1
|
Quadros IPS, Madeira NN, Loriato VAP, Saia TFF, Silva JC, Soares FAF, Carvalho JR, Reis PAB, Fontes EPB, Clarindo WR, Fontes RLF. Cadmium-mediated toxicity in plant cells is associated with the DCD/NRP-mediated cell death response. PLANT, CELL & ENVIRONMENT 2022; 45:556-571. [PMID: 34719793 DOI: 10.1111/pce.14218] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 05/13/2023]
Abstract
Cadmium (Cd2+ ) is highly harmful to plant growth. Although Cd2+ induces programmed cell death (PCD) in plant cells, Cd2+ stress in whole plants during later developmental stages and the mechanism underlying Cd2+ -mediated toxicity are poorly understood. Here, we showed that Cd2+ limits plant growth, causes intense redness in leaf vein, leaf yellowing, and chlorosis during the R1 reproductive stage of soybean (Glycine max). These symptoms were associated with Cd2+ -induced PCD, as Cd2+ -stressed soybean leaves displayed decreased number of nuclei, enhanced cell death, DNA damage, and caspase 1 activity compared to unstressed leaves. Accordingly, Cd2+ -induced NRPs, GmNAC81, GmNAC30 and VPE, the DCD/NRP-mediated cell death signalling components, which execute PCD via caspase 1-like VPE activity. Furthermore, overexpression of the positive regulator of this cell death signalling GmNAC81 enhanced sensitivity to Cd2+ stress and intensified the hallmarks of Cd2+ -mediated PCD. GmNAC81 overexpression enhanced Cd2+ -induced H2 O2 production, cell death, DNA damage, and caspase-1-like VPE expression. Conversely, BiP overexpression negatively regulated the NRPs/GmNACs/VPE signalling module, conferred tolerance to Cd2+ stress and reduced Cd2+ -mediated cell death. Collectively, our data indicate that Cd2+ induces PCD in plants via activation of the NRP/GmNAC/VPE regulatory circuit that links developmentally and stress-induced cell death.
Collapse
Affiliation(s)
- Iana Pedro Silva Quadros
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Virgílio Adriano Pereira Loriato
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Biochemistry and Molecular Biology Department/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Thaina Fernanda Fillietaz Saia
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Jéssica Coutinho Silva
- Cytogenetics and Cytometry Laboratory, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | - Pedro Augusto Braga Reis
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Biochemistry and Molecular Biology Department/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Brazil
- Biochemistry and Molecular Biology Department/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wellington Ronildo Clarindo
- Cytogenetics and Cytometry Laboratory, Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
2
|
Yevtushenko DP, Misra S. Spatiotemporal activities of Douglas-fir BiP Pro1 promoter in transgenic potato. PLANTA 2018; 248:1569-1579. [PMID: 30276470 DOI: 10.1007/s00425-018-3013-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
The PmBiPPro1 promoter of the luminal binding protein (BiP) from Douglas-fir is fully functional in transgenic potato, responsive to wounding, and has high transcriptional activity in tubers. A predefined pattern and level of transgene expression targeted to specific tissues or organs and at a particular developmental stage is a pre-requisite for the successful development of plants with desired traits. Here, we evaluated the transcriptional activity of the PmBiPPro1 promoter of the luminal binding protein (BiP) from Douglas-fir, by expressing reporter β-D-glucuronidase (GUS) gene constructs containing three different PmBiPPro1 promoter versions (2258 bp, 1259 bp, and 278 bp) in transgenic potato. In conifers, this promoter regulates the endoplasmic reticulum (ER) molecular chaperon of the HSP70 stress-related protein family and is essential for proper functioning of the ER. Stable expression analysis demonstrated that two of three PmBiPPro1 promoter versions (PmBiPPro1-1 and PmBiPPro1-3) were fully functional in the heterologous host, exhibited high transcriptional activities in the leaves of unstressed potatoes, and were responsive to wounding. Deletion analysis showed that the positive cis-active regulatory elements necessary for higher level expression resided within the - 1243 to - 261 region, whereas negative cis-active elements encompassed nucleotides - 2242 to - 1243. Histochemical staining revealed high level of GUS activities in tissues associated with a high rate of cell division and secretory activities. Most importantly, the PmBiPPro1 promoters, especially the full-length version, had activity in microtubers at a level that was much higher than in any other potato organ or tissue. The - 2242 to - 1243 bp region likely contains important cis element(s) that interact with tuber-specific transcription factors required for promoter activation in the storage organs. The organ-specific activity of the PmBiPPro1 promoters may be useful for targeted expression of heterologous molecules in potato tubers.
Collapse
Affiliation(s)
- Dmytro P Yevtushenko
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Santosh Misra
- Department of Biochemistry and Microbiology, Centre for Forest Biology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| |
Collapse
|
3
|
Kim SJ, Zemelis-Durfee S, Wilkerson C, Brandizzi F. In Brachypodium a complex signaling is actuated to protect cells from proteotoxic stress and facilitate seed filling. PLANTA 2017; 246:75-89. [PMID: 28364133 PMCID: PMC5892453 DOI: 10.1007/s00425-017-2687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/27/2017] [Indexed: 05/11/2023]
Abstract
A conserved UPR machinery is required for Brachypodium ER stress resistance and grain filling. Human and livestock diets depend on the accumulation of cereal storage proteins and carbohydrates, including mixed-linkage glucan (MLG), in the endosperm during seed development. Storage proteins and proteins responsible for the production of carbohydrates are synthesized in the endoplasmic reticulum (ER). Unfavorable conditions during growth that hamper the ER biosynthetic capacity, such as heat, can cause a potentially lethal condition known as ER stress, which activates the unfolded protein response (UPR), a signaling response designed to mitigate ER stress. The UPR relies primarily on a conserved ER-associated kinase and ribonuclease, IRE1, which splices the mRNA of a transcription factor (TF), such as bZIP60 in plants, to produce an active TF that controls the expression of ER resident chaperones. Here, we investigated activation of the UPR in Brachypodium, as a model to study the UPR in seeds of a monocotyledon species, as well as the consequences of heat stress on MLG deposition in seeds. We identified a Brachypodium bZIP60 orthologue and determined a positive correlation between bZIP60 splicing and ER stress induced by chemicals and heat. Each stress condition led to transcriptional modulation of several BiP genes, supporting the existence of condition-specific BiP regulation. Finally, we found that the UPR is elevated at the early stage of seed development and that MLG production is negatively affected by heat stress via modulation of MLG synthase accumulation. We propose that successful accomplishment of seed filling is strongly correlated with the ability of the plant to sustain ER stress via the UPR.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Starla Zemelis-Durfee
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Curtis Wilkerson
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA.
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
4
|
Cho Y, Kanehara K. Endoplasmic Reticulum Stress Response in Arabidopsis Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:144. [PMID: 28298914 PMCID: PMC5331042 DOI: 10.3389/fpls.2017.00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/24/2017] [Indexed: 05/20/2023]
Abstract
Roots are the frontier of plant body to perceive underground environmental change. Endoplasmic reticulum (ER) stress response represents circumvention of cellular stress caused by various environmental changes; however, a limited number of studies are available on the ER stress responses in roots. Here, we report the tunicamycin (TM) -induced ER stress response in Arabidopsis roots by monitoring expression patterns of immunoglobulin-binding protein 3 (BiP3), a representative marker for the response. Roots promptly responded to the TM-induced ER stress through the induction of similar sets of ER stress-responsive genes. However, not all cells responded uniformly to the TM-induced ER stress in roots, as BiP3 was highly expressed in root tips, an outer layer in elongation zone, and an inner layer in mature zone of roots. We suggest that ER stress response in roots has tissue specificity.
Collapse
Affiliation(s)
- Yueh Cho
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing UniversityTaipei, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing UniversityTaichung, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing UniversityTaipei, Taiwan
- Biotechnology Center, National Chung-Hsing UniversityTaichung, Taiwan
- Muroran Institute of TechnologyMuroran, Japan
- *Correspondence: Kazue Kanehara,
| |
Collapse
|
5
|
Reis PAB, Carpinetti PA, Freitas PP, Santos EG, Camargos LF, Oliveira IH, Silva JCF, Carvalho HH, Dal-Bianco M, Soares-Ramos JR, Fontes EPB. Functional and regulatory conservation of the soybean ER stress-induced DCD/NRP-mediated cell death signaling in plants. BMC PLANT BIOLOGY 2016; 16:156. [PMID: 27405371 PMCID: PMC4943007 DOI: 10.1186/s12870-016-0843-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/01/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The developmental and cell death domain (DCD)-containing asparagine-rich proteins (NRPs) were first identified in soybean (Glycine max) as transducers of a cell death signal derived from prolonged endoplasmic reticulum (ER) stress, osmotic stress, drought or developmentally-programmed leaf senescence via the GmNAC81/GmNAC30/GmVPE signaling module. In spite of the relevance of the DCD/NRP-mediated signaling as a versatile adaptive response to multiple stresses, mechanistic knowledge of the pathway is lacking and the extent to which this pathway may operate in the plant kingdom has not been investigated. RESULTS Here, we demonstrated that the DCD/NRP-mediated signaling also propagates a stress-induced cell death signal in other plant species with features of a programmed cell death (PCD) response. In silico analysis revealed that several plant genomes harbor conserved sequences of the pathway components, which share functional analogy with their soybean counterparts. We showed that GmNRPs, GmNAC81and VPE orthologs from Arabidopsis, designated as AtNRP-1, AtNRP-2, ANAC036 and gVPE, respectively, induced cell death when transiently expressed in N. benthamiana leaves. In addition, loss of AtNRP1 and AtNRP2 function attenuated ER stress-induced cell death in Arabidopsis, which was in marked contrast with the enhanced cell death phenotype displayed by overexpressing lines as compared to Col-0. Furthermore, atnrp-1 knockout mutants displayed enhanced sensitivity to PEG-induced osmotic stress, a phenotype that could be complemented with ectopic expression of either GmNRP-A or GmNRP-B. In addition, AtNRPs, ANAC036 and gVPE were induced by osmotic and ER stress to an extent that was modulated by the ER-resident molecular chaperone binding protein (BiP) similarly as in soybean. Finally, as putative downstream components of the NRP-mediated cell death signaling, the stress induction of AtNRP2, ANAC036 and gVPE was dependent on the AtNRP1 function. BiP overexpression also conferred tolerance to water stress in Arabidopsis, most likely due to modulation of the drought-induced NRP-mediated cell death response. CONCLUSION Our results indicated that the NRP-mediated cell death signaling operates in the plant kingdom with conserved regulatory mechanisms and hence may be target for engineering stress tolerance and adaptation in crops.
Collapse
Affiliation(s)
- Pedro A. B. Reis
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Paola A. Carpinetti
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Paula P.J. Freitas
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Eulálio G.D. Santos
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Luiz F. Camargos
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Igor H.T. Oliveira
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - José Cleydson F. Silva
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Humberto H. Carvalho
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Maximiller Dal-Bianco
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Juliana R.L. Soares-Ramos
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
| | - Elizabeth P. B. Fontes
- />Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG Brazil
- />National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG Brazil
| |
Collapse
|
6
|
Fragkostefanakis S, Mesihovic A, Hu Y, Schleiff E. Unfolded protein response in pollen development and heat stress tolerance. PLANT REPRODUCTION 2016; 29:81-91. [PMID: 27022919 DOI: 10.1007/s00497-016-0276-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/10/2016] [Indexed: 05/18/2023]
Abstract
Importance of the UPR for pollen. Pollen is particularly sensitive to environmental conditions that disturb protein homeostasis, such as higher temperatures. Their survival is dependent on subcellular stress response systems, one of which maintains protein homeostasis in the endoplasmic reticulum (ER). Disturbance of ER proteostasis due to stress leads to the activation of the unfolded protein response (UPR) that mitigates stress damage mainly by increasing ER-folding capacity and reducing folding demands. The UPR is controlled by ER membrane-associated transcription factors and an RNA splicing factor. They are important components of abiotic stress responses including general heat stress response and thermotolerance. In addition to responding to environmental stresses, the UPR is implicated in developmental processes required for successful male gametophyte development and fertilization. Consequently, defects in the UPR can lead to pollen abortion and male sterility. Several UPR components are involved in the elaboration of the ER network, which is required for pollen germination and polar tube growth. Transcriptome and proteome analyses have shown that components of the ER-folding machinery and the UPR are upregulated at specific stages of pollen development supporting elevated demands for secretion. Furthermore, genetic studies have revealed that knockout mutants of UPR genes are defective in producing viable or competitive pollen. In this review, we discuss recent findings regarding the importance of the UPR for both pollen development and stress response.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany.
| | - Anida Mesihovic
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany
| | - Yangjie Hu
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Silva PA, Silva JCF, Caetano HDN, Machado JPB, Mendes GC, Reis PAB, Brustolini OJB, Dal-Bianco M, Fontes EPB. Comprehensive analysis of the endoplasmic reticulum stress response in the soybean genome: conserved and plant-specific features. BMC Genomics 2015; 16:783. [PMID: 26466891 PMCID: PMC4606518 DOI: 10.1186/s12864-015-1952-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite the relevance of the eukaryotic endoplasmic reticulum (ER)-stress response as an integrator of multiple stress signals into an adaptive response, knowledge about these ER-mediated cytoprotective pathways in soybean (Glycine max) is lacking. Here, we searched for genes involved in the highly conserved unfolded protein response (UPR) and ER stress-induced plant-specific cell death signaling pathways in the soybean genome. METHODS Previously characterized Arabidopsis UPR genes were used as prototypes for the identification of the soybean orthologs and the in silico assembly of the UPR in soybean, using eggNOG v4.0 software. Functional studies were also conducted by analyzing the transcriptional activity of soybean UPR transducers. RESULTS As a result of this search, we have provided a complete profile of soybean UPR genes with significant predicted protein similarities to A. thaliana UPR-associated proteins. Both arms of the plant UPR were further examined functionally, and evidence is presented that the soybean counterparts are true orthologs of previously characterized UPR transducers in Arabidopsis. The bZIP17/bZI28 orthologs (GmbZIP37 and GmbZIP38) and ZIP60 ortholog (GmbZIP68) from soybean have similar structural organizations as their Arabidopsis counterparts, were induced by ER stress and activated an ERSE- and UPRE-containing BiP promoter. Furthermore, the transcript of the putative substrate of GmIREs, GmbZIP68, harbors a canonical site for IRE1 endonuclease activity and was efficiently spliced under ER stress conditions. In a reverse approach, we also examined the Arabidopsis genome for components of a previously characterized ER stress-induced cell death signaling response in soybean. With the exception of GmERD15, which apparently does not possess an Arabidopsis ortholog, the Arabidopsis genome harbors conserved GmNRP, GmNAC81, GmNAC30 and GmVPE sequences that share significant structural and sequence similarities with their soybean counterparts. These results suggest that the NRP/GmNAC81 + GmNAC30/VPE regulatory circuit may transduce cell death signals in plant species other than soybean. CONCLUSIONS Our in silico analyses, along with current and previous functional data, permitted generation of a comprehensive overview of the ER stress response in soybean as a framework for functional prediction of ER stress signaling components and their possible connections with multiple stress responses.
Collapse
Affiliation(s)
- Priscila Alves Silva
- National Institute of Science and Technology in Plant-Pest Interactions and Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil.
| | - José Cleydson F Silva
- National Institute of Science and Technology in Plant-Pest Interactions and Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil.
| | - Hanna D N Caetano
- National Institute of Science and Technology in Plant-Pest Interactions and Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil.
| | - Joao Paulo B Machado
- National Institute of Science and Technology in Plant-Pest Interactions and Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil.
| | - Giselle C Mendes
- National Institute of Science and Technology in Plant-Pest Interactions and Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil.
| | - Pedro A B Reis
- National Institute of Science and Technology in Plant-Pest Interactions and Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil.
| | - Otavio J B Brustolini
- National Institute of Science and Technology in Plant-Pest Interactions and Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil.
| | - Maximiller Dal-Bianco
- National Institute of Science and Technology in Plant-Pest Interactions and Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil.
| | - Elizabeth P B Fontes
- National Institute of Science and Technology in Plant-Pest Interactions and Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil.
| |
Collapse
|
8
|
Zhu J, Hao P, Chen G, Han C, Li X, Zeller FJ, Hsam SLK, Hu Y, Yan Y. Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2014; 14:260. [PMID: 25273817 PMCID: PMC4189733 DOI: 10.1186/s12870-014-0260-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 09/23/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND The endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which is involved in protein synthesis, folding assembly, and secretion. In order to study the role of BiP in the process of wheat seed development, we cloned three BiP homologous cDNA sequences in bread wheat (Triticum aestivum), completed by rapid amplification of cDNA ends (RACE), and examined the expression of wheat BiP in wheat tissues, particularly the relationship between BiP expression and the subunit types of HMW-GS using near-isogenic lines (NILs) of HMW-GS silencing, and under abiotic stress. RESULTS Sequence analysis demonstrated that all BiPs contained three highly conserved domains present in plants, animals, and microorganisms, indicating their evolutionary conservation among different biological species. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that TaBiP (Triticum aestivum BiP) expression was not organ-specific, but was predominantly localized to seed endosperm. Furthermore, immunolocalization confirmed that TaBiP was primarily located within the protein bodies (PBs) in wheat endosperm. Three TaBiP genes exhibited significantly down-regulated expression following high molecular weight-glutenin subunit (HMW-GS) silencing. Drought stress induced significantly up-regulated expression of TaBiPs in wheat roots, leaves, and developing grains. CONCLUSIONS The high conservation of BiP sequences suggests that BiP plays the same role, or has common mechanisms, in the folding and assembly of nascent polypeptides and protein synthesis across species. The expression of TaBiPs in different wheat tissue and under abiotic stress indicated that TaBiP is most abundant in tissues with high secretory activity and with high proportions of cells undergoing division, and that the expression level of BiP is associated with the subunit types of HMW-GS and synthesis. The expression of TaBiPs is developmentally regulated during seed development and early seedling growth, and under various abiotic stresses.
Collapse
Affiliation(s)
- Jiantang Zhu
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Pengchao Hao
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Guanxing Chen
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Caixia Han
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Xiaohui Li
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Friedrich J Zeller
- />Department of Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, D-85354 Germany
| | - Sai LK Hsam
- />Department of Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, D-85354 Germany
| | - Yingkao Hu
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yueming Yan
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| |
Collapse
|
9
|
Maruyama D, Sugiyama T, Endo T, Nishikawa SI. Multiple BiP Genes of Arabidopsis thaliana are Required for Male Gametogenesis and Pollen Competitiveness. ACTA ACUST UNITED AC 2014; 55:801-10. [DOI: 10.1093/pcp/pcu018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Carvalho HH, Silva PA, Mendes GC, Brustolini OJ, Pimenta MR, Gouveia BC, Valente MAS, Ramos HJ, Soares-Ramos JR, Fontes EP. The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events. PLANT PHYSIOLOGY 2014; 164:654-70. [PMID: 24319082 PMCID: PMC3912096 DOI: 10.1104/pp.113.231928] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/06/2013] [Indexed: 05/03/2023]
Abstract
The binding protein (BiP) has been demonstrated to participate in innate immunity and attenuate endoplasmic reticulum- and osmotic stress-induced cell death. Here, we employed transgenic plants with manipulated levels of BiP to assess whether BiP also controlled developmental and hypersensitive programmed cell death (PCD). Under normal conditions, the BiP-induced transcriptome revealed a robust down-regulation of developmental PCD genes and an up-regulation of the genes involved in hypersensitive PCD triggered by nonhost-pathogen interactions. Accordingly, the BiP-overexpressing line displayed delayed leaf senescence under normal conditions and accelerated hypersensitive response triggered by Pseudomonas syringae pv tomato in soybean (Glycine max) and tobacco (Nicotiana tabacum), as monitored by measuring hallmarks of PCD in plants. The BiP-mediated delay of leaf senescence correlated with the attenuation of N-rich protein (NRP)-mediated cell death signaling and the inhibition of the senescence-associated activation of the unfolded protein response (UPR). By contrast, under biological activation of salicylic acid (SA) signaling and hypersensitive PCD, BiP overexpression further induced NRP-mediated cell death signaling and antagonistically inhibited the UPR. Thus, the SA-mediated induction of NRP cell death signaling occurs via a pathway distinct from UPR. Our data indicate that during the hypersensitive PCD, BiP positively regulates the NRP cell death signaling through a yet undefined mechanism that is activated by SA signaling and related to ER functioning. By contrast, BiP's negative regulation of leaf senescence may be linked to its capacity to attenuate the UPR activation and NRP cell death signaling. Therefore, BiP can function either as a negative or positive modulator of PCD events.
Collapse
Affiliation(s)
- Humberto H. Carvalho
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Priscila A. Silva
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Giselle C. Mendes
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Otávio J.B. Brustolini
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Maiana R. Pimenta
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Bianca C. Gouveia
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Maria Anete S. Valente
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Humberto J.O. Ramos
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Juliana R.L. Soares-Ramos
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| | - Elizabeth P.B. Fontes
- National Institute of Science and Technology in Plant-Pest Interactions (H.H.C., P.A.S., G.C.M., O.J.B.B., M.R.P., B.C.G., H.J.O.R., E.B.P.F.), Departamento de Bioquímica e Biologia Molecular/Bioagro (P.A.S., O.J.B.B., B.C.G., M.A.S.V., H.J.O.R., J.R.L.S.-R., E.B.P.F.), and Departamento de Biologia Vegetal (H.H.C., G.C.M., M.R.P.), Universidade Federal de Viçosa, 36570.000, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
11
|
Carvalho HH, Brustolini OJB, Pimenta MR, Mendes GC, Gouveia BC, Silva PA, Silva JCF, Mota CS, Soares-Ramos JRL, Fontes EPB. The molecular chaperone binding protein BiP prevents leaf dehydration-induced cellular homeostasis disruption. PLoS One 2014; 9:e86661. [PMID: 24489761 PMCID: PMC3906070 DOI: 10.1371/journal.pone.0086661] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/12/2013] [Indexed: 11/18/2022] Open
Abstract
BiP overexpression improves leaf water relations during droughts and delays drought-induced leaf senescence. However, whether BiP controls cellular homeostasis under drought conditions or simply delays dehydration-induced leaf senescence as the primary cause for water stress tolerance remains to be determined. To address this issue, we examined the drought-induced transcriptomes of BiP-overexpressing lines and wild-type (WT) lines under similar leaf water potential (ψw) values. In the WT leaves, a ψw reduction of -1.0 resulted in 1339 up-regulated and 2710 down-regulated genes; in the BiP-overexpressing line 35S::BiP-4, only 334 and 420 genes were induced and repressed, respectively, at a similar leaf ψw = -1.0 MPa. This level of leaf dehydration was low enough to induce a repertory of typical drought-responsive genes in WT leaves but not in 35S::BiP-4 dehydrated leaves. The responders included hormone-related genes, functional and regulatory genes involved in drought protection and senescence-associated genes. The number of differentially expressed genes in the 35S::BiP-4 line approached the wild type number at a leaf ψw = -1.6 MPa. However, N-rich protein (NRP)- mediated cell death signaling genes and unfolded protein response (UPR) genes were induced to a much lower extent in the 35S::BiP-4 line than in the WT even at ψw = -1.6 MPa. The heatmaps for UPR, ERAD (ER-associated degradation protein system), drought-responsive and cell death-associated genes revealed that the leaf transcriptome of 35S::BiP-4 at ψw = -1.0 MPa clustered together with the transcriptome of well-watered leaves and they diverged considerably from the drought-induced transcriptome of the WT (ψw = -1.0, -1.7 and -2.0 MPa) and 35S::BiP-4 leaves at ψw = -1.6 MPa. Taken together, our data revealed that BiP-overexpressing lines requires a much higher level of stress (ψw = -1.6 MPa) to respond to drought than that of WT (ψw = -1.0). Therefore, BiP overexpression maintains cellular homeostasis under water stress conditions and thus ameliorates endogenous osmotic stress.
Collapse
Affiliation(s)
- Humberto H. Carvalho
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Otávio J. B. Brustolini
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Maiana R. Pimenta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Giselle C. Mendes
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Bianca C. Gouveia
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Priscila A. Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Clenilso S. Mota
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Juliana R. L. Soares-Ramos
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elizabeth P. B. Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/Bioagro, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
12
|
Lee JY, Sarowar S, Kim HS, Kim H, Hwang I, Kim YJ, Pai HS. Silencing of Nicotiana benthamiana Neuroblastoma-Amplified Gene causes ER stress and cell death. BMC PLANT BIOLOGY 2013; 13:69. [PMID: 23621803 PMCID: PMC3654999 DOI: 10.1186/1471-2229-13-69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/23/2013] [Indexed: 05/15/2023]
Abstract
BACKGROUND Neuroblastoma Amplified Gene (NAG) was identified as a gene co-amplified with the N-myc gene, whose genomic amplification correlates with poor prognosis of neuroblastoma. Later it was found that NAG is localized in endoplasmic reticulum (ER) and is a component of the syntaxin 18 complex that is involved in Golgi-to-ER retrograde transport in human cells. Homologous sequences of NAG are found in plant databases, but its function in plant cells remains unknown. RESULTS Nicotiana benthamania Neuroblastoma-Amplified Gene (NbNAG) encodes a protein of 2,409 amino acids that contains the secretory pathway Sec39 domain and is mainly localized in the ER. Silencing of NbNAG by virus-induced gene silencing resulted in growth arrest and acute plant death with morphological markers of programmed cell death (PCD), which include chromatin fragmentation and modification of mitochondrial membrane potential. NbNAG deficiency caused induction of ER stress genes, disruption of the ER network, and relocation of bZIP28 transcription factor from the ER membrane to the nucleus, similar to the phenotypes of tunicamycin-induced ER stress in a plant cell. NbNAG silencing caused defects in intracellular transport of diverse cargo proteins, suggesting that a blocked secretion pathway by NbNAG deficiency causes ER stress and programmed cell death. CONCLUSIONS These results suggest that NAG, a conserved protein from yeast to mammals, plays an essential role in plant growth and development by modulating protein transport pathway, ER stress response and PCD.
Collapse
Affiliation(s)
- Jae-Yong Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Sujon Sarowar
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hee Seung Kim
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyeran Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Young Jin Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
13
|
Deng Y, Srivastava R, Howell SH. Endoplasmic reticulum (ER) stress response and its physiological roles in plants. Int J Mol Sci 2013; 14:8188-212. [PMID: 23591838 PMCID: PMC3645738 DOI: 10.3390/ijms14048188] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/19/2013] [Accepted: 04/01/2013] [Indexed: 01/29/2023] Open
Abstract
The endoplasmic reticulum (ER) stress response is a highly conserved mechanism that results from the accumulation of unfolded or misfolded proteins in the ER. The response plays an important role in allowing plants to sense and respond to adverse environmental conditions, such as heat stress, salt stress and pathogen infection. Since the ER is a well-controlled microenvironment for proper protein synthesis and folding, it is highly susceptible to stress conditions. Accumulation of unfolded or misfolded proteins activates a signaling pathway, called the unfolded protein response (UPR), which acts to relieve ER stress and, if unsuccessful, leads to cell death. Plants have two arms of the UPR signaling pathway, an arm involving the proteolytic processing of membrane-associated basic leucine zipper domain (bZIP) transcription factors and an arm involving RNA splicing factor, IRE1, and its mRNA target. These signaling pathways play an important role in determining the cell's fate in response to stress conditions.
Collapse
Affiliation(s)
- Yan Deng
- Plant Sciences Institute and Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; E-Mails: (Y.D.); (R.S.)
| | - Renu Srivastava
- Plant Sciences Institute and Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; E-Mails: (Y.D.); (R.S.)
| | - Stephen H. Howell
- Plant Sciences Institute and Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; E-Mails: (Y.D.); (R.S.)
| |
Collapse
|
14
|
Feng J, Bhadauria V, Liu G, Selvaraj G, Hughes GR, Wei Y. Analysis of the promoter region of the gene LIP1 encoding triglyceride lipase from Fusarium graminearum. Microbiol Res 2011; 166:618-28. [PMID: 21295455 DOI: 10.1016/j.micres.2010.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/30/2010] [Accepted: 12/28/2010] [Indexed: 11/19/2022]
Abstract
Triglyceride lipases catalyze the reversible degradation of glycerol esters with long-chain fatty acids into fatty acids and glycerol. In silico analysis of 5'-end flanking sequence of the gene LIP1 encoding a triglyceride lipase from the wheat head blight pathogen Fusarium graminearum revealed the presence of several cis-regulatory elements. To delineate the function of these regulatory elements, we constructed a series of deletion mutants in the LIP1 promoter region fused to the open reading frame of a green fluorescent protein (GFP) and assayed the promoter activity. Analysis of GFP expression levels in mutants indicated that a 563-bp promoter sequence was sufficient to drive the expression of LIP1 and regulatory elements responsible for the gene induction were located within the 563-372bp region. To further investigate the regulatory elements, putative cis-acting elements spanned within the 563-372bp region were mutated using a targeted mutagenesis approach. A CCAAT box, a CreA binding site, and a fatty acid responsive element (FARE) were identified and confirmed to be required for the basal expression of LIP1, glucose suppression and fatty acid induction, respectively.
Collapse
Affiliation(s)
- Jie Feng
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada.
| | | | | | | | | | | |
Collapse
|
15
|
Reis PA, Rosado GL, Silva LA, Oliveira LC, Oliveira LB, Costa MD, Alvim FC, Fontes EP. The binding protein BiP attenuates stress-induced cell death in soybean via modulation of the N-rich protein-mediated signaling pathway. PLANT PHYSIOLOGY 2011; 157:1853-65. [PMID: 22007022 PMCID: PMC3327224 DOI: 10.1104/pp.111.179697] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/15/2011] [Indexed: 05/17/2023]
Abstract
The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elizabeth P.B. Fontes
- Departamento de Bioquímica e Biologia Molecular/BIOAGRO (P.A.A.R., G.L.R., L.A.C.S., L.C.O., L.B.O., M.D.L.C., E.P.B.F.) and National Institute of Science and Technology in Plant-Pest Interactions (P.A.A.R., G.L.R., L.A.C.S., E.P.B.F.), Universidade Federal de Viçosa, 36570.000 Vicosa, Minas Gerais, Brazil; Departamento de Ciências Biológicas, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Salobrinho, 45662–900 Ilheus, Bahia, Brazil (F.C.A.)
| |
Collapse
|
16
|
Makhzoum A, Petit-Paly G, St Pierre B, Bernards MA. Functional analysis of the DAT gene promoter using transient Catharanthus roseus and stable Nicotiana tabacum transformation systems. PLANT CELL REPORTS 2011; 30:1173-82. [PMID: 21308469 DOI: 10.1007/s00299-011-1025-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/18/2011] [Accepted: 01/24/2011] [Indexed: 05/23/2023]
Abstract
The Catharanthus roseus DAT gene encodes the enzyme acetyl-CoA:deacetylvindoline-4-O-acetyltransferase involved in the last step of the indole alkaloid pathway leading to vindoline. This gene is characterized by specific cell type expression in idioblasts and laticifers. To understand the specific transcriptional regulation mechanism(s) of DAT, several DAT promoter GUS constructs were cloned into pCAMBIA1305.1. Agroinfiltration of different explant types of C. roseus resulted in organ-specific accumulation of GUS, albeit at various levels. Heterologous accumulation of GUS in transgenic tobacco revealed both general and non-specific expression with the exception of a stomata-specific expression when 2.3 kb of the DAT promoter was coupled with a portion of the DAT ORF. These results suggest that in addition to the 2.3 kb upstream of the DAT transcriptional start site, additional cis-acting elements may be responsible for the specific spatial expression of DAT in vivo. Furthermore, hairy roots transformed with DAT promoter GUS constructs demonstrated GUS expression in root tissues (visualized through GUS enzyme activity), even though DAT is repressed in non-transformed roots.
Collapse
Affiliation(s)
- Abdullah Makhzoum
- Department of Biology and The Biotron, The University of Western Ontario, London, ON, Canada.
| | | | | | | |
Collapse
|
17
|
Alves MS, Reis PAB, Dadalto SP, Faria JAQA, Fontes EPB, Fietto LG. A novel transcription factor, ERD15 (Early Responsive to Dehydration 15), connects endoplasmic reticulum stress with an osmotic stress-induced cell death signal. J Biol Chem 2011; 286:20020-30. [PMID: 21482825 PMCID: PMC3103375 DOI: 10.1074/jbc.m111.233494] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/07/2011] [Indexed: 11/06/2022] Open
Abstract
As in all other eukaryotic organisms, endoplasmic reticulum (ER) stress triggers the evolutionarily conserved unfolded protein response in soybean, but it also communicates with other adaptive signaling responses, such as osmotic stress-induced and ER stress-induced programmed cell death. These two signaling pathways converge at the level of gene transcription to activate an integrated cascade that is mediated by N-rich proteins (NRPs). Here, we describe a novel transcription factor, GmERD15 (Glycine max Early Responsive to Dehydration 15), which is induced by ER stress and osmotic stress to activate the expression of NRP genes. GmERD15 was isolated because of its capacity to stably associate with the NRP-B promoter in yeast. It specifically binds to a 187-bp fragment of the NRP-B promoter in vitro and activates the transcription of a reporter gene in yeast. Furthermore, GmERD15 was found in both the cytoplasm and the nucleus, and a ChIP assay revealed that it binds to the NRP-B promoter in vivo. Expression of GmERD15 in soybean protoplasts activated the NRP-B promoter and induced expression of the NRP-B gene. Collectively, these results support the interpretation that GmERD15 functions as an upstream component of stress-induced NRP-B-mediated signaling to connect stress in the ER to an osmotic stress-induced cell death signal.
Collapse
Affiliation(s)
- Murilo S. Alves
- From the Departamento de Bioquímica e Biologia Molecular, BIOAGRO and
- National Institute of Science and Technology in Plant-Pest Interactions,Universidade Federal de Viçosa, 36571.000 Viçosa, MG, Brazil
| | - Pedro A. B. Reis
- From the Departamento de Bioquímica e Biologia Molecular, BIOAGRO and
- National Institute of Science and Technology in Plant-Pest Interactions,Universidade Federal de Viçosa, 36571.000 Viçosa, MG, Brazil
| | | | | | - Elizabeth P. B. Fontes
- From the Departamento de Bioquímica e Biologia Molecular, BIOAGRO and
- National Institute of Science and Technology in Plant-Pest Interactions,Universidade Federal de Viçosa, 36571.000 Viçosa, MG, Brazil
| | - Luciano G. Fietto
- From the Departamento de Bioquímica e Biologia Molecular, BIOAGRO and
- National Institute of Science and Technology in Plant-Pest Interactions,Universidade Federal de Viçosa, 36571.000 Viçosa, MG, Brazil
| |
Collapse
|
18
|
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved mechanism by which all eukaryotic cells preserve the homeostasis of the endoplasmic reticulum (ER) in the face of accumulation of unfolded proteins in the ER. Plants possess at least two signaling pathways specific for UPR. ER membrane-bound ER stress sensor/transducers, AtbZIP60 and AtbZIP28, are basic leucine zipper transcription factors that are activated by regulated intramembrane proteolysis systems and regulate transcription of the UPR genes. These signaling pathways play important roles not only in the UPR but also in other biological processes such as the response to pathogens and heat stress.
Collapse
Affiliation(s)
- Reiko Urade
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Gokasho, Uji, Kyoto, Japan.
| |
Collapse
|
19
|
Lai C, Xiong J, Li X, Qin X. A 43-bp A/T-rich element upstream of the kinesin gene AtKP1 promoter functions as a silencer in Arabidopsis. PLANT CELL REPORTS 2009; 28:851-860. [PMID: 19306002 DOI: 10.1007/s00299-009-0689-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 01/23/2009] [Accepted: 02/19/2009] [Indexed: 05/27/2023]
Abstract
The expression of the Arabidopsis thaliana kinesin-like protein 1 (AtKP1) gene is restricted to tender tissues. We used a 5'-deletion assay to identify and characterize the regulatory regions controlling tissue-specific AtKP1 expression. Multiple enhancer regions, located 470- and 2,808-bp upstream of the translational start codon, were critical for activation, while a silencer region located at -2,987 to -2,808 (A + T = 71%) was required for repression. Within this 180-bp fragment, a 43-bp element (termed KPRE, A + T = 58%) mediated repression of the CaMV35S promoter by using a gain-of-function approach that was orientation-dependent in leaves and orientation-independent in roots. Electrophoretic mobility shift assay (EMSA) showed that the GAGAAATT octamer (corresponding to neucleotides -2,908 - -2,900) in KPRE was the core negative regulatory motif for interacting with DNA-binding proteins in leaves and roots. However, using a second gain-of-function experiment with KPRE fused to CaMV35S, we found that the mutant negatively affected transcription in transgenic leaves and positively affected transcription in transgenic roots. This indicated that these two modes mediate repressive regulation in leaves and roots, respectively. The EMSA experiment using different mutant KPRE as probes confirmed that two distinct sets of proteins bound to KPRE at an overlapping site AGAAAT in the leaf. Taken together, these data suggest that two different modes control the negatively transcriptional regulation of KPRE in leaves and roots, and provide new insight into the mechanism of transcriptional repression of A/T-rich sequences in higher plants.
Collapse
Affiliation(s)
- Chengxia Lai
- College of Biological Sciences, China Agricultural University, Beijing, China.
| | | | | | | |
Collapse
|
20
|
Li Y, Wu Z, Ma N, Gao J. Regulation of the rose Rh-PIP2;1 promoter by hormones and abiotic stresses in Arabidopsis. PLANT CELL REPORTS 2009; 28:185-196. [PMID: 18985353 DOI: 10.1007/s00299-008-0629-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 09/21/2008] [Accepted: 10/12/2008] [Indexed: 05/27/2023]
Abstract
Our previous work has indicated that an ethylene-responsive aquaporin gene, Rh-PIP2;1, played an important role in the epidermal cell expansion of rose petals. In this work, we isolated an 896 bp promoter sequence of the Rh-PIP2;1 and found that the promoter was rare in plants, occurring with an Inr motif, but without a TATA box. In transgenic Arabidopsis harboring the Rh-PIP2;1 promoter::GUS construct, the activity of Rh-PIP2;1 promoter was found to be developmental-dependent in almost all of the tested organs, and was particularly active in organs that were rapidly expanding, and in tissues with high water flux capacity. Moreover, the promoter activity was inhibited by ACC, ABA, NaCl, and cold in the roots of 3 or 6-day-old plants, and was increased by GA(3) and mannitol in the rosettes of 9 or 12-day-old plants. Deleting the fragment from -886 to -828 resulted in nearly complete disappearance of the promoter activity in roots, and a substantial decrease in the leaves, hypocotyls and floral organs. Taken together, our results indicated that the Rh-PIP2;1 promoter responded to hormones and abiotic stresses in a developmental- and spatial-dependent manner, and the -886 to -828 region was crucial for the activity of the Rh-PIP2;1 promoter.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Amino Acids, Cyclic/pharmacology
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Base Sequence
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Genes, Plant/drug effects
- Genes, Plant/genetics
- Genes, Plant/immunology
- Hormones/pharmacology
- Molecular Sequence Data
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/genetics
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Rosa/genetics
- Sodium Chloride/pharmacology
Collapse
Affiliation(s)
- Yunhui Li
- Department of Ornamental Horticulture, China Agricultural University, 100094, Beijing, China
| | | | | | | |
Collapse
|
21
|
Valente MAS, Faria JAQA, Soares-Ramos JRL, Reis PAB, Pinheiro GL, Piovesan ND, Morais AT, Menezes CC, Cano MAO, Fietto LG, Loureiro ME, Aragão FJL, Fontes EPB. The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2008; 60:533-46. [PMID: 19052255 PMCID: PMC2651463 DOI: 10.1093/jxb/ern296] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 05/17/2023]
Abstract
The ER-resident molecular chaperone BiP (binding protein) was overexpressed in soybean. When plants growing in soil were exposed to drought (by reducing or completely withholding watering) the wild-type lines showed a large decrease in leaf water potential and leaf wilting, but the leaves in the transgenic lines did not wilt and exhibited only a small decrease in water potential. During exposure to drought the stomata of the transgenic lines did not close as much as in the wild type, and the rates of photosynthesis and transpiration became less inhibited than in the wild type. These parameters of drought resistance in the BiP overexpressing lines were not associated with a higher level of the osmolytes proline, sucrose, and glucose. It was also not associated with the typical drought-induced increase in root dry weight. Rather, at the end of the drought period, the BiP overexpressing lines had a lower level of the osmolytes and root weight than the wild type. The mRNA abundance of several typical drought-induced genes [NAC2, a seed maturation protein (SMP), a glutathione-S-transferase (GST), antiquitin, and protein disulphide isomerase 3 (PDI-3)] increased in the drought-stressed wild-type plants. Compared with the wild type, the increase in mRNA abundance of these genes was less (in some genes much less) in the BiP overexpressing lines that were exposed to drought. The effect of drought on leaf senescence was investigated in soybean and tobacco. It had previously been reported that tobacco BiP overexpression or repression reduced or accentuated the effects of drought. BiP overexpressing tobacco and soybean showed delayed leaf senescence during drought. BiP antisense tobacco plants, conversely, showed advanced leaf senescence. It is concluded that BiP overexpression confers resistance to drought, through an as yet unknown mechanism that is related to ER functioning. The delay in leaf senescence by BiP overexpression might relate to the absence of the response to drought.
Collapse
Affiliation(s)
- Maria Anete S. Valente
- Departamento de Bioquímica e Biologia Molecular, BIOAGRO, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, 36571.000 Viçosa, MG, Brazil
| | - Jerusa A. Q. A. Faria
- Departamento de Bioquímica e Biologia Molecular, BIOAGRO, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, 36571.000 Viçosa, MG, Brazil
| | - Juliana R. L. Soares-Ramos
- Departamento de Bioquímica e Biologia Molecular, BIOAGRO, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, 36571.000 Viçosa, MG, Brazil
| | - Pedro A. B. Reis
- Departamento de Bioquímica e Biologia Molecular, BIOAGRO, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, 36571.000 Viçosa, MG, Brazil
| | - Guilherme L. Pinheiro
- Departamento de Bioquímica e Biologia Molecular, BIOAGRO, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, 36571.000 Viçosa, MG, Brazil
| | - Newton D. Piovesan
- Departamento de Bioquímica e Biologia Molecular, BIOAGRO, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, 36571.000 Viçosa, MG, Brazil
| | - Angélica T. Morais
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, 70770-900, Brasília, DF, Brazil
| | - Carlos C. Menezes
- Universidade de Rio Verde, Fazenda Fontes do Saber, 75901-970, Rio Verde, GO, Brazil
| | - Marco A. O. Cano
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Luciano G. Fietto
- Departamento de Bioquímica e Biologia Molecular, BIOAGRO, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, 36571.000 Viçosa, MG, Brazil
| | - Marcelo E. Loureiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571.000, Viçosa, MG, Brazil
| | - Francisco J. L. Aragão
- Embrapa Recursos Genéticos e Biotecnologia, PqEB W5 Norte, 70770-900, Brasília, DF, Brazil
| | - Elizabeth P. B. Fontes
- Departamento de Bioquímica e Biologia Molecular, BIOAGRO, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, 36571.000 Viçosa, MG, Brazil
| |
Collapse
|
22
|
Costa MDL, Reis PAB, Valente MAS, Irsigler AST, Carvalho CM, Loureiro ME, Aragão FJL, Boston RS, Fietto LG, Fontes EPB. A new branch of endoplasmic reticulum stress signaling and the osmotic signal converge on plant-specific asparagine-rich proteins to promote cell death. J Biol Chem 2008; 283:20209-19. [PMID: 18490446 DOI: 10.1074/jbc.m802654200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NRPs (N-rich proteins) were identified as targets of a novel adaptive pathway that integrates endoplasmic reticulum (ER) and osmotic stress signals based on coordinate regulation and synergistic up-regulation by tunicamycin and polyethylene glycol treatments. This integrated pathway diverges from the molecular chaperone-inducing branch of the unfolded protein response (UPR) in several ways. While UPR-specific targets were inversely regulated by ER and osmotic stresses, NRPs required both signals for full activation. Furthermore, BiP (binding protein) overexpression in soybean prevented activation of the UPR by ER stress inducers, but did not affect activation of NRPs. We also found that this integrated pathway transduces a PCD signal generated by ER and osmotic stresses that result in the appearance of markers associated with leaf senescence. Overexpression of NRPs in soybean protoplasts induced caspase-3-like activity and promoted extensive DNA fragmentation. Furthermore, transient expression of NRPs in planta caused leaf yellowing, chlorophyll loss, malondialdehyde production, ethylene evolution, and induction of the senescence marker gene CP1. This phenotype was alleviated by the cytokinin zeatin, a potent senescence inhibitor. Collectively, these results indicate that ER stress induces leaf senescence through activation of plant-specific NRPs via a novel branch of the ER stress response.
Collapse
Affiliation(s)
- Maximiller D L Costa
- Departamento de Bioquímica e Biologia Molecular, BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Leroch M, Neuhaus HE, Kirchberger S, Zimmermann S, Melzer M, Gerhold J, Tjaden J. Identification of a novel adenine nucleotide transporter in the endoplasmic reticulum of Arabidopsis. THE PLANT CELL 2008; 20:438-51. [PMID: 18296626 PMCID: PMC2276436 DOI: 10.1105/tpc.107.057554] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Many metabolic reactions in the endoplasmic reticulum (ER) require high levels of energy in the form of ATP, which is important for cell viability. Here, we report on an adenine nucleotide transporter residing in the ER membranes of Arabidopsis thaliana (ER-ANT1). Functional integration of ER-ANT1 in the cytoplasmic membrane of intact Escherichia coli cells reveals a high specificity for an ATP/ADP antiport. Immunodetection in transgenic ER-ANT1-C-MYC-tag Arabidopsis plants and immunogold labeling of wild-type pollen grain tissue using a peptide-specific antiserum reveal the localization of this carrier in ER membranes. Transgenic ER-ANT1-promoter-beta-glucuronidase Arabidopsis lines show high expression in ER-active tissues (i.e., pollen, seeds, root tips, apical meristems, or vascular bundles). Two independent ER-ANT1 Arabidopsis knockout lines indicate a high physiological relevance of ER-ANT1 for ATP transport into the plant ER (e.g., disruption of ER-ANT1 results in a drastic retardation of plant growth and impaired root and seed development). In these ER-ANT1 knockout lines, the expression levels of several genes encoding ER proteins that are dependent on a sufficient ATP supply (i.e., BiP [for luminal binding protein] chaperones, calreticulin chaperones, Ca2+-dependent protein kinase, and SEC61) are substantially decreased.
Collapse
Affiliation(s)
- Michaela Leroch
- Pflanzenphysiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Wadahama H, Kamauchi S, Nakamoto Y, Nishizawa K, Ishimoto M, Kawada T, Urade R. A novel plant protein disulfide isomerase family homologous to animal P5 - molecular cloning and characterization as a functional protein for folding of soybean seed-storage proteins. FEBS J 2008; 275:399-410. [PMID: 18167147 DOI: 10.1111/j.1742-4658.2007.06199.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The protein disulfide isomerase is known to play important roles in the folding of nascent polypeptides and in the formation of disulfide bonds in the endoplasmic reticulum (ER). In this study, we cloned a gene of a novel protein disulfide isomerase family from soybean leaf (Glycine max L. Merrill. cv Jack) mRNA. The cDNA encodes a protein called GmPDIM. It is composed of 438 amino acids, and its sequence and domain structure are similar to that of animal P5. Recombinant GmPDIM expressed in Escherichia coli displayed an oxidative refolding activity on denatured RNase A. The genomic sequence of GmPDIM was also cloned and sequenced. Comparison of the soybean sequence with sequences from Arabidopsis thaliana and Oryza sativa showed significant conservation of the exon/intron structure. Consensus sequences within the promoters of the GmPDIM genes contained a cis-acting regulatory element for the unfolded protein response, and other regulatory motifs required for seed-specific expression. We observed that expression of GmPDIM was upregulated under ER-stress conditions, and was expressed ubiquitously in soybean tissues such as the cotyledon. It localized to the lumen of the ER. Data from co-immunoprecipitation experiments suggested that GmPDIM associated non-covalently with proglycinin, a precursor of the seed-storage protein glycinin. In addition, GmPDIM associated with the alpha' subunit of beta-conglycinin, a seed-storage protein in the presence of tunicamycin. These results suggest that GmPDIM may play a role in the folding of storage proteins and functions not only as a thiol-oxidoredactase, but also as molecular chaperone.
Collapse
MESH Headings
- Animals
- Antigens, Plant
- Blotting, Western
- Cloning, Molecular
- Cotyledon/enzymology
- Cotyledon/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Endoplasmic Reticulum/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Globulins/metabolism
- Immunoprecipitation
- Molecular Sequence Data
- Plant Leaves/enzymology
- Plant Leaves/genetics
- Protein Binding
- Protein Disulfide-Isomerases/chemistry
- Protein Disulfide-Isomerases/genetics
- Protein Disulfide-Isomerases/metabolism
- Protein Folding
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Seed Storage Proteins
- Seeds/enzymology
- Seeds/genetics
- Sequence Analysis, DNA
- Soybean Proteins/chemistry
- Soybean Proteins/genetics
- Soybean Proteins/metabolism
- Glycine max/enzymology
- Glycine max/genetics
Collapse
|
25
|
Freitas RL, Carvalho CM, Fietto LG, Loureiro ME, Almeida AM, Fontes EPB. Distinct repressing modules on the distal region of the SBP2 promoter contribute to its vascular tissue-specific expression in different vegetative organs. PLANT MOLECULAR BIOLOGY 2007; 65:603-14. [PMID: 17710554 DOI: 10.1007/s11103-007-9225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 08/08/2007] [Indexed: 05/16/2023]
Abstract
The Glycine max sucrose binding protein (GmSBP2) promoter directs vascular tissue-specific expression of reporter genes in transgenic tobacco. Here we showed that an SBP2-GFP fusion protein under the control of the GmSBP2 promoter accumulates in the vascular tissues of vegetative organs, which is consistent with the proposed involvement of SBP in sucrose transport-dependent physiological processes. Through gain-of-function experiments we confirmed that the tissue-specific determinants of the SBP2 promoter reside in the distal cis-regulatory domain A, CRD-A (position -2000 to -700) that is organized into a modular configuration to suppress promoter activity in tissues other than vascular tissues. The four analyzed CRD-A sub-modules, designates Frag II (-1785/-1508), Frag III (-1507/-1237), Frag IV (-1236/-971) and Frag V (-970/-700), act independently to alter the constitutive pattern of -92pSBP2-mediated GUS expression in different organs. Frag V fused to -92pSBP2-GUS restored the tissue-specific pattern of the full-length promoter in the shoot apex, but not in other organs. Likewise, Frag IV confined GUS expression to the vascular bundle of leaves, whereas Frag II mediated vascular specific expression in roots. Strong stem expression-repressing elements were located at positions -1485 to -1212, as Frag III limited GUS expression to the inner phloem. We have also mapped a procambium silencer to the consensus sequence CAGTTnCaAccACATTcCT which is located in both distal and proximal upstream modules. Fusion of either repressing element-containing module to the constitutive -92pSBP2 promoter suppresses GUS expression in the elongation zone of roots. Together our results demonstrate the unusual aspect of distal sequences negatively controlling tissue-specificity of a plant promoter.
Collapse
Affiliation(s)
- Rejane L Freitas
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571-000 Vicosa, MG, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Mathur S, Dasgupta I. Downstream promoter sequence of an Indian isolate of Rice tungro bacilliform virus alters tissue-specific expression in host rice and acts differentially in heterologous system. PLANT MOLECULAR BIOLOGY 2007; 65:259-75. [PMID: 17721744 DOI: 10.1007/s11103-007-9214-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 07/20/2007] [Indexed: 05/16/2023]
Abstract
An Indian isolate of Rice tungro bacilliform virus from West Bengal (RTBV-WB) showed significant nucleotide differences in its putative promoter region when compared with a previously characterized isolate from Philippines. The transcription start site of RTBV-WB was mapped followed by assessing the activity and tissue-specificity of the full-length (FL) promoter (-231 to +645) and several of its upstream and downstream deletions by studying the expression of beta-Glucuronidase (GUS) reporter gene in transgenic rice (Oryza sativa L. subsp. indica) plants at various stages of development. In addition to the expected vascular-specific expression pattern, studied by histochemical staining, GUS enzymatic assay and northern and RT-PCR analysis, two novel patterns were revealed in some of the downstream deleted versions; a non-expressing type, representing no expression at any stage in any tissue and constitutive type, representing constitutive expression at all stages in most tissues. This indicated the presence of previously unreported positive and negative cis-regulatory elements in the downstream region. The negative element and a putative enhancer region in the upstream region specifically bound to rice nuclear proteins in vitro. The FL and its deletion derivatives were also active in heterologous systems like tobacco (Nicotiana tabacum) and wheat (Triticum durum). Expression patterns in tobacco were different from those observed in rice suggesting the importance of upstream elements in those systems and host-specific regulation of the promoter in diverse organisms. Thus, the RTBV-WB FL promoter and its derivatives contain an array of cis-elements, which control constitutive or tissue- and development-specific gene expression in a combinatorial fashion.
Collapse
Affiliation(s)
- Saloni Mathur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | |
Collapse
|
27
|
Abstract
Secretory and transmembrane proteins are synthesized in the endoplasmic reticulum (ER) in eukaryotic cells. Nascent polypeptide chains, which are translated on the rough ER, are translocated to the ER lumen and folded into their native conformation. When protein folding is inhibited because of mutations or unbalanced ratios of subunits of hetero-oligomeric proteins, unfolded or misfolded proteins accumulate in the ER in an event called ER stress. As ER stress often disturbs normal cellular functions, signal-transduction pathways are activated in an attempt to maintain the homeostasis of the ER. These pathways are collectively referred to as the unfolded protein response (UPR). There have been great advances in our understanding of the molecular mechanisms underlying the UPR in yeast and mammals over the past two decades. In plants, a UPR analogous to those in yeast and mammals has been recognized and has recently attracted considerable attention. This review will summarize recent advances in the plant UPR and highlight the remaining questions that have yet to be addressed.
Collapse
Affiliation(s)
- Reiko Urade
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
28
|
Gu R, Zhao L, Zhang Y, Chen X, Bao J, Zhao J, Wang Z, Fu J, Liu T, Wang J, Wang G. Isolation of a maize beta-glucosidase gene promoter and characterization of its activity in transgenic tobacco. PLANT CELL REPORTS 2006; 25:1157-65. [PMID: 16770627 DOI: 10.1007/s00299-006-0177-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/11/2006] [Accepted: 05/02/2006] [Indexed: 05/10/2023]
Abstract
The beta-glucosidase gene of maize (ZmGLU1) was suggested to hydrolyze cytokinin-conjugate and release free cytokinin during plant growth and development. A clone containing the upstream region of ZmGLU1 was isolated and sequenced from a maize genomic library. The full-length ZmGLU1 promoter and a series of its 5' deletions were fused to the beta-glucuronidase (GUS) reporter gene and transferred into tobacco. The GUS activity of transgenic plants was assayed at various developmental stages. The results showed that ZmGLU1 promoter-driven GUS gene had the highest expression level in the roots and that the expression of GUS gene declined during seed maturation and down to the lowest level in mature seeds. The ZmGLU1 promoter-driven GUS expression increased during seed germination, reaching a peak on day 11. The results also showed that this promoter could be inhibited by 6-BA, trans-zeatin, and NAA, but was not affected by GA(3), ABA, SA, cold, salt, drought, and submergence treatments. The histochemical staining revealed that GUS activity was located in vigorous cell division zones with dominant staining associated with vascular tissues. Deletion analysis showed that the promoter contained a putative leaf-specific and stem-specific negative regulative element and two putative enhancers.
Collapse
Affiliation(s)
- Riliang Gu
- State Key Laboratory for Agrobiotechnology and National Center for Maize Improvement, China Agricultural University, Beijing, 100094, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Waclawovsky AJ, Freitas RL, Rocha CS, Contim LAS, Fontes EPB. Combinatorial regulation modules on GmSBP2 promoter: a distal cis-regulatory domain confines the SBP2 promoter activity to the vascular tissue in vegetative organs. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1759:89-98. [PMID: 16574256 DOI: 10.1016/j.bbaexp.2006.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 02/03/2006] [Accepted: 02/06/2006] [Indexed: 11/27/2022]
Abstract
The Glycine max sucrose binding protein (GmSBP2) promoter directs phloem-specific expression of reporter genes in transgenic tobacco. Here, we identified cis-regulatory domains (CRD) that contribute with positive and negative regulation for the tissue-specific pattern of the GmSPB2 promoter. Negative regulatory elements in the distal CRD-A (-2000 to -700) sequences suppressed expression from the GmSBP2 promoter in tissues other than seed tissues and vascular tissues of vegetative organs. Deletion of this region relieved repression resulting in a constitutive promoter highly active in all tissues analyzed. Further deletions from the strong constitutive -700GmSBP2 promoter delimited several intercalating enhancer-like and repressing domains that function in a context-dependent manner. Histochemical examination revealed that the CRD-C (-445 to -367) harbors both negative and positive elements. This region abolished promoter expression in roots and in all tissues of stems except for the inner phloem. In contrast, it restores root meristem expression when fused to the -132pSBP2-GUS construct, which contains root meristem expression-repressing determinants mapped to the 44-bp CRD-G (-136 to -92). Thus, the GmSBP2 promoter is functionally organized into a proximal region with the combinatorial modular configuration of plant promoters and a distal domain, which restricts gene expression to the vascular tissues in vegetative organs.
Collapse
|
30
|
Carolino SMB, Vaez JR, Irsigler AST, Valente MAS, Rodrigues LAZ, Fontes EPB. Plant BiP gene family: differential expression, stress induction and protective role against physiological stresses. ACTA ACUST UNITED AC 2003. [DOI: 10.1590/s1677-04202003000200001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to yeast or mammalian counterpart, BiP (Binding Protein) from several plant species, such as maize, tobacco, Arabidopsis and soybean, is encoded by a multigene family. A systematic characterization and analysis of soybean BiP expression have provided evidence for the existence of multiple, complex regulatory mechanisms controlling plant BiP gene expression. In support of this observation, the soybean BiP gene family has been shown to exhibit organ-specific expression and differential regulation in response to abiotic stresses through distinct signaling pathways. As a member of the stress-regulated HSP70 family of protein, the elucidation of plant BiP function and regulation is likely to lead do new strategies to enhance crop tolerance to environmental stress. Consistent with this observation, transgenic plants overexpressing soybean BiP have demonstrated to exhibit increased tolerance to ER (endoplasmic reticulum) stressors during seed germination and enhanced tolerance to water deficit during plant growth.
Collapse
|