periods. However, 10 mg/kg memantine resulted in trends for improved search strategy in the MWM memory retention probe trial. CONCLUSIONS Administration of memantine at a clinically-relevant delay after moderate-severe CCI injury has beneficial effects on acute outcomes, while more significant improvement on subacute and chronic outcomes may require repeated drug administration or its combination with another therapy.
Collapse
Affiliation(s)
- Eric E Abrahamson
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA
| | - Samuel M Poloyac
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh PA, USA
| | - C Edward Dixon
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurosurgery, University of Pittsburgh, Pittsburgh PA, USA
| | - Steven T Dekosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Milos D Ikonomovic
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, University of Pittsburgh, Pittsburgh PA, USA.,Department of Neurology, University of Pittsburgh, Pittsburgh PA, USA.,Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
41
|
Garrett MD. Multiple Causes of Dementia as Engineered Senescence. EUROPEAN JOURNAL OF MEDICAL AND HEALTH SCIENCES 2020; 2. [DOI: 10.24018/ejmed.2020.2.2.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
All traumas—cranial, cardiovascular, hormone, viral, bacterial, fungi, parasites, misfolded protein, genetic, behavior, environmental and medication—affect the brain. This paper itemizes studies showing the many different causes of dementia including Alzheimer’s disease. Causes interact with each other, act sequentially by preparing the optimal conditions for its successor, initiate other diseases, allow for other traumas to accumulate and degrade protective features of the brain. Since such age-related cognitive impairment is not exclusively a human attribute there might be support for an evolutionary theory of dementia. Relying on theories of antagonistic pleiotropy and polymorphism, the brain has been designed to sequester trauma. Because of increased longevity, the short-term tactic of sequestering trauma becomes a long-term liability. We are engineered to sequester these insults until a tipping point is reached. Dementia is an evolutionary trade-off for longevity. We cannot cure dementia without understanding the overall biology of aging.
Collapse
|
42
|
Boutté AM, Hook V, Thangavelu B, Sarkis GA, Abbatiello BN, Hook G, Jacobsen JS, Robertson CS, Gilsdorf J, Yang Z, Wang KKW, Shear DA. Penetrating Traumatic Brain Injury Triggers Dysregulation of Cathepsin B Protein Levels Independent of Cysteine Protease Activity in Brain and Cerebral Spinal Fluid. J Neurotrauma 2020; 37:1574-1586. [PMID: 31973644 DOI: 10.1089/neu.2019.6537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cathepsin B (CatB), a lysosomal cysteine protease, is important to brain function and may have dual utility as a peripheral biomarker of moderate-severe traumatic brain injury (TBI). The present study determined levels of pro- and mature (mat) CatB protein as well as cysteine protease activity within the frontal cortex (FC; proximal injury site), hippocampus (HC; distal injury site), and cerebral spinal fluid (CSF) collected 1-7 days after craniotomy and penetrating ballistic-like brain injury (PBBI) in rats. Values were compared with naïve controls. Further, the utility of CatB protein as a translational biomarker was determined in CSF derived from patients with severe TBI. Craniotomy increased matCatB levels in the FC and HC, and led to elevation of HC activity at day 7. PBBI caused an even greater elevation in matCatB within the FC and HC within 3-7 days. After PBBI, cysteine protease activity peaked at 3 days in the FC and was elevated at 1 day and 7 days, but not 3 days, in the HC. In rat CSF, proCatB, matCatB, and cysteine protease activity peaked at 3 days after craniotomy and PBBI. Addition of CA-074, a CatB-specific inhibitor, confirmed that protease activity was due to active matCatB in rat brain tissues and CSF at all time-points. In patients, CatB protein was detectable from 6 h through 10 days after TBI. Notably, CatB levels were significantly higher in CSF collected within 3 days after TBI compared with non-TBI controls. Collectively, this work indicates that CatB and its cysteine protease activity may serve as collective molecular signatures of TBI progression that differentially vary within both proximal and distal brain regions. CatB and its protease activity may have utility as a surrogate, translational biomarker of acute-subacute TBI.
Collapse
Affiliation(s)
- Angela M Boutté
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Bharani Thangavelu
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - George Anis Sarkis
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachussets, USA
| | - Brittany N Abbatiello
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Gregory Hook
- American Life Science Pharmaceuticals, Inc., La Jolla, California, USA
| | - J Steven Jacobsen
- American Life Science Pharmaceuticals, Inc., La Jolla, California, USA
| | - Claudia S Robertson
- The Center for Neurosurgical Intensive Care, Ben Taub General Hospital Baylor College of Medicine, Department of Neurosurgery, Houston, Texas, USA
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
43
|
Jing S, Liu C, Lin H, Zhang X, Wang F, Gao J, Sun J, Chen J, Wang C, Li H. Schisantherin A Improves the Learning and Memory by Reducing the Phosphorylation of Tau Protein of the Hippocampus in AD Mice. Nat Prod Commun 2020. [DOI: 10.1177/1934578x19900687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Memory disorders are the main symptoms of aging and Alzheimer’s disease and seriously affect the quality of life. Schisandra, as a famous traditional Chinese medicine, has been used for modulating “the internal organs” for a thousand years. The total lignans from Schisandra have been scientifically proved to improve learning and memory ability. Since it is unclear which monomer in Schisandra total lignans exerts such a function, we evaluated the potential effects of Schisantherin A (SCA), the main monomer from Schisandra, on improving learning ability and memory in amyloid β-protein (Aβ1-42)-induced Alzheimer’s disease (AD) model mice. We found that SCA (5 mg/kg) significantly prolonged the latency and reduced the number of errors in a step-through test. SCA significantly shortened the time of finding the platform and increased the number of crossing the platform and the residence time in a Morris water maze test. SCA increased superoxide dismutase activities and reduced the Malondialdehyde level of the hippocampal tissue, suggesting its role in reducing oxidative stress in the AD mice. Furthermore, we found that SCA significantly decreased the hyperphosphorylation of Tau by altering glycogen synthase kinase-3β (GSK-3β) phosphorylation on Tyr216 and Ser9. Our results revealed the mechanism underlying SCA-mediated learning and memory improvement by regulating GSK-3β activity and lowering the hyperphosphorylation of Tau protein in the hippocampus of AD mice.
Collapse
Affiliation(s)
- Shu Jing
- Department of General Surgery, Affiliated Hospital of Beihua University, Jilin, China
| | - Cong Liu
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Huijiao Lin
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Xinyun Zhang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Fei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Jiaqi Gao
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
44
|
Duncan KA. Estrogen Formation and Inactivation Following TBI: What we Know and Where we Could go. Front Endocrinol (Lausanne) 2020; 11:345. [PMID: 32547495 PMCID: PMC7272601 DOI: 10.3389/fendo.2020.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/04/2020] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury (TBI) is responsible for various neuronal and cognitive deficits as well as psychosocial dysfunction. Characterized by damage inducing neuroinflammation, this response can cause an acute secondary injury that leads to widespread neurodegeneration and loss of neurological function. Estrogens decrease injury induced neuroinflammation and increase cell survival and neuroprotection and thus are a potential target for use following TBI. While much is known about the role of estrogens as a neuroprotective agent following TBI, less is known regarding their formation and inactivation following damage to the brain. Specifically, very little is known surrounding the majority of enzymes responsible for the production of estrogens. These estrogen metabolizing enzymes (EME) include aromatase, steroid sulfatase (STS), estrogen sulfotransferase (EST/SULT1E1), and some forms of 17β-hydroxysteroid dehydrogenase (HSD17B) and are involved in both the initial conversion and interconversion of estrogens from precursors. This article will review and offer new prospective and ideas on the expression of EMEs following TBI.
Collapse
|
45
|
Ruiz T, Baldwin AS, Spiegel DP, Hess R, Farivar R. Increased Noise in Cortico-Cortical Integration After Mild TBI Measured With the Equivalent Noise Technique. Front Neurol 2019; 10:767. [PMID: 31428031 PMCID: PMC6689961 DOI: 10.3389/fneur.2019.00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
The bulk of deficits accompanying mild traumatic brain injury (mTBI) is understood in terms of cortical integration—mnemonic, attentional, and cognitive disturbances are believed to involve integrative action across brain regions. Independent of integrative disturbances, mTBI may increase cortical noise, and this has not been previously considered. High-level integrative deficits are exceedingly difficult to measure and model, motivating us to utilize a tightly-controlled task within an established quantitative model to separately estimate internal noise and integration efficiency. First, we utilized a contour integration task modeled as a cortical-integration process involving multiple adjacent cortical columns in early visual areas. Second, we estimated internal noise and integration efficiency using the linear amplifier model (LAM). Fifty-seven mTBI patients and 24 normal controls performed a 4AFC task where they had to identify a valid contour amongst three invalid contours. Thresholds for contour amplitude were measured adaptively across three levels of added external orientation noise. Using the LAM, we found that mTBI increased internal noise without affecting integration efficiency. mTBI also caused hemifield bias differences, and efficiency was related to a change of visual habits. Using a controlled task reflecting cortical integration within the equivalent noise framework empowered us to detect increased computational noise that may be at the heart of mTBI deficits. Our approach is highly sensitive and translatable to rehabilitative efforts for the mTBI population, while also implicating a novel hypothesis of mTBI effects on basic visual processing—namely that cortical integration is maintained at the cost of increased internal noise.
Collapse
Affiliation(s)
- Tatiana Ruiz
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Alex S Baldwin
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Daniel P Spiegel
- Vision Sciences, Essilor R&D, Center for Innovation and Technology, Singapore, Singapore
| | - Robert Hess
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Reza Farivar
- Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
46
|
Hicks AJ, James AC, Spitz G, Ponsford JL. Traumatic Brain Injury as a Risk Factor for Dementia and Alzheimer Disease: Critical Review of Study Methodologies. J Neurotrauma 2019; 36:3191-3219. [PMID: 31111768 DOI: 10.1089/neu.2018.6346] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite much previous research stating that traumatic brain injury (TBI) has been confirmed as a risk factor for dementia and Alzheimer disease (AD), findings from observational studies are mixed and are of low methodological quality. This review aimed to critically evaluate the methodologies used in previous studies. Relevant literature was identified by examining reference lists for previous reviews and primary studies, and searches in MEDLINE, PubMed, Google Scholar, and Research Gate. Sixty-eight identified reports, published between 1982 and August 2018, met inclusion criteria. Common methodological weaknesses included self-reported TBI (62%); poor TBI case definition (55%); low prevalence of TBI in samples (range 0.07-28.7%); reverse causality (86% moderate to high risk of reverse causality); not controlling for important confounding factors. There were also key areas of methodological rigor including use of individual matching for cases and controls (57%); gold standard dementia and AD criteria (53%); symmetrical data collection (65%); large sample sizes (max, 2,794,752); long follow-up periods and controlling of analyses for age (82%). The quality assessment revealed methodological problems with most studies. Overall, only one study was identified as having strong methodological rigor. This critical review identified several key areas of methodological weakness and rigor and should be used as a guideline for improving future research. This can be achieved by using longitudinal prospective cohort designs, with medically confirmed and well characterized TBI sustained sufficient time before the onset of dementia, including appropriate controls and informants, and considering the impacts of known protective and risk factors.
Collapse
Affiliation(s)
- Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Amelia C James
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
47
|
Fullerton AF, Jackson NJ, Tuvblad C, Raine A, Baker LA. Early childhood head injury attenuates declines in impulsivity and aggression across adolescent development in twins. Neuropsychology 2019; 33:1035-1044. [PMID: 31259562 DOI: 10.1037/neu0000570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Head injury during development has been associated with behavioral changes such as impulsivity and antisocial behavior. This study investigates the extent to which behavioral changes associated with childhood head injury are sustained through adolescence and emerging adulthood. METHOD Survey data was collected at 5 waves spanning 12 years (ages 9-20) from the University of Southern California Risk Factors for Antisocial Behavior twin study. Impulsivity was measured by errors of commission in a Go/NoGo behavioral task, and aggression was measured through youth self-report using the Reactive-Proactive Aggression Questionnaire. Head injury was assessed retrospectively using caregiver questionnaires at twin ages 14-15 years and self-reported at ages 19-20 years. RESULTS Participants with a head injury in early childhood showed significant delay in the normative developmental decline of impulsivity relative to the noninjured by mid-adolescence (ages 14-15.) Moreover, earlier age at injury was related to a slower decrease in impulsivity and greater increase in reactive aggression scores. Finally, among discordant monozygotic twin pairs, the twin with a head injury experienced significantly less decline in impulsivity by ages 19-20 than the noninjured co-twin. CONCLUSIONS These findings indicate early childhood head injury may play a significant role in blunting the decline in impulsivity across development, exposing an additional risk factor for antisocial behavior. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|
48
|
Wadhawan A, Stiller JW, Potocki E, Okusaga O, Dagdag A, Lowry CA, Benros ME, Postolache TT. Traumatic Brain Injury and Suicidal Behavior: A Review. J Alzheimers Dis 2019; 68:1339-1370. [PMID: 30909230 DOI: 10.3233/jad-181055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Abhishek Wadhawan
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Saint Elizabeths Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - John W. Stiller
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Saint Elizabeths Hospital, Neurology Consultation Service, Washington, DC, USA
- Maryland State Athletic Commission, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Olaoluwa Okusaga
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Aline Dagdag
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland Medical Center, Baltimore, MD, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA
| | - Michael E. Benros
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Teodor T. Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| |
Collapse
|
49
|
Curcio N, Wilmoth K, LoBue C, Cullum CM. Reliability of Medical History Reporting in Older Adults With and Without Cognitive Impairment. J Cent Nerv Syst Dis 2019; 11:1179573519843874. [PMID: 31040738 PMCID: PMC6477758 DOI: 10.1177/1179573519843874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 03/21/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Clinical diagnosis of cognitive disorders depends on accurate reporting of medical history, yet little is known about the reliability and the validity of such reports, particularly in older patients with and without cognitive impairment. METHODS In 2 studies, we examined the reliability and the validity of reported histories of select medical events in adults with and without cognitive impairment from a large national cohort. RESULTS Information from subjects (N1 = 3664), obtained from 2 time points, 6 to 12 months apart, was consistent across most medical events, regardless of the diagnostic group (range = 97.6%-100% agreement; Cohen κ range = 0.712-0.945), with few exceptions. Validity analyses (N2 = 382) revealed that 3 of 5 medical events assessed showed substantial agreement between self-report information and clinician diagnosis. CONCLUSIONS These data represent some of the first to demonstrate the reliability and the validity of reported select medical events in older adults with and without cognitive impairment.
Collapse
Affiliation(s)
- Nicholas Curcio
- Department of Psychiatry, The University
of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristin Wilmoth
- Department of Psychiatry, The University
of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christian LoBue
- Department of Psychiatry, The University
of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurological Surgery, The
University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Munro Cullum
- Department of Psychiatry, The University
of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology and
Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX,
USA
- Department of Neurological Surgery, The
University of Texas Southwestern Medical Center, Dallas, TX, USA
- Peter O’Donnell Jr. Brain Institute, The
University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
50
|
Hiraoka T. Association of late effects of single, severe traumatic brain injury with Alzheimer's disease using amyloid PET. Neurocase 2019; 25:10-16. [PMID: 30950324 DOI: 10.1080/13554794.2019.1599026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Traumatic brain injury (TBI) is suggested to be a risk factor for the onset of Alzheimer's disease (AD); however, the data remain controversial. This is the first report on cognitive decline in patients with TBI over 30 years post-injury. The medical significance/key learning points of this report are that (1) Functional Independence Measure (FIM) is useful in clinical settings, such as for higher brain dysfunction and dementia; (2) amyloid PET findings represent an essential biomarker for follow-up after TBI; and (3) cognitive decline can occur in patients with TBI more than 30 years post-injury.
Collapse
Affiliation(s)
- Takashi Hiraoka
- a Department of Rehabilitation Medicine , Kawasaki Medical School , Kurashiki , Japan
| |
Collapse
|