1
|
Zhao M, Xie L, Huang W, Li M, Gu X, Zhang W, Wei J, Zhang N. Combined Effects of Cadmium and Lead on Growth Performance and Kidney Function in Broiler Chicken. Biol Trace Elem Res 2025; 203:358-373. [PMID: 38589681 DOI: 10.1007/s12011-024-04173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Cadmium (Cd) and lead (Pb) are heavy metals prevalent in the environment and feed, and they reduce production performance of domestic animals, as well as they result in residue in animal tissues. The kidney is the target tissue for Cd and Pb. And the kidney is crucial for the reabsorption of calcium (Ca), which consequently influences bone strength. However, there are relatively few studies related to the effects of Cd and Pb exposure on performance, bone strength and kidney damage in livestock. The purpose of this experiment was to explore the combined effect of Cd and Pb on growth performance and renal impairment and the possible underlying mechanism. For this, 168 1-day-old Ross 308 broilers were randomly divided into four groups of six birds each, with seven replicates in each group: control group, 50 mg Cd/kg body weight group, 200 mg Pb/kg body weight group and 50 mg Cd/kg body weight + 200 mg Pb/kg body weight group. Feed intake was recorded daily and body weight was recorded weekly. The results show that at the end of the 3rd and 6th week, one broiler from each replicate was randomly selected for sampling. Boilers co-exposed to Cd and Pb for 3 weeks and 6 weeks had significantly decreased average daily feed intake (ADFI) and average daily body weight gain (ADG) than the control group, and the ratio of feed-to-weight gain (F/G) significantly increased after 6 weeks of co-exposure to Cd and Pb. Microscopic picture and ultrastructure analyses of the kidneys showed that Cd and Pb caused kidney damage to broiler chickens, and the damage was more serious in the Cd + Pb group, which was manifested by increased renal tubular epithelial degeneration and increased interstitial stasis points. Dietary exposure to Cd and Pb impaired production performance and induced renal oxidative damage in broilers. The combined effects of Cd and Pb on the kidneys are greater than their effects alone. The PERK-ATF4 pathway mediated endoplasmic reticulum stress participates the renal oxidative damage during chronic Cd and Pb exposure.
Collapse
Affiliation(s)
- Man Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Longqiang Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Wenbin Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Meiling Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Xin Gu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Jintao Wei
- Institute of Animal Husbandry and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
2
|
Zhou J, Hu C, Li S, Zhang C, Liu Y, Chen Z, Li S, Chen H, Deng Y. An electrochemical aptasensor based on silver-thiolated graphene for highly sensitive detection of Pb 2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2905-2912. [PMID: 38660709 DOI: 10.1039/d4ay00322e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The presence of lead ions (Pb2+) in the environment not only leads to environmental contamination but also poses a significant risk to public health through their migration into food and drinking water. Therefore, the development of rapid and effective techniques for detection of trace amounts of Pb2+ is crucial for safeguarding both the environment and biosafety. In this study, an aptamer-based electrochemical sensor was developed for specific detection of Pb2+ by modifying a polylysine (PLL) coated silver-thiolated graphene (Ag-SH-G) nanocomposite (PLL/Ag-SH-G) on the surface of a glassy carbon electrode, which was further modified with gold nanoparticles (AuNPs) for attachment of aptamers (Apt) that specifically recognized Pb2+. The Ag-SH-G particles were synthesized using a one-step in situ method, resulting in significantly enhanced electrochemical properties upon incorporating Ag nanoparticles into the PLL/Ag-SH-G composite. Coating of the covalently or no-covalently bonded Ag-SH-G particles with PLL provides an excellent supporting matrix, facilitating the assembly of AuNPs and a thiol-modified aptamer for Pb2+. Under optimized conditions, Apt/AuNPs/PLL/Ag-SH-G/GCE exhibited excellent sensing performance for Pb2+ with a wide linear response range (10-1000 nM), a low detection limit (0.047 nM) and extraordinary selectivity. The sensor was employed and satisfactory results were obtained in river water, soil and vegetable samples for the detection of Pb2+.
Collapse
Affiliation(s)
- Jie Zhou
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Chuanxiang Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
- College of Packing and Materials Engineering, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Yuan Liu
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China
| | - Zhu Chen
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Song Li
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Hui Chen
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Yan Deng
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| |
Collapse
|
3
|
Shan D, Lv Y, Zhao J, Zhang F, Xi H, Qiu H, Lv J, Chen H. Association between blood lead levels and unfavorable IVF outcomes: potential involvement of endoplasmic reticulum stress response in granulosa cells. J Assist Reprod Genet 2024; 41:947-956. [PMID: 38470551 PMCID: PMC11052936 DOI: 10.1007/s10815-024-03056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
PURPOSE To investigate the relationship between blood lead levels (BLLs) and IVF clinical outcomes in infertile females and to further explore the possible involvement of granulosa cell (GC) endoplasmic reticulum (ER) stress in the process. METHODS One hundred twenty-three infertile women undergoing IVF cycles were included in the current study. All participants were divided into three (low, medium, and high) groups determined by BLL tertiles. Gonadotropin releasing hormone (GnRH) agonist regimen for ovarian stimulation was used for all patients, with follicular fluids being collected on the day of oocyte retrieval. Lactate dehydrogenase (LDH) levels in follicular fluid and the endoplasmic reticulum stress-signaling pathway of granulosa cells (GCs) were examined. RESULTS The oocyte maturation rate and high-quality embryo rate on cleaved stage decreased significantly as BLL increased. For lead levels from low to high, live birth rate (68.29%, 56.10%, 39.02%; P=0.028) showed negative correlations with BLLs. Also, follicular fluid Pb level and LDH level was significantly higher in the high lead group versus the low group. Binomial regression analysis revealed significant negative correlation between BLLs and live birth rate (adjusted OR, 0.38; 95% CI, 0.15-0.95, P=0.038). Further analysis of the endoplasmic reticulum stress (ER stress) signaling pathway of GCs found that expressions of GRP78, total JNK, phosphorylated JNK, and CHOP increased and BCL-2 decreased with increasing BLLs. CONCLUSIONS BLLs are negatively associated with final clinical outcomes in IVF patients that may be related to increased ER stress response and GC apoptosis. Thus, reducing Pb exposure before IVF procedures may improve final success rates.
Collapse
Affiliation(s)
- Dan Shan
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yanning Lv
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Junzhao Zhao
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fan Zhang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Haitao Xi
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Haifan Qiu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jieqiang Lv
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Haolin Chen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
- Department of Pharmacology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
4
|
Guo J, Li R, Ouyang Z, Tang J, Zhang W, Chen H, Zhu Q, Zhang J, Zhu G. Insights into the mechanism of transcription factors in Pb 2+-induced apoptosis. Toxicology 2024; 503:153760. [PMID: 38387706 DOI: 10.1016/j.tox.2024.153760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The health risks associated with exposure to heavy metals, such as Pb2+, are increasingly concerning the public. Pb2+ can cause significant harm to the human body through oxidative stress, autophagy, inflammation, and DNA damage, disrupting cellular homeostasis and ultimately leading to cell death. Among these mechanisms, apoptosis is considered crucial. It has been confirmed that transcription factors play a central role as mediators during the apoptosis process. Interestingly, these transcription factors have different effects on apoptosis depending on the concentration and duration of Pb2+ exposure. In this article, we systematically summarize the significant roles of several transcription factors in Pb2+-induced apoptosis. This information provides insights into therapeutic strategies and prognostic biomarkers for diseases related to Pb2+ exposure.
Collapse
Affiliation(s)
- Jingchong Guo
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Ruikang Li
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Zhuqing Ouyang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Jiawen Tang
- The First Clinical Medical College of Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Hui Chen
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Qian Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China
| | - Jing Zhang
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| | - Gaochun Zhu
- Department of Anatomy, Medical College of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
5
|
A Novel Aptamer-Imprinted Polymer-Based Electrochemical Biosensor for the Detection of Lead in Aquatic Products. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010196. [PMID: 36615388 PMCID: PMC9822230 DOI: 10.3390/molecules28010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Lead contamination in aquatic products is one of the main hazard factors. The aptasensor is a promising detection method for lead ion (Pb(II)) because of its selectivity, but it is easily affected by pH. The combination of ion-imprinted polymers(IIP) with aptamers may improve their stability in different pH conditions. This paper developed a novel electrochemical biosensor for Pb(II) detection by using aptamer-imprinted polymer as a recognition element. The glassy carbon electrode was modified with gold nanoparticles and aptamers. After the aptamer was induced by Pb(II) to form a G-quadruplex conformation, a chitosan-graphene oxide was electrodeposited and cross-linked with glutaraldehyde to form an imprint layer, improving the stability of the biosensor. Under the optimal experimental conditions, the current signal change (∆I) showed a linear correlation of the content of Pb(II) in the range of 0.1-2.0 μg/mL with a detection limit of 0.0796 μg/mL (S/N = 3). The biosensor also exhibited high selectivity for the determination of Pb(II) in the presence of other interfering metal ion. At the same time, the stability of the imprinted layer made the sensor applicable to the detection environment with a pH of 6.4-8.0. Moreover, the sensor was successfully applied to the detection of Pb(II) in mantis shrimp.
Collapse
|
6
|
Pritchard KA, Jing X, Teng M, Wells C, Jia S, Afolayan AJ, Jarzembowski J, Day BW, Naylor S, Hessner MJ, Konduri GG, Teng RJ. Role of endoplasmic reticulum stress in impaired neonatal lung growth and bronchopulmonary dysplasia. PLoS One 2022; 17:e0269564. [PMID: 36018859 PMCID: PMC9417039 DOI: 10.1371/journal.pone.0269564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Myeloperoxidase (MPO), oxidative stress (OS), and endoplasmic reticulum (ER) stress are increased in the lungs of rat pups raised in hyperoxia, an established model of bronchopulmonary dysplasia (BPD). However, the relationship between OS, MPO, and ER stress has not been examined in hyperoxia rat pups. We treated Sprague-Dawley rat pups with tunicamycin or hyperoxia to determine this relationship. ER stress was detected using immunofluorescence, transcriptomic, proteomic, and electron microscopic analyses. Immunofluorescence observed increased ER stress in the lungs of hyperoxic rat BPD and human BPD. Proteomic and morphometric studies showed that tunicamycin directly increased ER stress of rat lungs and decreased lung complexity with a BPD phenotype. Previously, we showed that hyperoxia initiates a cycle of destruction that we hypothesized starts from increasing OS through MPO accumulation and then increases ER stress to cause BPD. To inhibit ER stress, we used tauroursodeoxycholic acid (TUDCA), a molecular chaperone. To break the cycle of destruction and reduce OS and MPO, we used N-acetyl-lysyltyrosylcysteine amide (KYC). The fact that TUDCA improved lung complexity in tunicamycin- and hyperoxia-treated rat pups supports the idea that ER stress plays a causal role in BPD. Additional support comes from data showing TUDCA decreased lung myeloid cells and MPO levels in the lungs of tunicamycin- and hyperoxia-treated rat pups. These data link OS and MPO to ER stress in the mechanisms mediating BPD. KYC's inhibition of ER stress in the tunicamycin-treated rat pup's lung provides additional support for the idea that MPO-induced ER stress plays a causal role in the BPD phenotype. ER stress appears to expand our proposed cycle of destruction. Our results suggest ER stress evolves from OS and MPO to increase neonatal lung injury and impair growth and development. The encouraging effect of TUDCA indicates that this compound has the potential for treating BPD.
Collapse
Affiliation(s)
- Kirkwood A. Pritchard
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Xigang Jing
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Michelle Teng
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Clive Wells
- Electron Microscope Facility, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Shuang Jia
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Adeleye J. Afolayan
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Jason Jarzembowski
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Billy W. Day
- ReNeuroGen L.L.C. Milwaukee, Elm Grove, Wisconsin, United States of America
| | - Stephen Naylor
- ReNeuroGen L.L.C. Milwaukee, Elm Grove, Wisconsin, United States of America
| | - Martin J. Hessner
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - G. Ganesh Konduri
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America
| | - Ru-Jeng Teng
- Children’s Research Institute, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, Wisconsin, United States of America,* E-mail:
| |
Collapse
|
7
|
Wang B, Zou L, Li M, Zhou L. Astrocyte: A Foe or a Friend in Intellectual Disability-Related Diseases. Front Synaptic Neurosci 2022; 14:877928. [PMID: 35812794 PMCID: PMC9259964 DOI: 10.3389/fnsyn.2022.877928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Intellectual disabilities are a type of neurodevelopmental disease caused by neurological dysfunction. Their incidence is largely associated with neural development. Astrocytes are the most widely distributed cells in the mammalian brain. Previous studies have reported that astrocytes only supported and separated the neurons in the brain. However, recent studies have found that they also play an important role in neural development. Understanding the astrocyte mechanism in intellectual development disorder-related diseases will help provide new therapeutic targets for the treatment of intellectual disability-related diseases. This mini-review introduced the association between astrocyte and intellectual disabilities. Furthermore, recent advances in genetic and environmental factors causing intellectual disability and different pharmaceutical effects of intellectual disability-related drugs on astrocytes have been summarised. Finally, we discussed future perspectives of astrocyte-based therapy for intellectual disability.
Collapse
Affiliation(s)
| | | | | | - Liang Zhou
- *Correspondence: Liang Zhou, , orcid.org/0000-0003-0820-1520
| |
Collapse
|
8
|
Endocrine-Disrupting Chemicals and Their Adverse Effects on the Endoplasmic Reticulum. Int J Mol Sci 2022; 23:ijms23031581. [PMID: 35163501 PMCID: PMC8836273 DOI: 10.3390/ijms23031581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
There is growing concern regarding the health and safety issues of endocrine-disrupting chemicals (EDCs). Long-term exposure to EDCs has serious adverse health effects through both hormone-direct and hormone-indirect ways. Accordingly, some EDCs can be a pathogen and an inducer to the susceptibility of disease, even if they have a very low affinity on the estrogen receptor, or no estrogenic effect. Endoplasmic reticulum (ER) stress recently attracted attention in this research area. Because ER and ER stress could be key regulators of the EDC’s adverse effects, such as the malfunction of the organ, as well as the death, apoptosis, and proliferation of a cell. In this review, we focused on finding evidence which shows that EDCs could be a trigger for ER stress and provide specific examples of EDCs, which are known to cause ER stress currently.
Collapse
|
9
|
Wang X, Huang J, Hou H, Chen D. The relationship with the stability between GRP78, CHOP and human carotid atherosclerotic plaque. Clin Neurol Neurosurg 2021; 212:107067. [PMID: 34839153 DOI: 10.1016/j.clineuro.2021.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Current researches on human carotid atherosclerosis (AS) plaques are focused on vulnerable plaques, and various methods have been clinically used to detect vulnerable plaques to prevent adverse events. GRP78 and CHOP, as markers in the endoplasmic reticulum stress (ERS), have a certain relationship with the stability of plaque tissue. METHODS In this study, 150 plaque specimens were obtained from carotid endarterectomy (CEA). According to pathology, they were divided into two groups: stable plaque and vulnerable plaque. Immunohistochemistry was used to semi-quantitate and localize the target molecule. Western blot and RT-qPCR were used to detect the expression of GRP78 and CHOP in the samples. The receiver operating characteristic curve (ROC curve) judges the significance of the target molecule as a biomarker for the diagnosis of vulnerable plaques. RESULTS The results of immunohistochemistry showed that the target molecules of GRP78 and CHOP were mainly expressed in inflammatory cells and vascular endothelial cells; Western blot and RT-qPCR techniques were used to detect the expression of GRP78 and CHOP in different pathlogical types of plaques, which respectively indicated that there were differential expressions. The expression in vulnerable plaques was significantly higher than that in stable plaques (P < 0.05). analysis with ROC, the areas under curves (AUC) of the GRP78 and CHOP data were calculated as 0.792 and 0.850, respectively and the combination showed the largest AUC of 0.870. CONCLUSION In endoplasmic reticulum stress, GRP78 and CHOP are significantly higher expressions in vulnerable plaques than stable's, which indicated that GRP78 and CHOP played a certain role in the occurrence and development of human carotid atherosclerosis and vulnerable plaques; GRP78 and CHOP are promising molecular biomarkers for identifying the endoplasmic reticulum stress situation, atherosclerosis and plaque stability. They also could provide a potential drug targets for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xianwei Wang
- Dalian Medical University, Dalian 116024, China; Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian 116033, China.
| | - Jiaming Huang
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian 116033, China.
| | - Haobo Hou
- Dalian Medical University, Dalian 116024, China.
| | - Dong Chen
- Dalian Medical University, Dalian 116024, China; Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian 116033, China.
| |
Collapse
|
10
|
Li Y, Lv H, Xue C, Dong N, Bi C, Shan A. Plant Polyphenols: Potential Antidotes for Lead Exposure. Biol Trace Elem Res 2021; 199:3960-3976. [PMID: 33236294 DOI: 10.1007/s12011-020-02498-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
Lead is one of the most common heavy metal elements and has high biological toxicity. Long-term lead exposure will induce the contamination of animal feed, water, and food, which can cause chronic lead poisoning including nephrotoxicity, hepatotoxicity, neurotoxicity, and reproductive toxicity in humans and animals. In the past few decades, lead has caused widespread concern because of its significant threat to health. A large number of in vitro and animal experiments have shown that oxidative stress plays a key role in lead toxicity, and endoplasmic reticulum (ER) stress and the mitochondrial apoptosis pathway can also be induced by lead toxicity. Therefore, plant polyphenols have attracted attention, with their advantages of being natural antioxidants and having low toxicity. Plant polyphenols can resist lead toxicity by chelating lead with their special chemical molecular structure. In addition, scavenging active oxygen and improving the level of antioxidant enzymes, anti-inflammatory, and anti-apoptosis are also the key to relieving lead poisoning by plant polyphenols. Various plant polyphenols have been suggested to be useful in alleviating lead toxicity in animals and humans and are believed to have good application prospects.
Collapse
Affiliation(s)
- Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hao Lv
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - Chongpeng Bi
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
11
|
Huang XX, Jiang RH, Xu XQ, Zu QQ, Wu FY, Liu S, Shi HB. Ischemic Stroke Increased Gadolinium Deposition in the Brain and Aggravated Astrocyte Injury After Gadolinium-Based Contrast Agent Administration: Linear Versus Macrocyclic Agents. J Magn Reson Imaging 2021; 53:1282-1292. [PMID: 33555617 DOI: 10.1002/jmri.27407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Gadolinium (Gd)-based contrast agents (GBCAs) have been widely used in MRI. However, several studies have reported Gd deposition in the brain, which has raised concerns about safety. PURPOSE To investigate the effects of ischemic stroke on Gd deposition in the brain after repeated administration of linear or macrocyclic GBCAs and to determine whether GBCAs aggravate astrocyte injury after stroke. STUDY TYPE Animal study. ANIMAL MODEL Twenty-seven male Sprague-Dawley rats were randomized to an exposure group (n = 24) and a healthy control group (n = 3). Half of the exposure group (n = 12) underwent transient middle cerebral artery occlusion (tMCAO) and half (n = 12) had a sham procedure. In each subgroup (tMCAO or sham), the rats had repeated gadopentetate (n = 6) or gadobutrol (n = 6) injections. Oxygen-glucose deprivation and reoxygenation (OGD/R) was used as an in vitro model of stroke. ASSESSMENT On day 3 and day 28 after the last injection (p.i.), the Gd concentration in the cerebrum was quantified by inductively coupled plasma mass spectrometry. Cell viability, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were analyzed in vitro. STATISTICAL TESTS One-way analysis of variance and two-sample t-tests were performed. RESULTS The Gd concentration in the ipsilateral hemisphere homogenates of tMCAO group was significantly higher than that in the brain homogenates of the sham group on day 3 p.i. of either gadobutrol (0.065 ± 0.006 vs. 0.042 ± 0.007 μg/g, P < 0.05) or gadopentetate (0.093 ± 0.010 vs. 0.069 ± 0.008 μg/g, P < 0.05). Increased Gd deposition was also found in the ipsilateral hemisphere homogenates of the tMCAO group compared with the brain homogenates of the sham group on day 28 p.i. of gadopentetate (0.075 ± 0.012 vs. 0.044 ± 0.003 μg/g, P < 0.05), but not gadobutrol (0.012 ± 0.007 vs. 0.010 ± 0.001 μg/g, P = 0.80). The Gd concentration in the ipsilateral hemisphere in the tMCAO group was significantly higher for gadopentetate than gadobutrol on both day 3 p.i. (0.085 ± 0.006 vs. 0.049 ± 0.005 μg/g, P < 0.05) and day 28 p.i (0.075 ± 0.012 vs. 0.012 ± 0.007 μg/g, P < 0.05). Additionally, compared with gadobutrol, gadopentetate decreased viability, increased ROS accumulation, and decreased MMP in OGD/R-induced astrocytes (all P < 0.05). DATA CONCLUSION Administration of GBCAs after an animal model of ischemic stroke increased Gd deposition in the brain and aggravated astrocyte injury. The effect of gadopentetate appeared to be more pronounced than that of gadobutrol.
Collapse
Affiliation(s)
- Xin-Xin Huang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Run-Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing-Quan Zu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Bin Shi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Huang Y, Liao Y, Zhang H, Li S. Lead exposure induces cell autophagy via blocking the Akt/mTOR signaling in rat astrocytes. J Toxicol Sci 2020; 45:559-567. [PMID: 32879255 DOI: 10.2131/jts.45.559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lead is a main threat to human health due to its neurotoxicity and the astrocyte is known to be a common deposit site of lead in vivo. However, the detailed mechanisms related to lead exposure in the astrocytes were unclear. In order to deeply investigate this issue, we used Sprague-Dawley (SD) rats and astrocytes isolated from the hippocampus of SD rats to establish the lead-exposed animal and cell models through treating with lead acetate. The expression levels of GFAP, LC3, and p62 in the rat hippocampus were detected by immunofluorescence and Western blot after lead exposure. The effects of autophagy on lead-exposed astrocytes were studied by further autophagy inhibitor 3-methyladenine (3-MA) induction. Transmission electron microscopy was used to observe autophagosomes in astrocytes after lead acetate treatment, followed by assessing related autophagy protein markers. In addition, some inflammatory cytokines and oxidative stress markers were also evaluated after lead exposure and 3-MA administration. We found that lead exposure induced activation of astrocytes, as evidenced by increased GFAP levels and GFAP-positive staining cells in the rat hippocampus. Moreover, lead exposure induced autophagy in astrocytes, as evidenced by increased LC3II and Beclin 1 protein levels and decreased p62 expression in both the rat hippocampus and astrocytes, and it was confirmed that this autophagy was activated through blocking the downstream Akt/target of the rapamycin (mTOR) pathway in astrocytes. Furthermore, it was shown that treatment of lead acetate increased the release of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and the accumulation of malondialdehyde (MDA) and myeloperoxidase (MPO) in astrocytes, which could be alleviated by further 3-MA induction. Therefore, we conclude that lead exposure can induce the autophagy of astrocytes via blocking the Akt/mTOR pathway, leading to accelerated release of inflammatory factors and oxidative stress indicators in astrocytes.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Physiology, School of Life Sciences, China Medical University, China.,School of Nursing, Jinzhou Medical University, China
| | - Yingjun Liao
- Department of Physiology, School of Life Sciences, China Medical University, China
| | - Huijun Zhang
- School of Nursing, Jinzhou Medical University, China
| | - Shuyun Li
- School of Nursing, Jinzhou Medical University, China
| |
Collapse
|
13
|
Lu G, Luo H, Zhu X. Targeting the GRP78 Pathway for Cancer Therapy. Front Med (Lausanne) 2020; 7:351. [PMID: 32850882 PMCID: PMC7409388 DOI: 10.3389/fmed.2020.00351] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
The 78-kDa glucose-regulated protein (GRP78) plays an important part in maintaining protein stability, regulating protein folding, and inducing apoptosis autophagy, which is considered as a powerful protein. Meanwhile, it also plays a role in ensuring the normal function of organs. In recent years, more and more researches have been carried out on the targeted therapy of GRP78, mainly focusing on its relevant role in tumor and its role as a major modulator and modulator of subordinate pathways. The ability of GRP78 to respond to endoplasmic reticulum stress (ERS) determines whether tumor cells survive and whether the changes in expression level of GRP78 regulated by endoplasmic reticulum (ER) caused by various factors will directly or indirectly affect cell proliferation, apoptosis, and injury, or reduce the body's defense ability, or have protective effects on various organs.
Collapse
Affiliation(s)
- Guanhua Lu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Hui Luo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.,The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China.,The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
14
|
Andrew SC, Taylor MP, Lundregan S, Lien S, Jensen H, Griffith SC. Signs of adaptation to trace metal contamination in a common urban bird. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:679-686. [PMID: 30212697 DOI: 10.1016/j.scitotenv.2018.09.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Metals and metalloids at elevated concentrations can be toxic to both humans and wildlife. In particular, lead exposure can act as a stressor to wildlife and cause negative effects on fitness. Any ability to adapt to stress caused by the negative effects of trace metal exposure would be beneficial for species living in contaminated environments. However, mechanisms for responding adaptively to metal contamination are not fully understood in free-living organisms. The Australian populations of the house sparrow (Passer domesticus) provides an excellent opportunity to study potential adaptation to environmental lead contamination because they have a commensal relationship with humans and are distributed broadly across Australian settlements including many long-term mining and smelting communities. To examine the potential for an evolutionary response to long-term lead exposure, we collected genomic SNP data using the house sparrow 200 K SNP array, from 11 localities across the Australian distribution including two mining sites (Broken Hill and Mount Isa, which are two genetically independent populations) that have well-established elevated levels of lead contamination as well as trace metals and metalloids. We contrast these known contaminated locations to other lesser-contaminated environments. Using an ecological association genome scan method to identify genomic differentiation associated with estimates of lead contamination we identified 60 outlier loci across three tests. A total of 39 genes were found to be physically linked (within 20 kbps) of all outliers in the house sparrow reference genome. The linked candidate genes included 12 genes relevant to lead exposure, such as two metal transporters that can transport metals including lead and zinc across cell membranes. These candidate genes provide targets for follow up experiments comparing resilience to lead exposure between populations exposed to varied levels of lead contamination.
Collapse
Affiliation(s)
- Samuel C Andrew
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Mark Patrick Taylor
- Department of Environmental Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Sarah Lundregan
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
15
|
Oxidative stress in the neurodegenerative brain following lifetime exposure to lead in rats: Changes in lifespan profiles. Toxicology 2019; 411:101-109. [DOI: 10.1016/j.tox.2018.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/27/2022]
|
16
|
Boskabady M, Marefati N, Farkhondeh T, Shakeri F, Farshbaf A, Boskabady MH. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review. ENVIRONMENT INTERNATIONAL 2018; 120:404-420. [PMID: 30125858 DOI: 10.1016/j.envint.2018.08.013] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/10/2018] [Accepted: 08/05/2018] [Indexed: 05/02/2023]
Abstract
Lead (Pb) pollution has been considered as a major threat for human health due to induction of inflammatory cascades in various tissues. The aim of present review is to summarize the literature on the effects of lead exposure on respiratory, neurologic, digestive, cardiovascular and urinary disorders and the role of inflammation as an underlying mechanism for these effects. Various databases such as ISI Web of Knowledge, Medline, PubMed, Scopus, Google Scholar and Iran Medex, were searched from 1970 to November 2017 to gather the required articles using appropriate keywords such as lead, respiratory disorders, neurologic disorders, digestive disorders, cardiovascular disorders, urinary disorders and inflammation. Disorders of various body systems and the role of inflammation due to lead exposure has been proven by various studies. These studies indicate that lead exposure may cause respiratory, neurologic, digestive, cardiovascular and urinary diseases. The results were also indicated the increased inflammatory cells and mediators due to lead exposure including cytokines and chemokines due to lead exposure which suggested to be the cause various organ disorders.
Collapse
Affiliation(s)
- Marzie Boskabady
- Dental Materials Research Center, Department of Pediatric Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Tahereh Farkhondeh
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Alieh Farshbaf
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, IR, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
| |
Collapse
|
17
|
Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. ENVIRONMENTAL RESEARCH 2018; 166:234-250. [PMID: 29902778 DOI: 10.1016/j.envres.2018.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Japan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Heba A Yassa
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
18
|
Meng J, Wang WX, Li L, Zhang G. Tissue-specific molecular and cellular toxicity of Pb in the oyster (Crassostrea gigas): mRNA expression and physiological studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:257-268. [PMID: 29562214 DOI: 10.1016/j.aquatox.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 05/07/2023]
Abstract
Lead (Pb) is one of the ubiquitous and toxic elements in aquatic environment. In oysters, gills and digestive glands are the main target organs for Pb-induced toxicity, but there is limited information on the molecular mechanisms underlying its toxicity. The present study investigated the Pb-induced toxicity mechanisms in the Pacific oyster (Crassostrea gigas) based on transcriptome, phenotypic anchoring, and validation of targeted gene expression. Gene ontology and pathway enrichment analyses revealed the differential Pb toxicity mechanisms in the tissues. In the gills, Pb disturbed the protein metabolism, with the most significant enrichment of the "protein processing in endoplasmic reticulum" pathway. The main mechanism comprised of a Pb-stimulated calcium (Ca2+) increase by the up-regulation of transporter-Ca-ATPase expression. The disturbed Ca2+ homeostasis then further induced high expressions of endoplasmic reticulum (ER) chaperones, leading to ER stress in the oysters. Unfolded proteins induced ER associated degradation (ERAD), thereby preventing the accumulation of folding-incompetent glycoproteins. However, Pb mainly induced oxidative reduction reactions in the digestive gland with high accumulation of lipid peroxidation products and high expression of antioxidant enzymes. Further, Pb induced fatty acid β-oxidation and CYP450 catalyzed ω-oxidation due to increased metabolic expenditure for detoxification. The increased content of arachidonic acid indicated that Pb exposure might alter unsaturated fatty acid composition and disturb cellular membrane functions. Taken together, our results provided a new insight into the molecular mechanisms underlying Pb toxicity in oysters.
Collapse
Affiliation(s)
- Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen 518057, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, Shandong, China; National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, Shandong, China.
| |
Collapse
|
19
|
Song YF, Hogstrand C, Wei CC, Wu K, Pan YX, Luo Z. Endoplasmic reticulum (ER) stress and cAMP/PKA pathway mediated Zn-induced hepatic lipolysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:256-264. [PMID: 28549333 DOI: 10.1016/j.envpol.2017.05.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/05/2017] [Accepted: 05/17/2017] [Indexed: 05/25/2023]
Abstract
The present study was performed to determine the effect of Zn exposure influencing endoplasmic reticulum (ER) stress, explore the underlying molecular mechanism of Zn-induced hepatic lipolysis in a fish species of significance for aquaculture, yellow catfish Pelteobagrus fulvidraco. We found that waterborne Zn exposure evoked ER stress and unfolded protein response (UPR), and activated cAMP/PKA pathway, and up-regulated hepatic lipolysis. The increase in ER stress and lipolysis were associated with activation of cAMP/PKA signaling pathway. Zn also induced an increase in intracellular Ca2+ level, which could be partially prevented by dantrolene (RyR receptor inhibitor) and 2-APB (IP3 receptor inhibitor), demonstrating that the disturbed Ca2+ homeostasis in ER contributed to ER stress and dysregulation of lipolysis. Inhibition of ER stress by PBA attenuated UPR, inhibited the activation of cAMP/PKA pathway and resulted in down-regulation of lipolysis. Inhibition of protein kinase RNA-activated-like ER kinase (PERK) by GSK2656157 and inositol-requiring enzyme (IRE) by STF-083010 differentially influenced Zn-induced changes of lipid metabolism, indicating that PERK and IRE pathways played different regulatory roles in Zn-induced lipolysis. Inhibition of PKA by H89 blocked the Zn-induced activation of cAMP/PKA pathway with a concomitant inhibition of ER stress-mediated lipolysis. Taken together, our findings highlight the importance of the ER stress-cAMP/PKA axis in Zn-induced lipolysis, which provides new insights into Zn toxicology in fish and probably in other vertebrates.
Collapse
Affiliation(s)
- Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Chuan-Chuan Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
20
|
Wang Z, Henn BC, Wang C, Wei Y, Su L, Sun R, Chen H, Wagner PJ, Lu Q, Lin X, Wright R, Bellinger D, Kile M, Mazumdar M, Tellez-Rojo MM, Schnaas L, Christiani DC. Genome-wide gene by lead exposure interaction analysis identifies UNC5D as a candidate gene for neurodevelopment. Environ Health 2017; 16:81. [PMID: 28754176 PMCID: PMC5534076 DOI: 10.1186/s12940-017-0288-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/17/2017] [Indexed: 05/04/2023]
Abstract
BACKGROUND Neurodevelopment is a complex process involving both genetic and environmental factors. Prenatal exposure to lead (Pb) has been associated with lower performance on neurodevelopmental tests. Adverse neurodevelopmental outcomes are more frequent and/or more severe when toxic exposures interact with genetic susceptibility. METHODS To explore possible loci associated with increased susceptibility to prenatal Pb exposure, we performed a genome-wide gene-environment interaction study (GWIS) in young children from Mexico (n = 390) and Bangladesh (n = 497). Prenatal Pb exposure was estimated by cord blood Pb concentration. Neurodevelopment was assessed using the Bayley Scales of Infant Development. RESULTS We identified a locus on chromosome 8, containing UNC5D, and demonstrated evidence of its genome-wide significance with mental composite scores (rs9642758, p meta = 4.35 × 10-6). Within this locus, the joint effects of two independent single nucleotide polymorphisms (SNPs, rs9642758 and rs10503970) had a p-value of 4.38 × 10-9 for mental composite scores. Correlating GWIS results with in vitro transcriptomic profiles identified one common gene, SLC1A5, which is involved in synaptic function, neuronal development, and excitotoxicity. Further analysis revealed interconnected interactions that formed a large network of 52 genes enriched with oxidative stress genes and neurodevelopmental genes. CONCLUSIONS Our findings suggest that certain genetic polymorphisms within/near genes relevant to neurodevelopment might modify the toxic effects of Pb exposure via oxidative stress.
Collapse
Affiliation(s)
- Zhaoxi Wang
- Harvard TH Chan School of Public Health, Boston, MA USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University, School of Public Health, Boston, USA
| | | | - Yongyue Wei
- Department of Epidemiology, Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Li Su
- Harvard TH Chan School of Public Health, Boston, MA USA
| | - Ryan Sun
- Harvard TH Chan School of Public Health, Boston, MA USA
| | - Han Chen
- Harvard TH Chan School of Public Health, Boston, MA USA
| | | | - Quan Lu
- Harvard TH Chan School of Public Health, Boston, MA USA
| | - Xihong Lin
- Harvard TH Chan School of Public Health, Boston, MA USA
| | | | - David Bellinger
- Harvard TH Chan School of Public Health, Boston, MA USA
- Children’s Hospital Boston, Boston, USA
| | | | - Maitreyi Mazumdar
- Harvard TH Chan School of Public Health, Boston, MA USA
- Children’s Hospital Boston, Boston, USA
| | | | | | | |
Collapse
|
21
|
Hunt NJ, Waters KA, Machaalani R. Promotion of the Unfolding Protein Response in Orexin/Dynorphin Neurons in Sudden Infant Death Syndrome (SIDS): Elevated pPERK and ATF4 Expression. Mol Neurobiol 2016; 54:7171-7185. [PMID: 27796753 DOI: 10.1007/s12035-016-0234-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/16/2016] [Indexed: 01/08/2023]
Abstract
We previously demonstrated that sudden infant death syndrome (SIDS) infants have decreased orexin immunoreactivity within the hypothalamus and pons compared to non-SIDS infants. In this study, we examined multiple mechanisms that may promote loss of orexin expression including programmed cell death, impaired maturation/structural stability, neuroinflammation and impaired unfolding protein response (UPR). Immunofluorescent and immunohistochemical staining for a number of markers was performed in the tuberal hypothalamus and pons of infants (1-10 months) who died from SIDS (n = 27) compared to age- and sex-matched non-SIDS infants (n = 19). The markers included orexin A (OxA), dynorphin (Dyn), cleaved caspase 3 (CC3), cleaved caspase 9 (CC9), glial fibrillary acid protein (GFAP), tubulin beta chain 3 (TUBB3), myelin basic protein (MBP), interleukin 1β (IL-1β), terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL), c-fos and the UPR activation markers: phosphorylated protein kinase RNA-like endoplasmic reticulum kinase (pPERK), and activating transcription factor 4 (ATF4). It was hypothesised that pPERK and ATF4 would be upregulated in Ox neurons in SIDS compared to non-SIDS. Within the hypothalamus, OxA and Dyn co-localised with a 20 % decrease in expression in SIDS infants (P = 0.001). pPERK and ATF4 expression in OxA neurons were increased by 35 % (P = 0.001) and 15 % (P = 0.001) respectively, with linear relationships between the decreased OxA/Dyn expression and the percentages of co-localised pPERK/OxA and ATF4/OxA evident (P = 0.01, P = 0.01). No differences in co-localisation with CC9, CC3, TUNEL or c-fos, nor expression of MBP, TUBB3, IL-1β and GFAP, were observed in the hypothalamus. In the pons, there were 40 % and 20 % increases in pPERK expression in the locus coeruleus (P = 0.001) and dorsal raphe (P = 0.022) respectively; ATF4 expression was not changed. The findings that decreased orexin levels in SIDS infants may be associated with an accumulation of pPERK suggest decreased orexin translation. As pPERK may inhibit multiple neuronal groups in the pons in SIDS infants, it could also indicate that a common pathway promotes loss of protein expression and impaired functionality of multiple brainstem neuronal groups.
Collapse
Affiliation(s)
- Nicholas J Hunt
- SIDS and Sleep Apnoea Laboratory, Department of Medicine, Sydney Medical School, University of Sydney, Room 206, Blackburn Building, D06, Sydney, NSW, Australia.,BOSCH Institute of Biomedical Research, University of Sydney, Sydney, NSW, Australia
| | - Karen A Waters
- SIDS and Sleep Apnoea Laboratory, Department of Medicine, Sydney Medical School, University of Sydney, Room 206, Blackburn Building, D06, Sydney, NSW, Australia.,BOSCH Institute of Biomedical Research, University of Sydney, Sydney, NSW, Australia.,The Children's Hospital, Westmead, NSW, Australia
| | - Rita Machaalani
- SIDS and Sleep Apnoea Laboratory, Department of Medicine, Sydney Medical School, University of Sydney, Room 206, Blackburn Building, D06, Sydney, NSW, Australia. .,BOSCH Institute of Biomedical Research, University of Sydney, Sydney, NSW, Australia. .,The Children's Hospital, Westmead, NSW, Australia.
| |
Collapse
|
22
|
Proanthocyanidins Attenuation of Chronic Lead-Induced Liver Oxidative Damage in Kunming Mice via the Nrf2/ARE Pathway. Nutrients 2016; 8:nu8100656. [PMID: 27775649 PMCID: PMC5084042 DOI: 10.3390/nu8100656] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/05/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023] Open
Abstract
Lead is harmful for human health and animals. Proanthocyanidins (PCs), a natural antioxidant, possess a broad spectrum of pharmacological and medicinal properties. However, its protective effects against lead-induced liver damage have not been clarified. This study was aimed to evaluate the protective effect of PCs on the hepatotoxicity of male Kunming mice induced by chronic lead exposure. A total of 70 healthy male Kunming mice were averagely divided into four groups: control group, i.e., the group exposed to lead, the group treated with PCs, and the group co-treated with lead and PCs. The mice exposed to lead were given water containing 0.2% lead acetate. Mice treated in the PCs and PCs lead co-treated groups were given PC (100 mg/kg) in 0.9% saline by oral gavage. Lead exposure caused a significant elevation in the liver function parameters, lead level, lipid peroxidation, and inhibition of antioxidant enzyme activities. The induction of oxidative stress and histological alterations in the liver were minimized by co-treatment with PCs. Meanwhile, the number of Transferase-Mediated Deoxyuridine Triphosphate-Biotin Nick End Labeling (TUNEL)-positive cells was significantly reduced in the PCs/lead co-treated group compared to the lead group. In addition, the lead group showed an increase in the expression level of Bax, while the expression of Bcl-2 was decreased. Furthermore, the lead group showed an increase in the expression level of endoplasmic reticulum (ER) stress-related genes and protein (GRP78 and CHOP). Co-treated with PCs significantly reversed these expressions in the liver. PCs were, therefore, demonstrated to have protective, antioxidant, and anti-ER stress and anti-apoptotic activities in liver damage caused by chronic lead exposure in the Kunming mouse. This may be due to the ability of PCs to enhance the ability of liver tissue to protect against oxidative stress via the Nrf2/ARE signaling pathway, resulting in decreasing ER stress and apoptosis of liver tissue.
Collapse
|
23
|
Schumacher L, Abbott LC. Effects of methyl mercury exposure on pancreatic beta cell development and function. J Appl Toxicol 2016; 37:4-12. [PMID: 27594070 DOI: 10.1002/jat.3381] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 12/31/2022]
Abstract
Methyl mercury is an environmental contaminant of worldwide concern. Since the discovery of methyl mercury exposure due to eating contaminated fish as the underlying cause of the Minamata disaster, the scientific community has known about the sensitivity of the developing central nervous system to mercury toxicity. Warnings are given to pregnant women and young children to limit consumption of foods containing methyl mercury to protect the embryonic, fetal and postnatally developing central nervous system. However, evidence also suggests that exposure to methyl mercury or various forms of inorganic mercury may also affect development and function of other organs. Numerous reports indicate a worldwide increase in diabetes, particularly type 2 diabetes. Quite recently, methyl mercury has been shown to have adverse effects on pancreatic beta (β) cell development and function, resulting in insulin resistance and hyperglycemia and may even lead to the development of diabetes. This review discusses possible mechanisms by which methyl mercury exposure may adversely affect pancreatic β cell development and function, and the role that methyl mercury exposure may have in the reported worldwide increase in diabetes, particularly type 2 diabetes. While additional information is needed regarding associations between mercury exposure and specific mechanisms of the pathogenesis of diabetes in the human population, methyl mercury's adverse effects on the body's natural sources of antioxidants suggest that one possible therapeutic strategy could involve supplementation with antioxidants. Thus, it is important that additional investigation be undertaken into the role of methyl mercury exposure and reduced pancreatic β cell function. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lauren Schumacher
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, TX, 77843-4458, USA
| | - Louise C Abbott
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, TX, 77843-4458, USA
| |
Collapse
|
24
|
Song YF, Huang C, Shi X, Pan YX, Liu X, Luo Z. Endoplasmic reticulum stress and dysregulation of calcium homeostasis mediate Cu-induced alteration in hepatic lipid metabolism of javelin goby Synechogobius hasta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:20-29. [PMID: 26991751 DOI: 10.1016/j.aquatox.2016.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
The present study was conducted to investigate the effect of Cu exposure on endoplasmic reticulum (ER) stress and Ca(2+) homeostasis, and also explore the underlying mechanism of the ER stress and Ca(2+) homeostasis in the Cu-induced change of hepatic lipid metabolism in javelin goby Synechogobius hasta. To this end, four experiments were conducted. In experiment 1, the full-length cDNA sequences of two ER molecular chaperones [glucose-regulated protein 78 (GRP78) and calreticulin (CRT)] and three ER stress sensors [PKR-like ER kinase (PERK), inositol requiring enzyme (IRE)-1α, and activating transcription factor (ATF)-6α] cDNAs were firstly characterized from S. hasta. The predicted amino acid sequences for the S. hasta GRP78, CRT, PERK, IRE-1α and ATF-6α revealed that the proteins contained all of the structural features characteristic in other species. mRNAs of the five genes were expressed in various tissues, but their mRNA levels varied among tissues. In experiment 2, S. hasta were exposed to four waterborne Cu concentrations (control, 19μg/l, 38μg/l, and 57μg/l, respectively) for 60days. Cu exposure evoked ER stress in liver of S. hasta in a time- and concentration-course change. In experiment 3, specific inhibitors, 2-aminoethyldiphenyl borate (2-APB) and dantrolene, were used to explore whether Ca(2+) release from ER was involved in the Cu-induced ER stress change. Dantrolene and 2-APB prevented Cu-induced intracellular Ca(2+) elevation, which demonstrated the release of Ca(2+) from the ER was mediated by both RyR and IP3R. In experiment 4, a chemical chaperone, 4-phenyl butyric acid (4-PBA), was used to demonstrate whether Cu-induced alteration in lipid metabolism was suppressed through the attenuation of ER stress. Cu exposure evoked ER stress and sterol-regulator element-binding protein-1c (SREBP-1c) activation in hepatocytes of S. hasta, resulting in dysregulation of hepatic lipid metabolism. 4-PBA attenuated the Cu-induced elevation of mRNA expression of ER stress-related genes. For the first time, our study cloned GRP78, CRT, PERK, IRE-1α and ATF-6α genes in S. hasta and demonstrated their differential expression among tissues. Moreover, the study demonstrated the molecular mechanism by which ER stress might underlie the change of lipid metabolism induced by Cu in S. hasta.
Collapse
Affiliation(s)
- Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Huang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Shi
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Liu
- Postgraduate Research Base, Panjin Guanghe Fishery Co. Ltd., Panjin 124200, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| |
Collapse
|
25
|
Song YF, Luo Z, Zhang LH, Hogstrand C, Pan YX. Endoplasmic reticulum stress and disturbed calcium homeostasis are involved in copper-induced alteration in hepatic lipid metabolism in yellow catfish Pelteobagrus fulvidraco. CHEMOSPHERE 2016; 144:2443-2453. [PMID: 26615493 DOI: 10.1016/j.chemosphere.2015.11.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
The present study was conducted to investigate the effect of Cu exposure on ER stress and Ca(2+) homeostasis, and explore the underlying mechanism of the ER stress and disturbed Ca(2+) homeostasis in the regulation of hepatic lipid metabolism in yellow catfish Pelteobagrus fulvidraco. To this end, three experiments were conducted. In experiment 1, P. fulvidraco were exposed to three waterborne Cu concentrations for 56 days. Waterborne Cu exposure evoked ER stress and SREBP-1c activation and resulted in dysregulation of hepatic lipid metabolism in liver of P. fulvidraco in a time-dependent manner. In experiment 2, specific inhibitors 2-APB (IP3 receptor inhibitor) and dantrolene (RyR receptor inhibitor) were used to explore whether Ca(2+) release from ER was involved in the Cu-induced ER stress change. Dantrolene and 2-APB prevented Cu-induced intracellular Ca(2+) elevation, demonstrating that the release of Ca(2+) from the ER, mediated by both RyR and IP3R, contributed to dysregulation of lipid metabolism. In experiment 3, a chemical chaperone (PBA) was used to demonstrate whether Cu-induced alteration in lipid metabolism was suppressed through the attenuation of ER stress. PBA attenuated the Cu-induced elevation of mRNA expression of SREBP-1c, SCAP, ACC, FAS, GRP78/BiP, GRP94, CRT, eIF2α and XBP-1, and alleviated the Cu-induced downregulation of Insig-1. Based on these observations, these results reveal a link between ER stress and the change of lipid metabolism induced by Cu, which will help to understand the Cu-induced toxicity on cellular and molecular level, and provide some novel insights into the regulation of lipid metabolism in fish.
Collapse
Affiliation(s)
- Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, PR China; China and Freshwater Aquaculture Collaborative Innovative Center of Hubei Province, Wuhan, 430070, PR China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, PR China; China and Freshwater Aquaculture Collaborative Innovative Center of Hubei Province, Wuhan, 430070, PR China.
| | - Li-Han Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, PR China; China and Freshwater Aquaculture Collaborative Innovative Center of Hubei Province, Wuhan, 430070, PR China
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, 430070, PR China; China and Freshwater Aquaculture Collaborative Innovative Center of Hubei Province, Wuhan, 430070, PR China
| |
Collapse
|
26
|
Bulcke F, Dringen R. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes. Neurochem Res 2015; 41:33-43. [DOI: 10.1007/s11064-015-1688-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/16/2022]
|
27
|
Engstrom A, Wang H, Xia Z. Lead decreases cell survival, proliferation, and neuronal differentiation of primary cultured adult neural precursor cells through activation of the JNK and p38 MAP kinases. Toxicol In Vitro 2015; 29:1146-55. [PMID: 25967738 DOI: 10.1016/j.tiv.2015.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/01/2015] [Accepted: 05/03/2015] [Indexed: 12/23/2022]
Abstract
Adult hippocampal neurogenesis is the process whereby adult neural precursor cells (aNPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG) generate adult-born, functional neurons in the hippocampus. This process is modulated by various extracellular and intracellular stimuli, and the adult-born neurons have been implicated in hippocampus-dependent learning and memory. However, studies on how neurotoxic agents affect this process and the underlying mechanisms are limited. The goal of this study was to determine whether lead, a heavy metal, directly impairs critical processes in adult neurogenesis and to characterize the underlying signaling pathways using primary cultured SGZ-aNPCs isolated from adult mice. We report here that lead significantly increases apoptosis and inhibits proliferation in SGZ-aNPCs. In addition, lead significantly impairs spontaneous neuronal differentiation and maturation. Furthermore, we found that activation of the c-Jun NH2-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase signaling pathways are important for lead cytotoxicity. Our data suggest that lead can directly act on adult neural stem cells and impair critical processes in adult hippocampal neurogenesis, which may contribute to its neurotoxicity and adverse effects on cognition in adults.
Collapse
Affiliation(s)
- Anna Engstrom
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Hao Wang
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Zhengui Xia
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
28
|
Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:227-65. [PMID: 25805126 DOI: 10.1016/bs.ircmb.2015.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian oocytes and embryos are exquisitely sensitive to a wide range of insults related to physical stress, chemical exposure, and exposures to adverse maternal nutrition or health status. Although cells manifest specific responses to various stressors, many of these stressors intersect at the endoplasmic reticulum (ER), where disruptions in protein folding and production of reactive oxygen species initiate downstream signaling events. These signals modulate mRNA translation and gene transcription, leading to recovery, activation of autophagy, or with severe and prolonged stress, apoptosis. ER stress signaling has recently come to the fore as a major contributor to embryo demise. Accordingly, agents that modulate or inhibit ER stress signaling have yielded beneficial effects on embryo survival and long-term developmental potential. We review here the mechanisms of ER stress signaling, their connections to mammalian oocytes and embryos, and the promising indications that interventions in this pathway may provide new opportunities for improving mammalian reproduction and health.
Collapse
|
29
|
Tinkov AA, Ajsuvakova OP, Skalnaya MG, Popova EV, Sinitskii AI, Nemereshina ON, Gatiatulina ER, Nikonorov AA, Skalny AV. Mercury and metabolic syndrome: a review of experimental and clinical observations. Biometals 2015; 28:231-54. [DOI: 10.1007/s10534-015-9823-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/15/2015] [Indexed: 12/16/2022]
|
30
|
Tunicamycin-induced unfolded protein response in the developing mouse brain. Toxicol Appl Pharmacol 2015; 283:157-67. [PMID: 25620058 DOI: 10.1016/j.taap.2014.12.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/29/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022]
Abstract
Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1-CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress.
Collapse
|
31
|
Lu TH, Su CC, Tang FC, Chen CH, Yen CC, Fang KM, Lee KI, Hung DZ, Chen YW. Chloroacetic acid triggers apoptosis in neuronal cells via a reactive oxygen species-induced endoplasmic reticulum stress signaling pathway. Chem Biol Interact 2014; 225:1-12. [PMID: 25451595 DOI: 10.1016/j.cbi.2014.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/07/2014] [Accepted: 10/17/2014] [Indexed: 11/18/2022]
Abstract
Chloroacetic acid (CA), a chlorinated analog of acetic acid and an environmental toxin that is more toxic than acetic, dichloroacetic, or trichloroacetic acids, is widely used in chemical industries. Furthermore, CA has been found to be the major disinfection by-products (DBPs) of drinking water. CA has been reported to be highly corrosive and to induce severe tissue injuries (including nervous system) that lead to death in mammals. However, the effects and underlying mechanisms of CA-induced neurotoxicity remain unknown. In the present study, we found that CA (0.5-2.0 mM) significantly increased LDH release, decreased the number of viable cells (cytotoxicity) and induced apoptotic events (including: increases in the numbers of apoptotic cells, the membrane externalization of phosphatidylserine (PS), and caspase-3/-7 activity) in Neuro-2a cells. CA (1.5 mM; the approximate to LD50) also triggered ER stress, which was identified by monitoring several key molecules that are involved in the unfolded protein responses (including the increase in the expressions of p-PERK, p-IRE-1, p-eIF2α, ATF-4, ATF-6, CHOP, XBP-1, GRP 78, GRP 94, and caspase-12) and calpain activity. Transfection of GRP 78- and GRP 94-specific si-RNA effectively abrogated CA-induced cytotoxicity, caspase-3/-7 and caspase-12 activity, and GRP 78 and GRP 94 expression in Neuro-2a cells. Additionally, pretreatment with 2.5 mM N-acetylcysteine (NAC; a glutathione (GSH) precursor) dramatically suppressed the increase in lipid peroxidation, cytotoxicity, apoptotic events, calpain and caspase-12 activity, and ER stress-related molecules in CA-exposed cells. Taken together, these results suggest that the higher concentration of CA exerts its cytotoxic effects in neuronal cells by triggering apoptosis via a ROS-induced ER stress signaling pathway.
Collapse
Affiliation(s)
- Tien-Hui Lu
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Rd., 404 Taichung, Taiwan.
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, No. 135 Nanxiao St., Changhua City, 500 Changhua County, Taiwan.
| | - Feng-Cheng Tang
- Department of Occupational Medicine, Changhua Christian Hospital, No. 135 Nanxiao St., Changhua City, 500 Changhua County, Taiwan.
| | - Chun-Hung Chen
- Department of Emergency, China Medical University Hospital, No. 2 Yuh-Der Rd., 404 Taichung, Taiwan.
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, No. 110 Section 1, Jian-Guo N. Rd., 402 Taichung, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, No. 110 Section 1, Jian-Guo N. Rd., 402 Taichung, Taiwan.
| | - Kai-Min Fang
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Rd., 404 Taichung, Taiwan; Department of Otolaryngology, Far Eastern Memorial Hospital, No. 21, Sec. 2, Nanya S. Rd., Banciao Dist., New Taipei City 220, Taiwan.
| | - kuan-I Lee
- Department of Emergency, Taichung Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, No. 66 Section 1, Fongsing Rd., Tanzih Township, Taichung 427, Taiwan.
| | - Dong-Zong Hung
- Division of Toxicology, Trauma & Emergency Center, China Medical University Hospital, No. 2 Yuh-Der Rd., 404 Taichung, Taiwan.
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, No. 91 Hsueh-Shih Rd., 404 Taichung, Taiwan.
| |
Collapse
|
32
|
The Chaperone Grp78 in Protein Folding Disorders of the Nervous System. Neurochem Res 2014; 40:329-35. [DOI: 10.1007/s11064-014-1405-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023]
|
33
|
Shao CC, Li N, Zhang ZW, Su J, Li S, Li JL, Xu SW. Cadmium supplement triggers endoplasmic reticulum stress response and cytotoxicity in primary chicken hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:109-114. [PMID: 24836885 DOI: 10.1016/j.ecoenv.2014.04.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 03/27/2014] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Cadmium (Cd), a potent hepatotoxin, has been reported to induce endoplasmic reticulum (ER) stress in various cell types. However, whether such effect exists in bird is still unclear. To delineate the effects of Cd exposure on ER stress response, we examined the expression of 78-kDa glucose-regulated protein (GRP78) and alteration in calcium homeostasis in primary chicken hepatocytes treated with 2-22 µM Cd for 24 h. A significant decrease of cell viability was observed in chicken hepatocytes following Cd administration. In cells treated with Cd, GRP78 protein levels increased in a dose-dependent manner. In addition, GRP78 and GRP94mRNA levels were elevated in response to Cd exposure. The increase of the intracellular Ca(2+) concentration in chicken hepatocytes was found during Cd exposure. Cd significantly decreased the CaM mRNA levels in hepatocytes. These results show that Cd regulates the expression of GRP78 and calcium homeostasis in chicken hepatocytes, suggesting that ER stress induced by Cd plays an important role in the mechanisms of Cd cytotoxicity to the bird hepatocytes.
Collapse
Affiliation(s)
- Cheng-Cheng Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China
| | - Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China
| | - Zi-Wei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China
| | - Jian Su
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China.
| | - Shi-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People׳s Republic of China.
| |
Collapse
|
34
|
An J, Cai T, Che H, Yu T, Cao Z, Liu X, Zhao F, Jing J, Shen X, Liu M, Du K, Chen J, Luo W. The changes of miRNA expression in rat hippocampus following chronic lead exposure. Toxicol Lett 2014; 229:158-66. [DOI: 10.1016/j.toxlet.2014.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 05/24/2014] [Accepted: 06/01/2014] [Indexed: 11/24/2022]
|
35
|
Ma KX, Chen GW, Shi CY, Cheng FF, Dou H, Feng CC, Liu DZ. Molecular characterization of the glucose-regulated protein 78 (GRP78) gene in planarian Dugesia japonica. Comp Biochem Physiol B Biochem Mol Biol 2014; 171:12-7. [DOI: 10.1016/j.cbpb.2014.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/02/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
|
36
|
Song H, Zheng G, Shen XF, Liu XQ, Luo WJ, Chen JY. Reduction of Brain Barrier Tight Junctional Proteins by Lead Exposure: Role of Activation of Nonreceptor Tyrosine Kinase Src via Chaperon GRP78. Toxicol Sci 2014; 138:393-402. [DOI: 10.1093/toxsci/kfu007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Pal A, Prasad R. Recent discoveries on the functions of astrocytes in the copper homeostasis of the brain: a brief update. Neurotox Res 2014; 26:78-84. [PMID: 24385258 DOI: 10.1007/s12640-013-9453-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 01/22/2023]
Abstract
In the last two decades, there has been widespread acknowledgment of the pivotal role played by astrocytes in diverse aspects of central nervous system functioning. Astrocytes are crucial for the homeostasis of the copper in the central nervous system as evident by its proficiency in acquisition, trafficking, and export of copper. Moreover, the imbalance in copper homeostasis and impairment in astrocyte functioning are increasingly being recognized as an important contributing factor in the development of neurodegeneration and cognitive waning. In this review, we discuss the most recent advances in the field of copper homeostasis in astrocytes along with briefly outlining the copper dyshomeostasis associated hepatocerebral and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, P.G.I.M.E.R, Chandigarh, 160012, India
| | | |
Collapse
|
38
|
Shinkai Y, Kaji T. Cellular defense mechanisms against lead toxicity in the vascular system. Biol Pharm Bull 2013; 35:1885-91. [PMID: 23123461 DOI: 10.1248/bpb.b212018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lead is a toxic heavy metal that can cause a range of health problems. In this context, the vascular system is a particular target of the deleterious effects of lead. Lead exerts its toxicity through substitution of other divalent cations such as calcium and zinc, resulting in disruption of homeostasis. Based on the evidence that lead up-regulates endoplasmic reticulum (ER) chaperone glucose-regulated protein 78 (GRP78) and/or antioxidant proteins such as hemeoxygenase-1, it is believed that the heavy metal is able to induce ER and/or oxidative stress in cells. These events also suggest that the unfolded protein response (UPR) system and the antioxidant defense system Kelch-like ECH-associated protein 1-nuclear factor (NF)-E2-related factor 2 (Keap1-Nrf2) play a critical role in adaptive response to lead. In this review, we summarize recent progress in lead toxicity in terms of cellular defense systems, including stress proteins and transcription factors involved in the vascular system.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- Environmental Medicine Section, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
39
|
Zhang Y, Sun LG, Ye LP, Wang B, Li Y. Lead-induced stress response in endoplasmic reticulum of astrocytes in CNS. Toxicol Mech Methods 2012; 18:751-7. [PMID: 20020935 DOI: 10.1080/15376510802390908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ABSTRACT Lead is one of the most widespread toxicants in the environment, and its neurotoxicity contributes to a major medical issue. Numerous studies have shown that astrocytes are the main sites of Pb deposition in the central nervous system. A large amount of lead depositing in the astrocyte cells would result in the accumulation of unfolded protein in the endoplasmic reticulum (ER), which up-regulates the expression of molecular chaperones and meanwhile inhibits the cell-cycle progression and the transcription of certain proteins. The unfolded protein response (UPR) could down-regulate the expression of protein cyclinD1 and cause the stagnation of cell-cycle in primary-cultured astrocytes of rat. However, lead neither has obvious effects on the expression of C/EBP homologous protein (CHOP) nor achieves cell apoptosis in the progress of lead-induced UPR. When the stagnation of cell-cycle happens, glucose regulated protein of 78 kDa (GRP78) and other chaperones come to themselves to transport a body of unfolded-protein, consequently making cells survive.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry and Molecule Biology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, PR China
| | | | | | | | | |
Collapse
|
40
|
Scheiber IF, Dringen R. Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 2012; 62:556-65. [PMID: 22982300 DOI: 10.1016/j.neuint.2012.08.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/16/2012] [Accepted: 08/30/2012] [Indexed: 12/18/2022]
Abstract
Copper is an essential element that is required for a variety of important cellular functions. Since not only copper deficiency but also excess of copper can seriously affect cellular functions, the cellular copper metabolism is tightly regulated. In brain, astrocytes appear to play a pivotal role in the copper metabolism. With their strategically important localization between capillary endothelial cells and neuronal structures they are ideally positioned to transport copper from the blood-brain barrier to parenchymal brain cells. Accordingly, astrocytes have the capacity to efficiently take up, store and to export copper. Cultured astrocytes appear to be remarkably resistant against copper-induced toxicity. However, copper exposure can lead to profound alterations in the metabolism of these cells. This article will summarize the current knowledge on the copper metabolism of astrocytes, will describe copper-induced alterations in the glucose and glutathione metabolism of astrocytes and will address the potential role of astrocytes in the copper metabolism of the brain in diseases that have been connected with disturbances in brain copper homeostasis.
Collapse
Affiliation(s)
- Ivo F Scheiber
- Center for Biomolecular Interactions Bremen, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany
| | | |
Collapse
|
41
|
Tiffany-Castiglioni E, Qian Y. ER chaperone–metal interactions: Links to protein folding disorders. Neurotoxicology 2012; 33:545-57. [DOI: 10.1016/j.neuro.2012.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 01/09/2023]
|
42
|
Kasten-Jolly J, Pabello N, Bolivar VJ, Lawrence DA. Developmental lead effects on behavior and brain gene expression in male and female BALB/cAnNTac mice. Neurotoxicology 2012; 33:1005-20. [PMID: 22609695 DOI: 10.1016/j.neuro.2012.04.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 02/02/2012] [Accepted: 04/17/2012] [Indexed: 12/21/2022]
Abstract
Lead (Pb) was one of the first poisons identified, and the developing nervous system is particularly vulnerable to its toxic effects. Relatively low, subclinical doses, of Pb that produce no overt signs of encephalopathy can affect cognitive, emotional, and motor functions. In the present study, the effects of developmental Pb-exposure on behavioral performance and gene expression in BALB/cAnNTac mice were evaluated. Pups were exposed to Pb from gestational-day (gd) 8 to postnatal-day (pnd) 21 and later evaluated in exploratory behavior, rotarod, Morris water maze, and resident-intruder assays as adults. Pb-exposure caused significant alterations in exploratory behavior and water maze performance during the probe trial, but rotarod performance was not affected. Pb-exposed males displayed violent behavior towards their cage mates, but not to a stranger in the resident-intruder assay. Gene expression analysis at pnd21 by microarray and qRT-PCR was performed to provide a molecular link to the behavior changes that were observed. Pb strongly up-regulated gene expression within the signaling pathways of mitogen activated protein kinases (MAPKs), extra-cellular matrix (ECM) receptor, focal adhesion, and vascular endothelial growth-factor (VEGF), but Pb down-regulated gene expression within the pathways for glycan structures-biosynthesis 1, purine metabolism, and N-glycan biosynthesis. Pb increased transcription of genes for major histocompatibility (MHC) proteins, the chemokine Ccl28, chemokine receptors, IL-7, IL7R, and proteases. The qRT-PCR analysis indicated an increase of gene expression in the whole brain for caspase 1 and NOS2. Analysis of IL-1β, caspase 1, NOS2, Trail, IL-18 and IL-33 gene expression of brain regions indicated that Pb perturbed the inter-regional expression pattern of pro-inflammatory genes. Brain region protein concentrations for IL-10, an anti-inflammatory cytokine, showed a significant decrease only within the cortex region. Results indicate that Pb differentially affects the behavior of male and female mice in that females did less exploration and the males were selectively more aggressive. Gene expression data pointed to evidence of neuroinflammation in the brain of both female and male mice. Pb had more of an effect in the males on expression of vomeronasal receptor genes associated with odor detection and social behavior.
Collapse
Affiliation(s)
- Jane Kasten-Jolly
- New York State Department of Health, Wadsworth Center, Albany, NY 12208, USA.
| | | | | | | |
Collapse
|
43
|
Tiffany‐Castiglioni E, Hong S, Qian Y. Copper handling by astrocytes: Insights into neurodegenerative diseases. Int J Dev Neurosci 2011; 29:811-8. [DOI: 10.1016/j.ijdevneu.2011.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 12/14/2022] Open
Affiliation(s)
- Evelyn Tiffany‐Castiglioni
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasTX77843United States
| | | | - Yongchang Qian
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasTX77843United States
| |
Collapse
|
44
|
Abstract
BACKGROUND Current evidence indicates that even low-level lead (Pb) exposure can have detrimental effects, especially in children. We tested the hypothesis that Pb exposure alters gene expression patterns in peripheral blood cells and that these changes reflect dose-specific alterations in the activity of particular pathways. METHODOLOGY/PRINCIPAL FINDING Using Affymetrix Mouse Genome 430 2.0 arrays, we examined gene expression changes in the peripheral blood of female Balb/c mice following exposure to per os lead acetate trihydrate or plain drinking water for two weeks and after a two-week recovery period. Data sets were RMA-normalized and dose-specific signatures were generated using established methods of supervised classification and binary regression. Pathway activity was analyzed using the ScoreSignatures module from GenePattern. CONCLUSIONS/SIGNIFICANCE The low-level Pb signature was 93% sensitive and 100% specific in classifying samples a leave-one-out crossvalidation. The high-level Pb signature demonstrated 100% sensitivity and specificity in the leave-one-out crossvalidation. These two signatures exhibited dose-specificity in their ability to predict Pb exposure and had little overlap in terms of constituent genes. The signatures also seemed to reflect current levels of Pb exposure rather than past exposure. Finally, the two doses showed differential activation of cellular pathways. Low-level Pb exposure increased activity of the interferon-gamma pathway, whereas high-level Pb exposure increased activity of the E2F1 pathway.
Collapse
|
45
|
Kasten-Jolly J, Heo Y, Lawrence DA. Central nervous system cytokine gene expression: modulation by lead. J Biochem Mol Toxicol 2011; 25:41-54. [PMID: 21322097 DOI: 10.1002/jbt.20358] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The environmental heavy metal toxicant, lead (Pb) has been shown to be more harmful to the central nervous system (CNS) of children than to adults, given that Pb exposure affects the neural system during development. Because growth factors and cytokines play very important roles in development of the CNS, we have examined the impact of Pb exposure on the expression of cytokines during CNS development. Cytokine expression was studied in post-natal-day 21 (pnd21) mice by microarray, real-time RT-PCR, Luminex, and ELISA methodologies. BALB/c mouse pups were exposed to Pb through the dam's drinking water (0.1 mM Pb acetate), from gestation-day 8 (gd8) to pnd21. Two cytokines, interleukin-6 (IL-6) and transforming growth factor-β1 (TGF-β1), displayed significantly changed transcript levels in the presence of Pb. IL-6 and TGF-β1 both have signal transduction cascades that can cooperatively turn on the gene for the astrocyte marker glial-fibrillary acidic protein (GFAP). Microarray results indicated that Pb exposure significantly increased expression of GFAP. Pb also modulated IL-6, TGF-β1, and IL-18 protein expression in select brain regions. The deleterious effects of Pb on learning and long-term memory are posited to result from excessive astrocyte growth and/or activation with concomitant interference with neural connections. Differential neural expression of cytokines in brain regions needs to be further investigated to mechanistically associate Pb and neuroinflammation with behavioral and cognitive changes.
Collapse
Affiliation(s)
- Jane Kasten-Jolly
- Laboratory of Clinical and Experimental Endocrinology and Immunology, Wadsworth Center, 120 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
46
|
Bouwmeester H, Poortman J, Peters RJ, Wijma E, Kramer E, Makama S, Puspitaninganindita K, Marvin HJP, Peijnenburg AACM, Hendriksen PJM. Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS NANO 2011; 5:4091-103. [PMID: 21480625 DOI: 10.1021/nn2007145] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Applications of nanoparticles in the food sector are eminent. Silver nanoparticles are among the most frequently used, making consumer exposure to silver nanoparticles inevitable. Information about uptake through the intestines and possible toxic effects of silver nanoparticles is therefore very important but still lacking. In the present study, we used an in vitro model for the human intestinal epithelium consisting of Caco-2 and M-cells to study the passage of silver nanoparticles and their ionic equivalents and to assess their effects on whole-genome mRNA expression. This in vitro intestine model was exposed to four sizes of silver nanoparticles for 4 h. Exposure to silver ions was included as a control since 6-17% of the silver nanoparticles were found to be dissociated into silver ions. The amount of silver ions that passed the Caco-2 cell barrier was equal for the silver ion and nanoparticle exposures. The nanoparticles induced clear changes in gene expression in a range of stress responses including oxidative stress, endoplasmatic stress response, and apoptosis. The gene expression response to silver nanoparticles, however, was very similar to that of AgNO(3). Therefore, the observed effects of the silver nanoparticles are likely exerted by the silver ions that are released from the nanoparticles.
Collapse
Affiliation(s)
- Hans Bouwmeester
- RIKILT, Institute of Food Safety, Wageningen University and Research Center, Akkermaalsbos 2, P.O. Box 230, 6700 AE Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Feng XD, Xia Q, Yuan L, Huang HF, Yang XD, Wang K. Gadolinium triggers unfolded protein responses (UPRs) in primary cultured rat cortical astrocytes via promotion of an influx of extracellular Ca2+. Cell Biol Toxicol 2010; 27:1-12. [DOI: 10.1007/s10565-010-9166-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/12/2010] [Indexed: 11/30/2022]
|
49
|
Xu J, Ji LD, Xu LH. Endoplasmic reticulum may not be involved in the lead-induced apoptosis in PC 12 cells in vitro. ENVIRONMENTAL TOXICOLOGY 2010; 25:55-60. [PMID: 19161237 DOI: 10.1002/tox.20474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent researches indicated that mitochondrial pathway might play an important role in lead-induced apoptosis. Our previous study also found that lead could induce apoptosis in PC 12 cells, and mitochondrial pathway events were involved in this process. As lead can disturb Ca(2+) homeostasis, the present study was undertaken to determine whether lead can activate key cellular events in the endoplasmic reticulum (ER) pathway, including the expressions of C/EBP homology protein (CHOP) and glucose-regulated protein 78 (GRP78), and the activation of caspase-12 and calpain. The results showed that lead could increase the expression of GRP78, while the expressions of CHOP and procaspase-12 remained unchanged. Moreover, the caspase-12 and calpain were not activated, and the ultrastructure of endoplasmic reticulum was not altered. Therefore, it suggests that lead may induce apoptosis in PC 12 cells through mitochondrial pathway, but not through the endoplasmic reticulum pathway.
Collapse
Affiliation(s)
- Jin Xu
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | | | | |
Collapse
|
50
|
Shinkai Y, Yamamoto C, Kaji T. Lead induces the expression of endoplasmic reticulum chaperones GRP78 and GRP94 in vascular endothelial cells via the JNK-AP-1 pathway. Toxicol Sci 2010; 114:378-86. [PMID: 20071421 DOI: 10.1093/toxsci/kfq008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lead, a ubiquitous heavy metal, is an important industrial and environmental pollutant that can target the vascular endothelium. To clarify the effects of lead on the unfolded protein response (UPR) and their significance in cytotoxicity, we examined the expression and function of endoplasmic reticulum (ER) chaperones glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94) in vascular endothelial cells. We used bovine aortic endothelial cells as an in vitro model of the vascular endothelium. Exposure of vascular endothelial cells to lead nitrate resulted in a marked induction of GRP78 and GRP94 messenger RNA levels. In response to lead, the expression of GRP78 and GRP94 proteins also significantly increased in a dose- and time-dependent manner. In addition, small interfering RNA (siRNA)-mediated knockdown of GRP78 significantly enhanced lead-induced cytotoxicity. Compared with other metal(loid)s, including cadmium chloride, zinc sulfate, copper sulfate, and sodium arsenite, lead nitrate was found to be the most potent metal to induce these chaperones in endothelial cells. In the examined UPR pathways, lead increased the phosphorylation of inositol-requiring enzyme 1 (IRE1) and c-jun N-terminal kinase (JNK). Interestingly, the lead-induced upregulation of GRP78 and GRP94 was almost completely blocked by the JNK inhibitor SP600125 or activator protein-1 (AP-1) inhibitor curcumin. Taken together, these results suggest that lead induces ER stress, but the induction of GRP78 and GRP94 expression via the JNK-AP-1 pathway functions as a defense mechanism against lead-induced cytotoxicity in vascular endothelial cells.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University, Kanazawa, Ishikawa 920-1181, Japan
| | | | | |
Collapse
|