1
|
Liu W, Li Z, Li F, Zhang Y, Ding S. Bioaccumulation and behavioral response patterns of crucian carp (Carassius carassius) after carbamazepine exposure and elimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175519. [PMID: 39168342 DOI: 10.1016/j.scitotenv.2024.175519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The antiepileptic drug carbamazepine (CBZ) has been widely detected in freshwater, yet its toxic actions in fish at multiple endpoints and the subsequent recovery patterns of the impacted are less discussed. This study investigated the bioaccumulation, physiological and behavioral changes of crucian carp (Carassius carassius) following CBZ exposure (G1 = 6.15 μg/L, G2 = 61.5 μg/L, G3 = 615 μg/L, G4 = 6150 μg/L) and subsequent recovery. Our results showed that CBZ was more likely to accumulate in the liver and brain than in the gills. A concentration-dependent phenomenon was observed; however, the residual CBZ decreased to similar levels after recovery. The behavioral indicators (i.e. feeding, social and spontaneous swimming) were significantly inhibited after 7-days of CBZ exposure, and only recovered at low concentration treatment (G1) after 7-days recovery in CBZ-free water. The acetylcholinesterase (AChE) activity in the brain and superoxide dismutase (SOD) activity in the liver and gills were induced after CBZ exposure and returned to normal levels after 7-days of recovery. In contrast, the inhibition of catalase (CAT) activity caused by CBZ exposure persisted in the high concentration treatment (G4) after recovery. Furthermore, correlation analysis indicated that changes in feeding behavior were closely related to the variation of CBZ concentrations in tissues, and the persistence of abnormal swimming and social behavior was closely related to gill CAT activity. These findings contribute to explore the toxic mechanisms of CBZ and highlight the recovery process and connections between various endpoints.
Collapse
Affiliation(s)
- Wei Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Chang Jiang Ecology (Hubei) Technology Development Co. Ltd., Wuhan 430071, China
| | - Zhao Li
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Sen Ding
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Li M, Jin Y, Wu J, Zhao M, Yu K, Yu H. Arbidol, an antiviral drug, identified as a sodium channel blocker with anticonvulsant activity. Br J Pharmacol 2024; 181:4311-4327. [PMID: 38982721 DOI: 10.1111/bph.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Sodium channel blockers (SCBs) have traditionally been utilized as anti-seizure medications by primarily targeting the inactivation process. In a drug discovery project aiming at finding potential anticonvulsants, we have identified arbidol, originally an antiviral drug, as a potent SCB. In order to evaluate its anticonvulsant potential, we have thoroughly examined its biophysical properties as well as its effects on animal seizure models. EXPERIMENTAL APPROACH Patch clamp recording was used to investigate the electrophysiological properties of arbidol, as well as the binding and unbinding kinetics of arbidol, carbamazepine and lacosamide. Furthermore, we evaluated the anticonvulsant effects of arbidol using three different seizure models in male mice. KEY RESULTS Arbidol effectively suppressed neuronal epileptiform activity by blocking sodium channels. Arbidol demonstrated a distinct mode of action by interacting with both the fast and slow inactivation of Nav1.2 channels compared with carbamazepine and lacosamide. A kinetic study suggested that the binding and unbinding rates might be associated with the specific characteristics of these three drugs. Arbidol targeted the classical binding site of local anaesthetics, effectively inhibited the gain-of-function effects of Nav1.2 epileptic mutations and exhibited varying degrees of anticonvulsant effects in the maximal electroshock model and subcutaneous pentylenetetrazol model but had no effect in the pilocarpine-induced status epilepticus model. CONCLUSIONS AND IMPLICATIONS Arbidol shows promising potential as an anticonvulsant agent, providing a unique mode of action that sets it apart from existing SCBs.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yuchen Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jun Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Miao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Kexin Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Haibo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
3
|
Benjamin S, Ho JMW, Tung J, Dholakia S, An H, Antoniou T, Sanger S, Williams JW. Anticonvulsants in the Treatment of Behavioral and Psychological Symptoms in Dementia: A Systematic Review. Am J Geriatr Psychiatry 2024; 32:1259-1270. [PMID: 38871629 DOI: 10.1016/j.jagp.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVES Behavioral and psychological symptoms of dementia (BPSD) are common and impart a significant burden to patients, caregivers, and the health system. However, there are few pharmacological options for treating BPSD. We conducted a systematic review of clinical trials examining the efficacy of anticonvulsants in BPSD. METHODS We searched five electronic databases through January 2023, for randomized controlled trials and systematic reviews evaluating the efficacy of non-benzodiazepine anticonvulsants for the treatment of BPSD. We used the Cochrane risk of bias tool to ascertain the risk of bias in included trials. Because statistical pooling of results using meta-analysis was not feasible, we synthesized findings using the Cochrane Synthesis Without Meta-analysis reporting guidelines. RESULTS We identified 12 studies, including randomized controlled trials (RCTs) and 1 systematic review. Five RCTs evaluating valproic acid were synthesized by a recent Cochrane review which concluded that this drug is likely ineffective for BPSD. We extracted data from 6 trials involving 248 individuals comparing non-benzodiazepine anticonvulsants to either placebo or risperidone. Four trials (n = 97 participants) evaluated carbamazepine, only one of which demonstrated an improvement in the Brief Psychiatric Rating Scale measuring agitation, hostility, psychosis, and withdrawal/depression (effect size: 1.13; 95% confidence interval [CI]: 0.54-1.73) relative to placebo. Adverse effects were more common in patients receiving carbamazepine (20/27; 74%) relative to placebo (5/24; 21%). There is low quality evidence that oxcarbazepine is likely ineffective and that topiramate may be comparable to risperidone. CONCLUSION Anticonvulsants are unlikely to be effective in BPSD, although the quality of existing evidence is low.
Collapse
Affiliation(s)
- Sophiya Benjamin
- Department of Psychiatry and Behavioural Neurosciences (BS, SS), McMaster University, Hamilton, Ontario, Canada; Schlegel-UW Research Institute for Aging (BS, JM-W), Waterloo, Ontario, Canada; GeriMedRisk (BS, JM-W, TJ), Waterloo, Ontario, Canada.
| | - Joanne Man-Wai Ho
- Schlegel-UW Research Institute for Aging (BS, JM-W), Waterloo, Ontario, Canada; GeriMedRisk (BS, JM-W, TJ), Waterloo, Ontario, Canada; Department of Medicine (JM-W), McMaster University, Waterloo, Ontario, Canada
| | - Jennifer Tung
- GeriMedRisk (BS, JM-W, TJ), Waterloo, Ontario, Canada; Grand River Hospital (TJ), Kitchener, Ontario, Canada
| | - Saumil Dholakia
- The Ottawa Hospital | L'Hôpital d'Ottawa (DS), Ottawa, Canada; University of Ottawa | l'Université d'Ottawa (DS), Ottawa, Canada
| | - Howard An
- Unity Health Toronto (AH), University of Toronto, Toronto, Ontario, Canada
| | - Tony Antoniou
- Department of Family and Community Medicine (AT), University of Toronto, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute (AT), St. Michael's Hospital, Toronto, Ontario, Canada
| | - Stephanie Sanger
- Department of Psychiatry and Behavioural Neurosciences (BS, SS), McMaster University, Hamilton, Ontario, Canada
| | - John W Williams
- Division of General Internal Medicine (WJW), Duke University, Durham, NC
| |
Collapse
|
4
|
Sánchez JD, Gómez-Carpintero J, González JF, Menéndez JC. Twenty-first century antiepileptic drugs. An overview of their targets and synthetic approaches. Eur J Med Chem 2024; 272:116476. [PMID: 38759456 DOI: 10.1016/j.ejmech.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
The therapeutic use of the traditional drugs against epilepsy has been hindered by their toxicity and low selectivity. These limitations have stimulated the design and development of new generations of antiepileptic drugs. This review explores the molecular targets and synthesis of the antiepileptic drugs that have entered the market in the 21st century, with a focus on manufacturer synthesis.
Collapse
Affiliation(s)
- J Domingo Sánchez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Jorge Gómez-Carpintero
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Juan F González
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Okanari K, Teranishi H, Umeda R, Shikano K, Inoue M, Hanada T, Ihara K, Hanada R. Behavioral and neurotransmitter changes on antiepileptic drugs treatment in the zebrafish pentylenetetrazol-induced seizure model. Behav Brain Res 2024; 464:114920. [PMID: 38403178 DOI: 10.1016/j.bbr.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Epilepsy, a recurrent neurological disorder involving abnormal neurotransmitter kinetics in the brain, has emerged as a global health concern. The mechanism of epileptic seizures is thought to involve a relative imbalance between excitatory and inhibitory neurotransmitters. Despite the recent advances in clinical and basic research on the pathogenesis of epilepsy, the complex relationship between the neurotransmitter changes and behavior with and without antiepileptic drugs (AEDs) during seizures remains unclear. To investigate the effects of AEDs such as levetiracetam (LEV), carbamazepine (CBZ), and fenfluramine (FFR) on key neurotransmitters in the pentylenetetrazol (PTZ)-induced seizures in adult zebrafish, we examined the changes in glutamic acid, gamma-aminobutyric acid (GABA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), choline, acetylcholine, norepinephrine, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and adenosine. In this study, we observed that 5-HT and DA levels in the brain increased immediately after PTZ-induced seizures. Behavioral tests clearly showed that all of these AEDs suppressed the PTZ-induced seizures. Upon treatment of PTZ-induced seizures with these AEDs, CBZ decreased the glutamic acid and FFR increased the GABA levels; however, no neurotransmitter changes were observed in the brain after LEV administration. Thus, we demonstrated a series of neurotransmitter changes linked to behavioral changes during PTZ-induced epileptic seizures when LEV, CBZ, or FFR were administered. These findings will lead to a more detailed understanding of the pathogenesis of epilepsy associated with behavioral and neurotransmitter changes under AED treatment.
Collapse
Affiliation(s)
- Kazuo Okanari
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Kenshiro Shikano
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Masanori Inoue
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty and Medicine, Oita University, Oita, Japan
| | - Kenji Ihara
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan.
| |
Collapse
|
6
|
Chen Y, Li W, Lu C, Gao X, Song H, Zhang Y, Zhao S, Cai G, Guo Q, Zhou D, Chen Y. Efficacy, tolerability and safety of add-on third-generation antiseizure medications in treating focal seizures worldwide: a network meta-analysis of randomised, placebo-controlled trials. EClinicalMedicine 2024; 70:102513. [PMID: 38449838 PMCID: PMC10915785 DOI: 10.1016/j.eclinm.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Background Adjunctive newer antiseizure medications (ASMs) are being used in patients with treatment-resistant focal-onset seizures (FOS). An updated network meta-analysis (NMA) was necessary to compile evidence in this critical area. Methods We systematically searched PubMed, Embase, Cochrane Library, Web of Science, and Scopus from their inception until 17 January 2024, evaluating the efficacy, tolerability, and safety of rufinamide (RUF), brivaracetam (BRV), cenobamate (CNB), eslicarbazepine (ESL), lacosamide (LCM), retigabine (RTG), and perampanel (PER) as adjunctive treatments for FOS. Efficacy outcomes included seizure response and seizure freedom. Tolerability was assessed by discontinuation due to adverse events (AEs). Safety outcomes were evaluated based on the number of patients experiencing at least one AE and serious adverse events (SAEs). This review is registered with PROSPERO (CRD42023485130). Findings A total of 29 studies involving 11,750 participants were included. For seizure response, all ASMs were significantly superior to placebo, with RTG ranking highest, followed by CNB. Considering dosage, CNB 400 mg/d was top-ranked, followed by RTG 1200 mg/d. For seizure freedom, BRV was highest-ranked, followed by CNB, with BRV 100 mg/d leading, followed by CNB 400 mg/d. Regarding tolerability, LCM 600 mg/d had the lowest ranking, followed by CNB 400 mg/d. For the safety outcome of AEs, ESL 1200 mg/d was ranked lowest, followed by CNB 400 mg/d. Regarding SAEs, LCM 400 mg/d was ranked lowest, followed by RTG 1200 mg/d. Interpretation ASMs at different dosages have varying efficacy and tolerability profiles. We have provided hierarchical rankings of ASMs for efficacy and safety outcomes. Our findings offer the most comprehensive evidence available to inform patients, families, physicians, guideline developers, and policymakers about the choice of ASMs in patients with treatment-resistant FOS. Funding None.
Collapse
Affiliation(s)
- Yankun Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Wenze Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chenfei Lu
- Department of Respiratory, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Xinxia Gao
- Department of Medical Records, Heze Municipal Hospital, Heze, 274000, China
| | - Huizhen Song
- Department of Neurology, Heze Third People's Hospital, Heze, 274000, China
| | - Yanli Zhang
- Department of Neurology, Shandong Provincial Hospital Heze Branch, Heze, 274000, China
| | - Sihao Zhao
- Department of Neurology, Heze Mudan District People's Hospital, Heze, 274000, China
| | - Gaoang Cai
- Department of Neurology, Juancheng County People's Hospital, Juancheng, 274600, China
| | - Qing Guo
- Department of Neurology, Heze Municipal Hospital Brain Hospital, Heze, 274000, China
| | - Dongdong Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
7
|
Dell'Osso L, Nardi B, Massoni L, Gravina D, Benedetti F, Cremone IM, Carpita B. Neuroprotective Properties of Antiepileptics: What are the Implications for Psychiatric Disorders? Curr Med Chem 2024; 31:3447-3472. [PMID: 37226791 DOI: 10.2174/0929867330666230523155728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
Since the discovery of the first antiepileptic compound, increasing attention has been paid to antiepileptic drugs (AEDs), and recently, with the understanding of the molecular mechanism underlying cells death, a new interest has revolved around a potential neuroprotective effect of AEDs. While many neurobiological studies in this field have focused on the protection of neurons, growing data are reporting how exposure to AEDs can also affect glial cells and the plastic response underlying recovery; however, demonstrating the neuroprotective abilities of AEDs remains a changeling task. The present work aims to summarize and review the literature available on the neuroprotective properties of the most commonly used AEDs. Results highlighted how further studies should investigate the link between AEDs and neuroprotective properties; while many studies are available on valproate, results for other AEDs are very limited and the majority of the research has been carried out on animal models. Moreover, a better understanding of the biological basis underlying neuro-regenerative defects may pave the way for the investigation of further therapeutic targets and eventually lead to an improvement in the actual treatment strategies.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Francesca Benedetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| |
Collapse
|
8
|
Riffi R, Boughrara W, Chentouf A, Ilias W, Brahim NMT, Berrebbah AA, Belhoucine F. Pharmacogenetics of Carbamazepine: A Systematic Review on CYP3A4 and CYP3A5 Polymorphisms. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1463-1473. [PMID: 38859787 DOI: 10.2174/0118715273298953240529100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND AND OBJECTIVE The association between carbamazepine (CBZ) metabolism and resistance in epilepsy and the genetic polymorphisms of CYP3A5 (rs776746 and rs15524) and CYP3A4 (rs2242480, rs2740574, rs35599367, rs12721627, and rs28371759) has been the subject of previous investigations with controversial results. Hence, we conducted a systematic review to assess the potential link between these polymorphisms and CBZ metabolism and resistance. METHODS Identifying relevant studies was carried out by searching PubMed, Scopus, PharmGKB, EPIGAD, and PHARMAADME databases up until June 2023. The studies included in our analysis investigated the connection between CYP3A5 (rs776746 and rs15524) and CYP3A4 (rs2242480, rs2740574, rs35599367, rs12721627, and rs28371759) polymorphisms and CBZ metabolism and resistance. RESULTS This review included a total of 23 studies and more than 2177 epilepsy patients. It was found that the CYP3A4 (rs12721627 and rs28371759) polymorphisms are associated with reduced catalytic activity, whereas the CYP3A4 (rs2740574) polymorphism is linked to lower levels of CBZ-diol and decreased activity. It was also observed that the CYP3A5 (rs776746) polymorphism influences the dose-adjusted plasma levels of CBZ. CONCLUSION Although these findings highlight the impact of genetic variations in the CYP3A4 and CYP3A5 genes on CBZ pharmacokinetics and pharmacodynamics, further studies across diverse populations are essential to enhance personalized epilepsy therapy in clinical settings.
Collapse
Affiliation(s)
- Rachda Riffi
- Ecole Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria
| | - Wefa Boughrara
- Ecole Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria
- Laboratoire de Toxicologie, Environnement et santé, LATES, USTO-MB, Algeria
| | - Amina Chentouf
- Service de Neurologie, Centre Hospitalo-Universitaire d'Oran, Oran, Algeria
- Laboratoire de Recherche ACCIPED, Faculté de Médecine, Université Oran1, Oran, Algeria
| | - Wassila Ilias
- Ecole Supérieure en Sciences Biologiques d'Oran (ESSBO), BP 1042, Saim Mohamed 31003, Oran, Algeria
| | | | | | - Fatma Belhoucine
- Laboratoire de Toxicologie, Environnement et santé, LATES, USTO-MB, Algeria
| |
Collapse
|
9
|
Frohlich J, Mediano PAM, Bavato F, Gharabaghi A. Paradoxical pharmacological dissociations result from drugs that enhance delta oscillations but preserve consciousness. Commun Biol 2023; 6:654. [PMID: 37340024 DOI: 10.1038/s42003-023-04988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Low-frequency (<4 Hz) neural activity, particularly in the delta band, is generally indicative of loss of consciousness and cortical down states, particularly when it is diffuse and high amplitude. Remarkably, however, drug challenge studies of several diverse classes of pharmacological agents-including drugs which treat epilepsy, activate GABAB receptors, block acetylcholine receptors, or produce psychedelic effects-demonstrate neural activity resembling cortical down states even as the participants remain conscious. Of those substances that are safe to use in healthy volunteers, some may be highly valuable research tools for investigating which neural activity patterns are sufficient for consciousness or its absence.
Collapse
Affiliation(s)
- Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany.
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
10
|
Wang YF, Cai TG, Liu ZL, Cui HL, Zhu D, Qiao M. A new insight into the potential drivers of antibiotic resistance gene enrichment in the collembolan gut association with antibiotic and non-antibiotic agents. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131133. [PMID: 36889073 DOI: 10.1016/j.jhazmat.2023.131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Effects of non-antibiotic pharmaceuticals on antibiotic resistance genes (ARGs) in soil ecosystem are still unclear. In this study, we explored the microbial community and ARGs variations in the gut of the model soil collembolan Folsomia candida following soil antiepileptic drug carbamazepine (CBZ) contamination, while comparing with antibiotic erythromycin (ETM) exposure. Results showed that, CBZ and ETM all significantly influenced ARGs diversity and composition in the soil and collembolan gut, increasing the relative abundance of ARGs. However, unlike ETM, which influences ARGs via bacterial communities, exposure to CBZ may have primarily facilitated enrichment of ARGs in gut through mobile genetic elements (MGEs). Although soil CBZ contamination did not pose an effect on the gut fungal community of collembolans, it increased the relative abundance of animal fungal pathogens contained therein. Soil ETM and CBZ exposure both significantly increased the relative abundance of Gammaproteobacteria in the collembolan gut, which may be used to indicate soil contamination. Together, our results provide a fresh perspective for the potential drivers of non-antibiotic drugs on ARG changes based on the actual soil environment, revealing the potential ecological risk of CBZ on soil ecosystems involving ARGs dissemination and pathogens enrichment.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Tian-Gui Cai
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhe-Lun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui-Ling Cui
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Quinn S, Brusel M, Ovadia M, Rubinstein M. Acute effect of antiseizure drugs on background oscillations in Scn1aA1783V Dravet syndrome mouse model. Front Pharmacol 2023; 14:1118216. [PMID: 37021051 PMCID: PMC10067575 DOI: 10.3389/fphar.2023.1118216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Dravet syndrome (Dravet) is a rare and severe form of developmental epileptic encephalopathy. Antiseizure medications (ASMs) for Dravet patients include valproic acid (VA) or clobazam (CLB), with or without stiripentol (STP), while sodium channel blockers like carbamazepine (CBZ) or lamotrigine (LTG) are contraindicated. In addition to their effect on epileptic phenotypes, ASMs were shown to modify the properties of background neuronal activity. Nevertheless, little is known about these background properties alterations in Dravet. Here, utilizing Dravet mice (DS, Scn1aA1783V/WT), we tested the acute effect of several ASMs on background electrocorticography (ECoG) activity and frequency of interictal spikes. Compared to wild-type mice, background ECoG activity in DS mice had lower power and reduced phase coherence, which was not corrected by any of the tested ASMs. However, acute administration of Dravet-recommended drugs, VA, CLB, or a combination of CLB + STP, caused, in most mice, a reduction in the frequency of interictal spikes, alongside an increase in the relative contribution of the beta frequency band. Conversely, CBZ and LTG increased the frequency of interictal spikes, with no effect on background spectral properties. Moreover, we uncovered a correlation between the reduction in interictal spike frequency, the drug-induced effect on the power of background activity, and a spectral shift toward higher frequency bands. Together, these data provide a comprehensive analysis of the effect of selected ASMs on the properties of background neuronal oscillations, and highlight a possible correlation between their effect on epilepsy and background activity.
Collapse
Affiliation(s)
- Shir Quinn
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Brusel
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mor Ovadia
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rubinstein
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Moran Rubinstein,
| |
Collapse
|
12
|
Strayer RJ, Friedman BW, Haroz R, Ketcham E, Klein L, LaPietra AM, Motov S, Repanshek Z, Taylor S, Weiner SG, Nelson LS. Emergency Department Management of Patients With Alcohol Intoxication, Alcohol Withdrawal, and Alcohol Use Disorder: A White Paper Prepared for the American Academy of Emergency Medicine. J Emerg Med 2023; 64:517-540. [PMID: 36997435 DOI: 10.1016/j.jemermed.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 03/30/2023]
Affiliation(s)
- Reuben J Strayer
- Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, New York.
| | - Benjamin W Friedman
- Department of Emergency Medicine, Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Rachel Haroz
- Cooper Medical School of Rowan University, Cooper University Healthcare, Camden, New Jersey
| | - Eric Ketcham
- Department of Emergency Medicine, Department of Behavioral Health, Addiction Medicine, Presbyterian Healthcare System, Santa Fe & Española, New Mexico
| | - Lauren Klein
- Department of Emergency Medicine, Good Samaritan Hospital, West Islip, New York
| | - Alexis M LaPietra
- Department of Emergency Medicine, Saint Joseph's Regional Medical Center, Paterson, New Jersey
| | - Sergey Motov
- Department of Emergency Medicine, Maimonides Medical Center, Brooklyn, New York
| | - Zachary Repanshek
- Department of Emergency Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Scott Taylor
- Department of Emergency Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Scott G Weiner
- Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lewis S Nelson
- Department of Emergency Medicine, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
13
|
Dyong TM, Gess B, Dumke C, Rolke R, Dohrn MF. Carbamazepine for Chronic Muscle Pain: A Retrospective Assessment of Indications, Side Effects, and Treatment Response. Brain Sci 2023; 13:brainsci13010123. [PMID: 36672104 PMCID: PMC9857021 DOI: 10.3390/brainsci13010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Myopathies fall under the umbrella of rare diseases, however, muscle pain is a relevant, under-recognized symptom with limited treatment options. Carbamazepine is an oral sodium channel blocker approved for the treatment of seizures and neuropathic pain. In 54 individuals receiving carbamazepine for muscle pain, we retrospectively assessed the subjective treatment response, side effects, and reasons for carbamazepine discontinuation. The underlying diagnoses leading to muscle pain were diverse, ranging from metabolic (n = 5) and other hereditary (n = 9) to acquired (n = 2) myopathies and myotonia syndromes (n = 22). Under carbamazepine (daily dose 254 ± 138 mg), patients reported a significant reduction of pain, quantified by an 11-point numeric rating scale (−1.9 ± 1.8, p < 0.001). Compared to age- and sex-matched controls, our sensory assessment revealed a significant dysfunction of Aδ-nerve fibers in patients with chronic muscle pain. Neuropathic pain components identified by the painDETECT questionnaire or quantitative sensory testing did not seem to influence the reported treatment response. Side effects (n = 18) such as fatigue, elevated liver enzymes, and diarrhea, as well as lack of pain improvement (n = 6), led to carbamazepine discontinuation in 44.4% (24/54). Mediated by dysfunctional Aδ-nerve fibers, muscle pain is common in a variety of myopathies. Carbamazepine may reduce pain levels, but comes with therapy-limiting side effects.
Collapse
Affiliation(s)
- Tabea M. Dyong
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Burkhard Gess
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Christina Dumke
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Roman Rolke
- Department of Palliative Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Maike F. Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
- Dr. John T. Macdonald Foundation, Department of Human Genetics, John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence:
| |
Collapse
|
14
|
Therapeutic Administration of Oxcarbazepine Saves Cerebellar Purkinje Cells from Ischemia and Reperfusion Injury Induced by Cardiac Arrest through Attenuation of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11122450. [PMID: 36552657 PMCID: PMC9774942 DOI: 10.3390/antiox11122450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar injury induced by cardiac arrest (CA) and the return of spontaneous circulation has been poor. Rats were assigned to four groups as follows: (Groups 1 and 2) sham asphyxial CA and vehicle- or oxcarbazepine-treated, and (Groups 3 and 4) CA and vehicle- or oxcarbazepine-treated. Vehicle (0.3% dimethyl sulfoxide/saline) or oxcarbazepine (200 mg/kg) was administered intravenously ten minutes after the return of spontaneous circulation. In this study, CA was induced by asphyxia using vecuronium bromide (2 mg/kg). We conducted immunohistochemistry for calbindin D-28kDa and Fluoro-Jade B histofluorescence to examine Purkinje cell death induced by CA. In addition, immunohistochemistry for 4-hydroxy-2-nonenal (4HNE) was carried out to investigate CA-induced oxidative stress, and immunohistochemistry for Cu, Zn-superoxide dismutase (SOD1) and Mn-superoxide dismutase (SOD2) was performed to examine changes in endogenous antioxidant enzymes. Oxcarbazepine treatment after CA significantly increased the survival rate and improved neurological deficit when compared with vehicle-treated rats with CA (survival rates ≥ 63.6 versus 6.5%), showing that oxcarbazepine treatment dramatically protected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA. The salvation of the Purkinje cells from ischemic injury by oxcarbazepine treatment paralleled a dramatic reduction in 4HNE (an end-product of lipid peroxidation) and increased or maintained the endogenous antioxidant enzymes (SOD1 and SOD2). In brief, this study shows that therapeutic treatment with oxcarbazepine after CA apparently saved cerebellar neurons (Purkinje cells) from CA-induced neuronal death by attenuating oxidative stress and suggests that oxcarbazepine can be utilized as a therapeutic medicine for ischemia and reperfusion brain (cerebellar) injury induced by CA.
Collapse
|
15
|
Patel S, Mittal R, Sarantopoulos KD, Galor A. Neuropathic ocular surface pain: Emerging drug targets and therapeutic implications. Expert Opin Ther Targets 2022; 26:681-695. [PMID: 36069761 PMCID: PMC9613591 DOI: 10.1080/14728222.2022.2122438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Dysfunction at various levels of the somatosensory system can lead to ocular surface pain with a neuropathic component. Compared to nociceptive pain (due to noxious stimuli at the ocular surface), neuropathic pain tends to be chronic and refractory to therapies, making it an important source of morbidity in the population. An understanding of the options available for neuropathic ocular surface pain, including new and emerging therapies, is thus an important topic. AREAS COVERED This review will examine studies focusing on ocular surface pain, emphasizing those examining patients with a neuropathic component. Attention will be placed toward recent (after 2017) studies that have examined new and emerging therapies for neuropathic ocular surface pain. EXPERT OPINION Several therapies have been studied thus far, and continued research is needed to identify which individuals would benefit from specific therapies. Gaps in our understanding exist, especially with availability of in-clinic diagnostics for neuropathic pain. A focus on improving diagnostic capabilities and researching gene-modulating therapies could help us to provide more specific mechanism-based therapies for patients. In the meantime, continuing to uncover new modalities and examining which are likely to work depending on pain phenotype remains an important short-term goal.
Collapse
Affiliation(s)
- Sneh Patel
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rhiya Mittal
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Konstantinos D. Sarantopoulos
- Department of Anesthesiology, Perioperative Medicine, and Pain Management, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Anat Galor
- University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Surgical services, Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
16
|
Tanaka R, Nabae A, Yamane K, Makino K, Tabata H, Oshitari T, Natsugari H, Takahashi H. Atropisomeric Properties of <i>N</i>-Alkyl/Aryl 5<i>H</i>-Dibenz[<i>b</i>,<i>f</i>]azepines. Chem Pharm Bull (Tokyo) 2022; 70:573-579. [DOI: 10.1248/cpb.c22-00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryoko Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Ayana Nabae
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Koki Yamane
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Kosho Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | | | | | | |
Collapse
|
17
|
Analysis of Medication Rule of Primary Epilepsy Based on Xiaocheng Yan’s Clinical Experience Collection of Epilepsy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9539944. [PMID: 35795265 PMCID: PMC9252657 DOI: 10.1155/2022/9539944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/15/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022]
Abstract
Objective To explore and analyze the medication rule of Professor Xiaocheng Yan in the treatment of primary epilepsy, hoping to provide reference for the clinical treatment of primary epilepsy. Methods Mining and analysis of Professor Xiaocheng Yan sorted out the medical cases of primary epilepsy in Xiaocheng Yan's clinical experience collection of epilepsy, extracted the traditional Chinese medicine (TCM) prescription data in the medical cases, standardized the obtained TCM prescription data, and used the data mining function integrated by the ancient and modern medical case cloud platform V2.3.5 to carry out frequency statistics, cluster analysis, association analysis, and complex network analysis on the TCM data, and the common herbs used by Professor Xiaocheng Yan in the treatment of primary epilepsy, properties and classifications of commonly used herbs, pairs of commonly used herbs, and core prescriptions were obtained. Results A total of 39 cases, 228 medical records, and 230 prescriptions data of TCM were included. A total of 96 Chinese medicinal herbs were involved, and the total frequency of medication was 3,828. High-frequency herbs include Rhizoma Gastrodiae (Tianma) (222 times), Ramulus Uncariae cum Uncis (Gouteng) (220 times), Rhizoma Acori Tatarinowii (Shichangpu) (216 times), Rhizoma Pinelliae Praeparatum (Fabanxia) (207 times), Bombyx Batryticatus (Jiangcan) (206 times), and Periostracum Cicadae (Chantui) (181 times). The main properties and flavors of commonly used Chinese medicinal herbs were sweet, bitter, and pungent, which were mainly attributed to the four meridians of liver, lung, heart, and spleen. Commonly used couplet herbs were {Periostracum Cicadae (Chantui)} ≥ {Bombyx Batryticatus (Jiangcan)}, {Rhizoma Acori Tatarinowii (Shichangpu)} ≥{ Bombyx Batryticatus (Jiangcan)}, {Radix Bupleuri (Chaihu)} ≥ {Radix Scutellariae (Huangqin)}, {Rhizoma Gastrodiae (Tianma)} ≥ {Ramulus Uncariae cum Uncis (Gouteng)}, {Rhizoma Acori Tatarinowii (Shichangpu)} ≥ {Periostracum Cicadae (Chantui)}, {Ramulus Uncariae cum Uncis (Gouteng)} ≥ {Bombyx Batryticatus (Jiangcan)}, {Bombyx Batryticatus (Jiangcan)} ≥ {Rhizoma Gastrodiae (Tianma)}, {Rhizoma Acori Tatarinowii (Shichangpu)} ≥ {Ramulus Uncariae cum Uncis (Gouteng)}, etc. The core prescription composition was based on the addition and subtraction of Tianma Gouteng decoction and Erchen decoction. The main pharmacological mechanisms of core prescriptions are mainly reflected in antioxidation, enhancing GABA efficacy, and regulating NMDA channel and sodium channel, neuroprotection, and so on. Conclusion Professor Xiaocheng Yan's medication for the treatment of primary epilepsy was based on the principle of relieving wind and spasm, drying dampness and resolving phlegm, giving consideration to both Qi and blood, and harmonizing liver, lung, heart, and spleen.
Collapse
|
18
|
Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. Current and Possible Future Therapeutic Options for Huntington's Disease. J Cent Nerv Syst Dis 2022; 14:11795735221092517. [PMID: 35615642 PMCID: PMC9125092 DOI: 10.1177/11795735221092517] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease that is characterized by an excessive number of CAG trinucleotide repeats within the huntingtin gene (HTT). HD patients can present with a variety of symptoms including chorea, behavioural and psychiatric abnormalities and cognitive decline. Each patient has a unique combination of symptoms, and although these can be managed using a range of medications and non-drug treatments there is currently no cure for the disease. Current therapies prescribed for HD can be categorized by the symptom they treat. These categories include chorea medication, antipsychotic medication, antidepressants, mood stabilizing medication as well as non-drug therapies. Fortunately, there are also many new HD therapeutics currently undergoing clinical trials that target the disease at its origin; lowering the levels of mutant huntingtin protein (mHTT). Currently, much attention is being directed to antisense oligonucleotide (ASO) therapies, which bind to pre-RNA or mRNA and can alter protein expression via RNA degradation, blocking translation or splice modulation. Other potential therapies in clinical development include RNA interference (RNAi) therapies, RNA targeting small molecule therapies, stem cell therapies, antibody therapies, non-RNA targeting small molecule therapies and neuroinflammation targeted therapies. Potential therapies in pre-clinical development include Zinc-Finger Protein (ZFP) therapies, transcription activator-like effector nuclease (TALEN) therapies and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) therapies. This comprehensive review aims to discuss the efficacy of current HD treatments and explore the clinical trial progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Mackenzie W. Ferguson
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor J. Kennedy
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
19
|
de Kleine E, Maat B, Metzemaekers JD, van Dijk P. Carbamazepine induces upward frequency shifts of spontaneous otoacoustic emissions. Hear Res 2022; 420:108492. [DOI: 10.1016/j.heares.2022.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
|
20
|
Viamontes CG, Castillo Gonzalez J, Najjar F, Cook EH. Maternal Duplication 15q11-13 Syndrome with Autism Spectrum Disorder: Mood Stabilization by Carbamazepine. J Child Adolesc Psychopharmacol 2022; 32:122-126. [PMID: 34905409 DOI: 10.1089/cap.2021.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objectives: Maternal 15q11-13 duplication syndrome (dup15q) is one of the most frequently observed and penetrant genetic abnormalities associated with autism spectrum disorder (ASD), and commonly presents with psychiatric symptoms and seizures. Although carbamazepine has been reported as effective in managing comorbid seizures in dup15q, it has not been reported to be used as a mood stabilizer in this population. Methods: We retrospectively reviewed the charts of five consecutive patients presenting with previously diagnosed dup15q and ASD seeking treatment for psychiatric symptoms and, in four of the patients, seizures. These were the only patients with dup15q treated with carbamazepine in the Neurodevelopmental Psychopharmacology Clinic at the University of Illinois at Chicago during the review period. Results: During treatment, carbamazepine was found to be more effective than other mood stabilizers in all five patients, and in one case a better antiepileptic. Symptoms consistent with bipolar mood disorder such as hyperactivity, impulsivity, irritability, mood lability, intrusiveness, and pressured speech were improved with carbamazepine in combination with other psychotropic medications. This improvement was greater than with other mood stabilizers, including oxcarbazepine, valproate, and lamotrigine. In one case, valproate paradoxically worsened symptoms. In three cases, anxiety was improved with carbamazepine when used in conjunction with other medications targeting anxiety. Conclusions: In treating five patients with dup15q, carbamazepine more effectively stabilized mood-related symptoms than alternative treatments. Prospective randomized controlled trials are necessary to confirm this observation.
Collapse
Affiliation(s)
| | - Jorge Castillo Gonzalez
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Fedra Najjar
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Edwin H Cook
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
21
|
Zhao W, Meng H. Effects of genetic polymorphism of drug-metabolizing enzymes on the plasma concentrations of antiepileptic drugs in Chinese population. Bioengineered 2022; 13:7709-7745. [PMID: 35290166 PMCID: PMC9278974 DOI: 10.1080/21655979.2022.2036916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/02/2022] Open
Abstract
As a chronic brain disease, epilepsy affects ~50 million people worldwide. The traditional antiepileptic drugs (AEDs) are widely applied but showing various problems. Although the new AEDs have partially solved the problems of traditional AEDs, the current clinical application of traditional AEDs are not completely replaced by new drugs, particularly due to the large individual differences in drug plasma concentrations and narrow therapeutic windows among patients. Therefore, it is still clinically important to continue to treat patients using traditional AEDs with individualized therapeutic plans. To date, our understanding of the molecular and genetic mechanisms regulating plasma concentrations of AEDs has advanced rapidly, expanding the knowledge on the effects of genetic polymorphisms of genes encoding drug-metabolizing enzymes on the plasma concentrations of AEDs. It is increasingly imperative to summarize and conceptualize the clinical significance of recent studies on individualized therapeutic regimens. In this review, we extensively summarize the critical effects of genetic polymorphisms of genes encoding drug-metabolizing enzymes on the plasma concentrations of several commonly used AEDs as well as the clinical significance of testing genotypes related to drug metabolism on individualized drug dosage. Our review provides solid experimental evidence and clinical guidance for the therapeutic applications of these AEDs.
Collapse
Affiliation(s)
- Weixuan Zhao
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
22
|
Lettieri G, Carusone N, Notariale R, Prisco M, Ambrosino A, Perrella S, Manna C, Piscopo M. Morphological, Gene, and Hormonal Changes in Gonads and In-Creased Micrococcal Nuclease Accessibility of Sperm Chromatin Induced by Mercury. Biomolecules 2022; 12:87. [PMID: 35053235 PMCID: PMC8773939 DOI: 10.3390/biom12010087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Mercury is one of the most dangerous environmental pollutants. In this work, we analysed the effects of exposure of Mytilus galloprovincialis to 1, 10 and 100 pM HgCl2 for 24 h on the gonadal morphology and on the expression level of three stress genes: mt10, hsp70 and πgst. In this tissue we also evaluated the level of steroidogenic enzymes 3β-HSD and 17β-HSD and the expression of PL protein genes. Finally, we determined difference in sperm chromatin accessibility to micrococcal nuclease. We found alterations in gonadal morphology especially after exposure to 10 and 100 pM HgCl2 and hypo-expression of the three stress genes, particularly for hsp70. Furthermore, decreased labelling with both 3β-HSD and 17β-HSD antibodies was observed following exposure to 1 and 10 pM HgCl2 and complete absence at 100 pM HgCl2 exposure. Gonads of mussels exposed to all HgCl2 doses showed decreased expression of PL protein genes especially for PLIII. Finally, micrococcal nuclease digestions showed that all doses of HgCl2 exposure resulted in increased sperm chromatin accessibility to this enzyme, indicative of improper sperm chromatin structure. All of these changes provide preliminary data of the potential toxicity of mercury on the reproductive health of this mussel.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Nadia Carusone
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (C.M.)
| | - Marina Prisco
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Alessia Ambrosino
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Shana Perrella
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi de Crecchio, 80138 Naples, Italy; (R.N.); (C.M.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (G.L.); (N.C.); (M.P.); (A.A.); (S.P.)
| |
Collapse
|
23
|
Mezzelani M, Regoli F. The Biological Effects of Pharmaceuticals in the Marine Environment. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:105-128. [PMID: 34425054 DOI: 10.1146/annurev-marine-040821-075606] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Environmental pharmaceuticals represent a threat of emerging concern for marine ecosystems. Widely distributed and bioaccumulated, these contaminants could provoke adverse effects on aquatic organisms through modes of action like those reported for target species. In contrast to pharmacological uses, organisms in field conditions are exposed to complex mixtures of compounds with similar, different, or even opposing therapeutic effects. This review summarizes current knowledge of the main cellular pathways modulated by the most common classes of environmental pharmaceuticals occurring in marine ecosystems and accumulated by nontarget species-including nonsteroidal anti-inflammatory drugs, psychiatric drugs, cardiovascular and lipid regulator agents, steroidal hormones, and antibiotics-and describes an intricate network of possible interactions with both synergistic and antagonistic effects on the same cellular targets and metabolic pathways. This complexity reveals the intrinsic limits of the single-chemical approach to predict the long-term consequences and future impact of pharmaceuticals at organismal, population, and community levels.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; ,
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; ,
- Fano Marine Center, 61032 Fano, Italy
| |
Collapse
|
24
|
Abstract
Due to their unique structural, physical and chemical properties, cyclodextrins and their derivatives have been of great interest to scientists and researchers in both academia and industry for over a century. Many of the industrial applications of cyclodextrins have arisen from their ability to encapsulate, either partially or fully, other molecules, especially organic compounds. Cyclodextrins are non-toxic oligopolymers of glucose that help to increase the solubility of organic compounds with poor aqueous solubility, can mask odors from foul-smelling compounds, and have been widely studied in the area of drug delivery. In this review, we explore the structural and chemical properties of cyclodextrins that give rise to this encapsulation (i.e., the formation of inclusion complexes) ability. This review is unique from others written on this subject because it provides powerful insights into factors that affect cyclodextrin encapsulation. It also examines these insights in great detail. Later, we provide an overview of some industrial applications of cyclodextrins, while emphasizing the role of encapsulation in these applications. We strongly believe that cyclodextrins will continue to garner interest from scientists for many years to come, and that novel applications of cyclodextrins have yet to be discovered.
Collapse
|
25
|
Pal R, Singh K, Khan SA, Chawla P, Kumar B, Akhtar MJ. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur J Med Chem 2021; 226:113890. [PMID: 34628237 DOI: 10.1016/j.ejmech.2021.113890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022]
Abstract
Several generations of antiepileptic drugs (AEDs) are available in the market for the treatment of seizures, but these are amalgamated with acute to chronic side effects. The most common side effects of AEDs are dose-related, but some are idiosyncratic adverse drug reactions (ADRs) that transpire due to the formation of reactive metabolite (RM) after the bioactivation process. Because of the adverse reactions patients usually discontinue the medication in between the treatment. The AEDs such as valproic acid, lamotrigine, phenytoin etc., can be categorized under such types because they form the RM which may prevail with life-threatening adverse effects or immune-mediated reactions. Hepatotoxicity, teratogenicity, cutaneous hypersensitivity, dizziness, addiction, serum sickness reaction, renal calculi, metabolic acidosis are associated with the metabolites of drugs such as arene oxide, N-desmethyldiazepam, 2-(1-hydroxyethyl)-2-methylsuccinimide, 2-(sulphamoy1acetyl)-phenol, E-2-en-VPA and 4-en-VPA and carbamazepine-10,11-epoxide, etc. The major toxicities are associated with the moieties that are either capable of forming RM or the functional groups may itself be too reactive prior to the metabolism. These functional groups or fragment structures are typically known as structural alerts or toxicophores. Therefore, minimizing the bioactivation potential of lead structures in the early phases of drug discovery by a modification to low-risk drug molecules is a priority for the pharmaceutical companies. Additionally, excellent potency and pharmacokinetic (PK) behaviour help in ensuring that appropriate (low dose) candidate drugs progress into the development phase. The current review discusses about RMs in the anticonvulsant drugs along with their mechanism vis-a-vis research efforts that have been taken to minimize the toxic effects of AEDs therapy.
Collapse
Affiliation(s)
- Rohit Pal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India; Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman.
| |
Collapse
|
26
|
Beghin M, Schmitz M, Betoulle S, Palluel O, Baekelandt S, Mandiki SNM, Gillet E, Nott K, Porcher JM, Robert C, Ronkart S, Kestemont P. Integrated multi-biomarker responses of juvenile rainbow trout (Oncorhynchus mykiss) to an environmentally relevant pharmaceutical mixture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112454. [PMID: 34214917 DOI: 10.1016/j.ecoenv.2021.112454] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals are emerging pollutants of concern for aquatic ecosystems where they are occurring in complex mixtures. In the present study, the chronic toxicity of an environmentally relevant pharmaceutical mixture on juvenile rainbow trout (Oncorhynchus mykiss) was investigated. Five pharmaceuticals (paracetamol, carbamazepine, diclofenac, naproxen and irbesartan) were selected based on their detection frequency and concentration levels in the Meuse river (Belgium). Fish were exposed for 42 days to three different concentrations of the mixture, the median one detected in the Meuse river, 10-times and 100-times this concentration. Effects on the nervous, immune, antioxidant, and detoxification systems were evaluated throughout the exposure period and their response standardized using the Integrated Biomarker Response (IBRv2) index. IBRv2 scores increased over time in the fish exposed to the highest concentration. After 42 days, fish exposed to the highest concentration displayed significantly higher levels in lysozyme activity (p < 0.01). The mixture also caused significant changes in brain serotonin turnover (p < 0.05). In short, our results indicate that the subchronic waterborne exposure to a pharmaceutical mixture commonly occurring in freshwater ecosystems may affect the neuroendocrine and immune systems of juvenile rainbow trout.
Collapse
Affiliation(s)
- Mahaut Beghin
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium.
| | - Mélodie Schmitz
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardennes, Stress Environnementaux et BIOsurveillance des milieux aquatiques, Campus du Moulin de la Housse, BP 1039, 51687 Reims cedex 2, France
| | - Olivier Palluel
- Institut national de l'environnement industriel et des risques (INERIS), URM-I-02 SEBIO, BP no. 2, 60550 Verneuil en Halatte, France
| | - Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | - Erin Gillet
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Katherine Nott
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Jean-Marc Porcher
- Institut national de l'environnement industriel et des risques (INERIS), URM-I-02 SEBIO, BP no. 2, 60550 Verneuil en Halatte, France
| | - Christelle Robert
- Centre d'Economie Rurale, Health Department, 8 Rue Point du Jour, B-6900 Marloie, Belgium
| | - Sébastien Ronkart
- La Société wallonne des eaux, 41 Rue de la Concorde, B-4800 Verviers, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
27
|
Almeida Â, Soares AMVM, Esteves VI, Freitas R. Occurrence of the antiepileptic carbamazepine in water and bivalves from marine environments: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103661. [PMID: 33878451 DOI: 10.1016/j.etap.2021.103661] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 05/23/2023]
Abstract
A vast literature has already demonstrated that pharmaceutical drugs exert negative impacts on aquatic organisms but data is sparse on the occurrence of these contaminants in marine aquatic environments and their biota, particularly in comparison with freshwater systems. In marine environments, bivalves are known as good bioindicator species for environmental pollution monitoring. This review summarizes the current knowledge on carbamazepine (CBZ) concentrations in the marine environment (seawater and bivalves) and the analytical methods involved in the drug determination. Carbamazepine was chosen based on its ubiquitous occurrence and proven negative impacts on the aquatic organisms. Overall, CBZ is distributed in the marine environment with concentrations up to ∼ 1 μg/L, revealing its stability and high persistence. Also, CBZ was found in some species of marine bivalves, with concentrations up to 13 ng/g dry weight (DW), however, a bioaccumulation factor could not be calculated due to the absence of CBZ determination in seawater samples for most of the studies. CAPSULE: Carbamazepine is found in seawater up to the low μg/L level, and in bivalve tissue up to a few ng/g DW, with SPE and LC as the techniques of choice for drug extraction and identification.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Neurocognitive Effects of Antiseizure Medications in Children and Adolescents with Epilepsy. Paediatr Drugs 2021; 23:253-286. [PMID: 33956338 DOI: 10.1007/s40272-021-00448-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/08/2022]
Abstract
Impairments in cognition are common in epilepsy and may be caused or exacerbated by antiseizure medications (ASMs). Positive effects on cognition may also be seen with some ASMs. Cognitive outcomes are of particular concern in children who may be at an increased risk of cognitive adverse effects of treatment. A comprehensive literature search was conducted in PubMed in order to evaluate the evidence for cognitive changes associated with treatment with ASMs in paediatric epilepsy patients. The ASMs considered were those in the current edition of the British National Formulary (BNF). For most ASMs, remarkably few studies providing robust data on cognitive effects in paediatric patients were identified. The available evidence suggests cognitive impairments may be associated with treatment with phenobarbital. Topiramate and phenytoin are also associated with negative effects on cognition, in particular word-finding difficulties and other language deficits with topiramate, but there are few data available specifically on children. Lamotrigine, levetiracetam and fenfluramine are associated with improvements in some cognitive domains, although it is unclear whether these effects are directly attributable to the medications or are a result of improvements in seizures. Neutral effects on cognition (no substantial evidence of worsening) were suggested for carbamazepine, everolimus, lacosamide, oxcarbazepine, perampanel and valproate. There is limited data for cannabidiol, clobazam, eslicarbazepine acetate, ethosuximide, rufinamide, vigabatrin and zonisamide, although the available evidence suggests these drugs are not associated with severe cognitive impairment. There was too little information to reach conclusions about the effects of brivaracetam, felbamate, gabapentin, pregabalin, retigabine, stiripentol or tiagabine.
Collapse
|
29
|
Zhao GX, Zhang Z, Cai WK, Shen ML, Wang P, He GH. Associations between CYP3A4, CYP3A5 and SCN1A polymorphisms and carbamazepine metabolism in epilepsy: A meta-analysis. Epilepsy Res 2021; 173:106615. [PMID: 33756436 DOI: 10.1016/j.eplepsyres.2021.106615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE CYP3A4 (rs2242480), CYP3A5 (rs776746) and SCN1A (rs3812718 and rs2298771) gene polymorphisms were previously indicated to be associated with carbamazepine (CBZ) metabolism and resistance in epilepsy. However, previous studies regarding the effects of these polymorphisms still remain controversial. Therefore, we performed a meta-analysis to evaluate whether the four polymorphisms are associated with CBZ metabolism and resistance. METHODS The PubMed, EMBASE, Cochrane library, Chinese National Knowledge Infrastructure, Chinese Science and Technique Journals Database, China Biology Medicine disc and Wan Fang Database were searched up to January 2021 for appropriate studies regarding the association of rs2242480, rs776746, rs3812718 and rs2234922 polymorphisms with CBZ metabolism and resistance. The meta-analysis was conducted by Review Manager 5.3 software. RESULTS Eighteen studies involving 2546 related epilepsy patients were included. We found that the G allele of CYP3A4 rs2242480 markedly decreased the plasma CBZ concentration in epilepsy. For CYP3A5 rs776746 polymorphism, the GG genotype (homozygote codominant model: GG vs. AA) and GG + GA genotype (dominant model: GG + GA vs. AA and recessive model: GG vs. GA + AA) were respectively found to be significantly associated with increased CBZ plasma concentration. Additionally, it was also found that the SCN1A rs3812718 A allele was significantly associated with decreased CBZ plasma concentration and increased CBZ resistance. However, no association was observed between SCN1A rs2298771 polymorphism and CBZ metabolism and resistance. CONCLUSION The CYP3A4 rs2242480, CYP3A5 rs776746 and SCN1A rs3812718 polymorphisms may play important roles in CBZ metabolism and resistance, while SCN1A rs2298771 polymorphism is not associated with CBZ in epilepsy. These findings would improve the individualized therapy of epileptic patients in clinics.
Collapse
Affiliation(s)
- Gui-Xin Zhao
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China; Kunming Medical University, Kunming, 650500, China; Research Center of Clinical Pharmacology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650021, China
| | - Zheng Zhang
- Medical Engineering Section, The 306th Hospital of PLA, Beijing, 100101, China
| | - Wen-Ke Cai
- Department of Cardio-Thoracic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China
| | - Ming-Li Shen
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China
| | - Ping Wang
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China
| | - Gong-Hao He
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China; Research Center of Clinical Pharmacology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650021, China.
| |
Collapse
|
30
|
Osuntokun OS, Babatunde AA, Olayiwola G, Atere TG, Oladokun OO, Adedokun KI. Assessment of the biomarkers of hepatotoxicity following carbamazepine, levetiracetam, and carbamazepine-levetiracetam adjunctive treatment in male Wistar rats. Toxicol Rep 2021; 8:592-598. [PMID: 33786324 PMCID: PMC7994541 DOI: 10.1016/j.toxrep.2021.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 11/15/2022] Open
Abstract
Objective This study examined some of the biomarkers of hepatotoxicity following chronic treatment with carbamazepine (CBZ), levetiracetam (LEV), and CBZ + LEV adjunctive treatment in male rats. Method Twenty-four male Wistar rats (140-150 g) were randomized into four groups (n = 6) to receive oral dose of normal saline (0.1 mL), CBZ (25 mg/kg), LEV (50 mg/kg) or sub-therapeutic dose of CBZ (12.5 mg/kg) together with LEV (25 mg/kg) for 28 days. Activities of the liver enzymes and oxidative stress markers were determined while liver histomorphology was also carried out. Data were analyzed using descriptive and inferential statistics. The results were presented as mean ± SEM in graphs or tables, while the level of significance was taken at p < 0.05. Results The activities of alkaline-phosphatase and malondialdehyde concentrations increased significantly in all the drug treatment groups, while the activities of superoxide dismutase decreased significantly following CBZ, and CBZ + LEV treatment. Alanine-aminotransferase activities increased significantly in the CBZ and CBZ + LEV treated rats compared with control. The liver section of CBZ treated rats showed mild vascular congestion. Conclusion None of these AEDs treatment is devoid of hepatotoxicity. However, the adverse effects in CBZ were greater than LEV, or CBZ + LEV adjunctive treatment.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| | - Ademola Adeniyi Babatunde
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Tope Gafar Atere
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Olayemi Olutobi Oladokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| | - Kabiru Isola Adedokun
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University Osogbo, Nigeria
| |
Collapse
|
31
|
Almeida Â, Esteves VI, Soares AMVM, Freitas R. Effects of Carbamazepine in Bivalves: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 254:163-181. [PMID: 32926215 DOI: 10.1007/398_2020_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbamazepine (CBZ) is among the ten most frequent pharmaceuticals that occur in the aquatic systems, with known effects on inhabiting organisms, including bivalves. Bivalves are important species in coastal ecosystems, often exhibiting a dominant biomass within invertebrate communities. These organisms play a major role in the functioning of the ecosystem and particularly in food webs (as suspension-feeders) and represent a significant fraction of the fisheries resource. They also have strong interactions with the environment, water and sediment and are considered good bioindicator species. The present paper reviews the known literature on the impacts of CBZ in biological endpoints of marine bivalves exposed to environmentally and non-environmentally relevant concentrations, highlighting differences in terms of biological responses, associated with exposure period, concentrations tested, and species used. Overall, the literature available showed that CBZ induces individual and sub-individual effects in marine bivalves (adults and life stages) and the most common effect reported was the induction of oxidative stress.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department and CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | - Rosa Freitas
- Biology Department and CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
32
|
Mezzelani M, Nardi A, Bernardini I, Milan M, Peruzza L, d'Errico G, Fattorini D, Gorbi S, Patarnello T, Regoli F. Environmental pharmaceuticals and climate change: The case study of carbamazepine in M. galloprovincialis under ocean acidification scenario. ENVIRONMENT INTERNATIONAL 2021; 146:106269. [PMID: 33248345 DOI: 10.1016/j.envint.2020.106269] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 06/12/2023]
Abstract
Contaminants of emerging concern and ocean changes are key environmental stressors for marine species with possibly synergistic, but still unexplored, deleterious effects. In the present study the influence of a simulated ocean acidification scenario (pH = 7.6) was investigated on metabolism and sub-lethal effects of carbamazepine, CBZ (1 µg/L), chosen as one of the most widely diffused pharmaceuticals in marine organisms. A multidisciplinary approach was applied on mussels, M. galloprovincialis, integrating measurement of drug bioaccumulation with changes in the whole transcriptome, responsiveness of various biochemical and cellular biomarkers including immunological parameters, lipid and oxidative metabolism, onset of genotoxic effects. Chemical analyses revealed a limited influence of hypercapnia on accumulation and excretion of CBZ, while a complex network of biological responses was observed in gene expression profile and functional changes at cellular level. The modulation of gamma-aminobutyric acid (GABA) pathway suggested similarities with the Mechanism of Action known for vertebrates: immune responses, cellular homeostasis and oxidative system represented the processes targeted by combined stressors. The overall elaboration of results through a quantitative Weight of Evidence model, revealed clearly increased cellular hazard due to interactions of CBZ with acidification compared to single stressors.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Ilaria Bernardini
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Massimo Milan
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Luca Peruzza
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy
| | - Tomaso Patarnello
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche (60131), Ancona, Italy.
| |
Collapse
|
33
|
Chen H, Gu X, Zeng Q, Mao Z, Martyniuk CJ. Characterization of the GABAergic system in Asian clam Corbicula fluminea: Phylogenetic analysis, tissue distribution, and response to the aquatic contaminant carbamazepine. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108896. [PMID: 32949817 DOI: 10.1016/j.cbpc.2020.108896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter involved in the neuro-endocrine-immune (NEI) system. In this study, we sequenced the partial length of cDNA fragments of three genes involved in GABA neurotransmitter system of the Asian clam (Corbicula fluminea) (GABAA receptor-associated protein (GABARAP), GABARAPL2 and GABA transporter (GAT-1)). These genes exhibited high amino acid sequence identity compared with other invertebrate orthologs. Expression patterns of the three genes were determined in mantle, gill, gonad, digestive gland and muscle, and the steady state levels of mRNA for each were determined to be highest in gonad and lowest in muscle. To determine their regulation by pharmaceuticals that are present as contaminants in waterways, clams were exposed to carbamazepine (CBZ) for 30 days. CBZ is an agonist for GABA receptors and is an anticonvulsant pharmaceutical that is often detected in aquatic ecosystems. GABARAP and GABARAPL2 mRNA levels were significantly downregulated by 5 and 50 μg/L CBZ in mantle and gill (p < 0.05), while in the gonad and digestive gland, steady state levels (p < 0.05) were decreased with exposure to all three doses. GAT-1 mRNA was upregulated by CBZ (p < 0.05) in the mantle and gill at all three doses tested and in the gonad and digestive system with 5 and 50 μg/L. These data suggest that CBZ disrupt the expression of the GABAergic neurotransmitter system in C. fluminea. Moreover, GABARAP, GABARAPL2 and GAT-1 may be useful biomarkers for the screening of substances that are hazardous to the NEI system of mollusks.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
34
|
Beydoun A, DuPont S, Zhou D, Matta M, Nagire V, Lagae L. Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure 2020; 83:251-263. [PMID: 33334546 DOI: 10.1016/j.seizure.2020.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders, affecting approximately 50 million people worldwide. Despite a dramatic increase in treatment options over the past 30 years, it still ranks fourth in the world's disease burden. There are now close to 30 antiepileptic drugs (AEDs), with more than two thirds introduced to the market after carbamazepine (CBZ) and one third after its derivative, oxcarbazepine (OXC). Following the introduction of these newer AEDs, the role of CBZ and OXC in the therapeutic armamentarium for seizure control and effective epilepsy management needs to be reviewed. The main guidelines list both CBZ and OXC as first-line options or second-line alternatives for the treatment of focal-onset epilepsy and primary generalized tonic-clonic seizures. While evidence suggests that overall AEDs have similar efficacy, some newer AEDs may be better tolerated than CBZ. In line with this, there have been changes in treatment patterns, with many variations across different countries. However, CBZ remains among the two or three most prescribed drugs for focal epilepsy in many countries, and is widely used across Europe, Africa, South America, and Asia, where it represents a good compromise between cost, availability, and effectiveness. OXC is among the first-choice options for the initial treatment of focal-onset seizures in several countries, including the US and China, where the oral suspension is commonly prescribed. This review provides guidance on the optimal use of these two drugs in clinical practice, including in children, the elderly, and in pregnancy.
Collapse
Affiliation(s)
- Ahmad Beydoun
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sophie DuPont
- Epilepsy Unit and Rehabilitation Unit, Hôpital de la Pitié-Salpêtrière, AP-HP, Centre de recherche de l'Institut du cerveau et de la moelle épinière (ICM), UMPC-UMR 7225 CNRS-UMRS 975 Inserm, Paris, France; Université Paris Sorbonne, Paris, France
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Maha Matta
- Novartis Pharma Services, Dubaï, United Arab Emirates
| | | | - Lieven Lagae
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
35
|
Chen H, Yang H, Zhao Y, Gu X, Martyniuk CJ. Development and Molecular Investigation into the Effects of Carbamazepine Exposure in the Zebrafish ( Danio rerio). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17238882. [PMID: 33260372 PMCID: PMC7731368 DOI: 10.3390/ijerph17238882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022]
Abstract
Concerns regarding environmental exposures and the impacts of pharmaceuticals on non-target aquatic organisms continue to increase. The antiepileptic drug carbamazepine (CBZ) is often detected as an aquatic contaminant and can disrupt various behaviors of fishes. However, there are few reports which investigate the mechanism of CBZ action in fish. The aim of the current study was to evaluate the effects of CBZ on embryonic development (i.e., hatching rate, heart rate, and body length) and early spontaneous movement. Moreover, we sought to investigate potential mechanisms by focusing on the gamma-aminobutyric acid (GABA) neurotransmitter system in zebrafish 6 days after of exposure. The results show that CBZ exposure did not cause significant effects on embryo development (hatching rate, heart rate, nor body length) at the test concentrations. However, the early spontaneous movement of embryos was inhibited following 10 μg/L CBZ exposure at 28-29 h post-fertilization (hpf). In addition, acetylcholinesterase (AChE) activity and GABA concentrations were increased with exposure, whereas glutamate (Glu) concentrations were decreased in larval zebrafish. Gene expression analysis revealed that GABA and glutamate metabolic pathways in zebrafish larvae were altered following exposure to CBZ. GABA transaminase (abat) and glutamic acid decarboxylase (gad1b) decreased to 100 µg/L, and glutamate receptor, ionotropic, N-methyl D-aspartate 1b (grin1b) as well as the glutamate receptor, ionotropic, α-amino-3hydroxy-5methylisoxazole-4propionic 2b (gria2b) were down-regulated with exposure to 1 µg/L CBZ. Our study suggests that CBZ, which can act as an agonist of the GABAA receptor in humans, can also induce alterations in the GABAergic system in fish. Overall, this study improves understanding of the neurotoxicity and behavioral toxicity of zebrafish exposed to CBZ and generates data to be used to understand mechanisms of action that may underlie antiepileptic drug exposures.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (H.C.); (H.Y.); (Y.Z.)
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Huiting Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (H.C.); (H.Y.); (Y.Z.)
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (H.C.); (H.Y.); (Y.Z.)
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (H.C.); (H.Y.); (Y.Z.)
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
- Correspondence:
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
36
|
Wang YF, Qiao M, Zhu D, Zhu YG. Antibiotic Resistance in the Collembolan Gut Microbiome Accelerated by the Nonantibiotic Drug Carbamazepine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10754-10762. [PMID: 32816468 DOI: 10.1021/acs.est.0c03075] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The effects of pharmaceuticals as emerging contaminants in soil on the gut microbiome and antibiotic resistome in nontarget soil fauna are largely elusive. In this study, we explored the composition of the bacterial community and the presence of antibiotic resistance genes (ARGs) in the gut of the model soil collembolan (Folsomia candida) upon antiepileptic drug carbamazepine (CBZ) and antibiotic tetracycline (TC) exposure. Results showed that, individually or in combination, exposure to TC or CBZ significantly altered the gut community structure of F. candida, causing some enrichment of the bacteria associated with xenobiotic metabolism, such as Arthrobacter, Achromobacter, Gordonia, and Shinella. More importantly, oral exposure to the nonantibiotic drug CBZ enhanced the abundance and diversity of ARGs in the gut of F. candida, especially for the beta-lactams and multidrug resistance genes. Our results revealed that the most likely hosts of ARGs in the gut of F. candida were Proteobacteria and Actinobacteria. The significant positive correlation between mobile genetic elements (MGEs) and ARGs indicated the potential risk of ARGs transmission in the gut of F. candida. Overall, the nonantibiotic CBZ is likely to disturb the gut microbiota of nontarget soil fauna such as collembolans, thereby enhancing the dissemination of ARGs.
Collapse
Affiliation(s)
- Yi-Fei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, P. R. China
| |
Collapse
|
37
|
Lee AH, Fraz S, Purohit U, Campos AR, Wilson JY. Chronic exposure of Brown (Hydra oligactis) and green Hydra (Hydra viridissima) to environmentally relevant concentrations of pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139232. [PMID: 32434107 DOI: 10.1016/j.scitotenv.2020.139232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/22/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Low concentrations of pharmaceuticals in the environment (ng/L to μg/L) are an environmental concern. We used the invertebrates, Hydra oligactis and Hydra viridissima, as freshwater models for primary toxicity testing to study effects of chronic low concentrations of pharmaceuticals in the environment. H. oligactis were exposed to three concentrations (0.1, 1.0 and 10 μg/L) of either fluoxetine, carbamazepine, or triclosan; H. viridissima were exposed to three concentrations (0.1, 1.0 and 10 μg/L) of triclosan. Ecologically relevant endpoints including morphology, budding rate, feeding behaviour, and regenerative capacity were examined during the 14 days exposure period. The interstitial:epithelial stem cell ratios was also examined in H. oligactis. There were no significant effects on the morphology, budding rate and feeding behaviour of the H. oligactis across all concentrations of fluoxetine, carbamazepine, and triclosan. However, regenerative capacity significantly decreased in comparison to the controls when H. oligactis was exposed to 10 μg/L of triclosan and fluoxetine, although there was no significant difference when exposed to carbamazepine. Neither fluoxetine nor carbamazepine treatment altered stem cell ratios. Exposure to triclosan at any concentration did not impact H. viridissima morphology, budding rate, regeneration or feeding behaviour. These results show there are limited effects in Hydra after exposure to chronic, low concentrations of fluoxetine, carbamazepine, and triclosan, except for regeneration in H. oligactis. These endpoints can be used effectively (and cost effectively) to study the effects of environmentally relevant concentrations of pharmaceuticals in Hydra species.
Collapse
Affiliation(s)
- Abigail H Lee
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Shamaila Fraz
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Ushma Purohit
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Ana R Campos
- School of Interdisciplinary Science, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Joanna Y Wilson
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
38
|
Alelwani W, Elmorsy E, Kattan SW, Babteen NA, Alnajeebi AM, Al-Ghafari A, Carter WG. Carbamazepine induces a bioenergetics disruption to microvascular endothelial cells from the blood-brain barrier. Toxicol Lett 2020; 333:184-191. [PMID: 32805338 DOI: 10.1016/j.toxlet.2020.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Carbamazepine (CBZ) is a widely employed anti-seizure medication that crosses the blood-brain barrier (BBB) to exert its anti-convulsant action. The effects of CBZ on components of the BBB have yet to be completely delineated. Hence the current study evaluated the effects of CBZ upon mitochondrial functionality of BBB-derived microvascular endothelial cells isolated from Albino rats. The influence of CBZ on cell viability and barrier functions were evaluated by 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), lactate dehydrogenase, and electrophysiological assays over a drug concentration range of 0.1-1000 μM. Bioenergetics effects were measured via ATP production, mitochondrial complexes I and III activities, lactate production, and oxygen consumption rates (OCRs), and mitochondrial membrane potential, fluidity and lipid content. CBZ was cytotoxic to microvascular endothelial cells in a concentration and duration dependent manner. CBZ significantly diminished the endothelial cell's barrier functions, and impacted upon cellular bioenergetics: reducing mitochondrial complex activities with a parallel decrease in OCRs and increased anaerobic lactate production. CBZ significantly decreased mitochondrial membrane potential and induced an increase of membrane fluidity and decrease in levels of mitochondrial saturated and unsaturated fatty acids. In summary, CBZ disrupted functional activity of BBB endothelial cells via damage and modification of mitochondria functionality at therapeutically relevant concentrations.
Collapse
Affiliation(s)
- Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Shahad W Kattan
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Nouf Abubakr Babteen
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Afnan M Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.
| |
Collapse
|
39
|
Krarup S, Mertz C, Jakobsen E, Lindholm SEH, Pinborg LH, Bak LK. Distinct effects on cAMP signaling of carbamazepine and its structural derivatives do not correlate with their clinical efficacy in epilepsy. Eur J Pharmacol 2020; 886:173413. [PMID: 32758572 DOI: 10.1016/j.ejphar.2020.173413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023]
Abstract
The antiepileptic sodium channel blocker, carbamazepine, has long been known to be able to attenuate cAMP signals. This could be of clinical importance since cAMP signaling has been shown to be involved in epileptogenesis and seizures. However, no information on the ability to affect cAMP signaling is available for the marketed structural derivatives, oxcarbazepine and eslicarbazepine acetate or their dominating metabolite, licarbazepine. Thus, we employed a HEK293 cell line stably expressing a cAMP biosensor to assess the effect of these two drugs on cAMP accumulation. We find that oxcarbazepine does not affect cAMP accumulation whereas eslicarbazepine acetate, surprisingly, is able to enhance cAMP accumulation. Since the transcription of ADCY8 (adenylyl cyclase isoform 8; AC8) has been found to be elevated in epileptic tissue from patients, we subsequently expressed AC8 in the HEK293 cells. In the AC8-expressing cells, oxcarbazepine was now able to attenuate whereas eslicarbazepine maintained its ability to increase cAMP accumulation. However, at all concentrations tested, licarbazepine demonstrated no effect on cAMP accumulation. Thus, we conclude that the effects exerted by carbamazepine and its derivatives on cAMP accumulation do not correlate with their clinical efficacy in epilepsy. However, this does not disqualify cAMP signaling per se as a potential disease-modifying drug target for epilepsy since more potent and selective inhibitors may be of therapeutic value.
Collapse
Affiliation(s)
- Sara Krarup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Christoffer Mertz
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Sandy E H Lindholm
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Lars H Pinborg
- Epilepsy Clinic and Neurobiology Research Unit, Copenhagen University Hospital, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
40
|
A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: Mapping the way forward. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:1-39. [PMID: 30361863 DOI: 10.3758/s13415-018-00653-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rodent marble-burying behavior in the marble-burying test (MBT) is employed as a model or measure to study anxiety- and compulsive-like behaviors or anxiolytic and anticompulsive drug action. However, the test responds variably to a range of pharmacological interventions, and little consensus exists regarding specific methodologies for its execution. Regardless, the test is widely applied to investigate the effects of pharmacological, genetic, and behavioral manipulations on purported behaviors related to the said neuropsychiatric constructs. Therefore, in the present review we attempt to expound the collective translational significance of the MBT. We do this by (1) reviewing burying behavior as a natural behavioral phenotype, (2) highlighting key aspects of anxiety and obsessive-compulsive disorder from a translational perspective, (3) reviewing the history and proof of concept of the MBT, (4) critically appraising potential methodological confounds in execution of the MBT, and (5) dissecting responses of the MBT to various pharmacological interventions. We conclude by underlining that the collective translational value of the MBT will be strengthened by contextually valid experimental designs and objective reporting of data.
Collapse
|
41
|
Pereira A, Silva L, Laranjeiro C, Lino C, Pena A. Selected Pharmaceuticals in Different Aquatic Compartments: Part I-Source, Fate and Occurrence. Molecules 2020; 25:molecules25051026. [PMID: 32106570 PMCID: PMC7179177 DOI: 10.3390/molecules25051026] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Potential risks associated with releases of human pharmaceuticals into the environment have become an increasingly important issue in environmental health. This concern has been driven by the widespread detection of pharmaceuticals in all aquatic compartments. Therefore, 22 pharmaceuticals, 6 metabolites and transformation products, belonging to 7 therapeutic groups, were selected to perform a systematic review on their source, fate and occurrence in different aquatic compartments, important issues to tackle the Water Framework Directive (WFD). The results obtained evidence that concentrations of pharmaceuticals are present, in decreasing order, in wastewater influents (WWIs), wastewater effluents (WWEs) and surface waters, with values up to 14 mg L−1 for ibuprofen in WWIs. The therapeutic groups which presented higher detection frequencies and concentrations were anti-inflammatories, antiepileptics, antibiotics and lipid regulators. These results present a broad and specialized background, enabling a complete overview on the occurrence of pharmaceuticals in the aquatic compartments.
Collapse
|
42
|
Martin GM, Sung MW, Shyng SL. Pharmacological chaperones of ATP-sensitive potassium channels: Mechanistic insight from cryoEM structures. Mol Cell Endocrinol 2020; 502:110667. [PMID: 31821855 PMCID: PMC6994177 DOI: 10.1016/j.mce.2019.110667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
ATP-sensitive potassium (KATP) channels are uniquely evolved protein complexes that couple cell energy levels to cell excitability. They govern a wide range of physiological processes including hormone secretion, neuronal transmission, vascular dilation, and cardiac and neuronal preconditioning against ischemic injuries. In pancreatic β-cells, KATP channels composed of Kir6.2 and SUR1, encoded by KCNJ11 and ABCC8, respectively, play a key role in coupling blood glucose concentration to insulin secretion. Mutations in ABCC8 or KCNJ11 that diminish channel function result in congenital hyperinsulinism. Many of these mutations principally hamper channel biogenesis and hence trafficking to the cell surface. Several small molecules have been shown to correct channel biogenesis and trafficking defects. Here, we review studies aimed at understanding how mutations impair channel biogenesis and trafficking and how pharmacological ligands overcome channel trafficking defects, particularly highlighting recent cryo-EM structural studies which have shed light on the mechanisms of channel assembly and pharmacological chaperones.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Min Woo Sung
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
43
|
Song HJ, Yoon E, Heo JN. Efficient synthesis of dibenzazepine lactams via a sequential Pd-catalyzed amination and aldol condensation reaction. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Park CW, Ahn JH, Lee TK, Park YE, Kim B, Lee JC, Kim DW, Shin MC, Park Y, Cho JH, Ryoo S, Kim YM, Won MH, Park JH. Post-treatment with oxcarbazepine confers potent neuroprotection against transient global cerebral ischemic injury by activating Nrf2 defense pathway. Biomed Pharmacother 2020; 124:109850. [PMID: 31981945 DOI: 10.1016/j.biopha.2020.109850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 01/12/2020] [Indexed: 01/27/2023] Open
Abstract
Oxcarbazepine (OXC), a voltage-gated sodium channel blocker, is an antiepileptic medication and used for the bipolar disorders treatment. Some voltage-gated sodium channel blockers have been demonstrated to display strong neuroprotective properties in models of cerebral ischemia. However, neuroprotective effects and mechanisms of OXC have not yet been reported. Here, we investigated the protective effect of OXC and its mechanisms in the cornu ammonis 1 subfield (CA1) of gerbils subjected to 5 min of transient global cerebral ischemia (tGCI). tGCI led to death of most pyramidal neurons in CA1 at 5 days after ischemia. OXC (100 and 200 mg/kg) was intraperitoneally administered once at 30 min after tGCI. Treatment with 200 mg/kg, not 100 mg/kg OXC, significantly protected CA1 pyramidal neurons from tGCI-induced injury. OXC treatment significantly decreased superoxide anion production, 4-hydroxy-2-nonenal and 8-hydroxyguanine levels in ischemic CA1 pyramidal neurons. In addition, the treatment restored levels of superoxide dismutases, catalase, and glutathione peroxidase. Furthermore, the treatment distinctly inhibited tGCI-induced microglia activation and significantly reduced levels of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). In particular, OXC treatment significantly enhanced expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream protein heme oxygenase-1 in ischemic CA1. The neuroprotective effects of OXC were abolished by brusatol (an inhibitor of Nrf2). Taken together, these results indicate that post-treatment of OXC can display neuroprotection against brain injuries following ischemic insults. This neuroprotection may be displayed by attenuation of oxidative stress and neuroinflammation, which can be mediated by activation of Nrf2 pathway.
Collapse
Affiliation(s)
- Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Yoonsoo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sungwoo Ryoo
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea.
| |
Collapse
|
45
|
Khan N, Shah FA, Rana I, Ansari MM, Din FU, Rizvi SZH, Aman W, Lee GY, Lee ES, Kim JK, Zeb A. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity. Int J Pharm 2020; 577:119033. [PMID: 31954864 DOI: 10.1016/j.ijpharm.2020.119033] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/20/2019] [Accepted: 01/11/2020] [Indexed: 12/24/2022]
Abstract
The limited brain delivery of carbamezapine (CBZ) presents a major hurdle in the successful epilepsy treatment. The potential of carbamezapine-loaded nanostructured lipid carriers (CBZ-NLCs) for improved brain delivery is investigated in the current study. CBZ-NLCs were prepared by using binary mixture of trilaurin and oleic acid as a lipid core stabilized with Poloxamer 188, Tween 80 and Span 80. CBZ-NLCs were evaluated for physicochemical properties, in vitro release, in vivo brain kinetics, anticonvulsant and anxiolytic activities. The optimized CBZ-NLCs demonstrated nanometric particle size (97.7 nm), surface charge of -22 mV and high drug incorporation (85%). CBZ-NLCs displayed biphasic release pattern with initial fast followed by sustained drug release. CBZ-NLCs significantly enhanced the AUC of CBZ (520.4 µg·h/mL) in brain compared with CBZ dispersion (244.9 µg·h/mL). In vivo anticonvulsant activity of CBZ-NLCs in PTZ-induced seizure model showed a significant increase in the onset time (143.0 sec) and reduction in duration (17.2 sec) of tonic-clonic seizures compared with CBZ dispersion (75.4 and 37.2 sec). The anxiolytic activity in light-dark box and elevated-plus maze models also demonstrated superiority of CBZ-NLCs to CBZ dispersion. From the results, CBZ-NLCs presents a promising strategy to improve brain delivery and therapeutic outcomes of CBZ in epilepsy.
Collapse
Affiliation(s)
- Namrah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Isra Rana
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Mohsin Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Zaki Husain Rizvi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Waqar Aman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Gwan-Yeong Lee
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Eun-Sun Lee
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea.
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| |
Collapse
|
46
|
Abstract
Carbamazepine (CMZ) is a drug from the group of anticonvulsants, similar in chemical structure to tricyclic antidepressants. CMZ is widely used for mental disorders and neurological diseases. The lecture discusses the safety of CMZ in respect to personalized medicine, while considering the pharmacogenetic profile of the patient.The authors declare about the absence of conflict of interest with respect to this publication. All authors contributed equally to this article.
Collapse
Affiliation(s)
- N. A. Shnayder
- Bekhterev National Medical Research Center of Psychiatry and Neurology
| | - E. N. Bochanova
- Bekhterev National Medical Research Center of Psychiatry and Neurology;
Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - D. V. Dmitrenko
- Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - R. F. Nasyrova
- Bekhterev National Medical Research Center of Psychiatry and Neurology
| |
Collapse
|
47
|
Khan AU, Akram M, Daniyal M, Akhter N, Riaz M, Akhtar N, Shariati MA, Anjum F, Khan SG, Parveen A, Ahmad S. Awareness and current knowledge of epilepsy. Metab Brain Dis 2020; 35:45-63. [PMID: 31605258 DOI: 10.1007/s11011-019-00494-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
Abstract
Epilepsy is a severe neural disorder that affects approximately fifty million individuals globally. Despite the fact that for most of the people with epilepsy, convulsions are better controlled by current accessible antiepileptic medicines, yet there are more than 30% of individuals affected with medically intractable epilepsy and around 30-40% of all patients with epilepsy affected by many adverse reactions and convulsion resistance to the present antiepileptic drugs. Consequently, various scientists attempt to develop new strategies to treat epilepsy, for instance, to find out novel antiepileptic ingredients from traditional medicines. This work aims to present a complete summary of natural medicines prescribed as antiepileptic agents all over the world by ethnic groups and different tribes. We undertook an extensive bibliographic analysis by searching peer reviewed papers and classical textbooks and further consulting well accepted worldwide scientific databases. We carried out PubMed, EMbase and CENTRAL searches by means of terms such as "antiepileptic" and "anti-convulsant" activity of plants. Medicinal plants have been prescribed to treat epilepsy and have been recognized as antiepileptic medicines. In this review, a variety of herbs have been reviewed for thorough studies such as Cuminum cyminum, Butea monosperma, Solanum americanum, Anacyclus pyrethrum, Leonotis leonurus, Elaeocarpus ganitrus and Angelica archangelica. This paper shows that it was high time experimental studies are increased to obtain novel potential active principles from medicinal plants. Plant extracts and their chemical constituents should be further evaluated to clarify their mechanisms of action. This paper provides a solid base upon which to further investigate the clinical efficacy of medicinal plants that are both currently prescribed by physicians as traditional antiepileptic agents, but also could be effective as an antiepileptic drug with further research and study.
Collapse
Affiliation(s)
- Asmat Ullah Khan
- Department of Eastern Medicine, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Naheed Akhter
- College of Allied Health Professional, Government College University, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Naheed Akhtar
- Department of Pharmacy, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Mohammad Ali Shariati
- Kazakh Research Institute of Processing and Food industry (Semey branch), Semey, Kazakhstan
| | - Fozia Anjum
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Abida Parveen
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Saeed Ahmad
- University College of Agriculture, University of Sargodha, Sargodha, Pakistan.
| |
Collapse
|
48
|
Fraz S, Lee AH, Pollard S, Srinivasan K, Vermani A, David E, Wilson JY. Paternal Exposure to Carbamazepine Impacts Zebrafish Offspring Reproduction Over Multiple Generations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12734-12743. [PMID: 31393713 DOI: 10.1021/acs.est.9b03393] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic low-concentration chemical exposures may have both direct health outcomes on adults and indirect effects on their offspring. Using zebrafish, we examined the impacts of chronic, low-concentration carbamazepine (CBZ) exposure on a suite of male reproductive endpoints in the parents and four generations of offspring reared in clean water. CBZ is one of the most frequently detected pharmaceutical residues in water, is a histone deacetylase inhibitor in mammals, and is reported to lower androgens in mammals and fish. Exposure of adult zebrafish to 10 μg/L CBZ for 6 weeks decreased reproductive output, courtship and aggressive behaviors, 11-ketotestosterone (11KT), and sperm morphology but did not impact milt volume or sperm swimming speed. Pairwise breeding generated lineages of offspring with both parents exposed and two lineages where only one parent was exposed; the control lineage had unexposed parents. Reproductive output and male reproductive indices were assessed in F1-F4 offspring to determine whether parental CBZ exposure had transgenerational impacts. The offspring of CBZ-exposed males had lower 11KT, reproductive output, altered courtship, aggression, and sperm morphology compared to the lineage from unexposed parents. Our results indicate that parental carbamazepine exposure history impacts the unexposed progeny up to the F4 generations and that paternal, but not maternal, exposure is most important for the reproductive health of male offspring.
Collapse
Affiliation(s)
- Shamaila Fraz
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Abigail H Lee
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Simon Pollard
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Krishna Srinivasan
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Abhilasha Vermani
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Ephraim David
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| | - Joanna Y Wilson
- Department of Life Sciences , McMaster University , 1280 Main Street West , Hamilton , L8S4K1 ON , Canada
| |
Collapse
|
49
|
The Mechanistic Differences in HLA-Associated Carbamazepine Hypersensitivity. Pharmaceutics 2019; 11:pharmaceutics11100536. [PMID: 31618895 PMCID: PMC6835980 DOI: 10.3390/pharmaceutics11100536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023] Open
Abstract
Drug hypersensitivity reactions that resemble acute immune reactions are linked to certain human leucocyte antigen (HLA) alleles. Severe and life-threatening Stevens Johnson Syndrome and Toxic Epidermal Necrolysis following treatment with the antiepileptic and psychotropic drug Carbamazepine are associated with HLA-B*15:02; whereas carriers of HLA-A*31:01 develop milder symptoms. It is not understood how these immunogenic differences emerge genotype-specific. For HLA-B*15:02 an altered peptide presentation has been described following exposure to the main metabolite of carbamazepine that is binding to certain amino acids in the F pocket of the HLA molecule. The difference in the molecular mechanism of these diseases has not been comprehensively analyzed, yet; and is addressed in this study. Soluble HLA-technology was utilized to examine peptide presentation of HLA-A*31:01 in presence and absence of carbamazepine and its main metabolite and to examine the mode of peptide loading. Proteome analysis of drug-treated and untreated cells was performed. Alterations in sA*31:01-presented peptides after treatment with carbamazepine revealed different half-life times of peptide-HLA- or peptide-drug-HLA complexes. Together with observed changes in the proteome elicited through carbamazepine or its metabolite these results illustrate the mechanistic differences in carbamazepine hypersensitivity for HLA-A*31:01 or B*15:02 patients and constitute the bridge between pharmacology and pharmacogenetics for personalized therapeutics.
Collapse
|
50
|
Bista P, Imlach WL. Pathological Mechanisms and Therapeutic Targets for Trigeminal Neuropathic Pain. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E91. [PMID: 31443547 PMCID: PMC6789505 DOI: 10.3390/medicines6030091] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
Trigeminal neuropathic pain is a chronic pain condition caused by damage or inflammation of the trigeminal nerve or its branches, with both peripheral and central nervous system dysfunction contributing to the disorder. Trigeminal pain conditions present with diagnostic and therapeutic challenges to healthcare providers and often require multiple therapeutic approaches for pain reduction. This review will provide the overview of pathophysiology in peripheral and central nociceptive circuits that are involved in neuropathic pain conditions involving the trigeminal nerve and the current therapeutics that are used to treat these disorders. Recent advances in treatment of trigeminal pain, including novel therapeutics that target ion channels and receptors, gene therapy and monoclonal antibodies that have shown great promise in preclinical studies and clinical trials will also be described.
Collapse
Affiliation(s)
- Pawan Bista
- Department of Physiology & Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Wendy L Imlach
- Department of Physiology & Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia.
| |
Collapse
|