1
|
Wang Z, Tian Z, Song X, Zhang J. Membrane tension sensing molecule-FNBP1 is a prognostic biomarker related to immune infiltration in BRCA, LUAD and STAD. BMC Immunol 2022; 23:1. [PMID: 34998385 PMCID: PMC8742955 DOI: 10.1186/s12865-021-00475-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Background Formin-binding protein 1/17 (FNBP1/FBP17), as a membrane-bound protein, is wildly expressed in eukaryotic cells and performs a critical role in tumor tumorigenesis and progression. However, the relationship between FNBP1 and immune infiltrating cells, prognostic value in patients still require comprehensive understanding. We purposed to explore the correlations of FNBP1 expression, prognosis and immune infiltration levels in various cancers. Method The expression and survival data of FNBP1 were collected from Oncomine, TIMER, GEPIA, Kaplan–Meier Plotter and PrognoScan databases. Correlations between FNBP1 and immune infiltrates were analyzed in TIMER and GEPIA databases. Results Compared with normal tissues, FNBP1 is significantly differentially expressed in a variety of tumor tissues. FNBP1 has significant and complex effects on the prognosis of kinds of cancers. High-expression was obviously correlated with better prognosis in breast carcinoma and lung adenocarcinoma, while worse prognosis in stomach adenocarcinoma. Besides, FNBP1 had a correlation with various immune infiltrating cells and diverse immune gene markers in breast invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), and stomach adenocarcinoma (STAD). FNBP1 was also positively correlated with the adjustment of CD8+ cells, T cells, M2 macrophage, neutrophils, monocyte, Th1 cells, T regulatory cells (Treg) and Tumor-associated macrophages (TAMs). The expression level of FNBP1 is closely positively correlated with the expression level of multiple immune checkpoints in the three cancers. In addition, FNBP1 is significantly positively correlated with the expression levels of a variety of immunosuppressive molecules. Conclusion Our findings reveal FNBP1 can serve as a significant biomarker to influence the prognosis and the immune infiltrating levels in different cancers. The differential expression of FNBP1 might not only contribute to the judgment of metastatic and non-metastatic tumors but also in the immune escape by upregulating the expression of immune checkpoints. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00475-z.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Cell Biology and Genetics, Institute of Molecular Medicine and Oncology, Chongqing Medical University, Medical School Road 1#, Yuzhong District, Chongqing, 400016, China
| | - Zixin Tian
- Department of Cell Biology and Genetics, Institute of Molecular Medicine and Oncology, Chongqing Medical University, Medical School Road 1#, Yuzhong District, Chongqing, 400016, China
| | - Xi Song
- Department of Cell Biology and Genetics, Institute of Molecular Medicine and Oncology, Chongqing Medical University, Medical School Road 1#, Yuzhong District, Chongqing, 400016, China
| | - Jun Zhang
- Department of Cell Biology and Genetics, Institute of Molecular Medicine and Oncology, Chongqing Medical University, Medical School Road 1#, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins. Proc Natl Acad Sci U S A 2019; 116:3594-3603. [PMID: 30808751 DOI: 10.1073/pnas.1821638116] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forA - /E -/H - and racE - mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics.
Collapse
|
3
|
Actin Waves: Origin of Cell Polarization and Migration? Trends Cell Biol 2017; 27:515-526. [DOI: 10.1016/j.tcb.2017.02.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 02/07/2017] [Indexed: 01/22/2023]
|
4
|
De Palo G, Yi D, Endres RG. A critical-like collective state leads to long-range cell communication in Dictyostelium discoideum aggregation. PLoS Biol 2017; 15:e1002602. [PMID: 28422986 PMCID: PMC5396852 DOI: 10.1371/journal.pbio.1002602] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
The transition from single-cell to multicellular behavior is important in early development but rarely studied. The starvation-induced aggregation of the social amoeba Dictyostelium discoideum into a multicellular slug is known to result from single-cell chemotaxis towards emitted pulses of cyclic adenosine monophosphate (cAMP). However, how exactly do transient, short-range chemical gradients lead to coherent collective movement at a macroscopic scale? Here, we developed a multiscale model verified by quantitative microscopy to describe behaviors ranging widely from chemotaxis and excitability of individual cells to aggregation of thousands of cells. To better understand the mechanism of long-range cell—cell communication and hence aggregation, we analyzed cell—cell correlations, showing evidence of self-organization at the onset of aggregation (as opposed to following a leader cell). Surprisingly, cell collectives, despite their finite size, show features of criticality known from phase transitions in physical systems. By comparing wild-type and mutant cells with impaired aggregation, we found the longest cell—cell communication distance in wild-type cells, suggesting that criticality provides an adaptive advantage and optimally sized aggregates for the dispersal of spores. A multiscale model and imaging data show that cells of the slime mold Dictyostelium discoideum maximize their cell—cell communication range during aggregation by a critical-like state known from phase transitions in physical systems. Cells are often coupled to each other in cell collectives, such as aggregates during early development, tissues in the developed organism, and tumors in disease. How do cells communicate over macroscopic distances much larger than the typical cell—cell distance to decide how they should behave? Here, we developed a multiscale model of social amoeba, spanning behavior from individuals to thousands of cells. We show that local cell—cell coupling via secreted chemicals may be tuned to a critical value, resulting in emergent long-range communication and heightened sensitivity. Hence, these aggregates are remarkably similar to bacterial biofilms and neuronal networks, all communicating in a pulselike fashion. Similar organizing principles may also aid our understanding of the remarkable robustness in cancer development.
Collapse
Affiliation(s)
- Giovanna De Palo
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
| | - Darvin Yi
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey, United States of America
- Lewis Siegler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Robert G. Endres
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Jasnin M, Ecke M, Baumeister W, Gerisch G. Actin Organization in Cells Responding to a Perforated Surface, Revealed by Live Imaging and Cryo-Electron Tomography. Structure 2016; 24:1031-43. [PMID: 27320835 DOI: 10.1016/j.str.2016.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/29/2022]
Abstract
In a 3D environment, motile cells accommodate their protruding and retracting activities to geometrical cues. Dictyostelium cells migrating on a perforated film explored its holes by forming actin rings around their border and extending protrusions through the free space. The response was initiated when an actin wave passed a hole, and the rings persisted only in the PIP3-rich territories surrounded by a wave. To reconstruct actin structures from cryo-electron tomograms, actin rings were identified by cryo-correlative light and electron microscopy, and thin wedges of relevant regions were obtained by cryo-focused ion-beam milling. Retracting stages were distinguished from protruding ones by the accumulation of myosin-II. Early actin rings consisted of filaments pointing upright from the membrane, entangled with a meshwork of filaments close to the membrane. Branches identified at later stages suggested that formin-based nucleation of filaments was followed by Arp2/3-mediated network stabilization, which prevented buckling of the force-generating filaments.
Collapse
Affiliation(s)
- Marion Jasnin
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Mary Ecke
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Günther Gerisch
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
6
|
Gerisch G, Ecke M. Wave Patterns in Cell Membrane and Actin Cortex Uncoupled from Chemotactic Signals. Methods Mol Biol 2016; 1407:79-96. [PMID: 27271895 DOI: 10.1007/978-1-4939-3480-5_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
When cells of Dictyostelium discoideum orientate in a gradient of chemoattractant, they are polarized into a protruding front pointing toward the source of attractant, and into a retracting tail. Under the control of chemotactic signal inputs, Ras is activated and PIP3 is synthesized at the front, while the PIP3-degrading phosphatase PTEN decorates the tail region. As a result of signal transduction, actin filaments assemble at the front into dendritic structures associated with the Arp2/3 complex, in contrast to the tail region where a loose actin meshwork is associated with myosin-II and cortexillin, an antiparallel actin-bundling protein. In axenically growing strains of D. discoideum, wave patterns built by the same components evolve in the absence of any external signal input. Since these autonomously generated patterns are constrained to the plane of the substrate-attached cell surface, they are optimally suited to the optical analysis of state transitions between front-like and tail-like states of the membrane and the actin cortex. Here, we describe imaging techniques using fluorescent proteins to probe for the state of the membrane, the reorganization of the actin network, and the dynamics of wave patterns.
Collapse
Affiliation(s)
- Günther Gerisch
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany.
| | - Mary Ecke
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, D-82152, Germany
| |
Collapse
|
7
|
Filić V, Marinović M, Faix J, Weber I. The IQGAP-related protein DGAP1 mediates signaling to the actin cytoskeleton as an effector and a sequestrator of Rac1 GTPases. Cell Mol Life Sci 2014; 71:2775-85. [PMID: 24664433 PMCID: PMC11113302 DOI: 10.1007/s00018-014-1606-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 11/24/2022]
Abstract
Proteins are typically categorized into protein families based on their domain organization. Yet, evolutionarily unrelated proteins can also be grouped together according to their common functional roles. Sequestering proteins constitute one such functional class, acting as macromolecular buffers and serving as an intracellular reservoir ready to release large quantities of bound proteins or other molecules upon appropriate stimulation. Another functional protein class comprises effector proteins, which constitute essential components of many intracellular signal transduction pathways. For instance, effectors of small GTP-hydrolases are activated upon binding a GTP-bound GTPase and thereupon participate in downstream interactions. Here we describe a member of the IQGAP family of scaffolding proteins, DGAP1 from Dictyostelium, which unifies the roles of an effector and a sequestrator in regard to the small GTPase Rac1. Unlike classical effectors, which bind their activators transiently leading to short-lived signaling complexes, interaction between DGAP1 and Rac1-GTP is stable and induces formation of a complex with actin-bundling proteins cortexillins at the back end of the cell. An oppositely localized Rac1 effector, the Scar/WAVE complex, promotes actin polymerization at the cell front. Competition between DGAP1 and Scar/WAVE for the common activator Rac1-GTP might provide the basis for the oscillatory re-polarization typically seen in randomly migrating Dictyostelium cells. We discuss the consequences of the dual roles exerted by DGAP1 and Rac1 in the regulation of cell motility and polarity, and propose that similar signaling mechanisms may be of general importance in regulating spatiotemporal dynamics of the actin cytoskeleton by small GTPases.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Maja Marinović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Jan Faix
- Hannover Medical School, Institute for Biophysical Chemistry, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Shi C, Iglesias PA. Excitable behavior in amoeboid chemotaxis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:631-42. [PMID: 23757165 DOI: 10.1002/wsbm.1230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chemotaxis, the directed motion of cells in response to chemical gradients, is a fundamental process. Eukaryotic cells detect spatial differences in chemoattractant receptor occupancy with high precision and use these differences to bias the location of actin-rich protrusions to guide their movement. Research into chemotaxis has benefitted greatly from a systems biology approach that combines novel experimental and computational tools to pose and test hypotheses. Recently, one such hypothesis has been postulated proposing that chemotaxis in eukaryotic cells is mediated by locally biasing the activity of an underlying excitable system. The excitable system hypothesis can account for a number of cellular behaviors related to chemotaxis, including the stochastic nature of the movement of unstimulated cells, the directional bias imposed by chemoattractant gradients, and the observed spatial and temporal distribution of signaling and cytoskeleton proteins.
Collapse
Affiliation(s)
- Changji Shi
- Department of Electrical & Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
9
|
Müller-Taubenberger A, Ishikawa-Ankerhold HC. Fluorescent reporters and methods to analyze fluorescent signals. Methods Mol Biol 2013; 983:93-112. [PMID: 23494303 DOI: 10.1007/978-1-62703-302-2_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of fluorescent reporters and the development of new imaging technologies have revolutionized studies in cell biology. During recent years the number of fluorescent proteins offering the ability to visualize the distribution of proteins, organelles, and cells has increased tremendously. In parallel, the imaging tools available were refined rapidly enabling now the use of a huge spectrum of specialized methods to explore the cellular and subcellular localization and dynamics of fluorescently tagged markers. This chapter presents an overview of fluorescent reporters and methods available, and describes a selection of those that are routinely applicable in imaging studies using Dictyostelium discoideum.
Collapse
|
10
|
Suki B. The major transitions of life from a network perspective. Front Physiol 2012; 3:94. [PMID: 22514542 PMCID: PMC3322530 DOI: 10.3389/fphys.2012.00094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/26/2012] [Indexed: 11/16/2022] Open
Abstract
Many attempts have been made to understand the origin of life and biological complexity both at the experimental and theoretical levels but neither is fully explained. In an influential work, Maynard Smith and Szathmáry (1995) argued that the majority of the increase in complexity is not gradual, but it is associated with a few so-called major transitions along the way of the evolution of life. For each major transition, they identified specific mechanisms that could account for the change in complexity related to information transmission across generations. In this work, I propose that the sudden and unexpected improvement in the functionality of an organism that followed a major transition was enabled by a phase transition in the network structure associated with that function. The increase in complexity following a major transition is therefore directly linked to the emergence of a novel structure-function relation which altered the course of evolution. As a consequence, emergent phenomena arising from these network phase transitions can serve as a common organizing principle for understanding the major transitions. As specific examples, I analyze the emergence of life, the emergence of the genetic apparatus, the rise of the eukaryotic cells, the evolution of movement and mechanosensitivity, and the emergence of consciousness. Finally, I discuss the implications of network associated phase transitions to issues that bear relevance to the history, the immediate present and perhaps the future, of life.
Collapse
Affiliation(s)
- Béla Suki
- Department of Biomedical Engineering, Boston UniversityBoston, MA, USA
| |
Collapse
|
11
|
Iglesias PA, Devreotes PN. Biased excitable networks: how cells direct motion in response to gradients. Curr Opin Cell Biol 2011; 24:245-53. [PMID: 22154943 DOI: 10.1016/j.ceb.2011.11.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/11/2022]
Abstract
The actin cytoskeleton in motile cells has many of the hallmarks of an excitable medium, including the presence of propagating waves. This excitable behavior can account for the spontaneous migration of cells. A number of reports have suggested that the chemoattractant-mediated signaling can bias excitability, thus providing a means by which cell motility can be directed. In this review, we discuss some of these observations and theories proposed to explain them. We also suggest a mechanism for cell polarity that can be incorporated into the existing framework.
Collapse
Affiliation(s)
- Pablo A Iglesias
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, United States.
| | | |
Collapse
|
12
|
Yu JH, Crevenna AH, Bettenbühl M, Freisinger T, Wedlich-Söldner R. Cortical actin dynamics driven by formins and myosin V. J Cell Sci 2011; 124:1533-41. [PMID: 21486946 DOI: 10.1242/jcs.079038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell morphogenesis requires complex and rapid reorganization of the actin cytoskeleton. The budding yeast Saccharomyces cerevisiae is an invaluable model system for studying molecular mechanisms driving actin dynamics. Actin cables in yeast are formin-generated linear actin arrays that serve as tracks for directed intracellular transport by type V myosins. Cables are constantly reorganized throughout the cell cycle but the molecular basis for such dynamics remains poorly understood. By combining total internal reflection microscopy, quantitative image analyses and genetic manipulations we identify kinetically distinct subpopulations of cables that are differentially driven by formins and myosin. Bni1 drives elongation of randomly oriented actin cables in unpolarized cells, whereas both formins Bnr1 and Bni1 mediate slower polymerization of cables in polarized cells. Type V myosin Myo2 surprisingly acts as a motor for translational cable motility along the cell cortex. During polarization, cells change from fast to slow cable dynamics through spatio-temporal regulation of Bni1, Bnr1 and Myo2. In summary, we identify molecular mechanisms for the regulation of cable dynamics and suggest that fast actin reorganization is necessary for fidelity of cell polarization.
Collapse
Affiliation(s)
- Jerry H Yu
- AG Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
13
|
Heuser JE. The origins and evolution of freeze-etch electron microscopy. JOURNAL OF ELECTRON MICROSCOPY 2011; 60 Suppl 1:S3-29. [PMID: 21844598 PMCID: PMC3202940 DOI: 10.1093/jmicro/dfr044] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The introduction of the Balzers freeze-fracture machine by Moor in 1961 had a much greater impact on the advancement of electron microscopy than he could have imagined. Devised originally to circumvent the dangers of classical thin-section techniques, as well as to provide unique en face views of cell membranes, freeze-fracturing proved to be crucial for developing modern concepts of how biological membranes are organized and proved that membranes are bilayers of lipids within which proteins float and self-assemble. Later, when freeze-fracturing was combined with methods for freezing cells that avoided the fixation and cryoprotection steps that Moor still had to use to prepare the samples for his original invention, it became a means for capturing membrane dynamics on the millisecond time-scale, thus allowing a deeper understanding of the functions of biological membranes in living cells as well as their static ultrastructure. Finally, the realization that unfixed, non-cryoprotected samples could be deeply vacuum-etched or even freeze-dried after freeze-fracturing opened up a whole new way to image all the other molecular components of cells besides their membranes and also provided a powerful means to image the interactions of all the cytoplasmic components with the various membranes of the cell. The purpose of this review is to outline the history of these technical developments, to describe how they are being used in electron microscopy today and to suggest how they can be improved in order to further their utility for biological electron microscopy in the future.
Collapse
Affiliation(s)
- John E Heuser
- Department of Cell Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
14
|
Swaney KF, Huang CH, Devreotes PN. Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Annu Rev Biophys 2010; 39:265-89. [PMID: 20192768 DOI: 10.1146/annurev.biophys.093008.131228] [Citation(s) in RCA: 362] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemotaxis, the directed migration of cells in chemical gradients, is a vital process in normal physiology and in the pathogenesis of many diseases. Chemotactic cells display motility, directional sensing, and polarity. Motility refers to the random extension of pseudopodia, which may be driven by spontaneous actin waves that propagate through the cytoskeleton. Directional sensing is mediated by a system that detects temporal and spatial stimuli and biases motility toward the gradient. Polarity gives cells morphologically and functionally distinct leading and lagging edges by relocating proteins or their activities selectively to the poles. By exploiting the genetic advantages of Dictyostelium, investigators are working out the complex network of interactions between the proteins that have been implicated in the chemotactic processes of motility, directional sensing, and polarity.
Collapse
Affiliation(s)
- Kristen F Swaney
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
15
|
Beta C. Bistability in the actin cortex. PMC BIOPHYSICS 2010; 3:12. [PMID: 20576094 PMCID: PMC2907310 DOI: 10.1186/1757-5036-3-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 06/24/2010] [Indexed: 11/19/2022]
Abstract
Multi-color fluorescence imaging experiments of wave forming Dictyostelium cells have revealed that actin waves separate two domains of the cell cortex that differ in their actin structure and phosphoinositide composition. We propose a bistable model of actin dynamics to account for these experimental observation. The model is based on the simplifying assumption that the actin cytoskeleton is composed of two distinct network types, a dendritic and a bundled network. The two structurally different states that were observed in experiments correspond to the stable fixed points in the bistable regime of this model. Each fixed point is dominated by one of the two network types. The experimentally observed actin waves can be considered as trigger waves that propagate transitions between the two stable fixed points. PACS Codes: 87.16.Ln, 87.17.Aa, 89.75.Fb
Collapse
Affiliation(s)
- Carsten Beta
- Institut für Physik und Astronomie, Universität Potsdam, 14476 Potsdam, Germany.
| |
Collapse
|
16
|
Miller IS, Lynch I, Dowling D, Dawson KA, Gallagher WM. Surface-induced cell signaling events control actin rearrangements and motility. J Biomed Mater Res A 2010; 93:493-504. [PMID: 19585567 DOI: 10.1002/jbm.a.32530] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding the interrelationship between material surface properties and the biological response to such materials remains a fundamental scientific challenge, as well as being of considerable practical importance in medicine. Through the use of a homologous series of copolymers of increasing hydrophobicity, we aimed to illuminate the interplay between material surface hydrophobicity and signalling events within cells in contact with this model system. Extending previous work, we hereby unravel key pathways controlling cell motility and the formation of a stellate phenotype, following interaction with polymer-coated surfaces. We reveal a comparative increase in cellular motility with increasing surface hydrophilicity, conjoint with an arrest in cell cycle progression. We also show an anomalous turnover of actin within the cell as a function of changing surface hydrophobicity. Finally, we show that cyclic adenosine monophosphate may be an effector of the cellular phenotype, as its production is increased in response to changes in the surface properties. These results highlight important signaling events which control actin rearrangements and the subsequent motility and its effectors.
Collapse
Affiliation(s)
- Ian S Miller
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | |
Collapse
|
17
|
Esue O, Rupprecht L, Sun SX, Wirtz D. Dynamics of the bacterial intermediate filament crescentin in vitro and in vivo. PLoS One 2010; 5:e8855. [PMID: 20140233 PMCID: PMC2816638 DOI: 10.1371/journal.pone.0008855] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 01/04/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Crescentin, the recently discovered bacterial intermediate filament protein, organizes into an extended filamentous structure that spans the length of the bacterium Caulobacter crescentus and plays a critical role in defining its curvature. The mechanism by which crescentin mediates cell curvature and whether crescentin filamentous structures are dynamic and/or polar are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS Using light microscopy, electron microscopy and quantitative rheology, we investigated the mechanics and dynamics of crescentin structures. Live-cell microscopy reveals that crescentin forms structures in vivo that undergo slow remodeling. The exchange of subunits between these structures and a pool of unassembled subunits is slow during the life cycle of the cell however; in vitro assembly and gelation of C. crescentus crescentin structures are rapid. Moreover, crescentin forms filamentous structures that are elastic, solid-like, and, like other intermediate filaments, can recover a significant portion of their network elasticity after shear. The assembly efficiency of crescentin is largely unaffected by monovalent cations (K(+), Na(+)), but is enhanced by divalent cations (Mg(2+), Ca(2+)), suggesting that the assembly kinetics and micromechanics of crescentin depend on the valence of the ions present in solution. CONCLUSIONS/SIGNIFICANCE These results indicate that crescentin forms filamentous structures that are elastic, labile, and stiff, and that their low dissociation rate from established structures controls the slow remodeling of crescentin in C. crescentus.
Collapse
Affiliation(s)
- Osigwe Esue
- Department of Pharmaceutical Development, Genentech, South San Francisco, California, United States of America.
| | | | | | | |
Collapse
|
18
|
Baviskar SN, Shields MS. RNAi silenced Dd-grp94 (Dictyostelium discoideum glucose-regulated protein 94 kDa) cell lines in Dictyostelium exhibit marked reduction in growth rate and delay in development. Gene Expr 2010; 15:75-87. [PMID: 21526718 PMCID: PMC6043831 DOI: 10.3727/105221611x12973615737587] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glucose-regulated 94 kDa protein (Grp94) is a resident of the endoplasmic reticulum (ER) of multicellular eukaryotes. It is a constitutively expressed protein that is overexpressed in certain abnormal conditions of the cell such as depletion of glucose and calcium, and low oxygen and pH. The protein is also implicated in diseased conditions like cancer and Alzheimer's disease. In this study, the consequences of downregulation of Grp94 were investigated at both unicellular and multicellular stages of Dictyostelium discoideum. Previous studies have shown the expression of Dd-Grp94 (Dictyostelium discoideum glucose-regulated 94 kDa protein) in wild-type cells varies during development, and overexpression of Dd-Grp94 leads to abnormal cell shape and inhibition of development (i.e., formation of fruiting bodies). Grp94 is a known calcium binding protein and an efficient calcium buffer. Therefore, in the present study we hypothesized that downregulation of Dd-Grp94 protein would affect Dictyostelium cell structure, growth, and development. We found that Dd-grp94 RNAi recombinants exhibited reduced growth rate, cell size, and a subtle change in cell motility compared to the parental cells. The recombinants also exhibited a delay in development and small fruiting bodies. These results establish that Dd-grp94 plays a crucial role in determining normal cell structure, growth and differentiation.
Collapse
Affiliation(s)
- Sandhya N Baviskar
- Department of Biological Sciences, University of Arkansas-Fort Smith, Fort Smith, AR 72913, USA.
| | | |
Collapse
|
19
|
Chuai M, Dormann D, Weijer CJ. Imaging cell signalling and movement in development. Semin Cell Dev Biol 2009; 20:947-55. [DOI: 10.1016/j.semcdb.2009.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/01/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
|
20
|
Bretschneider T, Anderson K, Ecke M, Müller-Taubenberger A, Schroth-Diez B, Ishikawa-Ankerhold HC, Gerisch G. The three-dimensional dynamics of actin waves, a model of cytoskeletal self-organization. Biophys J 2009; 96:2888-900. [PMID: 19348770 DOI: 10.1016/j.bpj.2008.12.3942] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/19/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022] Open
Abstract
Actin polymerization is typically initiated at specific sites in a cell by membrane-bound protein complexes, and the resulting structures are involved in specialized cellular functions, such as migration, particle uptake, or mitotic division. Here we analyze the potential of the actin system to self-organize into waves that propagate on the planar, substrate-attached membrane of a cell. We show that self-assembly involves the ordered recruitment of proteins from the cytoplasmic pool and relate the organization of actin waves to their capacity for applying force. Three proteins are shown to form distinct three-dimensional patterns in the actin waves. Myosin-IB is enriched at the wave front and close to the plasma membrane, the Arp2/3 complex is distributed throughout the waves, and coronin forms a sloping layer on top of them. CARMIL, a protein that links myosin-IB to the Arp2/3 complex, is also recruited to the waves. Wave formation does not depend on signals transmitted by heterotrimeric G-proteins, nor does their propagation require SCAR, a regulator upstream of the Arp2/3 complex. Propagation of the waves is based on an actin treadmilling mechanism, indicating a program that couples actin assembly to disassembly in a three-dimensional pattern. When waves impinge on the cell perimeter, they push the edge forward; when they reverse direction, the cell border is paralyzed. These data show that force-generating, highly organized supramolecular networks are autonomously formed in live cells from molecular motors and proteins controlling actin polymerization and depolymerization.
Collapse
|
21
|
Abstract
Dictyostelium discoideum is a useful cell model for studying protein-protein interactions and deciphering complex signaling pathways similar to those found in mammalian systems. Many of these interactions were analyzed using classical in vitro biochemical techniques. However, with the accessibility of fluorescently tagged proteins, extensive protein networks are now being mapped out in living cells using a variety of microscopic techniques. One such technique, fluorescent recovery after photobleaching (FRAP), has been used in Dictyostelium to investigate a number of cellular processes including actin and cytoskeleton dynamics during chemotaxis and cytokinesis (J. Muscle Res. Cell Motil. 23:639-649, 2002; Biophys. J. 81:2010-2019, 2001; Mol. Biol. Cell 16:4256-4266, 2005), to follow trafficking of proteins to organelles such as the membrane, nucleus, and endoplasmic reticulum (Development 130:797-804, 2003; J. Cell Biol. 154:137-146, 2001), and to understand the role of proteins in cell adhesion during motility and division (Mol. Biol. Cell 18:4074-4084, 2007; J. Cell Sci. 120:4302-4309, 2007). FRAP is a powerful tool that should provide a vast amount of information on the mobility of a number of proteins, not only in Dictyostelium, but in many organisms. This study will lay out the methods of conducting FRAP experiments in Dictyostelium and discuss the large amount of knowledge which can be gained by adopting this as a common technique.
Collapse
|
22
|
Schmitz J, Gottschalk KE. Mechanical regulation of cell adhesion. SOFT MATTER 2008; 4:1373-1387. [PMID: 32907100 DOI: 10.1039/b716805p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellular adhesion against external forces is governed by both the equilibrium affinity of the involved receptor-ligand bonds and the mechanics of the cell. Certain receptors like integrins change their affinity as well as the mechanics of their anchorage to tune the adhesiveness. Whereas in the last few years the focus of integrin research has lain on the affinity regulation of the adhesion receptors, more recently the importance of cellular mechanics became apparent. Here, we focus on different aspects of the mechanical regulation of the cellular adhesiveness.
Collapse
Affiliation(s)
- Julia Schmitz
- Applied Physics, LMU München, Amalienstr. 54, 80799 München, Germany.
| | | |
Collapse
|
23
|
Vicker MG, Grutsch JF. Dual chemotaxis signalling regulates Dictyostelium development: intercellular cyclic AMP pulses and intracellular F-actin disassembly waves induce each other. Eur J Cell Biol 2008; 87:845-61. [PMID: 18554748 DOI: 10.1016/j.ejcb.2008.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 12/28/2022] Open
Abstract
Aggregating Dictyostelium discoideum amoebae periodically emit and relay cAMP, which regulates their chemotaxis and morphogenesis into a multicellular, differentiated organism. Cyclic AMP also stimulates F-actin assembly and chemotactic pseudopodium extension. We used actin-GFP expression to visualise for the first time intracellular F-actin assembly as a spatio-temporal indicator of cell reactions to cAMP, and thus the kinematics of cell communication, in aggregating streams. Every natural cAMP signal pulse induces an autowave of F-actin disassembly, which propagates from each cell's leading end to its trailing end at a linear rate, much slower than the calculated and measured velocities of cAMP diffusion in aggregating Dictyostelium. A sequence of transient reactions follows behind the wave, including anterior F-actin assembly, chemotactic pseudopodium extension and cell advance at the cell front and, at the back, F-actin assembly, extension of a small retrograde pseudopodium (forcing a brief cell retreat) and chemotactic stimulation of the following cell, yielding a 20s cAMP relay delay. These dynamics indicate that stream cell behaviour is mediated by a dual signalling system: a short-range cAMP pulse directed from one cell tail to an immediately following cell front and a slower, long-range wave of intracellular F-actin disassembly, each inducing the other.
Collapse
Affiliation(s)
- Michael G Vicker
- Department of Biology-Chemistry, University of Bremen, Leobener Str., NW2, D-28359 Bremen, Germany.
| | | |
Collapse
|
24
|
Dictyostelium Aurora kinase has properties of both Aurora A and Aurora B kinases. EUKARYOTIC CELL 2008; 7:894-905. [PMID: 18326585 DOI: 10.1128/ec.00422-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aurora kinases are highly conserved proteins with important roles in mitosis. Metazoans contain two kinases, Aurora A and B, which contribute distinct functions at the spindle poles and the equatorial region respectively. It is not currently known whether the specialized functions of the two kinases arose after their duplication in animal cells or were already present in their ancestral kinase. We show that Dictyostelium discoideum contains a single Aurora kinase, DdAurora, that displays characteristics of both Aurora A and B. Like Aurora A, DdAurora has an extended N-terminal domain with an A-box sequence and localizes at the spindle poles during early mitosis. Like Aurora B, DdAurora binds to its partner DdINCENP and localizes on centromeres at metaphase, the central spindle during anaphase, and the cleavage furrow at the end of cytokinesis. DdAurora also has several unusual properties. DdAurora remains associated with centromeres in anaphase, and this association does not require an interaction with DdINCENP. DdAurora then localizes at the cleavage furrow, but only at the end of cytokinesis. This localization is dependent on DdINCENP and the motor proteins Kif12 and myosin II. Thus, DdAurora may represent the ancestral kinase that gave rise to the different Aurora kinases in animals and also those in other organisms.
Collapse
|
25
|
Abstract
Coronins are highly conserved among species, but their function is far from being understood in detail. Here we will introduce members of the family of coronin like proteins from Drosophila melanogaster, Caenorhabditis elegans and the social amoeba Dictyostelium discoideum. Genetic data from D. discoideum and D. melanogaster revealed that coronins in general are important regulators of many actin-dependent processes.
Collapse
Affiliation(s)
- Maria C Shina
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, Cologne, Germany
| | | |
Collapse
|
26
|
Chen Q, Lakshmikanth GS, Spudich JA, De Lozanne A. The localization of inner centromeric protein (INCENP) at the cleavage furrow is dependent on Kif12 and involves interactions of the N terminus of INCENP with the actin cytoskeleton. Mol Biol Cell 2007; 18:3366-74. [PMID: 17567958 PMCID: PMC1951774 DOI: 10.1091/mbc.e06-10-0895] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The inner centromeric protein (INCENP) and other chromosomal passenger proteins are known to localize on the cleavage furrow and to play a role in cytokinesis. However, it is not known how INCENP localizes on the furrow or whether this localization is separable from that at the midbody. Here, we show that the association of Dictyostelium INCENP (DdINCENP) with the cortex of the cleavage furrow involves interactions with the actin cytoskeleton and depends on the presence of the kinesin-6-related protein Kif12. We found that Kif12 is found on the central spindle and the cleavage furrow during cytokinesis. Kif12 is not required for the redistribution of DdINCENP from centromeres to the central spindle. However, in the absence of Kif12, DdINCENP fails to localize on the cleavage furrow. Domain analysis indicates that the N terminus of DdINCENP is necessary and sufficient for furrow localization and that it binds directly to the actin cytoskeleton. Our data suggest that INCENP moves from the central spindle to the furrow of a dividing cell by a Kif12-dependent pathway. Once INCENP reaches the equatorial cortex, it associates with the actin cytoskeleton where it then concentrates toward the end of cytokinesis.
Collapse
Affiliation(s)
- Qian Chen
- *Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712; and
| | | | - James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Arturo De Lozanne
- *Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712; and
| |
Collapse
|
27
|
Marko M, Hsieh CE. Three-dimensional cryotransmission electron microscopy of cells and organelles. Methods Mol Biol 2007; 369:407-29. [PMID: 17656762 DOI: 10.1007/978-1-59745-294-6_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cryoelectron microscopy of frozen-hydrated specimens is currently the only available technique for determining the "native" three-dimensional ultrastructure of individual examples of organelles and cells. Two techniques are available, stereo pair imaging and electron tomography, the latter providing full three-dimensional information about the specimen. A resolution of 4 to 10 nm can currently be obtained with cryotomography. We describe specimen preparation by means of plunge-freezing, which is straightforward and rapid compared with conventional EM techniques. We detail the considerations and preparation needed for successful cryotomography. Frozen-hydrated specimens are very radiation-sensitive and have low contrast because they lack heavy metal stains. The total electron dose that can be applied without damage to the specimen at a given resolution must be estimated, and this dose is fractionated among the images in the tilt series. The desired resolution determines the number and magnification of the images in the tilt series, as well as the objective lens defocus used for phase contrast imaging. The combination of the desired resolution and the maximum number of images into which a given dose can be fractionated sets an upper limit on specimen thickness. Because of these constraints, careful choice of imaging conditions, use of a sensitive CCD camera system, and microscope automation, are important requirements for conducting cryoelectron tomography.
Collapse
Affiliation(s)
- Michael Marko
- Resource for Visualization of Biological Complexity, Wadsworth Center, Empire State Plaza, Albany, New York, USA
| | | |
Collapse
|
28
|
Dürrwang U, Fujita-Becker S, Erent M, Kull FJ, Tsiavaliaris G, Geeves MA, Manstein DJ. Dictyostelium myosin-IE is a fast molecular motor involved in phagocytosis. J Cell Sci 2006; 119:550-8. [PMID: 16443752 DOI: 10.1242/jcs.02774] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Class I myosins are single-headed motor proteins, implicated in various motile processes including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Here we describe the cellular localization of myosin-IE and its role in the phagocytic uptake of solid particles and cells. A complete analysis of the kinetic and motor properties of Dictyostelium discoideum myosin-IE was achieved by the use of motor domain constructs with artificial lever arms. Class I myosins belonging to subclass IC like myosin-IE are thought to be tuned for tension maintenance or stress sensing. In contrast to this prediction, our results show myosin-IE to be a fast motor. Myosin-IE motor activity is regulated by myosin heavy chain phosphorylation, which increases the coupling efficiency between the actin and nucleotide binding sites tenfold and the motile activity more than fivefold. Changes in the level of free Mg(2+) ions, which are within the physiological range, are shown to modulate the motor activity of myosin-IE by inhibiting the release of adenosine diphosphate.
Collapse
Affiliation(s)
- Ulrike Dürrwang
- Abteilung Biophysik, Max-Planck Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Engel R, Van Haastert PJM, Visser AJWG. Spectral characterization of Dictyostelium autofluorescence. Microsc Res Tech 2006; 69:168-74. [PMID: 16538623 DOI: 10.1002/jemt.20282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dictyostelium discoideum is used extensively as a model organism for the study of chemotaxis. In recent years, an increasing number of studies of Dictyostelium chemotaxis have made use of fluorescence-based techniques. One of the major factors that can interfere with the application of these techniques in cells is the cellular autofluorescence. In this study, the spectral properties of Dictyostelium autofluorescence have been characterized using fluorescence microscopy. Whole cell autofluorescence spectra obtained using spectral imaging microscopy show that Dictyostelium autofluorescence covers a wavelength range from approximately 500 to 650 nm with a maximum at approximately 510 nm, and thus, potentially interferes with measurements of green fluorescent protein (GFP) fusion proteins with fluorescence microscopy techniques. Further characterization of the spatial distribution, intensity, and brightness of the autofluorescence was performed with fluorescence confocal microscopy and fluorescence fluctuation spectroscopy (FFS). The autofluorescence in both chemotaxing and nonchemotaxing cells is localized in discrete areas. The high intensity seen in cells incubated in the growth medium HG5 reduces by around 50% when incubated in buffer, and can be further reduced by around 85% by photobleaching cells for 5-7 s. The average intensity and spatial distribution of the autofluorescence do not change with long incubations in the buffer. The cellular autofluorescence has a seven times lower molecular brightness than eGFP. The influence of autofluorescence in FFS measurements can be minimized by incubating cells in buffer during the measurements, pre-bleaching, and making use of low excitation intensities. The results obtained in this study thus offer guidelines to the design of future fluorescence studies of Dictyostelium.
Collapse
Affiliation(s)
- Ruchira Engel
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
30
|
Darenfed H, Mandato CA. Wound-induced contractile ring: a model for cytokinesis. Biochem Cell Biol 2006; 83:711-20. [PMID: 16333322 DOI: 10.1139/o05-164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The actomyosin-based contractile ring is required for several biological processes, such as wound healing and cytokinesis of animal cells. Despite progress in defining the roles of this structure in both wound closure and cell division, we still do not fully understand how an actomyosin ring is spatially and temporally assembled, nor do we understand the molecular mechanism of its contraction. Recent results have demonstrated that microtubule-dependent local assembly of F-actin and myosin-II is present in wound closure and is similar to that in cytokinesis in animal cells. Furthermore, signalling factors such as small Rho GTPases have been shown to be involved in the regulation of actin dynamics during both processes. In this review we address recent findings in an attempt to better understand the dynamics of actomyosin contractile rings during wound healing as compared with the final step of animal cell division.
Collapse
Affiliation(s)
- Hassina Darenfed
- Department of Anatomy and Cell Biology, Mc Gill University, Montreal, QC, Canada
| | | |
Collapse
|
31
|
Chen Q, Li H, De Lozanne A. Contractile ring-independent localization of DdINCENP, a protein important for spindle stability and cytokinesis. Mol Biol Cell 2005; 17:779-88. [PMID: 16339076 PMCID: PMC1356588 DOI: 10.1091/mbc.e05-08-0704] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium DdINCENP is a chromosomal passenger protein associated with centromeres, the spindle midzone, and poles during mitosis and the cleavage furrow during cytokinesis. Disruption of the single DdINCENP gene revealed important roles for this protein in mitosis and cytokinesis. DdINCENP null cells lack a robust spindle midzone and are hypersensitive to microtubule-depolymerizing drugs, suggesting that their spindles may not be stable. Furthermore DdCP224, a protein homologous to the microtubule-stabilizing protein TOGp/XMAP215, was absent from the spindle midzone of DdINCENP null cells. Overexpression of DdCP224 rescued the weak spindle midzone defect of DdINCENP null cells. Although not required for the localization of the myosin II contractile ring and subsequent formation of a cleavage furrow, DdINCENP is important for the abscission of daughter cells at the end of cytokinesis. Finally, we show that the localization of DdINCENP at the cleavage furrow is modulated by myosin II but it occurs by a mechanism different from that controlling the formation of the contractile ring.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Cellular and Molecular Biology and Department of Molecular, Cellular, and Developmental Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
32
|
Marsh BJ. Lessons from tomographic studies of the mammalian Golgi. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:273-92. [PMID: 15896857 DOI: 10.1016/j.bbamcr.2005.04.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 11/22/2022]
Abstract
Basic structure studies of the biosynthetic machinery of the cell by electron microscopy (EM) have underpinned much of our fundamental knowledge in the areas of molecular cell biology and membrane traffic. Driven by our collective desire to understand how changes in the complex and dynamic structure of this enigmatic organelle relate to its pivotal roles in the cell, the comparatively high-resolution glimpses of the Golgi and other compartments of the secretory pathway offered to us through EM have helped to inspire the development and application of some of our most informative, complimentary (molecular, biochemical and genetic) approaches. Even so, no one has yet even come close to relating the basic molecular mechanisms of transport, through and from the Golgi, to its ultrastructure, to everybody's satisfaction. Over the past decade, EM tomography has afforded new insights into structure-function relationships of the Golgi and provoked a re-evaluation of older paradigms. By providing a set of tools for structurally dissecting cells at high-resolution in three-dimensions (3D), EM tomography has emerged as a method for studying molecular cell biology in situ. As we move rapidly toward the establishment of molecular atlases of organelles through advances in proteomics and genomics, tomographic studies of the Golgi offer the tantalizing possibility that one day, we will be able to map the spatio-temporal coordinates of Golgi-related proteins and lipids accurately in the context of 4D cellular space.
Collapse
Affiliation(s)
- Brad J Marsh
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis, and School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
33
|
Gerisch G, Bretschneider T, Müller-Taubenberger A, Simmeth E, Ecke M, Diez S, Anderson K. Mobile actin clusters and traveling waves in cells recovering from actin depolymerization. Biophys J 2004; 87:3493-503. [PMID: 15347592 PMCID: PMC1304815 DOI: 10.1529/biophysj.104.047589] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 08/24/2004] [Indexed: 11/18/2022] Open
Abstract
At the leading edge of a motile cell, actin polymerizes in close apposition to the plasma membrane. Here we ask how the machinery for force generation at a leading edge is established de novo after the global depolymerization of actin. The depolymerization is accomplished by latrunculin A, and the reorganization of actin upon removal of the drug is visualized in Dictyostelium cells by total internal reflection fluorescence microscopy. The actin filament system is reorganized in three steps. First, F-actin assembles into globular complexes that move along the bottom surface of the cells at velocities up to 10 microm/min. These clusters are transient structures that eventually disassemble, fuse, or divide. In a second step, clusters merge into a contiguous zone at the cell border that spreads and gives rise to actin waves traveling on a planar membrane. Finally, normal cell shape and motility are resumed. These data show that the initiation of actin polymerization is separated in Dictyostelium from front protrusion, and that the coupling of polymerization to protrusion is a later step in the reconstitution of a leading edge.
Collapse
Affiliation(s)
- Günther Gerisch
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Gebbie L, Benghezal M, Cornillon S, Froquet R, Cherix N, Malbouyres M, Lefkir Y, Grangeasse C, Fache S, Dalous J, Brückert F, Letourneur F, Cosson P. Phg2, a kinase involved in adhesion and focal site modeling in Dictyostelium. Mol Biol Cell 2004; 15:3915-25. [PMID: 15194808 PMCID: PMC491846 DOI: 10.1091/mbc.e03-12-0908] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The amoeba Dictyostelium is a simple genetic system for analyzing substrate adhesion, motility and phagocytosis. A new adhesion-defective mutant named phg2 was isolated in this system, and PHG2 encodes a novel serine/threonine kinase with a ras-binding domain. We compared the phenotype of phg2 null cells to other previously isolated adhesion mutants to evaluate the specific role of each gene product. Phg1, Phg2, myosin VII, and talin all play similar roles in cellular adhesion. Like myosin VII and talin, Phg2 also is involved in the organization of the actin cytoskeleton. In addition, phg2 mutant cells have defects in the organization of the actin cytoskeleton at the cell-substrate interface, and in cell motility. Because these last two defects are not seen in phg1, myoVII, or talin mutants, this suggests a specific role for Phg2 in the control of local actin polymerization/depolymerization. This study establishes a functional hierarchy in the roles of Phg1, Phg2, myosinVII, and talin in cellular adhesion, actin cytoskeleton organization, and motility.
Collapse
Affiliation(s)
- Leigh Gebbie
- Université de Genève, Centre Médical Universitaire, Département de Morphologie, CH-1211 Genève 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cell polarity is essential for unicellular and multicellular stages of Dictyostelium development. Chemotaxis during early development requires each cell to rapidly reorganize its cytoskeleton to point towards a source of cAMP. This involves a balance between local induction of F-actin polymerization and suppression of pseudopods that point in other directions. Both the lipid phosphatidylinositol (3,4,5) trisphosphate and the soluble signal cGMP have been implicated in these processes, in addition to conserved and novel proteins. During later development cells adopt newly discovered, alternative modes of movement and interact through adhesion molecules. Finally, cells polarize secretion to particular regions of their surface.
Collapse
Affiliation(s)
- Hazel P Williams
- MRC Laboratory for Molecular Cell Biology & Dept of Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
36
|
Bretschneider T, Diez S, Anderson K, Heuser J, Clarke M, Müller-Taubenberger A, Köhler J, Gerisch G. Dynamic Actin Patterns and Arp2/3 Assembly at the Substrate-Attached Surface of Motile Cells. Curr Biol 2004; 14:1-10. [PMID: 14711408 DOI: 10.1016/j.cub.2003.12.005] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND In the cortical region of motile cells, the actin network rapidly reorganizes as required for movement in various directions and for cell-to-substrate adhesion. The analysis of actin network dynamics requires the combination of high-resolution imaging with a specific fluorescent probe that highlights the filamentous actin structures in live cells. RESULTS Combining total internal reflection fluorescence (TIRF) microscopy with a method for labeling actin filaments, we analyze the dynamics of actin patterns in the highly motile cells of Dictyostelium. A rapidly restructured network of single or bundled actin filaments provides a scaffold for the assembly of differentiated actin complexes. Recruitment of the Arp2/3 complex characterizes stationary foci with a lifetime of 7-10 s and traveling waves. These structures are also formed in the absence of myosin-II. Arp2/3-actin assemblies similar to those driving the protrusion of a leading edge form freely at the inner face of the plasma membrane. CONCLUSIONS The actin system of highly motile cells runs far from equilibrium and generates a multitude of patterns within a dynamic filamentous network. Traveling waves are the most complicated patterns based on recruitment of the Arp2/3 complex. They are governed by the propagated induction of actin polymerization. We hypothesize that the actin system autonomously generates primordia of specialized structures such as phagocytic cups or lamellipodia. These primordia would represent an activated state of the actin system and enable cells to respond within seconds to local stimuli by chemotaxis or phagocytic-cup formation.
Collapse
|