1
|
Satao KS, Doshi GM. Anxiety and the brain: Neuropeptides as emerging factors. Pharmacol Biochem Behav 2024; 245:173878. [PMID: 39284499 DOI: 10.1016/j.pbb.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Anxiety disorders are characterized by intense feelings of worry and fear, which can significantly interfere with daily functioning. Current treatment options primarily include selective serotonin reuptake inhibitors, benzodiazepines, non-benzodiazepine anxiolytics, gabapentinoids, and beta-blockers. Neuropeptides have shown an important role in the regulation of complex behaviours, such as psychopathology and anxiety-related reactions. Neuropeptides have a great deal of promise to advance our understanding of and ability to help people with anxiety disorders. This review focuses on the expanding role of neuropeptides in anxiety management, particularly examining the impact of substance P, neuropeptide Y, corticotropin-releasing hormone, arginine-vasopressin, pituitary adenylate cyclase-activating polypeptide, and cholecystokinin. Furthermore, the paper discusses the neuropeptides that are becoming more and more recognized for their impact on anxiety-related reactions and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Kiran S Satao
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai 400 056, Maharashtra, India.
| |
Collapse
|
2
|
Nicolaides NC, Kanaka-Gantenbein C, Pervanidou P. Developmental Neuroendocrinology of Early-Life Stress: Impact on Child Development and Behavior. Curr Neuropharmacol 2024; 22:461-474. [PMID: 37563814 PMCID: PMC10845081 DOI: 10.2174/1570159x21666230810162344] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/22/2023] [Accepted: 03/15/2023] [Indexed: 08/12/2023] Open
Abstract
Our internal balance, or homeostasis, is threatened or perceived as threatened by stressful stimuli, the stressors. The stress system is a highly conserved system that adjusts homeostasis to the resting state. Through the concurrent activation of the hypothalamic-pituitary-adrenal axis and the locus coeruleus/norepinephrine-autonomic nervous systems, the stress system provides the appropriate physical and behavioral responses, collectively termed as "stress response", to restore homeostasis. If the stress response is prolonged, excessive or even inadequate, several acute or chronic stress-related pathologic conditions may develop in childhood, adolescence and adult life. On the other hand, earlylife exposure to stressors has been recognized as a major contributing factor underlying the pathogenesis of non-communicable disorders, including neurodevelopmental disorders. Accumulating evidence suggests that early-life stress has been associated with an increased risk for attention deficit hyperactivity disorder and autism spectrum disorder in the offspring, although findings are still controversial. Nevertheless, at the molecular level, early-life stressors alter the chemical structure of cytosines located in the regulatory regions of genes, mostly through the addition of methyl groups. These epigenetic modifications result in the suppression of gene expression without changing the DNA sequence. In addition to DNA methylation, several lines of evidence support the role of non-coding RNAs in the evolving field of epigenetics. In this review article, we present the anatomical and functional components of the stress system, discuss the proper, in terms of quality and quantity, stress response, and provide an update on the impact of early-life stress on child development and behavior.
Collapse
Affiliation(s)
- Nicolas C. Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens, School of Medicine, ‘Aghia Sophia’ Children's Hospital, Athens, 11527, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- School of Medicine, University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens, School of Medicine, ‘Aghia Sophia’ Children's Hospital, Athens, 11527, Greece
| | - Panagiota Pervanidou
- Unit of Developmental and Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Aghia Sophia” Children's Hospital, Athens, Greece
| |
Collapse
|
3
|
Nicolaides NC, Chrousos GP. The human glucocorticoid receptor. VITAMINS AND HORMONES 2023; 123:417-438. [PMID: 37717993 DOI: 10.1016/bs.vh.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Glucocorticoids are members of steroid hormones that are biosynthesized in the intermediate cellular zone of the adrenal cortex (zona fasciculata) and released into the peripheral blood as final products of the hypothalamic-pituitary-adrenal (HPA) axis, as well as under the control of the circadian biologic system. These molecules regulate every physiologic function of the organism as they bind to an almost ubiquitous hormone-activated transcription factor, the glucocorticoid receptor (GR), which influences the rate of transcription of a huge number of target genes amounting to up to 20% of the mammalian genome. The evolving progress of cellular, molecular and computational-structural biology and the implication of epigenetics in every-day clinical practice have enabled us a deeper and ever-increasing understanding of how target tissues respond to natural and synthetic glucocorticoids. In this chapter, we summarize the current knowledge on the structure, expression, function and signaling of the human glucocorticoid receptor in normal and pathologic conditions.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
4
|
Kazakou P, Nicolaides NC, Chrousos GP. Basic Concepts and Hormonal Regulators of the Stress System. Horm Res Paediatr 2023; 96:8-16. [PMID: 35272295 DOI: 10.1159/000523975] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human organisms have to cope with a large number of external or internal stressful stimuli that threaten - or are perceived as threatening - their internal dynamic balance or homeostasis. To face these disturbing forces, or stressors, organisms have developed a complex neuroendocrine system, the stress system, which consists of the hypothalamic-pituitary-adrenal axis and the locus caeruleus/norepinephrine-autonomic nervous system. SUMMARY Upon exposure to stressors beyond a certain threshold, the activation of the stress system leads to a series of physiological and behavioral adaptations that help achieve homeostasis and increase the chances of survival. When, however, the stress response to stressors is inadequate, excessive, or prolonged, the resultant maladaptation may lead to the development of several stress-related pathologic conditions. Adverse environmental events, especially during critical periods of life, such as prenatal life, childhood, and puberty/adolescence, in combination with the underlying genetic background, may leave deep, long-term epigenetic imprints in the human expressed genome. KEY MESSAGES In this review, we describe the components of the stress system and its functional interactions with other homeostatic systems of the organism; we present the hormonal regulators of the stress response, and we discuss the development of stress-related pathologies.
Collapse
Affiliation(s)
- Paraskevi Kazakou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
5
|
Shipston MJ. Glucocorticoid action in the anterior pituitary gland: Insights from corticotroph physiology. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 25:100358. [PMID: 36632471 PMCID: PMC9823093 DOI: 10.1016/j.coemr.2022.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The anterior pituitary is exposed to ultradian, circadian and stress-induced rhythms of circulating glucocorticoid hormones. Glucocorticoids feedback at the level of the pituitary corticotroph to control their own production through multiple mechanisms. This review highlights key insights from analysis of the dynamics of rapid and early glucocorticoid feedback that reveal both non-genomic and genomic mechanisms mediated by glucocorticoid receptors. Importantly, a common target is control of electrical excitability and calcium signalling although non-genomic effects may also involve control of hormone secretion distal to calcium signalling. Understanding the mechanisms and functional consequences of pulsatile glucocorticoid signalling in the anterior pituitary promises to elucidate the role of glucocorticoids in health and disease, as well as identifying potential diagnostic and therapeutic targets.
Collapse
|
6
|
Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and Cortisol Secretion and Implications for Disease. Endocr Rev 2020; 41:bnaa002. [PMID: 32060528 PMCID: PMC7240781 DOI: 10.1210/endrev/bnaa002] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
The past decade has seen several critical advances in our understanding of hypothalamic-pituitary-adrenal (HPA) axis regulation. Homeostatic physiological circuits need to integrate multiple internal and external stimuli and provide a dynamic output appropriate for the response parameters of their target tissues. The HPA axis is an example of such a homeostatic system. Recent studies have shown that circadian rhythmicity of the major output of this system-the adrenal glucocorticoid hormones corticosterone in rodent and predominately cortisol in man-comprises varying amplitude pulses that exist due to a subhypothalamic pulse generator. Oscillating endogenous glucocorticoid signals interact with regulatory systems within individual parts of the axis including the adrenal gland itself, where a regulatory network can further modify the pulsatile release of hormone. The HPA axis output is in the form of a dynamic oscillating glucocorticoid signal that needs to be decoded at the cellular level. If the pulsatile signal is abolished by the administration of a long-acting synthetic glucocorticoid, the resulting disruption in physiological regulation has the potential to negatively impact many glucocorticoid-dependent bodily systems. Even subtle alterations to the dynamics of the system, during chronic stress or certain disease states, can potentially result in changes in functional output of multiple cells and tissues throughout the body, altering metabolic processes, behavior, affective state, and cognitive function in susceptible individuals. The recent development of a novel chronotherapy, which can deliver both circadian and ultradian patterns, provides great promise for patients on glucocorticoid treatment.
Collapse
Affiliation(s)
- Stafford L Lightman
- Translational Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew T Birnie
- Translational Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | | |
Collapse
|
7
|
Focke CMB, Iremonger KJ. Rhythmicity matters: Circadian and ultradian patterns of HPA axis activity. Mol Cell Endocrinol 2020; 501:110652. [PMID: 31738971 DOI: 10.1016/j.mce.2019.110652] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Oscillations are a fundamental feature of neural and endocrine systems. The hypothalamic-pituitary-adrenal (HPA) axis dynamically controls corticosteroid secretion in basal conditions and in response to stress. Across the 24-h day, HPA axis activity oscillates with both an ultradian and circadian rhythm. These rhythms have been shown to be important for regulating metabolism, inflammation, mood, cognition and stress responsiveness. Here we will discuss the neural and endocrine mechanisms driving these rhythms, the physiological importance of these rhythms and health consequences when they are disrupted.
Collapse
Affiliation(s)
- Caroline M B Focke
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
8
|
Iftikhar K, Siddiq A, Baig SG, Zehra S. Substance P: A neuropeptide involved in the psychopathology of anxiety disorders. Neuropeptides 2020; 79:101993. [PMID: 31735376 DOI: 10.1016/j.npep.2019.101993] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 11/19/2022]
Abstract
Substance P (SP) is the most widely distributed neuropeptide in central nervous system (CNS) where it participates in numerous physiological and pathophysiological processes including stress and anxiety related behaviors. In line with this notion, brain areas that are thought to be involved in anxiety regulation contains SP and its specific NK1 receptors. SP concentration in different brain regions alters with the exposure of stressful stimulus and affected NK1 receptor binding is observed. SP is released in response to a stressor, which produces anxiogenic effects via activation of hypothalamic-pituitary-adrenal (HPA) axis, resulting in the liberation of cortisol. Moreover, SP is also involved in the activation of the sympathetic nervous system via stimulation of locus coeruleus (LC). This sympathetic surge initiates cortisol discharge by activation of HPA axis, representing the indirect anxiogenic effect of SP. Besides the aforementioned regions, SP also has an impact on other brain regions known to be involved in stress and anxiety mechanisms, including amygdala, lateral septum (LS), periaqueductal gray (PAG), ventromedial nucleus of the hypothalamus (VMH), and bed nucleus of stria terminalis (BNST). Thus, SP acts as an important neuromodulator in various brain regions in stress and anxiety response. Consistent with the above statement, SP makes a robust link in the psychopathology of anxiety disorders. As SP concentration is found elevated in stressed conditions, several studies have reported that the pharmacological antagonism or genetic depletion of NK-1 receptors results in the anxiolytic response making them a suitable therapeutic target for the treatment of stress and anxiety related disorders.
Collapse
Affiliation(s)
- Kanwal Iftikhar
- Hussain Ebrahim Jamal Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan.
| | - Afshan Siddiq
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan
| | - Sadia Ghousia Baig
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Karachi 75270, Pakistan
| | - Sumbul Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
9
|
Stress experience and hormone feedback tune distinct components of hypothalamic CRH neuron activity. Nat Commun 2019; 10:5696. [PMID: 31836701 PMCID: PMC6911111 DOI: 10.1038/s41467-019-13639-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Stress leaves a lasting impression on an organism and reshapes future responses. However, the influence of past experience and stress hormones on the activity of neural stress circuits remains unclear. Hypothalamic corticotropin-releasing hormone (CRH) neurons orchestrate behavioral and endocrine responses to stress and are themselves highly sensitive to corticosteroid (CORT) stress hormones. Here, using in vivo optical recordings, we find that CRH neurons are rapidly activated in response to stress. CRH neuron activity robustly habituates to repeated presentations of the same, but not novel stressors. CORT feedback has little effect on CRH neuron responses to acute stress, or on habituation to repeated stressors. Rather, CORT preferentially inhibits tonic CRH neuron activity in the absence of stress stimuli. These findings reveal how stress experience and stress hormones modulate distinct components of CRH neuronal activity to mediate stress-induced adaptations. Stress activates corticotropin-releasing hormone (CRH) neurons in the hypothalamus, but how their activity is regulated during and after stress is unclear. Here, the authors show that stress habituation and corticosteroid feedback tune different components of CRH neuron activity.
Collapse
|
10
|
Kim JS, Iremonger KJ. Temporally Tuned Corticosteroid Feedback Regulation of the Stress Axis. Trends Endocrinol Metab 2019; 30:783-792. [PMID: 31699237 DOI: 10.1016/j.tem.2019.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/23/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023]
Abstract
Activity of the hypothalamic-pituitary-adrenal (HPA) axis is tuned by corticosteroid feedback. Corticosteroids regulate cellular function via genomic and nongenomic mechanisms, which operate over diverse time scales. This review summarizes recent advances in our understanding of how corticosteroid feedback regulates hypothalamic stress neuron function and output through synaptic plasticity, changes in intrinsic excitability, and modulation of neuropeptide production. The temporal kinetics of corticosteroid actions in the brain versus the pituitary have important implications for how organisms respond to stress. Furthermore, we will discuss, some of the technical limitations and missing links in the field, and the potential implications these may have on our interpretations of corticosteroid negative feedback experiments.
Collapse
Affiliation(s)
- Joon S Kim
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
11
|
Hynes D, Harvey BJ. Dexamethasone reduces airway epithelial Cl - secretion by rapid non-genomic inhibition of KCNQ1, KCNN4 and KATP K + channels. Steroids 2019; 151:108459. [PMID: 31330137 DOI: 10.1016/j.steroids.2019.108459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 11/26/2022]
Abstract
Basolateral membrane K+ channels play a key role in basal and agonist stimulated Cl- transport across airway epithelial cells by generating a favourable electrical driving force for Cl- efflux. The K+ channel sub-types and molecular mechanisms of regulation by hormones and secretagoues are still poorly understood. Here we have identified the type of K+ channels involved in cAMP and Ca2+ stimulated Cl- secretion and uncovered a novel anti-secretory effect of dexamethasone mediated by inhibition of basolateral membrane K+ channels in a human airway cell model of 16HBE14o- cells commonly used for ion transport studies. Dexamethasone produced a rapid inhibition of transepithelial chloride ion secretion under steady state conditions and after stimulation with cAMP agonist (forskolin) or a Ca2+ mobilizing agonist (ATP). Our results show three different types of K+ channels are targeted by dexamethasone to reduce airway secretion, namely Ca2+-activated secretion via KCNN4 (KCa3.1) channels and cAMP-activated secretion via KCNQ1 (Kv7.1) and KATP (Kir6.1,6.2) channels. The down-regulation of KCNN4 and KCNQ1 channel activities by dexamethasone involves rapid non-genomic activation of PKCα and PKA signalling pathways, respectively. Dexamethasone signal transduction for PKC and PKA activation was demonstrated to occur through a rapid non-genomic pathway that did not implicate the classical nuclear receptors for glucocorticoids or mineralocorticoids but occurred via a novel signalling cascade involving sequentially a Gi-protein coupled receptor, PKC, adenylyl cyclase Type IV, cAMP, PKA and ERK1/2 activation. The rapid, non-genomic, effects of dexamethasone on airway epithelial ion transport and cell signalling introduces a new paradigm for glucocorticoid actions in lung epithelia which may serve to augment the anti-inflammatory activity of the steroid and enhance its therapeutic potential in treating airway hypersecretion in asthma and COPD.
Collapse
Affiliation(s)
- Darina Hynes
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; Centro di Estudios Cientificos CECs, Valdivia, Chile.
| |
Collapse
|
12
|
Dagnino-Subiabre A. Stress and Western diets increase vulnerability to neuropsychiatric disorders: A common mechanism. Nutr Neurosci 2019; 24:624-634. [PMID: 31524571 DOI: 10.1080/1028415x.2019.1661651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In modern lifestyle, stress and Western diets are two major environmental risk factors involved in the etiology of neuropsychiatric disorders. Lifelong interactions between stress, Western diets, and how they can affect brain physiology, remain unknown. A possible relation between dietary long chain polyunsaturated fatty acids (PUFA), endocannabinoids, and stress is proposed. This review suggests that both Western diets and negative stress or distress increase n-6/n-3 PUFA ratio in the phospholipids of the plasma membrane in neurons, allowing an over-activation of the endocannabinoid system in the limbic areas that control emotions. As a consequence, an excitatory/inhibitory imbalance is induced, which may affect the ability to synchronize brain areas involved in the control of stress responses. These alterations increase vulnerability to neuropsychiatric disorders. Accordingly, dietary intake of n-3 PUFA would counter the effects of stress on the brain of stressed subjects. In conclusion, this article proposes that PUFA, endocannabinoids, and stress form a unique system which is self-regulated in limbic areas which in turn controls the effects of stress on the brain throughout a lifetime.
Collapse
Affiliation(s)
- Alexies Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Center for Neurobiology and Integrative Pathophysiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
13
|
Aguiniga LM, Yang W, Yaggie RE, Schaeffer AJ, Klumpp DJ. Acyloxyacyl hydrolase modulates depressive-like behaviors through aryl hydrocarbon receptor. Am J Physiol Regul Integr Comp Physiol 2019; 317:R289-R300. [PMID: 31017816 PMCID: PMC6732428 DOI: 10.1152/ajpregu.00029.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 01/07/2023]
Abstract
Corticotropin-releasing factor (CRF) regulates stress responses, and aberrant CRF signals are associated with depressive disorders. Crf expression is responsive to arachidonic acid (AA), where CRF is released from the hypothalamic paraventricular nucleus (PVN) to initiate the hypothalamic-pituitary-adrenal axis, culminating in glucocorticoid stress hormone release. Despite this biological and clinical significance, Crf regulation is unclear. Here, we report that acyloxyacyl hydrolase, encoded by Aoah, is expressed in the PVN, and Aoah regulates Crf through the aryl hydrocarbon receptor (AhR). We previously showed that AOAH-deficient mice mimicked interstitial cystitis/bladder pain syndrome, a condition frequently associated with comorbid anxiety and depression. With the use of novelty-suppressed feeding and sucrose preference assays to quantify rodent correlates of anxiety/depression, AOAH-deficient mice exhibited depressive behaviors. AOAH-deficient mice also had increased CNS AA, increased Crf expression in the PVN, and elevated serum corticosterone, consistent with dysfunction of the hypothalamic-pituitary-adrenal axis. The human Crf promoter has putative binding sites for AhR and peroxisome proliferator-activated receptor (PPARγ). PPARγ did not affect AA-dependent Crf expression in vitro, and conditional Pparγ knockout did not alter the AOAH-deficient depressive phenotype, despite previous studies implicating PPARγ as a therapeutic target for depression. In contrast, Crf induction was mediated by AhR binding sites in vitro and increased by AhR overexpression. Furthermore, conditional Ahr knockout rescued the depressive phenotype of AOAH-deficient mice. Finally, an AhR antagonist rescued the AOAH-deficient depressive phenotype. Together, our results demonstrate that Aoah is a novel genetic regulator of Crf mediated through AhR, and AhR is a therapeutic target for depression.
Collapse
Affiliation(s)
- Lizath M Aguiniga
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Wenbin Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ryan E Yaggie
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Anthony J Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David J Klumpp
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
14
|
Johnstone WM, Honeycutt JL, Deck CA, Borski RJ. Nongenomic glucocorticoid effects and their mechanisms of action in vertebrates. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:51-96. [PMID: 31122395 DOI: 10.1016/bs.ircmb.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glucocorticoids (GC) act on multiple organ systems to regulate a variety of physiological processes in vertebrates. Due to their immunosuppressive and anti-inflammatory actions, glucocorticoids are an attractive target for pharmaceutical development. Accordingly, they are one of the most widely prescribed classes of therapeutics. Through the classical mechanism of steroid action, glucocorticoids are thought to mainly affect gene transcription, both in a stimulatory and suppressive fashion, regulating de novo protein synthesis that subsequently leads to the physiological response. However, over the past three decades multiple lines of evidence demonstrate that glucocorticoids may work through rapid, nonclassical mechanisms that do not require alterations in gene transcription or translation. This review assimilates evidence across the vertebrate taxa on the diversity of nongenomic actions of glucocorticoids and the membrane-associated cellular mechanisms that may underlie rapid glucocorticoid responses to include potential binding sites characterized to date.
Collapse
Affiliation(s)
- William M Johnstone
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Jamie L Honeycutt
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Courtney A Deck
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Russell J Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
15
|
Balsevich G, Petrie GN, Hill MN. Endocannabinoids: Effectors of glucocorticoid signaling. Front Neuroendocrinol 2017; 47:86-108. [PMID: 28739508 DOI: 10.1016/j.yfrne.2017.07.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023]
Abstract
For decades, there has been speculation regarding the interaction of cannabinoids with glucocorticoid systems. Given the functional redundancy between many of the physiological effects of glucocorticoids and cannabinoids, it was originally speculated that the biological mechanisms of cannabinoids were mediated by direct interactions with glucocorticoid systems. With the discovery of the endocannabinoid system, additional research demonstrated that it was actually the opposite; glucocorticoids recruit endocannabinoid signaling, and that the engagement of endocannabinoid signaling mediated many of the neurobiological and physiological effects of glucocorticoids. With the development of advances in pharmacology and genetics, significant advances in this area have been made, and it is now clear that functional interactions between these systems are critical for a wide array of physiological processes. The current review acts a comprehensive summary of the contemporary state of knowledge regarding the biological interactions between glucocorticoids and endocannabinoids, and their potential role in health and disease.
Collapse
Affiliation(s)
- Georgia Balsevich
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
16
|
Deng M, Tufan T, Raza MU, Jones TC, Zhu MY. MicroRNAs 29b and 181a down-regulate the expression of the norepinephrine transporter and glucocorticoid receptors in PC12 cells. J Neurochem 2016; 139:197-207. [PMID: 27501468 DOI: 10.1111/jnc.13761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs are short non-coding RNAs that provide global regulation of gene expression at the post-transcriptional level. Such regulation has been found to play a role in stress-induced epigenetic responses in the brain. The norepinephrine transporter (NET) and glucocorticoid receptors are closely related to the homeostatic integration and regulation after stress. Our previous studies demonstrated that NET mRNA and protein levels in rats are regulated by chronic stress and by administration of corticosterone, which is mediated through glucocorticoid receptors. Whether miRNAs are intermediaries in the regulation of these proteins remains to be elucidated. This study was undertaken to determine possible regulatory effects of miRNAs on the expression of NET and glucocorticoid receptors in the noradrenergic neuronal cell line. Using computational target prediction, we identified several candidate miRNAs potentially targeting NET and glucocorticoid receptors. Western blot results showed that over-expression of miR-181a and miR-29b significantly repressed protein levels of NET, which is accompanied by a reduced [3 H] norepinephrine uptake, and glucocorticoid receptors in PC12 cells. Luciferase reporter assays verified that both miR-181a and miR-29b bind the 3'UTR of mRNA of NET and glucocorticoid receptors. Furthermore, exposure of PC12 cells to corticosterone markedly reduced the endogenous levels of miR-29b, which was not reversed by the application of glucocorticoid receptor antagonist mifepristone. These observations indicate that miR-181a and miR-29b can function as the negative regulators of NET and glucocorticoid receptor translation in vitro. This regulatory effect may be related to stress-induced up-regulation of the noradrenergic phenotype, a phenomenon observed in stress models and depressive patients. This study demonstrated that miR-29b and miR-181a, two short non-coding RNAs that provide global regulation of gene expression, markedly repressed protein levels of norepinephrine (NE) transporter and glucocorticoid receptor (GR), as well as NE uptake by binding the 3'UTR of their mRNAs in PC12 cells. Also, exposure of cells to corticosterone significantly reduced miR-29b levels through a GR-independent way.
Collapse
Affiliation(s)
- Maoxian Deng
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Veterinary Medicine and Animal Husbandry, Jiangsu Polytechnic College of A&F, Jurong, Jiangsu, China
| | - Turan Tufan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Thomas C Jones
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA.
| |
Collapse
|
17
|
Duncan PJ, Tabak J, Ruth P, Bertram R, Shipston MJ. Glucocorticoids Inhibit CRH/AVP-Evoked Bursting Activity of Male Murine Anterior Pituitary Corticotrophs. Endocrinology 2016; 157:3108-21. [PMID: 27254001 PMCID: PMC4967125 DOI: 10.1210/en.2016-1115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Corticotroph cells from the anterior pituitary are an integral component of the hypothalamic-pituitary-adrenal (HPA) axis, which governs the neuroendocrine response to stress. Corticotrophs are electrically excitable and fire spontaneous single-spike action potentials and also display secretagogue-induced bursting behavior. The HPA axis function is dependent on effective negative feedback in which elevated plasma glucocorticoids result in inhibition at the level of both the pituitary and the hypothalamus. In this study, we have used an electrophysiological approach coupled with mathematical modeling to investigate the regulation of spontaneous and CRH/arginine vasopressin-induced activity of corticotrophs by glucocorticoids. We reveal that pretreatment of corticotrophs with 100 nM corticosterone (CORT; 90 and 150 min) reduces spontaneous activity and prevents a transition from spiking to bursting after CRH/arginine vasopressin stimulation. In addition, previous studies have identified a role for large-conductance calcium- and voltage-activated potassium (BK) channels in the generation of secretagogue-induced bursting in corticotrophs. Using the dynamic clamp technique, we demonstrated that CRH-induced bursting can be switched to spiking by subtracting a fast BK current, whereas the addition of a fast BK current can induce bursting in CORT-treated cells. In addition, recordings from BK knockout mice (BK(-/-)) revealed that CORT can also inhibit excitability through BK-independent mechanisms to control spike frequency. Thus, we have established that glucocorticoids can modulate multiple properties of corticotroph electrical excitability through both BK-dependent and BK-independent mechanisms.
Collapse
Affiliation(s)
- Peter J Duncan
- Centre for Integrative Physiology (P.J.D., M.J.S.), College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Biomedical Neuroscience Research Group (J.T.), University of Exeter Medical School, Exeter EX4 4PL, United Kingdom; Division of Pharmacology, Toxicology, and Clinical Pharmacy (P.R.), Institute for Pharmacy, University of Tübingen, D-72076 Tübingen, Germany; and Department of Mathematics and Programs in Neuroscience and Molecular Biophysics (R.B.), Florida State University, Tallahassee, Florida 32306
| | - Joël Tabak
- Centre for Integrative Physiology (P.J.D., M.J.S.), College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Biomedical Neuroscience Research Group (J.T.), University of Exeter Medical School, Exeter EX4 4PL, United Kingdom; Division of Pharmacology, Toxicology, and Clinical Pharmacy (P.R.), Institute for Pharmacy, University of Tübingen, D-72076 Tübingen, Germany; and Department of Mathematics and Programs in Neuroscience and Molecular Biophysics (R.B.), Florida State University, Tallahassee, Florida 32306
| | - Peter Ruth
- Centre for Integrative Physiology (P.J.D., M.J.S.), College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Biomedical Neuroscience Research Group (J.T.), University of Exeter Medical School, Exeter EX4 4PL, United Kingdom; Division of Pharmacology, Toxicology, and Clinical Pharmacy (P.R.), Institute for Pharmacy, University of Tübingen, D-72076 Tübingen, Germany; and Department of Mathematics and Programs in Neuroscience and Molecular Biophysics (R.B.), Florida State University, Tallahassee, Florida 32306
| | - Richard Bertram
- Centre for Integrative Physiology (P.J.D., M.J.S.), College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Biomedical Neuroscience Research Group (J.T.), University of Exeter Medical School, Exeter EX4 4PL, United Kingdom; Division of Pharmacology, Toxicology, and Clinical Pharmacy (P.R.), Institute for Pharmacy, University of Tübingen, D-72076 Tübingen, Germany; and Department of Mathematics and Programs in Neuroscience and Molecular Biophysics (R.B.), Florida State University, Tallahassee, Florida 32306
| | - Michael J Shipston
- Centre for Integrative Physiology (P.J.D., M.J.S.), College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Biomedical Neuroscience Research Group (J.T.), University of Exeter Medical School, Exeter EX4 4PL, United Kingdom; Division of Pharmacology, Toxicology, and Clinical Pharmacy (P.R.), Institute for Pharmacy, University of Tübingen, D-72076 Tübingen, Germany; and Department of Mathematics and Programs in Neuroscience and Molecular Biophysics (R.B.), Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
18
|
Osterlund CD, Rodriguez-Santiago M, Woodruff ER, Newsom RJ, Chadayammuri AP, Spencer RL. Glucocorticoid Fast Feedback Inhibition of Stress-Induced ACTH Secretion in the Male Rat: Rate Independence and Stress-State Resistance. Endocrinology 2016; 157:2785-98. [PMID: 27145013 PMCID: PMC4929554 DOI: 10.1210/en.2016-1123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Normal glucocorticoid secretion is critical for physiological and mental health. Glucocorticoid secretion is dynamically regulated by glucocorticoid-negative feedback; however, the mechanisms of that feedback process are poorly understood. We assessed the temporal characteristics of glucocorticoid-negative feedback in vivo using a procedure for drug infusions and serial blood collection in unanesthetized rats that produced a minimal disruption of basal ACTH plasma levels. We compared the negative feedback effectiveness present when stress onset coincides with corticosterone's (CORT) rapidly rising phase (30 sec pretreatment), high plateau phase (15 min pretreatment), or restored basal phase (60 min pretreatment) as well as effectiveness when CORT infusion occurs after the onset of stress (5 min poststress onset). CORT treatment prior to stress onset acted remarkably fast (within 30 sec) to suppress stress-induced ACTH secretion. Furthermore, fast feedback induction did not require rapid increases in CORT at the time of stress onset (hormone rate independent), and those feedback actions were relatively long lasting (≥15 min). In contrast, CORT elevation after stress onset produced limited and delayed ACTH suppression (stress state resistance). There was a parallel stress-state resistance for CORT inhibition of stress-induced Crh heteronuclear RNA in the paraventricular nucleus but not Pomc heteronuclear RNA in the anterior pituitary. CORT treatment did not suppress stress-induced prolactin secretion, suggesting that CORT feedback is restricted to the control of hypothalamic-pituitary-adrenal axis elements of a stress response. These temporal, stress-state, and system-level features of in vivo CORT feedback provide an important physiological context for ex vivo studies of molecular and cellular mechanisms of CORT-negative feedback.
Collapse
Affiliation(s)
- Chad D Osterlund
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | | | - Elizabeth R Woodruff
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Ryan J Newsom
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Anjali P Chadayammuri
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|
19
|
Franco AJ, Chen C, Scullen T, Zsombok A, Salahudeen AA, Di S, Herman JP, Tasker JG. Sensitization of the Hypothalamic-Pituitary-Adrenal Axis in a Male Rat Chronic Stress Model. Endocrinology 2016; 157:2346-55. [PMID: 27054552 PMCID: PMC4891782 DOI: 10.1210/en.2015-1641] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress activation of the hypothalamic-pituitary-adrenal (HPA) axis is regulated by rapid glucocorticoid negative feedback. Chronic unpredictable stress animal models recapitulate certain aspects of major depression in humans, which have been attributed to impaired glucocorticoid negative feedback. We tested for an attenuated HPA sensitivity to fast glucocorticoid feedback inhibition in male rats exposed to a chronic variable stress (CVS) paradigm. In vitro, parvocellular neuroendocrine cells of the hypothalamic paraventricular nucleus recorded in slices from CVS rats showed an increase in basal excitatory synaptic inputs and a decrease in basal inhibitory synaptic inputs compared with neurons from control rats. There was no difference between control and CVS-treated rats in the rapid glucocorticoid suppression of excitatory synaptic inputs, a fast feedback mechanism. In vivo, CVS-treated rats showed an increase in ACTH secretion at baseline and after both iv CRH and acute stress and no impairment of the corticosterone suppression of the ACTH response, compared with controls. In an in vitro pituitary preparation, an increase in basal ACTH release, a small increase in CRH-induced ACTH release, and no decrement in the glucocorticoid suppression of ACTH release were seen in pituitaries from CVS rats. Thus, CVS does not suppress rapid glucocorticoid negative feedback at the hypothalamus or pituitary, but increases the synaptic excitability of paraventricular nucleus CRH neurons and the CRH sensitivity of the pituitary. Therefore, increased HPA activity in chronically stressed male rats is due to sensitization of the HPA axis, rather than to desensitization to rapid glucocorticoid feedback.
Collapse
Affiliation(s)
- Alier J Franco
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Chun Chen
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Tyler Scullen
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Andrea Zsombok
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Ahmed A Salahudeen
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Shi Di
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - James P Herman
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology (A.J.F., C.C., T.S., A.A.S., S.D., J.G.T.) and Neuroscience Program (A.Z., J.G.T.), Tulane University, New Orleans, Louisiana 70118; Departments of Physiology and Medicine (A.Z.), Tulane University Health Sciences Center, New Orleans, Louisiana 70112; and Department of Psychiatry and Behavioral Neuroscience (J.P.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| |
Collapse
|
20
|
Kanczkowski W, Sue M, Bornstein SR. Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-Induced Hormone Secretion during Sepsis. Front Endocrinol (Lausanne) 2016; 7:156. [PMID: 28018291 PMCID: PMC5155014 DOI: 10.3389/fendo.2016.00156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/29/2016] [Indexed: 01/11/2023] Open
Abstract
Survival of all living organisms depends on maintenance of a steady state of homeostasis, which process relies on its ability to react and adapt to various physical and emotional threats. The defense against stress is executed by the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal medullary system. Adrenal gland is a major effector organ of stress system. During stress, adrenal gland rapidly responds with increased secretion of glucocorticoids (GCs) and catecholamines into circulation, which hormones, in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pressure, and the immune system to prevent it from extensive activation. Sepsis resulting from microbial infections is a sustained and extreme example of stress situation. In many critical ill patients, levels of both corticotropin-releasing hormone and adrenocorticotropin, the two major regulators of adrenal hormone production, are suppressed. Levels of GCs, however, remain normal or are elevated in these patients, suggesting a shift from central to local intra-adrenal regulation of adrenal stress response. Among many mechanisms potentially involved in this process, reduced GC metabolism and activation of intra-adrenal cellular systems composed of adrenocortical and adrenomedullary cells, endothelial cells, and resident and recruited immune cells play a key role. Hence, dysregulated function of any of these cells and cellular compartments can ultimately affect adrenal stress response. The purpose of this mini review is to highlight recent insights into our understanding of the adrenal gland microenvironment and its role in coordination of stress-induced hormone secretion.
Collapse
Affiliation(s)
- Waldemar Kanczkowski
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Waldemar Kanczkowski,
| | - Mariko Sue
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- Department of Endocrinology and Diabetes, King’s College London, London, UK
| |
Collapse
|
21
|
Lightman S. Rhythms Within Rhythms: The Importance of Oscillations for Glucocorticoid Hormones. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2016. [DOI: 10.1007/978-3-319-27069-2_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Deng Q, Riquelme D, Trinh L, Low MJ, Tomić M, Stojilkovic S, Aguilera G. Rapid Glucocorticoid Feedback Inhibition of ACTH Secretion Involves Ligand-Dependent Membrane Association of Glucocorticoid Receptors. Endocrinology 2015; 156:3215-27. [PMID: 26121342 PMCID: PMC4541620 DOI: 10.1210/en.2015-1265] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypothesis that rapid glucocorticoid inhibition of pituitary ACTH secretion mediates a feedforward/feedback mechanism responsible for the hourly glucocorticoid pulsatility was tested in cultured pituitary cells. Perifusion with 30 pM CRH caused sustained the elevation of ACTH secretion. Superimposed corticosterone pulses inhibited CRH-stimulated ACTH release, depending on prior glucocorticoid clearance. When CRH perifusion started after 2 hours of glucocorticoid-free medium, corticosterone levels in the stress range (1 μM) caused a delayed (25 min) and prolonged inhibition of CRH-stimulated ACTH secretion, up to 60 minutes after corticosterone withdrawal. In contrast, after 6 hours of glucocorticoid-free medium, basal corticosterone levels inhibited CRH-stimulated ACTH within 5 minutes, after rapid recovery 5 minutes after corticosterone withdrawal. The latter effect was insensitive to actinomycin D but was prevented by the glucocorticoid receptor antagonist, RU486, suggesting nongenomic effects of the classical glucocorticoid receptor. In hypothalamic-derived 4B cells, 10 nM corticosterone increased immunoreactive glucocorticoid receptor content in membrane fractions, with association and clearance rates paralleling the effects on ACTH secretion from corticotrophs. Corticosterone did not affect CRH-stimulated calcium influx, but in AtT-20 cells, it had biphasic effects on CRH-stimulated Src phosphorylation, with early inhibition and late stimulation, suggesting a role for Src phosphorylation on the rapid glucocorticoid feedback. The data suggest that the nongenomic/membrane effects of classical GR mediate rapid and reversible glucocorticoid feedback inhibition at the pituitary corticotrophs downstream of calcium influx. The sensitivity and kinetics of these effects is consistent with the hypothesis that pituitary glucocorticoid feedback is part of the mechanism for adrenocortical ultradian pulse generation.
Collapse
Affiliation(s)
- Qiong Deng
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Denise Riquelme
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Loc Trinh
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Malcolm J Low
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Melanija Tomić
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Stanko Stojilkovic
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Greti Aguilera
- Sections on Endocrine Physiology (Q.D., D.R., L.T., G.A.) and Cellular Signaling (M.T., S.S.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892; College of Animal Sciences (Q.D.), Jilin University, Chang Chun 130021, China; and Department of Molecular and Integrative Physiology (M.J.L.), University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
23
|
Spiga F, Walker JJ, Gupta R, Terry JR, Lightman SL. 60 YEARS OF NEUROENDOCRINOLOGY: Glucocorticoid dynamics: insights from mathematical, experimental and clinical studies. J Endocrinol 2015; 226:T55-66. [PMID: 26148724 DOI: 10.1530/joe-15-0132] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 02/03/2023]
Abstract
A pulsatile pattern of secretion is a characteristic of many hormonal systems, including the glucocorticoid-producing hypothalamic-pituitary-adrenal (HPA) axis. Despite recent evidence supporting its importance for behavioral, neuroendocrine and transcriptional effects of glucocorticoids, there has been a paucity of information regarding the origin of glucocorticoid pulsatility. In this review we discuss the mechanisms regulating pulsatile dynamics of the HPA axis, and how these dynamics become disrupted in disease. Our recent mathematical, experimental and clinical studies show that glucocorticoid pulsatility can be generated and maintained by dynamic processes at the level of the pituitary-adrenal axis, and that an intra-adrenal negative feedback may contribute to these dynamics.
Collapse
Affiliation(s)
- Francesca Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| | - Jamie J Walker
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| | - Rita Gupta
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| | - John R Terry
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| |
Collapse
|
24
|
Spiga F, Lightman SL. Dynamics of adrenal glucocorticoid steroidogenesis in health and disease. Mol Cell Endocrinol 2015; 408:227-34. [PMID: 25662280 DOI: 10.1016/j.mce.2015.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/21/2022]
Abstract
The activity of the hypothalamic-pituitary-adrenal (HPA) axis is characterized by an ultradian (pulsatile) pattern of hormone secretion. Pulsatility of glucocorticoids has been found critical for optimal transcriptional, neuroendocrine and behavioral responses. This review will focus on the mechanisms underlying the origin of the glucocorticoid ultradian rhythm. Our recent research shows that the ultradian rhythm of glucocorticoids depends on highly dynamic processes within adrenocortical steroidogenic cells. Furthermore, we have evidence that disruption of these dynamics leads to abnormal glucocorticoid secretion observed in disease and critical illness in both humans and rats.
Collapse
Affiliation(s)
- Francesca Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK.
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| |
Collapse
|
25
|
Kanczkowski W, Sue M, Zacharowski K, Reincke M, Bornstein SR. The role of adrenal gland microenvironment in the HPA axis function and dysfunction during sepsis. Mol Cell Endocrinol 2015; 408:241-8. [PMID: 25543020 DOI: 10.1016/j.mce.2014.12.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/21/2014] [Accepted: 12/21/2014] [Indexed: 12/21/2022]
Abstract
Sepsis and septic shock in response to bacterial or viral infections remain the major health problem worldwide. Despite decades of intensive research and improvements in medical care, severe sepsis is associated with high mortality. Rapid activation of the adrenal gland glucocorticoid and catecholamine production is a fundamental component of the stress response and is essential for survival of the host. However, in many critically ill patients this homeostatic function of the adrenal gland is often impaired. In these patients, plasma levels of adrenocorticotropic hormone (ACTH) and cortisol are often dissociated. This has been attributed to the stimulatory action of non-ACTH factors within the adrenal gland such as cytokines, and recently with decreased cortisol metabolism and suppressed ACTH synthesis. Regulation of the hypothalamus-pituitary-adrenal (HPA) axis function during sepsis is a complex process which involves various immune and neuroendocrine interactions occurring at the levels of the central nervous system (CNS) and the adrenal gland. A coordinated interaction of numerous cell types and systems within the adrenal gland is involved in the sustained adrenal glucocorticoid production. This review article describes and discusses recent experimental findings regarding the role of adrenal gland microenvironment including the adrenal vasculature and the immune-adrenal crosstalk in the disregulated HPA axis during sepsis conditions. In summary, in addition to the reduced cortisol breakdown and related ACTH suppression, sepsis-mediated chronic activation of the immune-adrenal crosstalk and vascular dysfunction may contribute to the HPA axis dysregulation found in septic patients.
Collapse
Affiliation(s)
- Waldemar Kanczkowski
- Department of Medicine III, Faculty of Medicine of the Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Mariko Sue
- Department of Medicine III, Faculty of Medicine of the Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Kai Zacharowski
- Clinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, 60595 Frankfurt am Main, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, München, Germany
| | - Stefan R Bornstein
- Department of Medicine III, Faculty of Medicine of the Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
26
|
Bali A, Jaggi AS. Electric foot shock stress adaptation: Does it exist or not? Life Sci 2015; 130:97-102. [DOI: 10.1016/j.lfs.2015.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 12/01/2022]
|
27
|
Nicolaides NC, Charmandari E. Chrousos syndrome: from molecular pathogenesis to therapeutic management. Eur J Clin Invest 2015; 45:504-14. [PMID: 25715669 DOI: 10.1111/eci.12426] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/23/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Primary Generalized Glucocorticoid Resistance or Chrousos syndrome is a rare genetic condition characterized by end-organ insensitivity to glucocorticoids owing to inactivating mutations of the NR3C1 gene. MATERIALS AND METHODS We conducted a systematic review of the published, peer-reviewed medical literature using MEDLINE (1975 through November 2014) to identify original articles and reviews on this topic. The search terms included 'primary generalized glucocorticoid resistance', 'Chrousos syndrome', 'glucocorticoid receptor gene' and 'glucocorticoid receptor mutations'. RESULTS Only a few cases of Chrousos syndrome have been described to date, ranging from asymptomatic to severe forms of mineralocorticoid and/or androgen excess. All reported cases have been associated with point mutations or deletions in the NR3C1 gene. The tremendous progress of molecular biology has enabled us to apply standard methods to investigate the molecular mechanisms of action of the mutant glucocorticoid receptors (GRs). We and others have identified and functionally characterized novel mutations causing Chrousos syndrome, while structural biology has enabled us to have a better understanding of how conformational changes of the receptor cause glucocorticoid resistance. In this review, we also present our results of the functional characterization of two recently described mutations, and we discuss the diagnostic approaches and therapeutic management of patients with Chrousos syndrome. CONCLUSIONS Although Chrousos syndrome is a rare condition, many clinical cases remain unrecognized for a long time. We recommend determination of the 24-h urinary free cortisol excretion and sequencing of the NR3C1 gene in patients with hyperandrogenism and/or hypertension of unknown origin.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Clinical Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | |
Collapse
|
28
|
Gelman PL, Flores-Ramos M, López-Martínez M, Fuentes CC, Grajeda JPR. Hypothalamic-pituitary-adrenal axis function during perinatal depression. Neurosci Bull 2015; 31:338-50. [PMID: 25732527 DOI: 10.1007/s12264-014-1508-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/24/2014] [Indexed: 12/01/2022] Open
Abstract
Abnormal function of the hypothalamic-pituitary-adrenal (HPA) axis is an important pathological finding in pregnant women exhibiting major depressive disorder. They show high levels of cortisol pro-inflammatory cytokines, hypothalamic-pituitary peptide hormones and catecholamines, along with low dehydroepiandrosterone levels in plasma. During pregnancy, the TH2 balance together with the immune system and placental factors play crucial roles in the development of the fetal allograft to full term. These factors, when altered, may generate a persistent dysfunction of the HPA axis that may lead to an overt transfer of cortisol and toxicity to the fetus at the expense of reduced activity of placental 11β-hydroxysteroid dehydrogenase type 2. Epigenetic modifications also may contribute to the dysregulation of the HPA axis. Affective disorders in pregnant women should be taken seriously, and therapies focused on preventing the deleterious effects of stressors should be implemented to promote the welfare of both mother and baby.
Collapse
|
29
|
Laryea G, Muglia L, Arnett M, Muglia LJ. Dissection of glucocorticoid receptor-mediated inhibition of the hypothalamic-pituitary-adrenal axis by gene targeting in mice. Front Neuroendocrinol 2015; 36:150-64. [PMID: 25256348 PMCID: PMC4342273 DOI: 10.1016/j.yfrne.2014.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/05/2014] [Accepted: 09/11/2014] [Indexed: 12/17/2022]
Abstract
Negative feedback regulation of glucocorticoid (GC) synthesis and secretion occurs through the function of glucocorticoid receptor (GR) at sites in the hypothalamic-pituitary-adrenal (HPA) axis, as well as in brain regions such as the hippocampus, prefrontal cortex, and sympathetic nervous system. This function of GRs in negative feedback coordinates basal glucocorticoid secretion and stress-induced increases in secretion that integrate GC production with the magnitude and duration of the stressor. This review describes the effects of GR loss along major sites of negative feedback including the entire brain, the paraventricular nucleus of the hypothalamus (PVN), and the pituitary. In genetic mouse models, we evaluate circadian regulation of the HPA axis, stress-stimulated neuroendocrine response and behavioral activity, as well as the integrated response of organism metabolism. Our analysis provides information on contributions of region-specific GR-mediated negative feedback to provide insight in understanding HPA axis dysregulation and the pathogenesis of psychiatric and metabolic disorders.
Collapse
Affiliation(s)
- Gloria Laryea
- Neuroscience Graduate Program, School of Medicine, Vanderbilt University, Nashville, TN, United States; Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| | - Lisa Muglia
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| | - Melinda Arnett
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| | - Louis J Muglia
- Center for Preterm Birth Research, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, ML 7009, Cincinnati, OH 45229, United States.
| |
Collapse
|
30
|
Stamper CE, Hennessey PA, Hale MW, Lukkes JL, Donner NC, Lowe KR, Paul ED, Spencer RL, Renner KJ, Orchinik M, Lowry CA. Role of the dorsomedial hypothalamus in glucocorticoid-mediated feedback inhibition of the hypothalamic-pituitary-adrenal axis. Stress 2015; 18:76-87. [PMID: 25556980 PMCID: PMC4367871 DOI: 10.3109/10253890.2015.1004537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies suggest that multiple corticolimbic and hypothalamic structures are involved in glucocorticoid-mediated feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis, including the dorsomedial hypothalamus (DMH), but a potential role of the DMH has not been directly tested. To investigate the role of the DMH in glucocorticoid-mediated negative feedback, adult male Sprague Dawley rats were implanted with jugular cannulae and bilateral guide cannulae directed at the DMH, and finally were either adrenalectomized (ADX) or were subjected to sham-ADX. ADX rats received corticosterone (CORT) replacement in the drinking water (25 μg/mL), which, based on initial studies, restored a rhythm of plasma CORT concentrations in ADX rats that was similar in period and amplitude to the diurnal rhythm of plasma CORT concentrations in sham-ADX rats, but with a significant phase delay. Following recovery from surgery, rats received microinjections of either CORT (10 ng, 0.5 μL, 0.25 μL/min, per side) or vehicle (aCSF containing 0.2% EtOH), bilaterally, directly into the DMH, prior to a 40-min period of restraint stress. In sham-ADX rats, bilateral intra-DMH microinjections of CORT, relative to bilateral intra-DMH microinjections of vehicle, decreased restraint stress-induced elevation of endogenous plasma CORT concentrations 60 min after the onset of intra-DMH injections. Intra-DMH CORT decreased the overall area under the curve for plasma CORT concentrations during the intermediate time frame of glucocorticoid negative feedback, from 0.5 to 2 h following injection. These data are consistent with the hypothesis that the DMH is involved in feedback inhibition of HPA axis activity at the intermediate time frame.
Collapse
Affiliation(s)
- Christopher E. Stamper
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Patrick A. Hennessey
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Matthew W. Hale
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Jodi L. Lukkes
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Nina C. Donner
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Kenneth R. Lowe
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Evan D. Paul
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| | - Robert L. Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0345, USA
| | - Kenneth J. Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Miles Orchinik
- Department of Organismal, Integrative, and Systems Biology, Arizona State University, Tempe, AZ 85287, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309-0354, USA
| |
Collapse
|
31
|
Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP, Charmandari E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation 2015; 22:6-19. [PMID: 25227402 DOI: 10.1159/000362736] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
All living organisms have developed a highly conserved and regulatory system, the stress system, to cope with a broad spectrum of stressful stimuli that threaten, or are perceived as threatening, their dynamic equilibrium or homeostasis. This neuroendocrine system consists of the hypothalamic-pituitary-adrenal (HPA) axis and the locus caeruleus/norepinephrine-autonomic nervous system. In parallel with the evolution of the homeostasis and stress concepts from ancient Greek to modern medicine, significant advances in the field of neuroendocrinology have identified the physiologic biochemical effector molecules of the stress response. Glucocorticoids, the end-products of the HPA axis, play a fundamental role in the maintenance of both resting and stress-related homeostasis and, undoubtedly, influence the physiologic adaptive reaction of the organism against stressors. If the stress response is dysregulated in terms of magnitude and/or duration, homeostasis is turned into cacostasis with adverse effects on many vital physiologic functions, such as growth, development, metabolism, circulation, reproduction, immune response, cognition and behavior. A strong and/or long-lasting stressor may precipitate and/or cause many acute and chronic diseases. Moreover, stressors during pre-natal, post-natal or pubertal life may have a critical impact on our expressed genome. This review describes the central and peripheral components of the stress system, provides a comprehensive overview of the stress response, and discusses the role of glucocorticoids in a broad spectrum of stress-related diseases. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | | | | | | | | |
Collapse
|
32
|
Gudmand-Hoeyer J, Timmermann S, Ottesen JT. Patient-specific modeling of the neuroendocrine HPA-axis and its relation to depression: Ultradian and circadian oscillations. Math Biosci 2014; 257:23-32. [DOI: 10.1016/j.mbs.2014.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/26/2014] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
|
33
|
Chester JA, Kirchhoff AM, Barrenha GD. Relation between corticosterone and fear-related behavior in mice selectively bred for high or low alcohol preference. Addict Biol 2014; 19:663-75. [PMID: 23331637 DOI: 10.1111/adb.12034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blunted cortisol responses to stress or trauma have been linked with genetic (familial) risk for both alcoholism and post-traumatic stress disorder (PTSD). Mouse lines selectively bred for high (HAP) or low (LAP) alcohol preference may be a relevant model of genetic risk for co-morbid alcoholism and PTSD in humans. HAP mice show greater fear-potentiated startle (FPS), a model used to study PTSD, than LAP mice. The relation between corticosterone (CORT) and FPS behavior was explored in four experiments. Naïve male and female HAP2 and LAP2 mice received fear-conditioning or control treatments, and CORT levels were measured before and immediately after fear-conditioning or FPS testing. In two other experiments, HAP2 mice received CORT (1.0, 5.0 or 10.0 mg/kg) or a glucocorticoid receptor antagonist (mifepristone; 25.0 and 50.0 mg/kg) 30 minutes before fear conditioning. HAP2 mice exposed to fear conditioning and to control foot shock exposures showed lower CORT after the fear-conditioning and FPS testing sessions than LAP2 mice. A trend toward higher FPS was seen in HAP2 mice pretreated with 10.0 mg/kg CORT, and CORT levels were the lowest in this group, suggesting negative feedback inhibition of CORT release. Mifepristone did not alter FPS. Overall, these results are consistent with data in humans and rodents indicating that lower cortisol/CORT levels after stress are associated with PTSD/PTSD-like behavior. These findings in HAP2 and LAP2 mice suggest that a blunted CORT response to stress may be a biological marker for greater susceptibility to develop PTSD in individuals with increased genetic risk for alcoholism.
Collapse
Affiliation(s)
- Julia A. Chester
- Department of Psychological Sciences; Purdue University; West Lafayette IN USA
| | - Aaron M. Kirchhoff
- Department of Psychological Sciences; Purdue University; West Lafayette IN USA
| | - Gustavo D. Barrenha
- Department of Psychological Sciences; Purdue University; West Lafayette IN USA
| |
Collapse
|
34
|
|
35
|
Quax RA, Manenschijn L, Koper JW, Hazes JM, Lamberts SWJ, van Rossum EFC, Feelders RA. Glucocorticoid sensitivity in health and disease. Nat Rev Endocrinol 2013; 9:670-86. [PMID: 24080732 DOI: 10.1038/nrendo.2013.183] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids regulate many physiological processes and have an essential role in the systemic response to stress. For example, gene transcription is modulated by the glucocorticoid-glucocorticoid receptor complex via several mechanisms. The ultimate biologic responses to glucocorticoids are determined by not only the concentration of glucocorticoids but also the differences between individuals in glucocorticoid sensitivity, which is influenced by multiple factors. Differences in sensitivity to glucocorticoids in healthy individuals are partly genetically determined by functional polymorphisms of the gene that encodes the glucocorticoid receptor. Hereditary syndromes have also been identified that are associated with increased and decreased sensitivity to glucocorticoids. As a result of their anti-inflammatory properties, glucocorticoids are widely used in the treatment of allergic, inflammatory and haematological disorders. The variety in clinical responses to treatment with glucocorticoids reflects the considerable variation in glucocorticoid sensitivity between individuals. In immune-mediated disorders, proinflammatory cytokines can induce localized resistance to glucocorticoids via several mechanisms. Individual differences in how tissues respond to glucocorticoids might also be involved in the predisposition for and pathogenesis of the metabolic syndrome and mood disorders. In this Review, we summarize the mechanisms that influence glucocorticoid sensitivity in health and disease and discuss possible strategies to modulate glucocorticoid responsiveness.
Collapse
Affiliation(s)
- Rogier A Quax
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, 's-Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Johnstone WM, Mills KA, Alyea RA, Thomas P, Borski RJ. Characterization of membrane receptor binding activity for cortisol in the liver and kidney of the euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2013; 192:107-14. [PMID: 23851043 DOI: 10.1016/j.ygcen.2013.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 11/22/2022]
Abstract
Glucocorticoids (GCs) regulate an array of physiological responses in vertebrates. Genomic GC actions mediated by nuclear steroid receptors require a lag time on the order of hours to days to generate an appreciable physiological response. Experimental evidence has accumulated that GCs, can also act rapidly through a nongenomic mechanism to modulate cellular physiology in vertebrates. Causal evidence in the Mozambique tilapia (Oreochromis mossambicus) suggests that the GC cortisol exerts rapid, nongenomic actions in the gills, liver, and pituitary of this euryhaline teleost, but the membrane receptor mediating these actions has not been characterized. Radioreceptor binding assays were conducted to identify a putative GC membrane receptor site in O. mossambicus. The tissue distribution, binding kinetics, and pharmacological signature of the GC membrane-binding activity were characterized. High affinity (Kd=9.527±0.001 nM), low-capacity (Bmax=1.008±0.116 fmol/mg protein) [(3)H] cortisol binding was identified on plasma membranes prepared from the livers and a lower affinity (Kd=30.08±2.373 nM), low capacity (Bmax=4.690±2.373 fmol/mg protein) binding was found in kidney membrane preparations. Competitors with high binding affinity for nuclear GC receptors, mifepristone (RU486), dexamethasone, and 11-deoxycorticosterone, displayed no affinity for the membrane GC receptor. The association and dissociation kinetics of [(3)H] cortisol binding to membranes were orders of magnitude faster (t1/2=1.7-2.6 min) than those for the intracellular (nuclear) GC receptor (t1/2=10.2h). Specific [(3)H] cortisol membrane binding was also detected in the gill and pituitary but not in brain tissue. This study represents the first characterization of a membrane GC receptor in fishes and one of only a few characterized in vertebrates.
Collapse
Affiliation(s)
- William M Johnstone
- Department of Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
37
|
Srinivasan S, Shariff M, Bartlett SE. The role of the glucocorticoids in developing resilience to stress and addiction. Front Psychiatry 2013; 4:68. [PMID: 23914175 PMCID: PMC3730062 DOI: 10.3389/fpsyt.2013.00068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence that individuals have the capacity to learn to be resilient by developing protective mechanisms that prevent them from the maladaptive effects of stress that can contribute to addiction. The emerging field of the neuroscience of resilience is beginning to uncover the circuits and molecules that protect against stress-related neuropsychiatric diseases, such as addiction. Glucocorticoids (GCs) are important regulators of basal and stress-related homeostasis in all higher organisms and influence a wide array of genes in almost every organ and tissue. GCs, therefore, are ideally situated to either promote or prevent adaptation to stress. In this review, we will focus on the role of GCs in the hypothalamic-pituitary adrenocortical axis and extra-hypothalamic regions in regulating basal and chronic stress responses. GCs interact with a large number of neurotransmitter and neuropeptide systems that are associated with the development of addiction. Additionally, the review will focus on the orexinergic and cholinergic pathways and highlight their role in stress and addiction. GCs play a key role in promoting the development of resilience or susceptibility and represent important pharmacotherapeutic targets that can reduce the impact of a maladapted stress system for the treatment of stress-induced addiction.
Collapse
Affiliation(s)
- Subhashini Srinivasan
- Ernest Gallo Clinic and Research Center at the University of California San Francisco , Emeryville, CA , USA
| | | | | |
Collapse
|
38
|
Participation of endocannabinoids in rapid suppression of stress responses by glucocorticoids in neonates. Neuroscience 2012; 249:154-61. [PMID: 23131711 DOI: 10.1016/j.neuroscience.2012.10.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/10/2012] [Accepted: 10/27/2012] [Indexed: 11/21/2022]
Abstract
In adult rodents, endocannabinoids (eCBs) regulate fast glucocorticoid (GC) feedback in the hypothalamus-pituitary adrenal (HPA) axis, acting as retrograde messengers that bind to cannabinoid receptors (CB1R) and inhibit glutamate release from presynaptic CRH neurons in the paraventricular nucleus of the hypothalamus (PVN). During the first two weeks of life, rat pups exhibit significant CRH and ACTH responses to stress although the adrenal GC output remains reduced. At the same time, pups also display increased sensitivity to GC feedback, but it is unclear whether eCBs play a role in mediating fast GC feedback in neonatal life. In our studies, we examined the role of eCBs in the rapid suppression of anoxia-induced ACTH release and determined whether eCB action could be modulated by the levels of circulating GCs present at the time of stress. PND8 pups were subjected to 3-min anoxia with AM251, a CB1R blocker, injected 30 min prior to stress onset. The effects of either metyrapone (MET) (a steroidogenic 11 beta-hydroxylase blocker) or methylprednisolone (PRED) (a synthetic GC) pretreatment on AM251 effect and the stress response were evaluated. Treatment with AM251 before stress onset tended to increase overall ACTH and CORT secretion, and also delayed the return to baseline ACTH. The AM251 effect on ACTH in PND8 pups was lost in MET-treated pups, who exhibited high basal and stimulated ACTH release and no CORT response to stress. Methylprednisolone suppressed ACTH stress responses although AM251 still delayed restoration of ACTH levels to the baseline. This suggests that the eCB effect on ACTH secretion in neonates is most evident when there is a dynamic fluctuation of corticosterone levels. Interestingly, AM251 increased basal and stimulated corticosterone secretion in all treatments including MET, suggestive of a direct action of CB1R blockade on adrenal steroidogenesis.
Collapse
|
39
|
Puchinger MG, Zarzer CA, Kügler P, Gaubitzer E, Köhler G. In vitro detection of adrenocorticotropic hormone levels by fluorescence correlation spectroscopy immunoassay for mathematical modeling of glucocorticoid-mediated feedback mechanisms. EURASIP JOURNAL ON BIOINFORMATICS & SYSTEMS BIOLOGY 2012; 2012:17. [PMID: 23102048 PMCID: PMC3502540 DOI: 10.1186/1687-4153-2012-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 10/02/2012] [Indexed: 11/10/2022]
Abstract
Performing quantitative, highly sensitive measurements at a single molecule level is often necessary to address specific issues related to complex molecular and biochemical systems. For that purpose, we present a technique exploiting both the flexibility of immunoassays as well as the low operating costs and high throughput rates of the fluorescence correlation spectroscopy (FCS) method. That way we have established a quantitative measurement technique providing accurate and flexibly time resolved data of single molecules. Nanomolar changes in adrenocorticotropic hormone (ACTH) levels have been detected in a short time-frame that are caused by fast feedback actions in AtT-20 anterior pituitary glands in vitro. Especially with respect to clinical diagnostic or mathematical modeling this improved FCS setup may be of high relevance in order to accurately quantify the amounts of peptide hormones—such as ACTH—as well as signaling molecules, transcription factors, etc., being involved in intra- and extracellular reaction networks.
Collapse
Affiliation(s)
- Martin Gerald Puchinger
- Department of Structural and Computational Biology, Max F, Perutz Laboratories (MFPL), University of Vienna, Campus-Vienna-Biocenter 5, Vienna, 1030, Austria.
| | | | | | | | | |
Collapse
|
40
|
Walker JJ, Spiga F, Waite E, Zhao Z, Kershaw Y, Terry JR, Lightman SL. The origin of glucocorticoid hormone oscillations. PLoS Biol 2012; 10:e1001341. [PMID: 22679394 PMCID: PMC3367982 DOI: 10.1371/journal.pbio.1001341] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/20/2012] [Indexed: 01/26/2023] Open
Abstract
Oscillating levels of adrenal glucocorticoid hormones are essential for optimal gene expression, and for maintaining physiological and behavioural responsiveness to stress. The biological basis for these oscillations is not known, but a neuronal "pulse generator" within the hypothalamus has remained a popular hypothesis. We demonstrate that pulsatile hypothalamic activity is not required for generating ultradian glucocorticoid oscillations. We show that a constant level of corticotrophin-releasing hormone (CRH) can activate a dynamic pituitary-adrenal peripheral network to produce ultradian adrenocorticotrophic hormone and glucocorticoid oscillations with a physiological frequency. This oscillatory response to CRH is dose dependent and becomes disrupted for higher levels of CRH. These data suggest that glucocorticoid oscillations result from a sub-hypothalamic pituitary-adrenal system, which functions as a deterministic peripheral hormone oscillator with a characteristic ultradian frequency. This constitutes a novel mechanism by which the level, rather than the pattern, of CRH determines the dynamics of glucocorticoid hormone secretion.
Collapse
Affiliation(s)
- Jamie J Walker
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
41
|
Groeneweg FL, Karst H, de Kloet ER, Joëls M. Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol Cell Endocrinol 2012; 350:299-309. [PMID: 21736918 DOI: 10.1016/j.mce.2011.06.020] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 02/06/2023]
Abstract
The balance between corticosteroid actions induced via activation of the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) determines the brain's response to stress. While both receptors are best known for their delayed genomic role, it has become increasingly evident that they can also associate with the plasma membrane and act as mediators of rapid, nongenomic signalling. Nongenomic corticosteroid actions in the brain are required for the coordination of a rapid adaptive response to stress; membrane-associated MRs and GRs play a major role herein. However, many questions regarding the underlying mechanism are still unresolved. How do MR and GR translocate to the membrane and what are their downstream signalling partners? In this review we discuss these issues based on insights obtained from related receptors, most notably the estrogen receptor α.
Collapse
Affiliation(s)
- Femke L Groeneweg
- Department of Medical Pharmacology, Leiden Amsterdam Centre for Drug Research, Leiden University Medical Centre, Leiden University, Einsteinweg 55, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
42
|
Rankin J, Walker JJ, Windle R, Lightman SL, Terry JR. Characterizing dynamic interactions between ultradian glucocorticoid rhythmicity and acute stress using the phase response curve. PLoS One 2012; 7:e30978. [PMID: 22363526 PMCID: PMC3283588 DOI: 10.1371/journal.pone.0030978] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/30/2011] [Indexed: 11/29/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is a dynamic oscillatory hormone signalling system that regulates the pulsatile secretion of glucocorticoids from the adrenal glands. In addition to regulation of basal levels of glucocorticoids, the HPA axis provides a rapid hormonal response to stress that is vitally important for homeostasis. Recently it has become clear that glucocorticoid pulses encode an important biological signal that regulates receptor signalling both in the central nervous system and in peripheral tissues. It is therefore important to understand how stressful stimuli disrupt the pulsatile dynamics of this system. Using a computational model that incorporates the crucial feed-forward and feedback components of the axis, we provide novel insight into experimental observations that the size of the stress-induced hormonal response is critically dependent on the timing of the stress. Further, we employ the theory of Phase Response Curves to show that an acute stressor acts as a phase-resetting mechanism for the ultradian rhythm of glucocorticoid secretion. Using our model, we demonstrate that the magnitude of an acute stress is a critical factor in determining whether the system resets via a Type 1 or Type 0 mechanism. By fitting our model to our in vivo stress-response data, we show that the glucocorticoid response to an acute noise stress in rats is governed by a Type 0 phase-resetting curve. Our results provide additional evidence for the concept of a deterministic sub-hypothalamic oscillator regulating the ultradian glucocorticoid rhythm, which constitutes a highly responsive peripheral hormone system that interacts dynamically with hypothalamic inputs to regulate the overall hormonal response to stress.
Collapse
Affiliation(s)
- James Rankin
- Bristol Centre for Applied Nonlinear Mathematics, University of Bristol, Bristol, United Kingdom
- INRIA Sophia-Antipolis, Sophia Antipolis, France
| | - Jamie J. Walker
- Bristol Centre for Applied Nonlinear Mathematics, University of Bristol, Bristol, United Kingdom
- Henry Wellcome Laboratories for Integrative Neuroscience & Endocrinology, University of Bristol, Bristol, United Kingdom
| | - Richard Windle
- School of Nursing, Midwifery and Physiotherapy, University of Nottingham, Nottingham, United Kingdom
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience & Endocrinology, University of Bristol, Bristol, United Kingdom
| | - John R. Terry
- Henry Wellcome Laboratories for Integrative Neuroscience & Endocrinology, University of Bristol, Bristol, United Kingdom
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, United Kingdom
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Thomas P. Rapid steroid hormone actions initiated at the cell surface and the receptors that mediate them with an emphasis on recent progress in fish models. Gen Comp Endocrinol 2012; 175:367-83. [PMID: 22154643 PMCID: PMC3264783 DOI: 10.1016/j.ygcen.2011.11.032] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 02/06/2023]
Abstract
In addition to the classic genomic mechanism of steroid action mediated by activation of intracellular nuclear receptors, there is now extensive evidence that steroids also activate receptors on the cell surface to initiate rapid intracellular signaling and biological responses that are often nongenomic. Recent progress in our understanding of rapid, cell surface-initiated actions of estrogens, progestins, androgens and corticosteroids and the identities of the membrane receptors that act as their intermediaries is briefly reviewed with a special emphasis on studies in teleost fish. Two recently discovered novel proteins with seven-transmembrane domains, G protein-coupled receptor 30 (GPR30), and membrane progestin receptors (mPRs) have the ligand binding and signaling characteristics of estrogen and progestin membrane receptors, respectively, but their functional significance is disputed by some researchers. GPR30 is expressed on the cell surface of fish oocytes and mediates estrogen inhibition of oocyte maturation. mPRα is also expressed on the oocyte cell surface and is the intermediary in progestin induction of oocyte maturation in fish. Recent results suggest there is cross-talk between these two hormonal pathways and that there is reciprocal down-regulation of GPR30 and mPRα expression by estrogens and progestins at different phases of oocyte development to regulate the onset of oocyte maturation. There is also evidence in fish that mPRs are involved in progestin induction of sperm hypermotility and anti-apoptotic actions in ovarian follicle cells. Nonclassical androgen and corticosteroid actions have also been described in fish models but the membrane receptors mediating these actions have not been identified.
Collapse
Affiliation(s)
- Peter Thomas
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| |
Collapse
|
44
|
The role of CRH in behavioral responses to acute restraint stress in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:176-82. [PMID: 21893154 DOI: 10.1016/j.pnpbp.2011.08.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/15/2011] [Accepted: 08/22/2011] [Indexed: 01/21/2023]
Abstract
In teleosts, changes in swimming, exploring, general locomotor activity, and anxious state can be a response to stress mediated by the corticotropin-releasing hormone system activation and its effects on glucocorticoid levels. Zebrafish has been widely used to study neuropharmacology and has become a promising animal model to investigate neurobehavioral mechanisms of stress. In this report the animals were submitted to acute restraint stress for different time lengths (15, 60 and 90 min) for further evaluation of behavioral patterns, whole-body cortisol content, and corticotropin-releasing hormone expression. The results demonstrated an increase in the locomotor activity and an alteration in the swimming pattern during a 5-min trial after the acute restraint stress. Interestingly, all groups of fish tested in the novel tank test exhibited signs of anxiety as evaluated by the time spent in the bottom of the tank. Whole-body cortisol content showed a positive correlation with increased behavioral indices of locomotion in zebrafish whereas molecular analysis of corticotropin-releasing hormone showed a late reduction of mRNA expression (90 min). Altogether, we present a model of acute restraint stress in zebrafish, confirmed by elevated cortisol content, as a valid and reliable model to study the biochemical basis of stress behavior, which seems to be accompanied by a negative feedback of corticotropin-release hormone mRNA expression.
Collapse
|
45
|
Andrews MH, Wood SA, Windle RJ, Lightman SL, Ingram CD. Acute glucocorticoid administration rapidly suppresses basal and stress-induced hypothalamo-pituitary-adrenal axis activity. Endocrinology 2012; 153:200-11. [PMID: 22087024 PMCID: PMC3279736 DOI: 10.1210/en.2011-1434] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypothalamo-pituitary-adrenal (HPA) axis activity is subject to negative feedback control by glucocorticoids. Although the rapid component of this feedback is widely considered to contribute to regulation of dynamic HPA activity, few in vivo data exist on the temporal and pharmacological characteristics of this phenomenon. Thus, frequent automated blood sampling was undertaken in rats to determine the effects of acute glucocorticoid administration on basal and stress-induced corticosterone secretion. The glucocorticoid agonist methylprednisolone (5-2000 μg) or dexamethasone (5-500 μg) injected iv at the peak of the diurnal rhythm caused dose-dependent suppression of basal corticosterone secretion, which was attenuated by the glucocorticoid receptor antagonist RU38486. With 50 μg methylprednisolone, the onset of this suppression occurred at 40 min and remained significant for 120 min. However, although higher doses led to a greater and more sustained suppression of endogenous corticosterone, the response was delayed by the emergence of an initial stimulatory response that imposed a finite minimum delay. A corticosterone response to injection of CRH (1 μg, iv) during the period of maximal suppression indicated a suprapituitary site for the inhibitory effect glucocorticoid activation. This mechanism was supported by glucocorticoid injection immediately before a psychological stress (30 min, white noise); methylprednisolone caused dose-dependent attenuation of stress-induced corticosterone release and expression of the activity marker c-fos mRNA in the paraventricular nucleus but did not block the pituitary response to CRH. Thus, in rats, glucocorticoid receptor activation rapidly suppresses basal and stress-induced HPA activity that operates, at least in part, through a central mechanism of action.
Collapse
Affiliation(s)
- Marcus H Andrews
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Quinn M, Ueno Y, Pae HY, Huang L, Frampton G, Galindo C, Francis H, Horvat D, McMillin M, DeMorrow S. Suppression of the HPA axis during extrahepatic biliary obstruction induces cholangiocyte proliferation in the rat. Am J Physiol Gastrointest Liver Physiol 2012; 302:G182-93. [PMID: 21979757 PMCID: PMC3345968 DOI: 10.1152/ajpgi.00205.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cholestatic patients often present with clinical features suggestive of adrenal insufficiency. In the bile duct-ligated (BDL) model of cholestasis, the hypothalamic-pituitary-adrenal (HPA) axis is suppressed. The consequences of this suppression on cholangiocyte proliferation are unknown. We evaluated 1) HPA axis activity in various rat models of cholestasis and 2) effects of HPA axis modulation on cholangiocyte proliferation. Expression of regulatory molecules of the HPA axis was determined after BDL, partial BDL, and α-naphthylisothiocyanate (ANIT) intoxication. The HPA axis was suppressed by inhibition of hypothalamic corticotropin-releasing hormone (CRH) expression by central administration of CRH-specific Vivo-morpholinos or by adrenalectomy. After BDL, the HPA axis was reactivated by 1) central administration of CRH, 2) systemic ACTH treatment, or 3) treatment with cortisol or corticosterone for 7 days postsurgery. There was decreased expression of 1) hypothalamic CRH, 2) pituitary ACTH, and 3) key glucocorticoid synthesis enzymes in the adrenal glands. Serum corticosterone and cortisol remained low after BDL (but not partial BDL) compared with sham surgery and after 2 wk of ANIT feeding. Experimental suppression of the HPA axis increased cholangiocyte proliferation, shown by increased cytokeratin-19- and proliferating cell nuclear antigen-positive cholangiocytes. Conversely, restoration of HPA axis activity inhibited BDL-induced cholangiocyte proliferation. Suppression of the HPA axis is an early event following BDL and induces cholangiocyte proliferation. Knowledge of the role of the HPA axis during cholestasis may lead to development of innovative treatment paradigms for chronic liver disease.
Collapse
Affiliation(s)
- Matthew Quinn
- 1Department of Internal Medicine, Texas A & M Health Science Center College of Medicine,
| | - Yoshiyuki Ueno
- 2Division of Gastroenterology, Tohoku University Graduate School of Medicine, Aobaku, Sendai, Japan; and
| | - Hae Yong Pae
- 1Department of Internal Medicine, Texas A & M Health Science Center College of Medicine,
| | - Li Huang
- 1Department of Internal Medicine, Texas A & M Health Science Center College of Medicine, ,3Department of Hepatobiliary Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gabriel Frampton
- 1Department of Internal Medicine, Texas A & M Health Science Center College of Medicine,
| | - Cheryl Galindo
- 1Department of Internal Medicine, Texas A & M Health Science Center College of Medicine,
| | - Heather Francis
- 4Digestive Disease Research Center, ,5Division of Research and Education, Scott and White Hospital, ,6Central Texas Veterans Health Care System, Temple, Texas;
| | - Darijana Horvat
- 1Department of Internal Medicine, Texas A & M Health Science Center College of Medicine,
| | - Matthew McMillin
- 1Department of Internal Medicine, Texas A & M Health Science Center College of Medicine,
| | - Sharon DeMorrow
- 1Department of Internal Medicine, Texas A & M Health Science Center College of Medicine, ,4Digestive Disease Research Center, ,5Division of Research and Education, Scott and White Hospital, ,6Central Texas Veterans Health Care System, Temple, Texas;
| |
Collapse
|
47
|
Osterlund CD, Jarvis E, Chadayammuri A, Unnithan R, Weiser MJ, Spencer RL. Tonic, but not phasic corticosterone, constrains stress activatedextracellular-regulated-kinase 1/ 2 immunoreactivity within the hypothalamic paraventricular nucleus. J Neuroendocrinol 2011; 23:1241-51. [PMID: 21929693 PMCID: PMC3220802 DOI: 10.1111/j.1365-2826.2011.02220.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The negative-feedback actions of corticosterone (CORT) depend on both phasic and tonic CORT secretion patterns to regulate hypothalamic-pituitary-adrenal (HPA) axis activity. How these two different CORT secretion pattens influence specific intracellular signal transduction pathway activity within the cellular elements of the HPA axis has not been determined. For example, it is unknown whether CORT has suppressive actions over signal transduction events within medial parvocellular paraventricular nucleus (PVN) corticotrophin-releasing hormone (CRH) neurones, nor whether these suppressive actions are responsible for alterations in PVN transcriptional processes and neurohormone secretion associated with stress. The extracellular-regulated kinase (ERK) is a stress activated intracellular signalling molecule that is potentially subject to glucocorticoid negative-feedback regulation. We tested the ability of CORT to modulate levels of the active (phosphorylated) form of ERK (pERK1/2) in the PVN of rats. Acute psychological stress (restraint) produced a rapid increase in the number of PVN pERK1/2 immunopositive cells within CRH neurones. Absence of tonic CORT via adrenalectomy (ADX) produced no change in basal pERK1/2 cell counts but augmented the increased pERK1/2 cell counts elicited by acute restraint. Treatment of ADX rats with CORT in the drinking water normalised this enhanced pERK1/2 response to stress. By contrast, treatment of ADX rats with a phasic increase in CORT 1 h before restraint had no effect on pERK1/2 cell counts, despite substantially suppressing stress-induced PVN crh gene expression and adrenonocorticotrophic hormone secretion. This tonic CORT inhibition of stress-induced activation of ERK1/2 may involve both alteration of the activity of stress-dependent neural inputs to PVN CRH neurones and alteration within those neurones of stress-dependent intracellular signalling mechanisms associated with ERK activation.
Collapse
Affiliation(s)
- C D Osterlund
- Department of Psychology and Neuroscience, University of Colorado, UCB 345, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Endogenous cannabinoids play an important role in the physiology and behavioral expression of stress responses. Activation of the hypothalamic-pituitary-adrenal (HPA) axis, including the release of glucocorticoids, is the fundamental hormonal response to stress. Endocannabinoid (eCB) signaling serves to maintain HPA-axis homeostasis, by buffering basal activity as well as by mediating glucocorticoid fast feedback mechanisms. Following chronic stressor exposure, eCBs are also involved in physiological and behavioral habituation processes. Behavioral consequences of stress include fear and stress-induced anxiety as well as memory formation in the context of stress, involving contextual fear conditioning and inhibitory avoidance learning. Chronic stress can also lead to depression-like symptoms. Prominent in these behavioral stress responses is the interaction between eCBs and the HPA-axis. Future directions may differentiate among eCB signaling within various brain structures/neuronal subpopulations as well as between the distinct roles of the endogenous cannabinoid ligands. Investigation into the role of the eCB system in allostatic states and recovery processes may give insight into possible therapeutic manipulations of the system in treating chronic stress-related conditions in humans.
Collapse
|
49
|
Taylor SB, Markham JA, Taylor AR, Kanaskie BZ, Koenig JI. Sex-specific neuroendocrine and behavioral phenotypes in hypomorphic Type II Neuregulin 1 rats. Behav Brain Res 2011; 224:223-32. [PMID: 21620900 DOI: 10.1016/j.bbr.2011.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 12/11/2022]
Abstract
Neuregulin 1 (NRG1) is an important growth factor involved in the development and plasticity of the central nervous system. Since its identification as a susceptibility gene for schizophrenia, several transgenic mouse models have been employed to elucidate the role NRG1 may play in the pathogenesis of psychiatric disease. Unfortunately very few studies have included females, despite the fact that some work suggests that the consequences of disrupted NRG1 expression may be sex-specific. Here, we used Nrg1 hypomorphic (Nrg1(Tn)) Fischer rats to demonstrate sex-specific changes in neuroendocrine and behavioral phenotypes as a consequence of reduced Type II NRG1 expression. We have previously shown that male Nrg1(Tn) rats have increased basal corticosterone levels, and fail to habituate to an open field despite normal overall levels of locomotor activity. The current studies show that, in contrast, female Nrg1(Tn) rats exhibit enhanced suppression of corticosterone levels following an acute stress, reduced locomotor activity, and enhanced habituation to novel environments. Furthermore, we also show that female, but not male, Nrg1(Tn) rats have impaired prepulse inhibition. Finally, we provide evidence that sex-specific changes are not likely attributable to major disruptions in the hypothalamic-pituitary-gonadal axis, as measures of pubertal onset, estrous cyclicity, and reproductive capacity were unaltered in female Nrg1(Tn) rats. Our results provide further support for both the involvement of NRG1 in the control of hypothalamic-pituitary-adrenal axis function and the sex-specific nature of this relationship.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Blotting, Western
- Female
- Genotype
- Male
- Motor Activity/physiology
- Mutation/physiology
- Neuregulin-1/genetics
- Neuregulin-1/physiology
- Neurosecretory Systems/physiology
- Rats
- Rats, Inbred F344
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Reflex, Startle/physiology
- Reproduction/genetics
- Restraint, Physical
- Sex Characteristics
- Sexual Maturation/genetics
- Sexual Maturation/physiology
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Sara B Taylor
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
50
|
Osterlund C, Spencer RL. Corticosterone pretreatment suppresses stress-induced hypothalamic-pituitary-adrenal axis activity via multiple actions that vary with time, site of action, and de novo protein synthesis. J Endocrinol 2011; 208:311-22. [PMID: 21205835 PMCID: PMC3350321 DOI: 10.1530/joe-10-0413] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucocorticoid regulation of the hypothalamic-pituitary-adrenal (HPA) axis is believed to depend on multiple actions operative within discrete time domains. However, the underlying cellular and molecular mechanisms for those glucocorticoid actions remain undetermined. Moreover, there is absence of in vivo studies examining whether there are multiple glucocorticoid effects on HPA axis-related function within an intermediate feedback time frame (1-3 h after glucocorticoid elevation), and whether those effects depend on de novo protein synthesis. We examined in rats the effects of protein synthesis inhibition on HPA axis response to restraint (15 min) after 1 and 3 h phasic corticosterone (CORT) pretreatment. We measured HPA axis hormones (ACTH and CORT) and gene expression in the paraventricular nucleus (c-fos and crh genes), as well as gene expression in the anterior and intermediate pituitaries (c-fos and pomc genes). Both CORT pretreatment intervals produced inhibition of stress-induced ACTH secretion, but no inhibition was observed in the presence of protein synthesis inhibition. CORT pretreatment produced inhibitory effects on stress-induced gene expression that varied for each gene depending on the anatomical site, pretreatment time, and protein synthesis dependency. Taken together, the ACTH and gene expression patterns support the presence of multiple independent glucocorticoid actions initiated during the intermediate glucocorticoid negative feedback phase. Moreover, we conclude that those effects are exerted predominantly on the intrinsic anatomical elements of the HPA axis, and some of those effects depend on CORT induction of the expression of one or more regulatory gene products.
Collapse
Affiliation(s)
- Chad Osterlund
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|