1
|
Kuntic I, Kuntic M, Oelze M, Stamm P, Karpi A, Kleinert H, Hahad O, Münzel T, Daiber A. The role of acrolein for E-cigarette vapour condensate mediated activation of NADPH oxidase in cultured endothelial cells and macrophages. Pflugers Arch 2023:10.1007/s00424-023-02825-9. [PMID: 37285062 DOI: 10.1007/s00424-023-02825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/08/2023]
Abstract
Electronic cigarettes (E-cigarettes) have recently become a popular alternative to traditional tobacco cigarettes. Despite being marketed as a healthier alternative, increasing evidence shows that E-cigarette vapour could cause adverse health effects. It has been postulated that degradation products of E-cigarette liquid, mainly reactive aldehydes, are responsible for those effects. Previously, we have demonstrated that E-cigarette vapour exposure causes oxidative stress, inflammation, apoptosis, endothelial dysfunction and hypertension by activating NADPH oxidase in a mouse model. To better understand oxidative stress mechanisms, we have exposed cultured endothelial cells and macrophages to condensed E-cigarette vapour (E-cigarette condensate) and acrolein. In both endothelial cells (EA.hy 926) and macrophages (RAW 264.7), we have observed that E-cigarette condensate incubation causes cell death. Since recent studies have shown that among toxic aldehydes found in E-cigarette vapour, acrolein plays a prominent role, we have incubated the same cell lines with increasing concentrations of acrolein. Upon incubation with acrolein, a translocation of Rac1 to the plasma membrane has been observed, accompanied by an increase in oxidative stress. Whereas reactive oxygen species (ROS) formation by acrolein in cultured endothelial cells was mainly intracellular, the release of ROS in cultured macrophages was both intra- and extracellular. Our data also demonstrate that acrolein activates the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway and, in general, could mediate E-cigarette vapour-induced oxidative stress and cell death. More mechanistic insight is needed to clarify the toxicity associated with E-cigarette consumption and the possible adverse effects on human health.
Collapse
Affiliation(s)
- Ivana Kuntic
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Marin Kuntic
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Oelze
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Paul Stamm
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Angelica Karpi
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center, Mainz, Germany
| | - Omar Hahad
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department for Cardiology 1, University Medical Center Mainz, Molecular Cardiology, Geb. 605, Langenbeckstr. 1, 55131, Mainz, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
2
|
Crowley LN, Le BL, Cicalo C, Brown J, Li Y, Kim YJ, Lee JH, Pan JH, Lennon SL, Han BK, Kim JK. Acrolein, an environmental toxicant and its applications to in vivo and in vitro atherosclerosis models: An update. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103890. [PMID: 35613694 DOI: 10.1016/j.etap.2022.103890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 06/03/2023]
Abstract
Cardiovascular disease, the foremost cause of death worldwide, is an overarching disease term that encompasses a number of disorders involving the heart and circulatory system, including atherosclerosis. Atherosclerosis is a primary cause of cardiovascular diseases and is caused by buildup of plaque and narrowing of blood vessels. Epidemiological studies have suggested that environmental pollutants are implicated in atherosclerosis disease progression. Among many environmental pollutants, acrolein (Acr) is an abundant reactive aldehyde and is ubiquitously present in cigarette smoke as well as food products (e.g., overheated oils and wine). Despite its ubiquitous presence and potential impact on the etiology of cardiovascular disease, a limited consensus has been made in regard to Acr exposure conditions to induce atherosclerosis in vivo. This mini-review summarizes in vivo atherosclerosis models using Acr to investigate biochemical and phenotypic changes related to atherosclerosis and in vitro mechanistic studies involving Acr and atherosclerosis.
Collapse
Affiliation(s)
- Liana N Crowley
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Brandy L Le
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Cara Cicalo
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Justin Brown
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yali Li
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, South Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, South Korea
| | - Jeong Hoon Pan
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA
| | - Shannon L Lennon
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE 19713, USA
| | - Bok Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong 30019, South Korea
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
3
|
Acosta G, Race N, Herr S, Fernandez J, Tang J, Rogers E, Shi R. Acrolein-mediated alpha-synuclein pathology involvement in the early post-injury pathogenesis of mild blast-induced Parkinsonian neurodegeneration. Mol Cell Neurosci 2019; 98:140-154. [PMID: 31201929 PMCID: PMC6690849 DOI: 10.1016/j.mcn.2019.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 01/17/2023] Open
Abstract
Survivors of blast-induced traumatic brain injury (bTBI) have increased susceptibility to Parkinson's disease (PD), characterized by α-synuclein aggregation and the progressive degeneration of nigrostriatal dopaminergic neurons. Using an established bTBI rat model, we evaluated the changes of α-synuclein and tyrosine hydroxylase (TH), known hallmarks of PD, and acrolein, a reactive aldehyde and marker of oxidative stress, with the aim of revealing key pathways leading to PD post-bTBI. Indicated in both animal models of PD and TBI, acrolein is likely a point of pathogenic convergence. Here we show that after a single mild bTBI, acrolein is elevated up to a week, systemically in urine, and in whole brain tissue, specifically the substantia nigra and striatum. Acrolein elevation is accompanied by heightened α-synuclein oligomerization, dopaminergic dysregulation, and acrolein/α-synuclein interaction in the same brain regions. We further show that acrolein can directly modify and oligomerize α-synuclein in vitro. Taken together, our data suggests acrolein likely plays an important role in inducing PD pathology following bTBI by encouraging α-synuclein aggregation. These results are expected to advance our understanding of the long-term post-bTBI pathological changes leading to the development of PD, and suggest intervention targets to curtail such pathology.
Collapse
Affiliation(s)
- Glen Acosta
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Nicholas Race
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Seth Herr
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue University Interdisciplinary Life Sciences Program (PULSe), Purdue University, West Lafayette, IN, USA
| | - Joseph Fernandez
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jonathan Tang
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Edmond Rogers
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Indiana University, School of Medicine, Indianapolis, IN, USA; Purdue University Interdisciplinary Life Sciences Program (PULSe), Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Zirak MR, Mehri S, Karimani A, Zeinali M, Hayes AW, Karimi G. Mechanisms behind the atherothrombotic effects of acrolein, a review. Food Chem Toxicol 2019; 129:38-53. [DOI: 10.1016/j.fct.2019.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
|
5
|
Moghe A, Ghare S, Lamoreau B, Mohammad M, Barve S, McClain C, Joshi-Barve S. Molecular mechanisms of acrolein toxicity: relevance to human disease. Toxicol Sci 2015; 143:242-55. [PMID: 25628402 DOI: 10.1093/toxsci/kfu233] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant and its potential as a serious environmental health threat is beginning to be recognized. Humans are exposed to acrolein per oral (food and water), respiratory (cigarette smoke, automobile exhaust, and biocide use) and dermal routes, in addition to endogenous generation (metabolism and lipid peroxidation). Acrolein has been suggested to play a role in several disease states including spinal cord injury, multiple sclerosis, Alzheimer's disease, cardiovascular disease, diabetes mellitus, and neuro-, hepato-, and nephro-toxicity. On the cellular level, acrolein exposure has diverse toxic effects, including DNA and protein adduction, oxidative stress, mitochondrial disruption, membrane damage, endoplasmic reticulum stress, and immune dysfunction. This review addresses our current understanding of each pathogenic mechanism of acrolein toxicity, with emphasis on the known and anticipated contribution to clinical disease, and potential therapies.
Collapse
Affiliation(s)
- Akshata Moghe
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Smita Ghare
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Bryan Lamoreau
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Mohammad Mohammad
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Shirish Barve
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Craig McClain
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| | - Swati Joshi-Barve
- *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202 *Department of Pharmacology and Toxicology, Department of Medicine and Robley Rex VAMC, Louisville, Kentucky 40202
| |
Collapse
|
6
|
Lee SE, Yang H, Son GW, Park HR, Cho JJ, Ahn HJ, Park CS, Park YS. Identification and characterization of MicroRNAs in acrolein-stimulated endothelial cells: Implications for vascular disease. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-015-9303-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Lo Iacono M, Monica V, Vavalà T, Gisabella M, Saviozzi S, Bracco E, Novello S, Papotti M, Scagliotti GV. ATF2 contributes to cisplatin resistance in non-small cell lung cancer and celastrol induces cisplatin resensitization through inhibition of JNK/ATF2 pathway. Int J Cancer 2014; 136:2598-609. [PMID: 25359574 DOI: 10.1002/ijc.29302] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023]
Abstract
ATF2 is a transcription factor involved in stress and DNA damage. A correlation between ATF2 JNK-mediated activation and resistance to damaging agents has already been reported. The purpose of the present study was to investigate whether ATF2 may have a role in acquired resistance to cisplatin in non-small cell lung cancer (NSCLC). mRNA and protein analysis on matched cancer and corresponding normal tissues from surgically resected NSCLC have been performed. Furthermore, in NSCLC cell lines, ATF2 expression levels were evaluated and correlated to platinum (CDDP) resistance. Celastrol-mediated ATF2/cJUN activity was measured. High expression levels of both ATF2 transcript and proteins were observed in lung cancer specimens (p << 0.01, Log2 (FC) = +4.7). CDDP-resistant NSCLC cell lines expressed high levels of ATF2 protein. By contrast, Celastrol-mediated ATF2/cJUN functional inhibition restored the response to CDDP. Moreover, ATF2 protein activation correlates with worse outcome in advanced CDDP-treated patients. For the first time, it has been shown NSCLC ATF2 upregulation at both mRNA/protein levels in NSCLC. In addition, we reported that in NSCLC cell lines a correlation between ATF2 protein expression and CDDP resistance occurs. Altogether, our results indicate a potential increase in CDDP sensitivity, on Celastrol-mediated ATF2/cJUN inhibition. These data suggest a possible involvement of ATF2 in NSCLC CDDP-resistance.
Collapse
Affiliation(s)
- Marco Lo Iacono
- Department of Oncology, University of Turin, S. Luigi Hospital, Regione Gonzole 10, Orbassano, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hochman DJ, Collaco CR, Brooks EG. Acrolein induction of oxidative stress and degranulation in mast cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:908-915. [PMID: 23047665 DOI: 10.1002/tox.21818] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/01/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
Increases in asthma worldwide have been associated epidemiologically with expanding urban air pollution. The mechanistic relationship between airway hyper-responsiveness, inflammation, and ambient airborne triggers remains ambiguous. Acrolein, a ubiquitous aldehyde pollutant, is a product of incomplete combustion reactions. Acrolein is abundant in cigarette smoke, effluent from industrial smokestacks, diesel exhaust, and even hot oil cooking vapors. Acrolein is a potent airway irritant and can induce airway hyper-responsiveness and inflammation in the lungs of animal models. In the present study, we utilized the mast cell analog, RBL-2H3, to interrogate the responses of cells relevant to airway inflammation and allergic responses as a model for the induction of asthma-like conditions upon exposure to acrolein. We hypothesized that acrolein would induce oxidative stress and degranulation in airway mast cells. Our results indicate that acrolein at 1 ppm initiated degranulation and promoted the generation of reactive oxygen species (ROS). Introduction of antioxidants to the system significantly reduced both ROS generation and degranulation. At higher levels of exposure (above 100 ppm), RBL-2H3 cells displayed signs of severe toxicity. This experimental data indicates acrolein can induce an allergic inflammation in mast cell lines, and the initiation of degranulation was moderated by the application of antioxidants.
Collapse
Affiliation(s)
- Daniel J Hochman
- Department of Pediatrics, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-0369
| | | | | |
Collapse
|
9
|
Rom O, Kaisari S, Aizenbud D, Reznick AZ. The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes. Free Radic Biol Med 2013; 65:190-200. [PMID: 23792774 DOI: 10.1016/j.freeradbiomed.2013.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 05/23/2013] [Accepted: 06/12/2013] [Indexed: 12/25/2022]
Abstract
The toxic aldehydes acetaldehyde and acrolein were previously suggested to damage skeletal muscle. Several conditions in which exposure to acetaldehyde and acrolein is increased were associated with muscle wasting and dysfunction. These include alcoholic myopathy, renal failure, oxidative stress, and inflammation. A main exogenous source of both acetaldehyde and acrolein is cigarette smoking, which was previously associated with increased muscle catabolism. Recently, we have shown that exposure of skeletal myotubes to cigarette smoke stimulated muscle catabolism via increased oxidative stress, activation of p38 MAPK, and upregulation of muscle-specific E3 ubiquitin ligases. In this study, we aimed to investigate the effects of acetaldehyde and acrolein on catabolism of skeletal muscle. Skeletal myotubes differentiated from the C2 myoblast cell line were exposed to acetaldehyde or acrolein and their effects on signaling pathways related to muscle catabolism were studied. Exposure of myotubes to acetaldehyde did not promote muscle catabolism. However, exposure to acrolein caused increased generation of free radicals, activation of p38 MAPK, upregulation of the muscle-specific E3 ligases atrogin-1 and MuRF1, degradation of myosin heavy chain, and atrophy of myotubes. Inhibition of p38 MAPK by SB203580 abolished acrolein-induced muscle catabolism. Our findings demonstrate that acrolein but not acetaldehyde activates a signaling cascade resulting in muscle catabolism in skeletal myotubes. Although within the limitations of an in vitro study, these findings indicate that acrolein may promote muscle wasting in conditions of increased exposure to this aldehyde.
Collapse
Affiliation(s)
- Oren Rom
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | - Sharon Kaisari
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | - Dror Aizenbud
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel; Orthodontic and Craniofacial Department, Rambam Health Care Campus, Bat Galim, Haifa 31096, Israel
| | - Abraham Z Reznick
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel.
| |
Collapse
|
10
|
Yadav UCS, Ramana KV, Srivastava SK. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells. Free Radic Biol Med 2013; 65:15-25. [PMID: 23770200 PMCID: PMC3830659 DOI: 10.1016/j.freeradbiomed.2013.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/24/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5-10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells.
Collapse
Affiliation(s)
- Umesh C S Yadav
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - K V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
11
|
Randall MJ, Spiess PC, Hristova M, Hondal RJ, van der Vliet A. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1. Redox Biol 2013; 1:265-75. [PMID: 24024160 PMCID: PMC3757691 DOI: 10.1016/j.redox.2013.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1–30 μM) resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated1 kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases such as JNK, and may therefore be important in acrolein-induced alterations in airway epithelial function, as a contributing mechanism in tobacco-related respiratory disease.
Collapse
Affiliation(s)
- Matthew J Randall
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
12
|
Châtel A, Talarmin H, Hamer B, Schröder HC, Müller WEG, Dorange G. MAP kinase cell signaling pathway as biomarker of environmental pollution in the sponge Suberites domuncula. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1727-1740. [PMID: 21656160 DOI: 10.1007/s10646-011-0706-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/29/2011] [Indexed: 05/30/2023]
Abstract
In the present study, we analyzed the effects of two major pollutants of the environment, tributyltin (TBT) and water-accommodated fraction (WAF) of diesel oil, on MAP kinase activation, apoptosis induction and DNA damage, in the marine sponge Suberites domuncula. Our results clearly demonstrated a differential activation of the MAPKs depending on the chemicals tested. TBT induced the activation of p38 and JNK while diesel oil enhanced activation of both ERK and p38. The activation of MAPKs was observed after 1 h exposure and 6 and 24 h of recovery in seawater. In addition, DNA fragmentation, assessed by two techniques, the Fast micromethod(®) and the TUNEL assay, was detected after sponges were treated with both chemicals. Moreover, the study of caspase 3/7 activity showed that apoptosis was induced and triggered with all concentrations of TBT but only at high diesel oil concentrations. After TBT exposure, a correlation was observed between JNK activation, caspase 3 activity and DNA damage while p38 activation followed the two latter parameters at high concentrations of diesel oil, suggesting that sponges enhanced a specific apoptotic pathway depending on the xenobiotic tested. This study demonstrated a high signal response by the sponge Suberites domuncula to the tested chemicals. Cell signaling pathway studies may thus be of use in water quality biomonitoring programs.
Collapse
Affiliation(s)
- A Châtel
- EA 4326, Facteurs Nerveux et Structuration Tissulaire, Faculté de Médecine, Université de Bretagne Occidentale, 22 Avenue Camille Desmoulins, 29609, Brest Cedex, France.
| | | | | | | | | | | |
Collapse
|
13
|
Myers CR, Myers JM, Kufahl TD, Forbes R, Szadkowski A. The effects of acrolein on the thioredoxin system: implications for redox-sensitive signaling. Mol Nutr Food Res 2011; 55:1361-74. [PMID: 21812108 DOI: 10.1002/mnfr.201100224] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/31/2011] [Accepted: 06/20/2011] [Indexed: 02/04/2023]
Abstract
The reactive aldehyde acrolein is a ubiquitous environmental pollutant and is also generated endogenously. It is a strong electrophile and reacts rapidly with nucleophiles including thiolates. This review focuses on the effects of acrolein on thioredoxin reductase (TrxR) and thioredoxin (Trx), which are major regulators of intracellular protein thiol redox balance. Acrolein causes irreversible effects on TrxR and Trx, which are consistent with the formation of covalent adducts to selenocysteine and cysteine residues that are key to their activity. TrxR and Trx are more sensitive than some other redox-sensitive proteins, and their prolonged inhibition could disrupt a number of redox-sensitive functions in cells. Among these effects are the oxidation of peroxiredoxins and the activation of apoptosis signal regulating kinase (ASK1). ASK1 promotes MAP kinase activation, and p38 activation contributes to apoptosis and a number of other acrolein-induced stress responses. Overall, the disruption of the TrxR/Trx system by acrolein could be significant early and prolonged events that affect many aspects of redox-sensitive signaling and oxidant stress.
Collapse
Affiliation(s)
- Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
14
|
Choi JH, Hwang YP, Han EH, Kim HG, Park BH, Lee HS, Park BK, Lee YC, Chung YC, Jeong HG. Inhibition of acrolein-stimulated MUC5AC expression by Platycodon grandiflorum root-derived saponin in A549 cells. Food Chem Toxicol 2011; 49:2157-66. [PMID: 21664222 DOI: 10.1016/j.fct.2011.05.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 12/20/2022]
Abstract
Mucin overproduction is a hallmark of chronic airway diseases such as chronic obstructive pulmonary disease. In this study, we investigated the inhibition of acrolein-induced expression of mucin 5, subtypes A and C (MUC5AC) by Changkil saponin (CKS) in A549 cells. Acrolein, a known toxin in tobacco smoke and an endogenous mediator of oxidative stress, increases the expression of airway MUC5AC, a major component of airway mucus. CKS, a Platycodon grandiflorum root-derived saponin, inhibited acrolein-induced MUC5AC expression and activity, through the suppression of NF-κB activation. CKS also repressed acrolein-induced phosphorylation of ERK1/2, JNK1/2, and p38MAPK, which are upstream signaling molecules that control MUC5AC expression. In addition, the MAPK inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2), and SB203580 (p38 MAPK), and a PKC delta inhibitor (rottlerin; PKCδ) inhibited acrolein-induced MUC5AC expression and activity. CKS repressed acrolein-induced phosphorylation of PKCδ. Moreover, a reactive oxygen species (ROS) inhibitor, N-acetylcysteine, inhibited acrolein-induced MUC5AC expression and activity through the suppression of PKCδ and MAPK activation, and CKS repressed acrolein-induced ROS production. These results suggest that CKS suppresses acrolein-induced MUC5AC expression by inhibiting the activation of NF-κB via ROS-PKCδ-MAPK signaling.
Collapse
Affiliation(s)
- Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Makia NL, Bojang P, Falkner KC, Conklin DJ, Prough RA. Murine hepatic aldehyde dehydrogenase 1a1 is a major contributor to oxidation of aldehydes formed by lipid peroxidation. Chem Biol Interact 2011; 191:278-87. [PMID: 21256123 DOI: 10.1016/j.cbi.2011.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/25/2023]
Abstract
Reactive lipid aldehydes are implicated in the pathogenesis of various oxidative stress-mediated diseases, including non-alcoholic steatohepatitis, atherosclerosis, Alzheimer's and cataract. In the present study, we sought to define which hepatic Aldh isoform plays a major role in detoxification of lipid-derived aldehydes, such as acrolein and HNE by enzyme kinetic and gene expression studies. The catalytic efficiencies for metabolism of acrolein by Aldh1a1 was comparable to that of Aldh3a1 (V(max)/K(m)=23). However, Aldh1a1 exhibits far higher affinity for acrolein (K(m)=23.2 μM) compared to Aldh3a1 (K(m)=464 μM). Aldh1a1 displays a 3-fold higher catalytic efficiency for HNE than Aldh3a1 (218 ml/min/mg vs 69 ml/min/mg). The endogenous Aldh1a1 gene was highly expressed in mouse liver and a liver-derived cell line (Hepa-1c1c7) compared to Aldh2, Aldh1b1 and Aldh3a1. Aldh1a1 mRNA levels was 34-fold and 73-fold higher than Aldh2 in mouse liver and Hepa-1c1c7 cells respectively. Aldh3a1 gene was absent in mouse liver, but moderately expressed in Hepa-1c1c7 cells compared to Aldh1a1. We demonstrated that knockdown of Aldh1a1 expression by siRNA caused Hepa-1c1c7 cells to be more sensitive to acrolein-induced cell death and resulted in increased accumulation of acrolein-protein adducts and caspase 3 activation. These results indicate that Aldh1a1 plays a major role in cellular defense against oxidative damage induced by reactive lipid aldehydes in mouse liver. We also noted that hepatic Aldh1a1 mRNA levels were significantly increased (≈3-fold) in acrolein-fed mice compared to control. In addition, hepatic cytosolic ALDH activity was induced by acrolein when 1mM NAD(+) was used as cofactor, suggesting an Aldh1a1-protective mechanism against acrolein toxicity in mice liver. Thus, mechanisms to induce Aldh1a1 gene expression may provide a useful rationale for therapeutic protection against oxidative stress-induced pathologies.
Collapse
Affiliation(s)
- Ngome L Makia
- Department of Biochemistry & Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, United States
| | | | | | | | | |
Collapse
|
16
|
Lee SE, Lee SH, Ryu DS, Park CS, Park KS, Park YS. Differentially-expressed genes related to atherosclerosis in acrolein-stimulated human umbilical vein endothelial cells. BIOCHIP JOURNAL 2010. [DOI: 10.1007/s13206-010-4402-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Song MS, Baker GB, Dursun SM, Todd KG. The antidepressant phenelzine protects neurons and astrocytes against formaldehyde-induced toxicity. J Neurochem 2010; 114:1405-13. [PMID: 20557421 DOI: 10.1111/j.1471-4159.2010.06857.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive aldehydes have been implicated in the etiology of several neurological and psychiatric disorders, and there is considerable interest in drugs to counteract the actions of these aldehydes. Increased formaldehyde (FA) and up-regulation of semicarbazide-sensitive amine oxidase, which forms FA from methylamine, have been implicated in disorders such as cerebrovascular disorders, alcohol abuse, diabetes and Alzheimer's disease. Phenelzine (PLZ), a monoamine oxidase inhibitor, is an antidepressant that has recently received attention for its neuroprotective/neurorescue properties. We investigated FA-induced toxicity and the effects of PLZ using rat primary cortical neurons and astrocytes and found that FA induced toxicity in neurons and astrocytes by multiple means. In astrocytes, FA decreased glutamate transporter expression, inhibiting glutamate uptake. PLZ reversed the decrease of glutamate uptake and the alteration of the second messengers, AKT and p38, induced by FA. PLZ alone affected the GLT-1 glutamate transporter in opposite directions in astrocytes and neurons. Thus, PLZ has multiple actions in neurons and astrocytes that may contribute to its neuroprotection.
Collapse
Affiliation(s)
- Mee-Sook Song
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
18
|
Châtel A, Hamer B, Talarmin H, Dorange G, Schröder HC, Müller WEG. Activation of MAP kinase signaling pathway in the mussel Mytilus galloprovincialis as biomarker of environmental pollution. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 96:247-255. [PMID: 19948362 DOI: 10.1016/j.aquatox.2009.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 05/28/2023]
Abstract
Stimulation of MAP kinase signal transduction pathway by various stressful stimuli was investigated in the marine bivalve Mytilus galloprovincialis. Analyses were performed in animals exposed in laboratory to selected pollutants and in mussels collected in winter and summer along the eastern Adriatic coast (Croatia). Effects of oxidative stress, induced by tributyltin, hydrogen peroxide and water soluble fraction of diesel fuel on the activation/phosphorylation of the three Mitogen-Activated Protein Kinases (MAPKs) p38, JNK and ERK using a newly developed ELISA procedure were evaluated. MAP kinase activation was analyzed 1h after exposure of mussels to chemical agents, and after recovery periods of 6 and 24h. Our results clearly indicated that pollutants generated different patterns of induction of the MAPK phosphorylation. Indeed, only pp38 and pJNK were activated with 11, 33 and 100 microg/L TBT, reaching a maximum activation after 6h in seawater following treatment of mussels with 11 microg/L TBT. Treatment with 0.074 and 0.222 mM H2O2 enhanced activation of both p38 and ERK. These two kinases were activated after 1h exposure, followed by a diminution after 6h of recovery in seawater and a reactivation after 24h. The levels of phosphorylated P38 and JNK were increased after mussel exposure with 7.5, 15 and 30% of water soluble fraction of diesel oil. P38 was activated concentration dependently at 1h exposure. Additionally, field study pointed out seasonal differences in MAP kinases activation as mussels collected during summer had a higher enzyme activation state than in winter, as well as sampling site differences which could be correlated to the industrial/tourism activity and environmental stresses (salinity). All the results converge towards MAP kinase signaling pathway being induced by various pollutants in M. galloprovincialis. This signaling cascade should be considered as a possible biomarker of environmental stress and pollution.
Collapse
Affiliation(s)
- A Châtel
- EA 4326 Facteurs Nerveux et Structuration Tissulaire, Institut de Synergie des Sciences et de la Santé, 22 Avenue Camille Desmoulins C.S. 93837, 29238 Brest Cedex 03, France.
| | | | | | | | | | | |
Collapse
|
19
|
Misonou Y, Takahashi M, Park YS, Asahi M, Miyamoto Y, Sakiyama H, Cheng X, Taniguchi N. Acrolein induces Hsp72 via both PKCδ/JNK and calcium signaling pathways in human umbilical vein endothelial cells. Free Radic Res 2009; 39:507-12. [PMID: 16036326 DOI: 10.1080/10715760500072255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehydes to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. A number of studies have reported that acrolein evokes downstream signaling via an elevation in cellular oxidative stress. Here, we report that low concentrations of acrolein induce Hsp72 in human umbilical vein endothelial cells (HUVEC) and that both the PKCdelta/JNK pathway and calcium pathway were involved in the induction. The findings confirm that the production of reactive oxygen species (ROS) is not directly involved in the pathway. The induction of Hsp72 was not observed in other cells such as smooth muscle cells (SMC) or COS-1 cells. The results suggest that HUVEC have a unique defense system against cell damage by acrolein in which Hsp72 is induced via activation of both the PKCd/JNK and the calcium pathway.
Collapse
Affiliation(s)
- Yoshiko Misonou
- Department of Biochemistry, Osaka University Graduate School of Medicine, B1, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Joshi-Barve S, Amancherla K, Patil M, Bhatnagar A, Mathews S, Gobejishvili L, Cave M, McClain C, Barve S. Acrolein, a ubiquitous pollutant and lipid hydroperoxide product, inhibits antiviral activity of interferon-alpha: relevance to hepatitis C. Free Radic Biol Med 2009; 47:47-54. [PMID: 19345260 PMCID: PMC3947765 DOI: 10.1016/j.freeradbiomed.2009.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 01/31/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and can lead to hepatocellular carcinoma and end-stage liver disease. The current FDA-approved treatment for HCV (pegylated interferon-alpha (IFNalpha) with ribavirin) is effective in only about 50% of patients. Epidemiological evidence suggests that obesity, alcohol, smoking, and environmental pollutants may contribute to resistance to IFNalpha therapy in HCV. Acrolein, a ubiquitous environmental pollutant and major component of cigarette smoke, is also generated endogenously by cellular metabolism and lipid peroxidation. This study examines the effects of acrolein on (i) IFNalpha-mediated signaling and antiviral gene expression in cultured and primary human hepatocytes and (ii) HCV replication in an HCV-replicon system. Our data demonstrate that nontoxic concentrations of acrolein significantly inhibited IFNalpha-induced tyrosine phosphorylation of both cytoplasmic and nuclear STAT1 and STAT2, without altering the total levels. Also, acrolein down-regulated IFNalpha-stimulated gene transcription, resulting in reduced expression of antiviral genes. Importantly, acrolein abolished the IFNalpha-mediated down-regulation of HCV viral expression in the HCV-replicon system. This study defines mechanisms involved in resistance to IFNalpha and identifies the pathogenic role of acrolein, and potentially other environmental pollutants, in suppressing IFNalpha antiviral activity and establishes their adverse impact on HCV therapy.
Collapse
Affiliation(s)
- Swati Joshi-Barve
- Department of Medicine, University of Louisville Medical Center
- Department of Pharmacology & Toxicology, University of Louisville Medical Center
| | | | - Madhuvanti Patil
- Department of Pharmacology & Toxicology, University of Louisville Medical Center
| | - Aruni Bhatnagar
- Department of Medicine, University of Louisville Medical Center
- Department of Pharmacology & Toxicology, University of Louisville Medical Center
| | - Stephanie Mathews
- Department of Pharmacology & Toxicology, University of Louisville Medical Center
| | | | - Matthew Cave
- Department of Medicine, University of Louisville Medical Center
- Louisville VA Medical Center, Louisville, Kentucky
| | - Craig McClain
- Department of Medicine, University of Louisville Medical Center
- Department of Pharmacology & Toxicology, University of Louisville Medical Center
- Louisville VA Medical Center, Louisville, Kentucky
| | - Shirish Barve
- Department of Medicine, University of Louisville Medical Center
- Department of Pharmacology & Toxicology, University of Louisville Medical Center
| |
Collapse
|
21
|
Progression of atherosclerosis in the Apo E-/- model: 12-month exposure to cigarette mainstream smoke combined with high-cholesterol/fat diet. Atherosclerosis 2008; 205:135-43. [PMID: 19144336 DOI: 10.1016/j.atherosclerosis.2008.11.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 11/17/2008] [Accepted: 11/17/2008] [Indexed: 11/21/2022]
Abstract
This study was performed to gain information about the influence of two cardiovascular risk factors, cigarette mainstream smoke (MS) and high-cholesterol/fat diet, on the progression of atherosclerosis in apolipoprotein E-deficient (Apo E-/-) mice. Eight to 12-week-old mice were whole-body exposed for up to 12 months (6h/day, 5 days/week) to diluted cigarette mainstream smoke at total particulate matter (TPM) concentrations of 100 or 200mg/m(3), or to filtered fresh air (sham) in combination with a normal chow diet or a high-cholesterol/fat diet. Cholesterol in the aortic arch was elevated in the high-cholesterol/fat diet groups exposed to 200 mg TPM/m(3) compared to sham at all time points. In the brachiocephalic artery (BA), absolute plaque size and fraction area of plaques was elevated over the 12-month time course in mice exposed to 200 mg TPM/m(3) compared to sham (both diets). Exposure to 100 and 200 mg TPM/m(3) altered the number of elastin-rich layers in the BA in mice fed a high-cholesterol/fat diet, indicating changes in plaque morphology at 6 and 9 months. This study shows for the first time the influence of two different risk factors, MS and high-cholesterol/fat diet, both alone and in combination over a period of 12 months, on the progression of atherosclerosis in Apo E-/- mice. Data suggest that long-term exposure to cigarette mainstream smoke accelerates the development of atherosclerosis in Apo E-/- mice, particularly in combination with a high-cholesterol/fat diet.
Collapse
|
22
|
Berry KAZ, Henson PM, Murphy RC. Effects of Acrolein on Leukotriene Biosynthesis in Human Neutrophils. Chem Res Toxicol 2008; 21:2424-32. [DOI: 10.1021/tx800333u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Karin A. Zemski Berry
- Department of Pharmacology, MSC 8303, University of Colorado Denver, RC1 South, L18-6120, 12801 East 17th Avenue, P.O. Box 6511, Aurora, Colorado 80045, and Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| | - Peter M. Henson
- Department of Pharmacology, MSC 8303, University of Colorado Denver, RC1 South, L18-6120, 12801 East 17th Avenue, P.O. Box 6511, Aurora, Colorado 80045, and Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| | - Robert C. Murphy
- Department of Pharmacology, MSC 8303, University of Colorado Denver, RC1 South, L18-6120, 12801 East 17th Avenue, P.O. Box 6511, Aurora, Colorado 80045, and Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Denver, Colorado 80206
| |
Collapse
|
23
|
Kasahara DI, Poynter ME, Othman Z, Hemenway D, van der Vliet A. Acrolein inhalation suppresses lipopolysaccharide-induced inflammatory cytokine production but does not affect acute airways neutrophilia. THE JOURNAL OF IMMUNOLOGY 2008; 181:736-45. [PMID: 18566440 DOI: 10.4049/jimmunol.181.1.736] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acrolein is a reactive unsaturated aldehyde that is produced during endogenous oxidative processes and is a major bioactive component of environmental pollutants such as cigarette smoke. Because in vitro studies demonstrate that acrolein can inhibit neutrophil apoptosis, we evaluated the effects of in vivo acrolein exposure on acute lung inflammation induced by LPS. Male C57BL/6J mice received 300 microg/kg intratracheal LPS and were exposed to acrolein (5 parts per million, 6 h/day), either before or after LPS challenge. Exposure to acrolein either before or after LPS challenge did not significantly affect the overall extent of LPS-induced lung inflammation, or the duration of the inflammatory response, as observed from recovered lung lavage leukocytes and histology. However, exposure to acrolein after LPS instillation markedly diminished the LPS-induced production of several inflammatory cytokines, specifically TNF-alpha, IL-12, and the Th1 cytokine IFN-gamma, which was associated with reduction in NF-kappaB activation. Our data demonstrate that acrolein exposure suppresses LPS-induced Th1 cytokine responses without affecting acute neutrophilia. Disruption of cytokine signaling by acrolein may represent a mechanism by which smoking contributes to chronic disease in chronic obstructive pulmonary disease and asthma.
Collapse
Affiliation(s)
- David Itiro Kasahara
- Department of Pathology, Vermont Lung Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
24
|
Mercer BA, D'Armiento JM. Emerging role of MAP kinase pathways as therapeutic targets in COPD. Int J Chron Obstruct Pulmon Dis 2008; 1:137-50. [PMID: 18046891 PMCID: PMC2706609 DOI: 10.2147/copd.2006.1.2.137] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Studies examining the cellular mechanisms of inflammation and protease production in the lung tissue and airways of COPD patients have shed light on the important role of kinase-based signaling cascades. These pathways can be activated by environmental stimuli such as tobacco smoke, and by endogenous signals such as cytokines, growth factors, and inflammation-derived oxidants. The three most widely characterized cascades are those directed by the classical mitogen activated protein (MAP) kinase (ERK1/2), stress activated protein kinase/c-Jun N-terminal protein kinase, and p38 enzymes. These phosphorylation cascades transmit and amplify extracellular, receptor-mediated signals through the cytoplasm of the cell to activate nuclear transcription factors which bind and induce expression of target genes. The result is tight control of diverse cellular events, and rapid responses to external stimuli. However, recent research suggests that constitutive or aberrant activation of MAP kinases contributes to several COPD-associated phenotypes, including mucus overproduction and secretion, inflammation, cytokine expression, apoptosis, T cell activation, matrix metalloproteinase production, and fibrosis. This review explores the biological functions of the MAP kinase pathways in the pathogenesis of COPD, their activation by cigarette smoke, and discusses the potential role of MAP kinase inhibitors in COPD therapy.
Collapse
Affiliation(s)
- Becky A Mercer
- Institute of Human Nutrition, Division of Molecular Medicine, Department of Medicine, Columbia University College of Physicians and Surgeons, New York 10032, USA.
| | | |
Collapse
|
25
|
Go YM, Halvey PJ, Hansen JM, Reed M, Pohl J, Jones DP. Reactive aldehyde modification of thioredoxin-1 activates early steps of inflammation and cell adhesion. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 171:1670-81. [PMID: 17982132 DOI: 10.2353/ajpath.2007.070218] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several lines of evidence suggest that an increase in aldehyde-modified proteins is associated with development of atherosclerosis. Acrolein and 4-hydroxynonenal (HNE) are reactive aldehydes generated during active inflammation as a consequence of lipid peroxidation; both react with protein thiols, including thioredoxin-1 (Trx1), a protein recently found to regulate antioxidant function in endothelial cells. The present study examined whether acrolein or HNE modification of Trx1 could potentiate monocyte adhesion to endothelial cells, an early event of atherosclerosis. We examined the function of acrolein and HNE-modified Trx1 in the regulation of the early events of atherosclerosis using cultured aortic endothelial cells as a vascular model system, for in vitro enzymatic assay, and in mass spectrometry analysis. Our data show that acrolein and HNE at 1:1 ratios with Trx1 modified Cys-73 and inhibited activity. In endothelial cells, adducts were detected at concentrations as low as 1 mumol/L including conditions in which there was no detectable change in glutathione. Acrolein and HNE modification of Trx1 was associated with increased production of reactive oxygen species. Microinjection of acrolein- and HNE-modified Trx1 into endothelial cells stimulated monocyte adhesion. Chemical modification of Trx1 by common environmental and endogenously generated reactive aldehydes can contribute to atherosclerosis development by interfering with antioxidant and redox signaling functions of Trx1.
Collapse
Affiliation(s)
- Young-Mi Go
- Department of Medicine (Division of Pulmonary Medicine), Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
26
|
Takahashi T, Konta T, Takasaki S, Ichikawa K, Takeishi Y, Kubota I. An angiotensin II type-I receptor blocker, olmesartan medoxomil, attenuates lipid peroxidation in renal injury induced by subtotal nephrectomy. Clin Exp Nephrol 2007; 11:202-208. [PMID: 17891346 DOI: 10.1007/s10157-007-0481-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 05/14/2007] [Indexed: 11/25/2022]
Abstract
BACKGROUND Lipid-related oxidative stress, such as that caused by malondialdehyde (MDA), acrolein, and 4-hydroxynonenal (4-HNE), is involved in vascular injury in diabetes and hypertension. Olmesartan medoxomil, a blocker of angiotensin II type-I receptor, is an antihypertensive drug with antioxidant properties. In this study, we examined the involvement of oxidative lipids and the effect of olmesartan on lipid peroxidation in the progressive renal injury induced by renal mass reduction in rats. METHODS Rats were treated with vehicle or olmesartan (0.5 mg/kg or 10 mg/kg) for up to 8 weeks after subtotal nephrectomy. The expression of oxidative lipids and the effect of olmesartan on lipid peroxidation were evaluated by Western blotting and immunostaining of renal tissue. RESULTS Immunohistochemical examination revealed that MDA, acrolein, and 4-HNE were scarcely detected in renal cortex in sham-operated rats. On the contrary, these oxidative lipids were observed in injured glomeruli and dilated renal tubules in the ablated kidneys. Western blotting of renal cortical tissue revealed that MDA- or acrolein-bound proteins were mainly detected in the range of 30-90 kDa. Treatment with olmesartan attenuated lipid peroxidation and glomerulosclerosis. The renoprotective and antioxidative effect was higher in rats that received a high dose of olmesartan than in rats in the low-dose group. CONCLUSIONS These results indicate that oxidative lipids reflect the progression of renal injury induced by subtotal nephrectomy in rats. Olmesartan may have a renoprotective effect, with attenuation of lipid peroxidation.
Collapse
Affiliation(s)
- Toshiyuki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Tsuneo Konta
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| | - Satoshi Takasaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Kazunobu Ichikawa
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Yasuchika Takeishi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| |
Collapse
|
27
|
Lambert C, Li J, Jonscher K, Yang TC, Reigan P, Quintana M, Harvey J, Freed BM. Acrolein inhibits cytokine gene expression by alkylating cysteine and arginine residues in the NF-kappaB1 DNA binding domain. J Biol Chem 2007; 282:19666-75. [PMID: 17491020 DOI: 10.1074/jbc.m611527200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a potent inhibitor of pulmonary T cell responses, resulting in decreased immune surveillance and an increased incidence of respiratory tract infections. The alpha,beta-unsaturated aldehydes in cigarette smoke (acrolein and crotonaldehyde) inhibited production of interleukin-2 (IL-2), IL-10, granulocyte-macrophage colony-stimulating factor, interferon-gamma, and tumor necrosis factor-alpha by human T cells but did not inhibit production of IL-8. The saturated aldehydes (acetaldehyde, propionaldehyde, and butyraldehyde) in cigarette smoke were inactive. Acrolein inhibited induction of NF-kappaB DNA binding activity after mitogenic stimulation of T cells but had no effect on induction of NFAT or AP-1. Acrolein inhibited NF-kappaB1 (p50) binding to the IL-2 promoter in a chromatin immunoprecipitation assay by >99%. Using purified recombinant p50 in an electrophoretic mobility shift assay, we demonstrated that acrolein was 2000-fold more potent than crotonaldehyde in blocking DNA binding to an NF-kappaB consensus sequence. Matrix-assisted laser desorption/ionization time-of-flight and tandem mass spectrometry demonstrated that acrolein alkylated two amino acids (Cys-61 and Arg-307) in the DNA binding domain. Crotonaldehyde reacted with Cys-61, but not Arg-307, whereas the saturated aldehydes in cigarette smoke did not react with p50. These experiments demonstrate that aldehydes in cigarette smoke can regulate gene expression by direct modification of a transcription factor.
Collapse
Affiliation(s)
- Cherie Lambert
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tanel A, Averill-Bates DA. P38 and ERK mitogen-activated protein kinases mediate acrolein-induced apoptosis in Chinese hamster ovary cells. Cell Signal 2007; 19:968-77. [PMID: 17196791 DOI: 10.1016/j.cellsig.2006.10.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
Acrolein, which is a highly reactive alpha,beta-unsaturated aldehyde generated by lipid peroxidation, can affect cells and tissues and cause various disorders. Increased levels of unsaturated aldehydes play an important role in the pathogenesis of a number of human diseases such as Alzheimer's disease, atherosclerosis and diabetes. Acrolein is a highly ubiquitous toxic environmental pollutant. Because of human exposure, there is a need for investigating the mechanisms involved in acrolein toxicity at the cellular and molecular levels. Acrolein can induce cell death by apoptosis, although the mechanisms are not entirely clear. The present study investigates whether mitogen-activated protein kinases (MAPKs) play a role in activation of apoptosis by acrolein. Our findings show that acrolein-mediated apoptosis is in fact MAPK-dependent in Chinese hamster ovary cells. The MAP family kinases, including ERK and p38 kinase, and the transcription factor c-Jun were all activated by phosphorylation after 1 h exposure to acrolein. Phosphorylation of ERK and p38 kinases and their blockade by an ERK inhibitor, U0126, or a p38 inhibitor, SB203580, respectively, suggested that activation of apoptosis by acrolein is ERK- and p38-dependent. Thus, blockade of ERK and p38 inhibited chromatin condensation, caspase-7 and -9 activation as well as ICAD cleavage induced by acrolein. JNK and AKT kinases seem to be implicated in survival pathways against acrolein insult, since their respective inhibitors, SP600125 and LY294002/Wortmannin switched the mode of cell death from apoptosis to total necrosis. Finally, acrolein induced phosphorylation of the pro-apoptotic factor p53 which is responsible for transcription of pro-apoptotic factors such as Bax and Fas ligand. These results provide new information demonstrating the implication of MAPKs and AKT in acrolein-induced apoptosis, and this information may be useful for understanding the pathogenesis of a number of tissue diseases and environmental toxicity in response to acrolein.
Collapse
Affiliation(s)
- André Tanel
- Département des Sciences Biologiques, TOXEN, Université du Québec à Montréal, CP 8888, Succursale Centre Ville, Montréal, Québec, Canada H3C 3P8
| | | |
Collapse
|
29
|
Kovacic P, Pozos RS. Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications. ACTA ACUST UNITED AC 2007; 78:333-44. [PMID: 17315245 DOI: 10.1002/bdrc.20083] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This article deals with a novel, simple, integrated approach to cell signaling involving basic biochemical principles, and their relationship to reproductive toxicity. Initially, an overview of the biological aspects is presented. According to the hypothetical approach, cell signaling entails interaction of redox chains, involving initiation, propagation, and termination. The messengers are mainly radicals and electrons that are generated during electron transfer (ET) and hydrogen atom abstraction reactions. Termination and initiation processes in the chain occur at relay sites occupied by redox functionalities, including quinones, metal complexes, and imines, as well as redox amino acids. Conduits for the messengers, comprising species with nonbonding electrons, are omnipresent. Details are provided for the various electron transfer processes. In relation to the varying rates of cell communication, rationale is based on electrons and size of radicals. Another fit is similarly seen in inspection of endogenous precursors of reactive oxygen species (ROS); namely, proteins bearing redox moieties, lipid oxidation products, and carbohydrate radicals. A hypothesis is advanced in which electromagnetic fields associated with mobile radicals and electrons play a role. Although radicals have previously been investigated as messengers, the area occupies a minor part of the research, and it has not attracted broad consensus as an important component. For the first time, an integrated framework is presented composed of radicals, electrons, relays, conduits, and electrical fields. The approach is in keeping with the vast majority of experimental observations. Cell signaling also plays an important role in reproductive toxicity. The main classes that cause birth defects, including ROS, radiation, metal compounds, medicinals, abused drugs, and miscellaneous substances, are known to participate in the signaling process. A unifying basis exists, in that both signaling and reproductive toxicity are characterized by the electron transfer-reactive oxygen species-oxidative stress (ET-ROS-OS) scheme. This article also incorporates representative examples of the extensive investigations dealing with various medical implications. There is considerable literature pointing to a role for cell communication in a wide variety of illnesses.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182-1030, USA.
| | | |
Collapse
|
30
|
Tanel A, Averill-Bates DA. Activation of the death receptor pathway of apoptosis by the aldehyde acrolein. Free Radic Biol Med 2007; 42:798-810. [PMID: 17320762 DOI: 10.1016/j.freeradbiomed.2006.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/26/2006] [Accepted: 12/05/2006] [Indexed: 11/16/2022]
Abstract
Reactive alpha,beta-unsaturated aldehydes such as acrolein are major components of common environmental pollutants. As a toxic by-product of lipid peroxidation, acrolein has been implicated as a possible mediator of oxidative damage to cells and tissues in a wide variety of disease states, including atherosclerosis and neurodegenerative and pulmonary diseases. Although acrolein can induce apoptotic cell death in various cell types, the biochemical mechanisms are not understood. This study investigates the implication of the death receptor pathway in acrolein-induced apoptosis. Exposure of Chinese hamster ovary cells to acrolein caused translocation of adaptor protein Fas associated with death domain to the cytoplasmic membrane and caspase-8 activation. Kp7-6, an antagonist of Fas receptor activation, blocked apoptotic events downstream of caspase-8, such as caspase-7 activation and nuclear chromatin condensation. Acrolein activated the cross-talk pathway between the death receptor and mitochondrial pathways. Bid was cleaved to truncated-Bid, which was translocated to mitochondria. Activation of the mitochondrial pathway by acrolein was confirmed by caspase-9 activation. Inhibition of activation of either the Fas receptor or caspase-8 partially decreased acrolein-induced caspase-9 activation. These findings indicate that acrolein activates the Fas receptor pathway, which occurs upstream of the mitochondrial pathway. Caspase-9 activation still occurred despite inhibition of the Fas receptor pathway, suggesting that acrolein could also trigger the mitochondrial pathway independent of the receptor pathway. These findings improve our understanding of mechanisms of toxicity of the reactive aldehyde acrolein, which has widespread implications in multiple disease states which seem to be mediated by oxidative stress and lipid peroxidation.
Collapse
Affiliation(s)
- André Tanel
- Département des Sciences Biologiques, TOXEN, Université du Québec à Montréal, CP 8888, Succursale Centre Ville, Montréal, QC, Canada
| | | |
Collapse
|
31
|
Park YS, Kim J, Misonou Y, Takamiya R, Takahashi M, Freeman MR, Taniguchi N. Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase. Arterioscler Thromb Vasc Biol 2007; 27:1319-25. [PMID: 17363696 DOI: 10.1161/atvbaha.106.132837] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Acrolein, a known toxin in tobacco smoke, might be involved in atherogenesis. This study examined the effect of acrolein on expression of cyclooxygenase-2 (COX-2) and prostaglandin (PG) production in endothelial cells. METHODS AND RESULTS Cyclooxygenase (COX)-2 induction by acrolein and signal pathways were measured using Western blots, Northern blots, immunofluorescence, ELISA, gene silencing, and promoter assay. Colocalization of COX2 and acrolein-adduct was determined by immunohistochemistry. Here we report that the levels of COX-2 mRNA and protein are increased in human umbilical vein endothelial cells (HUVECs) after acrolein exposure. COX-2 was found to colocalize with acrolein-lysine adducts in human atherosclerotic lesions. Inhibition of p38 MAPK activity abolished the induction of COX-2 protein and PGE2 accumulation by acrolein, while suppression of extracellular signal-regulated kinase (ERK) and JNK activity had no effect on the induction of COX-2 expression in experiments using inhibitors and siRNA. Furthermore, rottlerin, an inhibitor of protein kinase Cdelta (PKCdelta), abrogated the upregulation of COX-2 at both protein and mRNA levels. CONCLUSION These results provide that acrolein may play a role in progression of atherosclerosis and new information on the signaling pathways involved in COX-2 upregulation in response to acrolein and provide evidence that PKCdelta and p38 MAPK are required for transcriptional activation of COX-2.
Collapse
Affiliation(s)
- Yong Seek Park
- Department of Biochemistry, Research Institute for Microbial Diseases, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Dalle-Donne I, Carini M, Vistoli G, Gamberoni L, Giustarini D, Colombo R, Maffei Facino R, Rossi R, Milzani A, Aldini G. Actin Cys374 as a nucleophilic target of alpha,beta-unsaturated aldehydes. Free Radic Biol Med 2007; 42:583-98. [PMID: 17291982 DOI: 10.1016/j.freeradbiomed.2006.11.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 11/14/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
We have recently shown that actin can be modified by the Michael addition of 4-hydroxynonenal to Cys374. Here, we have exposed purified actin at increasing acrolein concentrations and have identified the sites of acrolein addition using LC-ESI-MS/MS. Acrolein reacted with Cys374, His87, His173, and, minimally, His40. Cys374 adduction by both 4-hydroxynonenal and acrolein negligibly affected the polymerization of aldehyde-modified (carbonylated) actin, as shown by fluorescence measurements. Differently, acrolein binding at histidine residues, when Cys374 was completely saturated, inhibited polymerization in a dose-dependent manner. Molecular modeling analyses indicated that structural distortions of the ATP-binding site, induced by four acrolein-Michael adducts, could explain the changes in the polymerization process. Aldehyde binding to Cys374 does not alter significantly actin polymerization because this residue is located in a very flexible region, whose covalent modifications do not alter the protein folding. These data demonstrate that Cys374 represents the primary target site of alpha,beta-unsaturated aldehyde addition to actin in vitro. As Cys374 is a preferential target for various oxidative/nitrosative modifications, and actin is one of the main carbonylated proteins in vivo, these findings also suggest that the highly reactive Cys374 could serve as a carbonyl scavenger of reactive alpha,beta-unsaturated aldehydes and other electrophilic lipids.
Collapse
Affiliation(s)
- Isabella Dalle-Donne
- Department of Biology, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sarkar P, Hayes BE. Induction of COX-2 by acrolein in rat lung epithelial cells. Mol Cell Biochem 2007; 301:191-9. [PMID: 17318410 DOI: 10.1007/s11010-007-9411-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/12/2007] [Indexed: 11/26/2022]
Abstract
Acrolein is a highly reactive alpha, beta-unsaturated aldehyde, and a product of lipid peroxidation reactions. Acrolein is also an environmental pollutant and a key component of cigarette smoke, and has been implicated in multiple respiratory diseases. Lung tissue is a primary target for acrolein toxicity in smokers and may lead to chronic lung inflammation and lung cancer. Chronic inflammation, associated with expression of cyclooxygenase-2 (COX-2) and prostaglandins, are predisposing factors for malignancy. In this study, we investigated the induction of COX-2 by acrolein in rat lung epithelial cells and its related signaling cascade. Induction of COX-2 by acrolein was significant at 6 h post-treatment and was dependent upon NFkappaB activation. The activation of NFkappaB by acrolein was induced as a result of degradation of IkappaBalpha over the time of treatment. In addition, the upstream signaling cascade involved Raf-1/ERK activation by acrolein in the COX-2 induction and was inhibited by GW5074 (a Ras/Raf-1/ERK inhibitor), thereby providing evidence for the role of this cascade in this process. The results of these studies offer an explanation for the mechanism of COX-2 induction by acrolein in rat lung epithelial cells.
Collapse
Affiliation(s)
- Poonam Sarkar
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | | |
Collapse
|
34
|
Syrkina OL, Quinn DA, Jung W, Ouyang B, Hales CA. Inhibition of JNK activation prolongs survival after smoke inhalation from fires. Am J Physiol Lung Cell Mol Physiol 2007; 292:L984-91. [PMID: 17209141 DOI: 10.1152/ajplung.00248.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Initial injury from smoke inhalation is mainly to the trachea and bronchi and is characterized by mucosal hyperemia and increased microvascular permeability, exfoliation of epithelial lining, mucous secretion, mucous plugging, and an acute inflammatory cell influx. In this study, we explore the role of the c-Jun N-terminal protein kinase (JNK) pathway in smoke inhalation lung injury using a rat model of exposure to smoke from burning cotton. Male Sprague-Dawley rats were exposed to smoke from burning cotton for 15 min, and 1 h after injury a JNK inhibitor (SP-600125) or vehicle was injected. We measured neutrophil influx, cytokine release, percent of apoptotic cells, airway plugging, and survival. Administration of a JNK inhibitor 1 h after smoke inhalation decreased airway apoptosis, mucous plugging, influx of inflammatory cells, and the release of cytokines and significantly prolonged animal survival (P < 0.05). These in vivo data show that the JNK pathway plays a critical role in smoke-induced lung injury and offer an attractive therapeutic approach for this injury.
Collapse
Affiliation(s)
- Olga L Syrkina
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
35
|
Burlando B, Berti E, Viarengo A. Effects of seawater pollutants on protein tyrosine phosphorylation in mussel tissues. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 78 Suppl 1:S79-85. [PMID: 16580746 DOI: 10.1016/j.aquatox.2006.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Different exogenous compounds are known to stimulate tyrosine kinase signaling, and this could explain a wide spectrum of pollutant effects on different organisms. We studied the effects of various seawater contaminants on tyrosine phosphorylation levels in different tissues of the mussel (Mytilus edulis), by using Western immunoblotting. Mussels were exposed in aquarium for 3 weeks to North Sea oil alone or to a mixture of North Sea oil, alkyl phenols, and polycyclic aromatic hydrocarbons (PAH). In another experiment, mussels were exposed for 3 weeks to each of the following potential endocrine disruptors: bisphenol A, diallyl phthalate, or tetrabromodiphenylether-47. In a third experiment, mussels were caged at four sites along a copper field gradient. Use of antiphosphotyrosine antibody showed that treatments with oil alone, or with oil, alkyl phenols and PAH induced phosphorylation increases in the digestive gland, gills and mantle. Bisphenol A produced significant effects in the gills and mantle, while diallyl phthalate and tetrabromodiphenylether-47 had a slight effect only on the gill tissue. Mussels exposed to the copper field gradient showed phosphotyrosine increases in the gills and mantle at intermediate levels of contamination. This latter result was also confirmed by using phosphospecific p38 antibody. In summary, the strength of induction was: oil mixture>oil>bisphenol A> or =copper; while the degree of tissue responsiveness was: mantle>gill>digestive gland. Based on these data, the use of tyrosine phosphorylation levels as a biomarker of seawater pollution is proposed.
Collapse
Affiliation(s)
- Bruno Burlando
- DISAV, Università del Piemonte Orientale "Amedeo Avogadro", Alessandria, Italy.
| | | | | |
Collapse
|
36
|
Burcham PC, Pyke SM. Hydralazine Inhibits Rapid Acrolein-Induced Protein Oligomerization: Role of Aldehyde Scavenging and Adduct Trapping in Cross-Link Blocking and Cytoprotection. Mol Pharmacol 2005; 69:1056-65. [PMID: 16368895 DOI: 10.1124/mol.105.018168] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hydralazine strongly suppresses the toxicity of acrolein, a reactive aldehyde that contributes to numerous health disorders. At least two mechanisms may underlie the cytoprotection, both of which involve the nucleophilic hydrazine possessed by hydralazine. Under the simplest scenario, hydralazine directly scavenges free acrolein, decreasing intracellular acrolein availability and thereby suppressing macromolecular adduction. In a second "adduct-trapping" mechanism, the drug forms hydrazones with acrolein-derived Michael adducts in cell proteins, preventing secondary reactions of adducted proteins that may trigger cell death. To identify the most important mechanism, we explored these two pathways in mouse hepatocytes poisoned with the acrolein precursor allyl alcohol. Intense concentration-dependent adduct-trapping in cell proteins accompanied the suppression of toxicity by hydralazine. However, protective concentrations of hydralazine did not alter extracellular free acrolein levels, cellular glutathione loss, or protein carbonylation, suggesting that the cytoprotection is not due to minimization of intracellular acrolein availability. To explore ways whereby adduct-trapping might confer cytoprotection, the effect of hydralazine on acrolein-induced protein cross-linking was examined. Using bovine pancreas ribonuclease A as a model protein, acrolein caused rapid time- and concentration-dependent cross-linking, with dimerized protein detectable within 45 min of commencing protein modification. Lysine adduction in monomeric protein preceded the appearance of oligomers, whereas reductive methylation of protein amine groups abolished both adduction and oligomerization. Hydralazine inhibited cross-linking if added 30 min after commencing acrolein exposure but was ineffective if added after a 90-min delay. Adduct-trapping closely accompanied the inhibition of cross-linking by hydralazine. These findings suggest that cross-link blocking may contribute to hydralazine cytoprotection.
Collapse
Affiliation(s)
- Philip C Burcham
- Department of Clinical and Experimental Pharmacology, The University of Adelaide, Australia.
| | | |
Collapse
|
37
|
Park YS, Misonou Y, Fujiwara N, Takahashi M, Miyamoto Y, Koh YH, Suzuki K, Taniguchi N. Induction of thioredoxin reductase as an adaptive response to acrolein in human umbilical vein endothelial cells. Biochem Biophys Res Commun 2005; 327:1058-65. [PMID: 15652504 DOI: 10.1016/j.bbrc.2004.12.104] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Indexed: 11/29/2022]
Abstract
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehyde to which humans are exposed in a variety of environment situations and is also a product of lipid peroxidation. Increased unsaturated aldehyde levels and reduced antioxidant status play an important role in the pathogenesis of a number of human diseases such as Alzheimer's, atherosclerosis, and diabetes. Mammalian thioredoxin reductase (TR), a central antioxidant enzyme, is a selenoprotein that catalyzes the reduction of oxidized thioredoxin. The findings reported here show that low concentrations of acrolein rapidly inactivate TR, both in vitro and in vivo. These data suggest that acrolein may directly inactivate TR, resulting in an increase in oxidative cellular damage. In addition, we also found that the initial inactivation of TR molecules by acrolein triggers a compensatory signal for inducing TR gene expression in human umbilical vein endothelial cells (HUVEC). The results of the present study suggest that HUVEC may have a protective system against cell damage by acrolein via the upregulation of TR, which is an adaptive response to oxidative stress.
Collapse
Affiliation(s)
- Yong Seek Park
- Department of Biochemistry, Graduate School of Medicine, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang Q, Adiseshaiah P, Reddy SP. Matrix metalloproteinase/epidermal growth factor receptor/mitogen-activated protein kinase signaling regulate fra-1 induction by cigarette smoke in lung epithelial cells. Am J Respir Cell Mol Biol 2005; 32:72-81. [PMID: 15528491 DOI: 10.1165/rcmb.2004-0198oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exposure to cigarette smoke (CS) can lead to the development of lung cancer, but the molecular mechanisms underlying this process remain unclear. Given that activator protein 1 (AP-1) regulates genes involved in both physiologic and pathophysiologic processes, we have investigated the effects of CS on Jun and Fos family member expression and regulation using a nonmalignant human bronchial epithelial cell line, 1HAEo. Exposure to CS caused a marked upregulation of c-Jun, c-Fos, and Fra-1, but not of Fra-2, Jun-B, and Jun-D expression. Because Fra-1 is overexpressed in various tumors and upregulates genes associated with tumor progression, we further elucidated the mechanisms that control CS-stimulated fra-1 induction. CS stimulated fra-1 induction primarily at the transcriptional level. However, epidermal growth factor receptor (EGFR)-specific inhibitor, AG1478, completely suppressed CS-stimulated fra-1 expression. Similarly, the specific inhibitors of extracellular signal-regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), and p38 kinase signaling markedly suppressed fra-1 induction. Consistent with this finding, AG1478 blocked CS-stimulated ERK, JNK, and p38 phosphorylation. These results suggest that EGFR-activated multiple kinase signaling is essential for fra-1 induction. Furthermore, treatment of cells with GM6001, which inhibits matrix metalloproteinase activity, significantly suppressed CS-stimulated EGF shedding, EGFR and ERK kinase phosphorylation, and subsequent fra-1 induction. Collectively, our findings indicate an obligatory role for metalloproteinase-EGFR-mediated mitogen-activated protein kinase signaling in controlling CS-induced fra-1 expression.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
39
|
Liu C, Russell RM, Wang XD. Low dose beta-carotene supplementation of ferrets attenuates smoke-induced lung phosphorylation of JNK, p38 MAPK, and p53 proteins. J Nutr 2004; 134:2705-10. [PMID: 15465770 DOI: 10.1093/jn/134.10.2705] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We demonstrated previously that smoke exposure and/or high-dose beta-carotene supplementation decreases levels of retinoic acid and retinoic acid receptor beta (RARbeta) protein, but increase levels of c-Jun and proliferating cellular nuclear antigen protein in the lungs of ferrets. In contrast, low-dose beta-carotene can prevent the decreased lung retinoic acid and the smoke-induced lung lesions. In the present study, we investigated whether smoke exposure and/or beta-carotene supplementation could affect Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and p53 in the lungs of ferrets. Ferrets were subjected to cigarette smoke exposure and either a high or low dose of beta-carotene (2 x 3 factorial design) for 6 mo. There were greater protein levels of phosphorylated JNK, p38, and c-Jun, but lower levels of MAPK phophatase-1 (MKP-1) in groups exposed to smoke and/or high dose beta-carotene. Both phosphorylated-p53 and total p53 were substantially increased in the lungs of these groups. In contrast, low-dose beta-carotene greatly attenuated the smoke-induced phosphorylation of JNK, p38, c-Jun, p53, and total p53, accompanied by upregulated MKP-1. Smoke exposure increased MAPK kinase-4 (MKK4) phosphorylation regardless of beta-carotene supplementation. These data indicate that restoration of retinoic acid and MKP-1 by low-dose beta-carotene in the lungs of ferrets may prevent the smoke-induced activation of the JNK-dependent signaling pathway, p38 MAPK, and the associated phosphorylation of p53, thereby lowering the risk of the smoke-related lung lesions. These data provide supportive evidence that the beneficial vs. detrimental effects of beta-carotene supplementation are related to the dosage of beta-carotene administered.
Collapse
Affiliation(s)
- Chun Liu
- Nutrition and Cancer Biology Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | | | | |
Collapse
|