1
|
Meng Y, Liu S, Yu M, Liang H, Tong Y, Song J, Shi J, Cai W, Wu Q, Wen Z, Wang J, Guo F. The Changes of Blood and CSF Ion Levels in Depressed Patients: a Systematic Review and Meta-analysis. Mol Neurobiol 2024; 61:5369-5403. [PMID: 38191692 DOI: 10.1007/s12035-023-03891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Micronutrient deficiencies and excesses are closely related to developing and treating depression. Traditional and effective antidepressants include tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and lithium. There is no consensus on the fluctuation of zinc (Zn2+), magnesium (Mg2+), calcium (Ca2+), copper (Cu2+), iron (Fe2+), and manganese (Mn2+) ion levels in depressed individuals before and after therapy. In order to determine whether there were changes in blood and cerebrospinal fluid (CSF) levels of these ions in depressed patients compared with healthy controls and depressed patients treated with TCAs, SSRIs, or lithium, we applied a systematic review and meta-analysis. Using the Stata 17.0 software, we performed a systematic review and meta-analysis of the changes in ion levels in human samples from healthy controls, depressive patients, and patients treated with TCAs, SSRIs, and lithium, respectively. By searching the PubMed, EMBASE, Google Scholar, Web of Science, China National Knowledge Infrastructure (CNKI), and WAN FANG databases, 75 published analyzable papers were chosen. In the blood, the levels of Zn2+ and Mg2+ in depressed patients had decreased while the Ca2+ and Cu2+ levels had increased compared to healthy controls, Fe2+ and Mn2+ levels have not significantly changed. After treatment with SSRIs, the levels of Zn2+ and Ca2+ in depressed patients increased while Cu2+ levels decreased. Mg2+ and Ca2+ levels were increased in depressed patients after Lithium treatment. The findings of the meta-analysis revealed that micronutrient levels were closely associated with the onset of depression and prompted more research into the underlying mechanisms as well as the pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- Yulu Meng
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shuangshuang Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Science Experiment Center, China Medical University, Shenyang, 110122, China
| | - Hongyue Liang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Tong
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ji Song
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jian Shi
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wen Cai
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qiong Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhifeng Wen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Jialu Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Feng Guo
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Kumar A, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS, Samant R. Magnesium (Mg 2+): Essential Mineral for Neuronal Health: From Cellular Biochemistry to Cognitive Health and Behavior Regulation. Curr Pharm Des 2024; 30:3074-3107. [PMID: 39253923 DOI: 10.2174/0113816128321466240816075041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 09/11/2024]
Abstract
Magnesium (Mg2+) is a crucial mineral involved in numerous cellular processes critical for neuronal health and function. This review explores the multifaceted roles of Mg2+, from its biochemical interactions at the cellular level to its impact on cognitive health and behavioral regulation. Mg2+ acts as a cofactor for over 300 enzymatic reactions, including those involved in ATP synthesis, nucleic acid stability, and neurotransmitter release. It regulates ion channels, modulates synaptic plasticity, and maintains the structural integrity of cell membranes, which are essential for proper neuronal signaling and synaptic transmission. Recent studies have highlighted the significance of Mg2+ in neuroprotection, showing its ability to attenuate oxidative stress, reduce inflammation, and mitigate excitotoxicity, thereby safeguarding neuronal health. Furthermore, Mg2+ deficiency has been linked to a range of neuropsychiatric disorders, including depression, anxiety, and cognitive decline. Supplementation with Mg2+, particularly in the form of bioavailable compounds such as Magnesium-L-Threonate (MgLT), Magnesium-Acetyl-Taurate (MgAT), and other Magnesium salts, has shown some promising results in enhancing synaptic density, improving memory function, and alleviating symptoms of mental health disorders. This review highlights significant current findings on the cellular mechanisms by which Mg2+ exerts its neuroprotective effects and evaluates clinical and preclinical evidence supporting its therapeutic potential. By elucidating the comprehensive role of Mg2+ in neuronal health, this review aims to underscore the importance of maintaining optimal Mg2+ levels for cognitive function and behavioral regulation, advocating for further research into Mg2+ supplementation as a viable intervention for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Aakash Kumar
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Sidharth Mehan
- 1Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Aarti Tiwari
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Zuber Khan
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India) Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Rajaram Samant
- Department of Research and Development, Celagenex Research, Thane, Maharashtra, India
| |
Collapse
|
3
|
Mikhailova MM, Surin AM, Sobolevsky A, Yelshanskaya M, Bolshakov AP. Boris Izrailevich Khodorov: Scientist and Teacher. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422040171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Macías-Carballo M, Rosas-Navarro S, López-Meraz ML, Beltran-Parrazal L, Morgado-Valle C. Anxiolytic effect of chronic intake of supplemental magnesium chloride in rat. Behav Brain Res 2021; 413:113460. [PMID: 34252502 DOI: 10.1016/j.bbr.2021.113460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 01/16/2023]
Abstract
Evidence suggest that magnesium dietary supplementation has several health benefits including lowering blood pressure, reducing insulin resistance, and improving symptoms of depression, anxiety, and migraine. Here, we aimed to study the effect of chronic magnesium supplementation on anxiety-like behavior in rats by supplementing with magnesium their drinking water for 30 days. Anxiety-like behavior was induced by subcutaneous injection of veratrin 30 min before performing elevated plus maze and open field tests to measure anxiety levels and locomotion, respectively. We quantify the concentration of magnesium in plasma and cerebrospinal fluid. We used diazepam to compare the efficacy of magnesium supplementation as an anxiolytic agent. Our results show that rats supplemented with magnesium had a statistically significant decrease in anxiety levels with not effects on locomotion and a statistically significant increase in concentration of magnesium in plasma and cerebrospinal fluid. However, the anxiolytic effect of magnesium supplementation washes-out in 12 days. We discuss the advantages of using supplemental magnesium as anxiolytic.
Collapse
Affiliation(s)
- Monserrat Macías-Carballo
- Instituto de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Mexico
| | - Sergio Rosas-Navarro
- Instituto de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Mexico
| | - María Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Mexico
| | - Luis Beltran-Parrazal
- Instituto de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Mexico.
| | - Consuelo Morgado-Valle
- Instituto de Investigaciones Cerebrales, Dirección General de Investigaciones, Universidad Veracruzana, Mexico.
| |
Collapse
|
5
|
Kaniakova M, Nepovimova E, Kleteckova L, Skrenkova K, Holubova K, Chrienova Z, Hepnarova V, Kucera T, Kobrlova T, Vales K, Korabecny J, Soukup O, Horak M. Combination of Memantine and 6-Chlorotacrine as Novel Multi-Target Compound against Alzheimer's Disease. Curr Alzheimer Res 2020; 16:821-833. [PMID: 30819076 DOI: 10.2174/1567205016666190228122218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/04/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia in the elderly. It is characterized as a multi-factorial disorder with a prevalent genetic component. Due to the unknown etiology, current treatment based on acetylcholinesterase (AChE) inhibitors and N-methyl-D-aspartate receptors (NMDAR) antagonist is effective only temporary. It seems that curative treatment will necessarily be complex due to the multifactorial nature of the disease. In this context, the so-called "multi-targeting" approach has been established. OBJECTIVES The aim of this study was to develop a multi-target-directed ligand (MTDL) combining the support for the cholinergic system by inhibition of AChE and at the same time ameliorating the burden caused by glutamate excitotoxicity mediated by the NMDAR receptors. METHODS We have applied common approaches of organic chemistry to prepare a hybrid of 6-chlorotacrine and memantine. Then, we investigated its blocking ability towards AChE and NMDRS in vitro, as well as its neuroprotective efficacy in vivo in the model of NMDA-induced lessions. We also studied cytotoxic potential of the compound and predicted the ability to cross the blood-brain barrier. RESULTS A novel molecule formed by combination of 6-chlorotacrine and memantine proved to be a promising multipotent hybrid capable of blocking the action of AChE as well as NMDARs. The presented hybrid surpassed the AChE inhibitory activity of the parent compound 6-Cl-THA twofold. According to results it has been revealed that our novel hybrid blocks NMDARs in the same manner as memantine, potently inhibits AChE and is predicted to cross the blood-brain barrier via passive diffusion. Finally, the MTDL design strategy was indicated by in vivo results which showed that the novel 6-Cl-THA-memantine hybrid displayed a quantitatively better neuroprotective effect than the parent compound memantine. CONCLUSION We conclude that the combination of two pharmacophores with a synergistic mechanism of action into a single molecule offers great potential for the treatment of CNS disorders associated with cognitive decline and/or excitotoxicity mediated by NMDARs.
Collapse
Affiliation(s)
- Martina Kaniakova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.,Institute of Physiology of the Czech Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Lenka Kleteckova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Kristyna Skrenkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Kristina Holubova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Vendula Hepnarova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove 500 05, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove 500 05, Czech Republic
| | - Tereza Kobrlova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, Hradec Kralove 500 05, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.,Institute of Physiology of the Czech Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
6
|
Kaniakova M, Kleteckova L, Lichnerova K, Holubova K, Skrenkova K, Korinek M, Krusek J, Smejkalova T, Korabecny J, Vales K, Soukup O, Horak M. 7-Methoxyderivative of tacrine is a ‘foot-in-the-door’ open-channel blocker of GluN1/GluN2 and GluN1/GluN3 NMDA receptors with neuroprotective activity in vivo. Neuropharmacology 2018; 140:217-232. [DOI: 10.1016/j.neuropharm.2018.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
|
7
|
Glasgow NG, Wilcox MR, Johnson JW. Effects of Mg 2+ on recovery of NMDA receptors from inhibition by memantine and ketamine reveal properties of a second site. Neuropharmacology 2018; 137:344-358. [PMID: 29793153 PMCID: PMC6050087 DOI: 10.1016/j.neuropharm.2018.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/18/2018] [Accepted: 05/11/2018] [Indexed: 01/19/2023]
Abstract
Memantine and ketamine are NMDA receptor (NMDAR) open channel blockers that are thought to act via similar mechanisms at NMDARs, but exhibit divergent clinical effects. Both drugs act by entering open NMDARs and binding at a site deep within the ion channel (the deep site) at which the endogenous NMDAR channel blocker Mg2+ also binds. Under physiological conditions, Mg2+ increases the IC50s of memantine and ketamine through competition for binding at the deep site. Memantine also can inhibit NMDARs after associating with a second site accessible in the absence of agonist, a process termed second site inhibition (SSI) that is not observed with ketamine. Here we investigated the effects of 1 mM Mg2+ on recovery from inhibition by memantine and ketamine, and on memantine SSI, of the four main diheteromeric NMDAR subtypes. We found that: recovery from memantine inhibition depended strongly on the concentration of memantine used to inhibit the NMDAR response; Mg2+ accelerated recovery from memantine and ketamine inhibition through distinct mechanisms and in an NMDAR subtype-dependent manner; and Mg2+ occupation of the deep site disrupted memantine SSI in a subtype-dependent manner. Our results support the hypothesis that memantine associates with, but does not inhibit at the second site. After associating with the second site, memantine can either slowly dissociate directly to the extracellular solution, or transit to the deep site, resulting in typical channel block. Memantine's relatively slow dissociation from the second site underlies the dependence of NMDAR recovery from inhibition on both memantine concentration and on Mg2+.
Collapse
Affiliation(s)
- Nathan G Glasgow
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Madeleine R Wilcox
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Vyklicky V, Krausova B, Cerny J, Ladislav M, Smejkalova T, Kysilov B, Korinek M, Danacikova S, Horak M, Chodounska H, Kudova E, Vyklicky L. Surface Expression, Function, and Pharmacology of Disease-Associated Mutations in the Membrane Domain of the Human GluN2B Subunit. Front Mol Neurosci 2018; 11:110. [PMID: 29681796 PMCID: PMC5897658 DOI: 10.3389/fnmol.2018.00110] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), glutamate-gated ion channels, mediate signaling at the majority of excitatory synapses in the nervous system. Recent sequencing data for neurological and psychiatric patients have indicated numerous mutations in genes encoding for NMDAR subunits. Here, we present surface expression, functional, and pharmacological analysis of 11 de novo missense mutations of the human hGluN2B subunit (P553L; V558I; W607C; N615I; V618G; S628F; E657G; G820E; G820A; M824R; L825V) located in the pre-M1, M1, M2, M3, and M4 membrane regions. These variants were identified in patients with intellectual disability, developmental delay, epileptic symptomatology, and autism spectrum disorder. Immunofluorescence microscopy indicated that the ratio of surface-to-total NMDAR expression was reduced for hGluN1/hGluN2B(S628F) receptors and increased for for hGluN1/hGluN2B(G820E) receptors. Electrophysiological recordings revealed that agonist potency was altered in hGluN1/hGluN2B(W607C; N615I; and E657G) receptors and desensitization was increased in hGluN1/hGluN2B(V558I) receptors. The probability of channel opening of hGluN1/hGluN2B (V558I; W607C; V618G; and L825V) receptors was diminished ~10-fold when compared to non-mutated receptors. Finally, the sensitivity of mutant receptors to positive allosteric modulators of the steroid origin showed that glutamate responses induced in hGluN1/hGluN2B(V558I; W607C; V618G; and G820A) receptors were potentiated by 59–96% and 406-685% when recorded in the presence of 20-oxo-pregn-5-en-3β-yl sulfate (PE-S) and androst-5-en-3β-yl hemisuccinate (AND-hSuc), respectively. Surprisingly hGluN1/hGluN2B(L825V) receptors were strongly potentiated, by 197 and 1647%, respectively, by PE-S and AND-hSuc. Synaptic-like responses induced by brief glutamate application were also potentiated and the deactivation decelerated. Further, we have used homology modeling based on the available crystal structures of GluN1/GluN2B NMDA receptor followed by molecular dynamics simulations to try to relate the functional consequences of mutations to structural changes. Overall, these data suggest that de novo missense mutations of the hGluN2B subunit located in membrane domains lead to multiple defects that manifest by the NMDAR loss of function that can be rectified by steroids. Our results provide an opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with hypofunction of the glutamatergic system.
Collapse
Affiliation(s)
- Vojtech Vyklicky
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences (CAS), Prague, Czechia
| | - Barbora Krausova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences (CAS), Prague, Czechia
| | - Jiri Cerny
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences (CAS), Prague, Czechia
| | - Marek Ladislav
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences (CAS), Prague, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Tereza Smejkalova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences (CAS), Prague, Czechia
| | - Bohdan Kysilov
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences (CAS), Prague, Czechia
| | - Miloslav Korinek
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences (CAS), Prague, Czechia
| | - Sarka Danacikova
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences (CAS), Prague, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Horak
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences (CAS), Prague, Czechia
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences (CAS), Prague, Czechia
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences (CAS), Prague, Czechia
| | - Ladislav Vyklicky
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences (CAS), Prague, Czechia
| |
Collapse
|
9
|
Li B, Lv J, Wang W, Zhang D. Dietary magnesium and calcium intake and risk of depression in the general population: A meta-analysis. Aust N Z J Psychiatry 2017; 51:219-229. [PMID: 27807012 DOI: 10.1177/0004867416676895] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Several epidemiological studies have evaluated the associations between dietary magnesium (Mg) and calcium (Ca) intake and the risk of depression. However, the results of these studies remain controversial. Thus, we performed a meta-analysis to explore these associations and to investigate the possible dose-response relationship between dietary Mg intake and risk of depression. METHODS MEDLINE, Web of Science, Embase, Cochrane CENTRAL, CINAHL database, Chinese National Knowledge Infrastructure, Wan fang databases and Databases of Chinese Scientific and Technical Periodicals were searched for eligible publications up to September 2016. Pooled relative risks with 95% confidence intervals were calculated using random-effects model. Publication bias was estimated using Egger's test and the funnel plot. Dose-response relationship was assessed by restricted cubic spline functions. RESULTS A total of 17 epidemiological studies from 12 articles were included in the present meta-analysis. Among these studies, 11 studies evaluated the association between dietary Mg intake and risk of depression and 6 studies evaluated the association between dietary Ca intake and risk of depression. When comparing the highest with the lowest intake, the pooled relative risks of depression were 0.81 (95% confidence interval = [0.70, 0.92]) for Mg and 0.66 (95% confidence interval = [0.42, 1.02]) for Ca. Dietary Mg intake was significantly associated with a reduced risk of depression among studies conducted in Asia (relative risk = 0.57; 95% confidence interval = [0.44, 0.74]) and in studies adjusting for energy intake (relative risk = 0.73; 95% confidence interval = [0.58, 0.92]). For dose-response analysis, evidence of a nonlinear relationship was found between dietary Mg intake and risk of depression, and the largest risk reductions were observed for 320 mg/day. CONCLUSION This meta-analysis indicated that moderate Mg intake may be inversely associated with the risk of depression, which still needs to be confirmed by larger prospective cohort studies.
Collapse
Affiliation(s)
- Bingrong Li
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, People's Republic of China
| | - Jing Lv
- 2 Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weijing Wang
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, People's Republic of China
| | - Dongfeng Zhang
- 1 Department of Epidemiology and Health Statistics, School of Public Health, Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
10
|
Preferential Inhibition of Tonically over Phasically Activated NMDA Receptors by Pregnane Derivatives. J Neurosci 2016; 36:2161-75. [PMID: 26888927 DOI: 10.1523/jneurosci.3181-15.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Postsynaptic N-methyl-d-aspartate receptors (NMDARs) phasically activated by presynaptically released glutamate are critical for synaptic transmission and plasticity. However, under pathological conditions, excessive activation of NMDARs by tonically increased ambient glutamate contributes to excitotoxicity associated with various acute and chronic neurological disorders. Here, using heterologously expressed GluN1/GluN2A and GluN1/GluN2B receptors and rat autaptic hippocampal microisland cultures, we show that pregnanolone sulfate inhibits NMDAR currents induced by a prolonged glutamate application with a higher potency than the NMDAR component of EPSCs. For synthetic pregnanolone derivatives substituted with a carboxylic acid moiety at the end of an aliphatic chain of varying length and attached to the steroid skeleton at C3, the difference in potency between tonic and phasic inhibition increased with the length of the residue. The steroid with the longest substituent, pregnanolone hemipimelate, had no effect on phasically activated receptors while inhibiting tonically activated receptors. In behavioral tests, pregnanolone hemipimelate showed neuroprotective activity without psychomimetic symptoms. These results provide insight into the influence of steroids on neuronal function and stress their potential use in the development of novel therapeutics with neuroprotective action. SIGNIFICANCE STATEMENT Synaptic activation of N-methyl-d-aspartate receptors (NMDARs) plays a key role in synaptic plasticity, but excessive tonic NMDAR activation mediates excitotoxicity associated with many neurological disorders. Therefore, there is much interest in pharmacological agents capable of selectively blocking tonically activated NMDARs while leaving synaptically activated NMDARs intact. Here, we show that an endogenous neurosteroid pregnanolone sulfate is more potent at inhibiting tonically than synaptically activated NMDARs. Further, we report that a novel synthetic analog of pregnanolone sulfate, pregnanolone hemipimelate, inhibits tonic NMDAR currents without inhibiting the NMDAR component of the EPSC and shows neuroprotective activity in vivo without inducing psychomimetic side effects. These results suggest steroids may have a clinical advantage over other known classes of NMDAR inhibitors.
Collapse
|
11
|
Föhr KJ, Zeller K, Georgieff M, Köster S, Adolph O. Open channel block of NMDA receptors by diphenhydramine. Neuropharmacology 2015; 99:459-70. [PMID: 26284492 DOI: 10.1016/j.neuropharm.2015.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/28/2015] [Accepted: 08/13/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Diphenhydramine is a well known H1-receptor antagonist that plays a major role in clinical practice. Nowadays, diphenhydramine is primarily applied to prevent nausea but also its sedative and analgesic effects are of clinical importance. As other drugs mediating sedative and analgesic properties partly operate via the inhibition of glutamate receptors, we tested the hypothesis that diphenhydramine, as well interacts with excitatory ionotropic glutamate receptors. EXPERIMENTAL APPROACH Electrophysiological patch-clamp experiments were performed on glutamate receptors which were heterologously expressed in human TsA cells. KEY RESULTS Diphenhydramine inhibits NMDA-mediated membrane currents in a reversible and concentration-dependent manner at clinically relevant concentrations. The inhibition occurred in a noncompetitive manner. Diphenhydramine did not compete with NMDA or glycine for their binding sites and half-maximal inhibition was obtained around 25 μM diphenhydramine, independent of the subunit composition. The inhibition was caused by a classical open channel blocking mechanism and varied strongly with the membrane potential. Our results suggest that diphenhydramine most probably interacts with the Mg2+ binding site or a very closely related area of the channel pore. CONCLUSION AND IMPLICATIONS The data presented here provide evidence that the NMDA receptor antagonism of diphenhydramine contribute to its sedative and potentially LTP-related effects like analgesia and amnesia.
Collapse
Affiliation(s)
- Karl J Föhr
- University Hospital of Ulm, Department of Anesthesiology, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | - Kathrin Zeller
- University Hospital of Ulm, Department of Anesthesiology, Albert-Einstein-Allee 23, D-89081 Ulm, Germany
| | - Michael Georgieff
- University Hospital of Ulm, Department of Anesthesiology, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| | - Sarah Köster
- Georg-August-Universität Göttingen, Institute for X-Ray Physics, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany.
| | - Oliver Adolph
- University Hospital of Ulm, Department of Anesthesiology, Albert-Einstein-Allee 23, D-89081 Ulm, Germany.
| |
Collapse
|
12
|
Vyklicky V, Krausova B, Cerny J, Balik A, Zapotocky M, Novotny M, Lichnerova K, Smejkalova T, Kaniakova M, Korinek M, Petrovic M, Kacer P, Horak M, Chodounska H, Vyklicky L. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Sci Rep 2015; 5:10935. [PMID: 26086919 PMCID: PMC4471902 DOI: 10.1038/srep10935] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 05/08/2015] [Indexed: 11/10/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) mediate synaptic plasticity, and their dysfunction is implicated in multiple brain disorders. NMDARs can be allosterically modulated by numerous compounds, including endogenous neurosteroid pregnanolone sulfate. Here, we identify the molecular basis of the use-dependent and voltage-independent inhibitory effect of neurosteroids on NMDAR responses. The site of action is located at the extracellular vestibule of the receptor's ion channel pore and is accessible after receptor activation. Mutations in the extracellular vestibule in the SYTANLAAF motif disrupt the inhibitory effect of negatively charged steroids. In contrast, positively charged steroids inhibit mutated NMDAR responses in a voltage-dependent manner. These results, in combination with molecular modeling, characterize structure details of the open configuration of the NMDAR channel. Our results provide a unique opportunity for the development of new therapeutic neurosteroid-based ligands to treat diseases associated with dysfunction of the glutamate system.
Collapse
Affiliation(s)
- Vojtech Vyklicky
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Barbora Krausova
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jiri Cerny
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Ales Balik
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martin Zapotocky
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marian Novotny
- Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic
| | | | - Tereza Smejkalova
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Martina Kaniakova
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Miloslav Korinek
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Milos Petrovic
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
- Institute of Medical Physiology, School of Medicine, University of Belgrade, Visegradska 26/II, 11000 Beograd, Srbija
| | - Petr Kacer
- Institute of Chemical Technology—Prague, Technicka 5, 166 28 Prague, Czech Republic
| | - Martin Horak
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Hana Chodounska
- Institute of Organic Chemistry and Biochemistry CAS, Flemingovo nam. 2, 166 10 Prague 2, Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology CAS, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
13
|
Derom ML, Sayón-Orea C, Martínez-Ortega JM, Martínez-González MA. Magnesium and depression: a systematic review. Nutr Neurosci 2013; 16:191-206. [DOI: 10.1179/1476830512y.0000000044] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Adolph O, Köster S, Georgieff M, Georgieff EM, Moulig W, Föhr KJ. Promethazine inhibits NMDA-induced currents – New pharmacological aspects of an old drug. Neuropharmacology 2012; 63:280-91. [DOI: 10.1016/j.neuropharm.2012.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 02/27/2012] [Accepted: 03/11/2012] [Indexed: 12/24/2022]
|
15
|
Yang YC, Lee CH, Kuo CC. Ionic flow enhances low-affinity binding: a revised mechanistic view into Mg2+ block of NMDA receptors. J Physiol 2009; 588:633-50. [PMID: 20026615 DOI: 10.1113/jphysiol.2009.178913] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) channel is one of the major excitatory amino acid receptors in the mammalian brain. Since external Mg(2+) blocks the channel in an apparently voltage-dependent fashion, this ligand-gated channel displays intriguing voltage-dependent control of Na(+) and Ca(2+) permeability and thus plays an important role in synaptic physiology. We found that the essential features of Mg(2+) block could not be solely envisaged by binding of a charged blocker in the membrane electric field. Instead, the blocking effect of Mg(2+) is critically regulated by, and quantitatively correlated with, the relative tendency of outward and inward ionic fluxes. The 'intrinsic' affinity of Mg(2+) to the binding sites, however, is low (in the millimolar range) in the absence of net ionic flow at 0 mV. Besides, extracellular and intracellular Mg(2+) blocks the channel at distinct sites of electrical distances 0.7 and 0.95 from the outside, respectively. The two sites are separated by a high energy barrier for the movement of Mg(2+) (but not Na(+) or the other ions), and functionally speaking, each could accommodate 1.1 and 0.8 coexisting permeating ions, respectively. Mg(2+) block of the ionic flow thus is greatly facilitated by the flux-coupling effect or the ionic flow (the preponderant direction of permeant ion movement) per se, as if the poorly permeable Mg(2+) is 'pushed' against a high energy barrier by the otherwise permeating ions. Extracellular and intracellular Mg(2+) block then is in essence 'use dependent', more strongly inhibiting both Na(+) and Ca(2+) fluxes with stronger tendencies of influx and efflux, respectively. In conclusion, although permeant ions themselves could compete with Mg(2+), the flow or the tendency of movement of the permeant ions may actually enhance rather than interfere with Mg(2+) block, making the unique current-voltage relationship of NMDAR and the molecular basis of many important neurobiological phenomena.
Collapse
Affiliation(s)
- Ya-Chin Yang
- Department of Life Science, Chang-Gung University, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
16
|
Cardoso CC, Lobato KR, Binfaré RW, Ferreira PK, Rosa AO, Santos ARS, Rodrigues ALS. Evidence for the involvement of the monoaminergic system in the antidepressant-like effect of magnesium. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:235-42. [PMID: 19059299 DOI: 10.1016/j.pnpbp.2008.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/25/2008] [Accepted: 11/14/2008] [Indexed: 12/15/2022]
Abstract
Literature data has shown that acute administration of magnesium reduces immobility time in the mouse forced swimming test (FST), which suggests potential antidepressant activity in humans. However, its mechanism of action is not completely understood. Thus, this study is aimed at investigating the antidepressant-like action of magnesium and the possible involvement of the monoaminergic system in its effect in the FST. The immobility time in the FST was significantly reduced by magnesium chloride administration (30-100 mg/kg, i.p.) without accompanying changes in ambulation when assessed in an open-field test. The pre-treatment of mice with NAN-190 (0.5 mg/kg, i.p. a 5-HT(1A) receptor antagonist), WAY100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist), ritanserin (4 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), ketanserin (5 mg/kg, a preferential 5-HT(2A) receptor antagonist), prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), haloperidol (0.2 mg/kg, i.p., a non selective dopaminergic receptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist) or sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist) 30 min before the administration of magnesium chloride (30 mg/kg, i.p.) significantly prevented its anti-immobility effect in the FST. Moreover, the administration of sub-effective doses of fluoxetine (10 mg/kg, i.p., serotonin reuptake inhibitor), imipramine (5 mg/kg, i.p., a mixed serotonergic noradrenergic reuptake inhibitor), bupropion (1 mg/kg, i.p., dopamine reuptake inhibitor) was able to potentiate the action of sub-effective doses of magnesium chloride. In conclusion, the present study provides evidence indicating that the antidepressant-like effect of magnesium in the FST is dependent on its interaction with the serotonergic (5-HT(1A) and 5-HT(2A/2C) receptors), noradrenergic (alpha(1)- and alpha(2)- receptors) and dopaminergic (dopamine D(1) and D(2) receptors) systems.
Collapse
Affiliation(s)
- Chandra C Cardoso
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis-SC, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Muroyama A, Inaka M, Matsushima H, Sugino H, Marunaka Y, Mitsumoto Y. Enhanced susceptibility to MPTP neurotoxicity in magnesium-deficient C57BL/6N mice. Neurosci Res 2008; 63:72-5. [PMID: 18977253 DOI: 10.1016/j.neures.2008.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 09/23/2008] [Accepted: 09/30/2008] [Indexed: 12/15/2022]
Abstract
We evaluated the effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6N mice fed a magnesium (Mg(2+))-deficient diet. On the 3rd week, Mg(2+)-deficient mice displayed increased anxiety- and depression-like behavior. In the Mg(2+)-deficient mice, a low does (10mg/kg) of MPTP treatment decreased dopamine (DA) and its metabolites contents in the striatum, but not in control mice. The same dose of MPTP did not influence these neurochemical markers in the mice fed Mg(2+)-deficient diet for 1 week which did not exhibit the altered emotional behavior. These results indicate that Mg(2+)-deficient mice with altered emotional behavior appear to increase the susceptibility to MPTP neurotoxicity in C57BL/6N mice.
Collapse
Affiliation(s)
- Akiko Muroyama
- Department of Alternative Medicine, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Ishikawa 920-1181, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Dravid SM, Erreger K, Yuan H, Nicholson K, Le P, Lyuboslavsky P, Almonte A, Murray E, Mosely C, Barber J, French A, Balster R, Murray TF, Traynelis SF. Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block. J Physiol 2007; 581:107-28. [PMID: 17303642 PMCID: PMC2075223 DOI: 10.1113/jphysiol.2006.124958] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have compared the potencies of structurally distinct channel blockers at recombinant NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptors. The IC50 values varied with stereochemistry and subunit composition, suggesting that it may be possible to design subunit-selective channel blockers. For dizocilpine (MK-801), the differential potency of MK-801 stereoisomers determined at recombinant NMDA receptors was confirmed at native receptors in vitro and in vivo. Since the proton sensor is tightly linked both structurally and functionally to channel gating, we examined whether blocking molecules that interact in the channel pore with the gating machinery can differentially sense protonation of the receptor. Blockers capable of remaining trapped in the pore during agonist unbinding showed the strongest dependence on extracellular pH, appearing more potent at acidic pH values that promote channel closure. Determination of pK(a) values for channel blockers suggests that the ionization of ketamine but not of other blockers can influence its pH-dependent potency. Kinetic modelling and single channel studies suggest that the pH-dependent block of NR1/NR2A by (-)MK-801 but not (+)MK-801 reflects an increase in the MK-801 association rate even though protons reduce channel open probability and thus MK-801 access to its binding site. Allosteric modulators that alter pH sensitivity alter the potency of MK-801, supporting the interpretation that the pH sensitivity of MK-801 binding reflects the changes at the proton sensor rather than a secondary effect of pH. These data suggest a tight coupling between the proton sensor and the ion channel gate as well as unique subunit-specific mechanisms of channel block.
Collapse
Affiliation(s)
- Shashank M Dravid
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Centre, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|