1
|
El-Ghiaty MA, Alqahtani MA, El-Mahrouk SR, Isse FA, Alammari AH, El-Kadi AOS. Alteration of Hepatic Cytochrome P450 Expression and Arachidonic Acid Metabolism by Arsenic Trioxide (ATO) in C57BL/6 Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04225-1. [PMID: 38758479 DOI: 10.1007/s12011-024-04225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
The success of arsenic trioxide (ATO) in acute promyelocytic leukemia has driven a plethora studies to investigate its efficacy in other malignancies. However, the inherent toxicity of ATO limits the expansion of its clinical applications. Such toxicity may be linked to ATO-induced metabolic derangements of endogenous substrates. Therefore, the primary objective of this study was to investigate the effect of ATO on the hepatic formation of arachidonic acid (AA) metabolites, hydroxyeicosatetraenoic acids (HETEs), as well as their most notable producing machinery, cytochrome P450 (CYP) enzymes. For this purpose, C57BL/6 mice were intraperitoneally injected with 8 mg/kg ATO for 6 and 24 h. Total RNA was extracted from harvested liver tissues for qPCR analysis of target genes. Hepatic microsomal proteins underwent incubation with AA, followed by identification/quantification of the produced HETEs. ATO downregulated Cyp2e1, while induced Cyp2j9 and most of Cyp4a and Cyp4f, and this has resulted in a significant increase in 17(S)-HETE and 18(R)-HETE, while significantly decreased 18(S)-HETE. Additionally, ATO induced Cyp4a10, Cyp4a14, Cyp4f13, Cyp4f16, and Cyp4f18, resulting in a significant elevation in 20-HETE formation. In conclusion, ATO altered hepatic AA metabolites formation through modulating the underlying network of CYP enzymes. Modifying the homeostatic production of bioactive AA metabolites, such as HETEs, may entail toxic events that can, at least partly, explain ATO-induced hepatotoxicity. Such modification can also compromise the overall body tolerability to ATO treatment in cancer patients.
Collapse
Affiliation(s)
- Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Ahmad H Alammari
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Lv N, Huang C, Huang H, Dong Z, Chen X, Lu C, Zhang Y. Overexpression of Glutathione S-Transferases in Human Diseases: Drug Targets and Therapeutic Implications. Antioxidants (Basel) 2023; 12:1970. [PMID: 38001822 PMCID: PMC10668987 DOI: 10.3390/antiox12111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione S-transferases (GSTs) are a major class of phase II metabolic enzymes. Besides their essential role in detoxification, GSTs also exert diverse biological activities in the occurrence and development of various diseases. In the past few decades, much research interest has been paid to exploring the mechanisms of GST overexpression in tumor drug resistance. Correspondingly, many GST inhibitors have been developed and applied, solely or in combination with chemotherapeutic drugs, for the treatment of multi-drug resistant tumors. Moreover, novel roles of GSTs in other diseases, such as pulmonary fibrosis and neurodegenerative diseases, have been recognized in recent years, although the exact regulatory mechanisms remain to be elucidated. This review, firstly summarizes the roles of GSTs and their overexpression in the above-mentioned diseases with emphasis on the modulation of cell signaling pathways and protein functions. Secondly, specific GST inhibitors currently in pre-clinical development and in clinical stages are inventoried. Lastly, applications of GST inhibitors in targeting cell signaling pathways and intracellular biological processes are discussed, and the potential for disease treatment is prospected. Taken together, this review is expected to provide new insights into the interconnection between GST overexpression and human diseases, which may assist future drug discovery targeting GSTs.
Collapse
Affiliation(s)
- Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Zhiqiang Dong
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| | - Chengcan Lu
- Department of Pharmacy, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China;
- Jiangning Clinical Medical College, Jiangsu University, Nanjing 211100, China
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (N.L.); (H.H.)
| |
Collapse
|
3
|
Canlas J, Myers AL. Interactions of Betel Quid Constituents with Drug Disposition Pathways: An Overview. Curr Drug Metab 2023; 24:92-105. [PMID: 36852799 PMCID: PMC11271041 DOI: 10.2174/1389200224666230228142052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Global estimates indicate that over 600 million individuals worldwide consume the areca (betel) nut in some form. Nonetheless, its consumption is associated with a myriad of oral and systemic ailments, such as precancerous oral lesions, oropharyngeal cancers, liver toxicity and hepatic carcinoma, cardiovascular distress, and addiction. Users commonly chew slivers of areca nut in a complex consumable preparation called betel quid (BQ). Consequently, the user is exposed to a wide array of chemicals with diverse pharmacokinetic behavior in the body. However, a comprehensive understanding of the metabolic pathways significant to BQ chemicals is lacking. Henceforth, we performed a literature search to identify prominent BQ constituents and examine each chemical's interplay with drug disposition proteins. In total, we uncovered over 20 major chemicals (e.g., arecoline, nicotine, menthol, quercetin, tannic acid) present in the BQ mixture that were substrates, inhibitors, and/or inducers of various phase I (e.g., CYP, FMO, hydrolases) and phase II (e.g., GST, UGT, SULT) drug metabolizing enzymes, along with several transporters (e.g., P-gp, BCRP, MRP). Altogether, over 80 potential interactivities were found. Utilizing this new information, we generated theoretical predictions of drug interactions precipitated by BQ consumption. Data suggests that BQ consumers are at risk for drug interactions (and possible adverse effects) when co-ingesting other substances (multiple therapeutic classes) with overlapping elimination mechanisms. Until now, prediction about interactions is not widely known among BQ consumers and their clinicians. Further research is necessary based on our speculations to elucidate the biological ramifications of specific BQ-induced interactions and to take measures that improve the health of BQ consumers.
Collapse
Affiliation(s)
- Jasmine Canlas
- Department of Pharmaceutical & Biomedical Sciences, The University of Georgia, Athens, GA 30602, United States
| | - Alan L. Myers
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| |
Collapse
|
4
|
Orr SE, Bridges CC. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. Int J Mol Sci 2017; 18:ijms18051039. [PMID: 28498320 PMCID: PMC5454951 DOI: 10.3390/ijms18051039] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/26/2017] [Indexed: 12/26/2022] Open
Abstract
Chronic kidney disease (CKD) is a common progressive disease that is typically characterized by the permanent loss of functional nephrons. As injured nephrons become sclerotic and die, the remaining healthy nephrons undergo numerous structural, molecular, and functional changes in an attempt to compensate for the loss of diseased nephrons. These compensatory changes enable the kidney to maintain fluid and solute homeostasis until approximately 75% of nephrons are lost. As CKD continues to progress, glomerular filtration rate decreases, and remaining nephrons are unable to effectively eliminate metabolic wastes and environmental toxicants from the body. This inability may enhance mortality and/or morbidity of an individual. Environmental toxicants of particular concern are arsenic, cadmium, lead, and mercury. Since these metals are present throughout the environment and exposure to one or more of these metals is unavoidable, it is important that the way in which these metals are handled by target organs in normal and disease states is understood completely.
Collapse
Affiliation(s)
- Sarah E Orr
- Mercer University School of Medicine, Division of Basic Medical Sciences, 1550 College St., Macon, GA 31207, USA.
| | - Christy C Bridges
- Mercer University School of Medicine, Division of Basic Medical Sciences, 1550 College St., Macon, GA 31207, USA.
| |
Collapse
|
5
|
Parker LJ, Bocedi A, Ascher DB, Aitken JB, Harris HH, Lo Bello M, Ricci G, Morton CJ, Parker MW. Glutathione transferase P1-1 as an arsenic drug-sequestering enzyme. Protein Sci 2016; 26:317-326. [PMID: 27863446 DOI: 10.1002/pro.3084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 11/07/2022]
Abstract
Arsenic-based compounds are paradoxically both poisons and drugs. Glutathione transferase (GSTP1-1) is a major factor in resistance to such drugs. Here we describe using crystallography, X-ray absorption spectroscopy, mutagenesis, mass spectrometry, and kinetic studies how GSTP1-1 recognizes the drug phenylarsine oxide (PAO). In conditions of cellular stress where glutathione (GSH) levels are low, PAO crosslinks C47 to C101 of the opposing monomer, a distance of 19.9 Å, and causes a dramatic widening of the dimer interface by approximately 10 Å. The GSH conjugate of PAO, which forms rapidly in cancerous cells, is a potent inhibitor (Ki = 90 nM) and binds as a di-GSH complex in the active site forming part of a continuous network of interactions from one active site to the other. In summary, GSTP1-1 can detoxify arsenic-based drugs by sequestration at the active site and at the dimer interface, in situations where there is a plentiful supply of GSH, and at the reactive cysteines in conditions of low GSH.
Collapse
Affiliation(s)
- Lorien J Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alessio Bocedi
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - David B Ascher
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Jade B Aitken
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Mario Lo Bello
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Craig J Morton
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
6
|
Roggenbeck BA, Banerjee M, Leslie EM. Cellular arsenic transport pathways in mammals. J Environ Sci (China) 2016; 49:38-58. [PMID: 28007179 DOI: 10.1016/j.jes.2016.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.
Collapse
Affiliation(s)
- Barbara A Roggenbeck
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | - Mayukh Banerjee
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Elaine M Leslie
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
7
|
Kaya-Akyüzlü D, Kayaaltı Z, Doğan D, Söylemezoğlu T. Does maternal MDR1 C1236T polymorphism have an effect on placental arsenic levels? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:142-146. [PMID: 26694653 DOI: 10.1016/j.etap.2015.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
To detect whether maternal MDR1 C1236T polymorphism has an effect on placental arsenic levels, 112 mother-placenta pairs were examined. Venous blood samples from mothers were collected to investigate the C1236T polymorphism which was detected by standard PCR-RFLP technique. Placentas were collected to measure arsenic levels by GF-AAS. The MDR1 C1236T genotype frequencies of mothers were found as 30.3% homozygote typical (CC), 51.8% heterozygote (CT) and 17.9% homozygote atypical (TT). The mean placental arsenic level was 62.36±30.43 μg/kg. It was observed that the placental arsenic concentrations were higher in mothers with TT genotype than those with CC and CT genotypes, but this was not statistically significant (p=0.702). This finding was indicated that fetuses of mothers with TT genotype may be more susceptible to arsenic toxicity as compared to those of with CC and CT genotypes. We believe that this difference warrant further studies with larger study subjects.
Collapse
Affiliation(s)
- Dilek Kaya-Akyüzlü
- Ankara University, Institute of Forensic Sciences, Dikimevi, 06590 Ankara, Turkey.
| | - Zeliha Kayaaltı
- Ankara University, Institute of Forensic Sciences, Dikimevi, 06590 Ankara, Turkey
| | - Derya Doğan
- Ankara University, Institute of Forensic Sciences, Dikimevi, 06590 Ankara, Turkey
| | - Tülin Söylemezoğlu
- Ankara University, Institute of Forensic Sciences, Dikimevi, 06590 Ankara, Turkey
| |
Collapse
|
8
|
Yang Y, Wu S, Lilley RM, Zhang R. The diversity of membrane transporters encoded in bacterial arsenic-resistance operons. PeerJ 2015; 3:e943. [PMID: 26020003 PMCID: PMC4435449 DOI: 10.7717/peerj.943] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022] Open
Abstract
Transporter-facilitated arsenite extrusion is the major pathway of arsenic resistance within bacteria. So far only two types of membrane-bound transporter proteins, ArsB and ArsY (ACR3), have been well studied, although the arsenic transporters in bacteria display considerable diversity. Utilizing accumulated genome sequence data, we searched arsenic resistance (ars) operons in about 2,500 bacterial strains and located over 700 membrane-bound transporters which are encoded in these operons. Sequence analysis revealed at least five distinct transporter families, with ArsY being the most dominant, followed by ArsB, ArsP (a recently reported permease family), Major Facilitator protein Superfamily (MFS) and Major Intrinsic Protein (MIP). In addition, other types of transporters encoded in the ars operons were found, but in much lower frequencies. The diversity and evolutionary relationships of these transporters with regard to arsenic resistance will be discussed.
Collapse
Affiliation(s)
- Yiren Yang
- School of Biological Sciences, University of Wollongong , NSW , Australia
| | - Shiyang Wu
- School of Biological Sciences, University of Wollongong , NSW , Australia
| | | | - Ren Zhang
- School of Biological Sciences, University of Wollongong , NSW , Australia
| |
Collapse
|
9
|
Gribble MO, Voruganti VS, Cropp CD, Francesconi KA, Goessler W, Umans JG, Silbergeld EK, Laston SL, Haack K, Kao WHL, Fallin MD, Maccluer JW, Cole SA, Navas-Acien A. SLCO1B1 variants and urine arsenic metabolites in the Strong Heart Family Study. Toxicol Sci 2013; 136:19-25. [PMID: 23970802 DOI: 10.1093/toxsci/kft181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Arsenic species patterns in urine are associated with risk for cancer and cardiovascular diseases. The organic anion transporter coded by the gene SLCO1B1 may transport arsenic species, but its association with arsenic metabolites in human urine has not yet been studied. The objective of this study is to evaluate associations of urine arsenic metabolites with variants in the candidate gene SLCO1B1 in adults from the Strong Heart Family Study. We estimated associations between % arsenic species biomarker traits and 5 single-nucleotide polymorphisms (SNPs) in the SLCO1B1 gene in 157 participants, assuming additive genetics. Linear regression models for each SNP accounted for kinships and were adjusted for sex, body mass index, and study center. The minor allele of rs1564370 was associated with lower %MMA (p = .0003) and higher %DMA (p = .0002), accounting for 8% of the variance for %MMA and 9% for %DMA. The rs1564370 minor allele homozygote frequency was 17% and the heterozygote frequency was 43%. The minor allele of rs2291075 was associated with lower %MMA (p = .0006) and higher %DMA (p = .0014), accounting for 7% of the variance for %MMA and 5% for %DMA. The frequency of rs2291075 minor allele homozygotes was 1% and of heterozygotes was 15%. Common variants in SLCO1B1 were associated with differences in arsenic metabolites in a preliminary candidate gene study. Replication of this finding in other populations and analyses with respect to disease outcomes are needed to determine whether this novel candidate gene is important for arsenic-associated disease risks.
Collapse
Affiliation(s)
- Matthew O Gribble
- * Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Qi H, Chen B, Le XC, Rong J. Concomitant Induction of Heme Oxygenase-1 Attenuates the Cytotoxicity of Arsenic Species from Lumbricus Extract in Human Liver HepG2 Cells. Chem Biodivers 2012; 9:739-54. [DOI: 10.1002/cbdv.201100133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Maciaszczyk-Dziubinska E, Wawrzycka D, Wysocki R. Arsenic and antimony transporters in eukaryotes. Int J Mol Sci 2012; 13:3527-3548. [PMID: 22489166 PMCID: PMC3317726 DOI: 10.3390/ijms13033527] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 02/29/2012] [Accepted: 03/07/2012] [Indexed: 12/27/2022] Open
Abstract
Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.
Collapse
Affiliation(s)
- Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Institute of Plant Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland; E-Mail:
| | - Donata Wawrzycka
- Department of Genetics and Cell Physiology, Institute of Plant Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland; E-Mail:
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Institute of Plant Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland; E-Mail:
| |
Collapse
|
12
|
Leslie EM. Arsenic-glutathione conjugate transport by the human multidrug resistance proteins (MRPs/ABCCs). J Inorg Biochem 2011; 108:141-9. [PMID: 22197475 DOI: 10.1016/j.jinorgbio.2011.11.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/14/2011] [Accepted: 11/11/2011] [Indexed: 12/13/2022]
Abstract
Millions of people world-wide are chronically exposed to inorganic forms of the environmental toxicant arsenic in drinking water. This has led to a public health crisis because arsenic is a human carcinogen, and causes a myriad of other adverse health effects. In order to prevent and treat arsenic-induced toxicity it is critical to understand the cellular handling of this metalloid. A large body of literature describes the importance of the cellular tripeptide glutathione (γ-Glu-Cys-Gly,GSH/GS) in the excretion of arsenic. The triglutathione conjugate of arsenite [As(III)(GS)(3)] and the diglutathione conjugate of monomethylarsonous acid [MMA(III)(GS)(2)] have been isolated from rat bile and mouse urine, and account for the majority of excreted arsenic, suggesting these are important transportable forms. The ATP-binding cassette (ABC) transporter proteins, multidrug resistance protein 1 (MRP1/ABCC1) and the related protein MRP2 (ABCC2), are thought to play an important role in arsenic detoxification through the cellular efflux of arsenic-GSH conjugates. Current knowledge on the cellular handling of arsenic with a special emphasis on the transport pathways of the arsenic-GSH conjugates As(III)(GS)(3), MMA(III)(GS)(2), and dimethylarsenic glutathione DMA(III)(GS), as well as, the seleno-bis(S-glutathionyl) arsinium ion [(GS)(2)AsSe](-) are reviewed.
Collapse
Affiliation(s)
- Elaine M Leslie
- Department of Physiology, University of Alberta, Edmonton, AB, Canada,
| |
Collapse
|
13
|
Bradham KD, Scheckel KG, Nelson CM, Seales PE, Lee GE, Hughes MF, Miller BW, Yeow A, Gilmore T, Serda SM, Harper S, Thomas DJ. Relative bioavailability and bioaccessibility and speciation of arsenic in contaminated soils. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1629-34. [PMID: 21749965 PMCID: PMC3226497 DOI: 10.1289/ehp.1003352] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 07/13/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. OBJECTIVES We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. METHODS Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bioavailability and bioaccessibility. RESULTS In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R² = 0.92). Among physicochemical properties, combined concentrations of iron and aluminum accounted for 80% and 62% of the variability in estimates of RBA and bioaccessibility, respectively. CONCLUSION The multifaceted approach described here yielded congruent estimates of As bioavailability and evidence of interrelations among physicochemical properties and bioavailability estimates.
Collapse
Affiliation(s)
- Karen D Bradham
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Flora SJS. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 2011; 51:257-81. [PMID: 21554949 DOI: 10.1016/j.freeradbiomed.2011.04.008] [Citation(s) in RCA: 536] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 12/12/2022]
Abstract
This review summarizes the literature describing the molecular mechanisms of arsenic-induced oxidative stress, its relevant biomarkers, and its relation to various diseases, including preventive and therapeutic strategies. Arsenic alters multiple cellular pathways including expression of growth factors, suppression of cell cycle checkpoint proteins, promotion of and resistance to apoptosis, inhibition of DNA repair, alterations in DNA methylation, decreased immunosurveillance, and increased oxidative stress, by disturbing the pro/antioxidant balance. These alterations play prominent roles in disease manifestation, such as carcinogenicity, genotoxicity, diabetes, cardiovascular and nervous systems disorders. The exact molecular and cellular mechanisms involved in arsenic toxicity are rather unrevealed. Arsenic alters cellular glutathione levels either by utilizing this electron donor for the conversion of pentavalent to trivalent arsenicals or directly binding with it or by oxidizing glutathione via arsenic-induced free radical generation. Arsenic forms oxygen-based radicals (OH(•), O(2)(•-)) under physiological conditions by directly binding with critical thiols. As a carcinogen, it acts through epigenetic mechanisms rather than as a classical mutagen. The carcinogenic potential of arsenic may be attributed to activation of redox-sensitive transcription factors and other signaling pathways involving nuclear factor κB, activator protein-1, and p53. Modulation of cellular thiols for protection against reactive oxygen species has been used as a therapeutic strategy against arsenic. N-acetylcysteine, α-lipoic acid, vitamin E, quercetin, and a few herbal extracts show prophylactic activity against the majority of arsenic-mediated injuries in both in vitro and in vivo models. This review also updates the reader on recent advances in chelation therapy and newer therapeutic strategies suggested to treat arsenic-induced oxidative damage.
Collapse
Affiliation(s)
- Swaran J S Flora
- Division of Pharmacology & Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
15
|
Drobna Z, Naranmandura H, Kubachka KM, Edwards BC, Herbin-Davis K, Styblo M, Le XC, Creed JT, Maeda N, Hughes MF, Thomas DJ. Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. Chem Res Toxicol 2010; 22:1713-20. [PMID: 19691357 DOI: 10.1021/tx900179r] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a 43 kDa protein that catalyzes methylation of inorganic arsenic. Altered expression of AS3MT in cultured human cells controls arsenic methylation phenotypes, suggesting a critical role in arsenic metabolism. Because methylated arsenicals mediate some toxic or carcinogenic effects linked to inorganic arsenic exposure, studies of the fate and effects of arsenicals in mice which cannot methylate arsenic could be instructive. This study compared retention and distribution of arsenic in As3mt knockout mice and in wild-type C57BL/6 mice in which expression of the As3mt gene is normal. Male and female mice of either genotype received an oral dose of 0.5 mg of arsenic as arsenate per kg containing [(73)As]-arsenate. Mice were radioassayed for up to 96 h after dosing; tissues were collected at 2 and 24 h after dosing. At 2 and 24 h after dosing, livers of As3mt knockouts contained a greater proportion of inorganic and monomethylated arsenic than did livers of C57BL/6 mice. A similar predominance of inorganic and monomethylated arsenic was found in the urine of As3mt knockouts. At 24 h after dosing, As3mt knockouts retained significantly higher percentages of arsenic dose in liver, kidneys, urinary bladder, lungs, heart, and carcass than did C57BL/6 mice. Whole body clearance of [(73)As] in As3mt knockouts was substantially slower than in C57BL/6 mice. At 24 h after dosing, As3mt knockouts retained about 50% and C57BL/6 mice about 6% of the dose. After 96 h, As3mt knockouts retained about 20% and C57BL/6 mice retained less than 2% of the dose. These data confirm a central role for As3mt in the metabolism of inorganic arsenic and indicate that phenotypes for arsenic retention and distribution are markedly affected by the null genotype for arsenic methylation, indicating a close linkage between the metabolism and retention of arsenicals.
Collapse
Affiliation(s)
- Zuzana Drobna
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Metabolism of arsenic in human liver: the role of membrane transporters. Arch Toxicol 2009; 84:3-16. [DOI: 10.1007/s00204-009-0499-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 12/02/2009] [Indexed: 10/20/2022]
|
17
|
Liu Y, Wu J. Advances in research on the metabolism of arsenic in the liver and its effects on hepatic biochemical parameters. Shijie Huaren Xiaohua Zazhi 2009; 17:3524-3529. [DOI: 10.11569/wcjd.v17.i34.3524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Arsenic exposure may induce different types of hepatic injury, such as liver fibrosis, cirrhosis and even liver cancer. The pathogenesis of arsenic exposure-induced remains unclear. Until now, there is no well-established theory to explain it. In this article, we summarizes the changes in biochemical parameters in the liver injured by arsenic exposure and reviews the advances in research on the pathogenesis of arsenic toxicity.
Collapse
|
18
|
Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR. Drug transporters: Gatekeepers controlling access of xenobiotics to the cellular interior. Drug Metab Rev 2009; 41:27-65. [DOI: 10.1080/03602530802605040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
HEFFETER P, JUNGWIRTH U, JAKUPEC M, HARTINGER C, GALANSKI M, ELBLING L, MICKSCHE M, KEPPLER B, BERGER W. Resistance against novel anticancer metal compounds: Differences and similarities. Drug Resist Updat 2008; 11:1-16. [DOI: 10.1016/j.drup.2008.02.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/26/2022]
|
20
|
McCarty KM, Ryan L, Houseman EA, Williams PL, Miller DP, Quamruzzaman Q, Rahman M, Mahiuddin G, Smith T, Gonzalez E, Su L, Christiani DC. A case-control study of GST polymorphisms and arsenic related skin lesions. Environ Health 2007; 6:5. [PMID: 17284320 PMCID: PMC1805433 DOI: 10.1186/1476-069x-6-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 02/06/2007] [Indexed: 05/10/2023]
Abstract
BACKGROUND Polymorphisms in GSTT1, GSTM1 and GSTP1 impact detoxification of carcinogens by GSTs and have been reported to increase susceptibility to environmentally related health outcomes. Individual factors in arsenic biotransformation may influence disease susceptibility. GST activity is involved in the metabolism of endogenous and exogenous compounds, including catalyzing the formation of arsenic-GSH conjugates. METHODS We investigated whether polymorphisms in GSTT1, GSTP1 and GSTM1 were associated with risk of skin lesions and whether these polymorphisms modify the relationship between drinking water arsenic exposure and skin lesions in a case control study of 1200 subjects frequency matched on age and gender in community clinics in Pabna, Bangladesh in 2001-2002. RESULTS AND DISCUSSION GSTT1 homozygous wildtype status was associated with increased odds of skin lesions compared to the null status (OR1.56 95% CI 1.10-2.19). The GSTP1 GG polymorphism was associated with greater odds of skin lesions compared to GSTP1 AA, (OR 1.86 (95%CI 1.15-3.00). No evidence of effect modification by GSTT1, GSTM1 or GSTP1 polymorphisms on the association between arsenic exposure and skin lesions was detected. CONCLUSION GSTT1 wildtype and GSTP1 GG are associated with increased risk of skin lesions.
Collapse
Affiliation(s)
- Kathleen M McCarty
- Yale University School of Medicine, Epidemiology and Public Health, Division of Environmental Health Sciences, New Haven, CT, USA
- Harvard School of Public Health Department of Environmental Health, Boston, MA, USA
| | - Louise Ryan
- Harvard School of Public Health Department of Biostatistics, Boston, MA, USA
| | - E Andres Houseman
- Harvard School of Public Health Department of Biostatistics, Boston, MA, USA
| | - Paige L Williams
- Harvard School of Public Health Department of Biostatistics, Boston, MA, USA
| | - David P Miller
- Harvard School of Public Health Department of Environmental Health, Boston, MA, USA
| | | | | | | | - Thomas Smith
- Harvard School of Public Health Department of Environmental Health, Boston, MA, USA
| | | | - Li Su
- Harvard School of Public Health Department of Environmental Health, Boston, MA, USA
| | - David C Christiani
- Harvard School of Public Health Department of Environmental Health, Boston, MA, USA
| |
Collapse
|
21
|
Chang SI, Jin B, Youn P, Park C, Park JD, Ryu DY. Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis. Toxicol Appl Pharmacol 2006; 218:196-203. [PMID: 17188728 DOI: 10.1016/j.taap.2006.11.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/07/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
Oxidative stress has been suggested to be a major cause of male reproductive failure. Here, we investigated whether arsenic, which impairs male reproductive functions in rodent models, acts by inducing oxidative stress. Male 8-week-old ICR mice were given drinking water containing 20 or 40 mg/l sodium arsenite with or without 0.75 or 1.5 g/l of the antioxidant ascorbic acid for 5 weeks. The arsenic-treated mice showed decreased epididymidal sperm counts and testicular weights compared to untreated mice. These effects were reversed in mice that were co-treated with ascorbic acid. Similarly, arsenic treatment lowered the activities of testicular 3beta-hydroxysteroid dehydrogenase (HSD) and 17beta-HSD, which play important roles in steroidogenesis, and this was reversed by co-treatment with ascorbic acid. The testicles of arsenic-treated mice had decreased glutathione (GSH) levels (which correlate inversely with the degree of cellular oxidative stress) and elevated levels of protein carbonyl (a marker of oxidative damage to tissue proteins). Ascorbic acid co-treatment reversed both of these effects. Thus, ascorbic acid blocks both the adverse effects of arsenic on male reproductive functions and the arsenic-induced testicular oxidative changes. These observations support the notion that arsenic impairs male reproductive function by inducing oxidative stress.
Collapse
Affiliation(s)
- Soo Im Chang
- College of Veterinary Medicine, BK21 Program for Veterinary Science, Seoul National University, Seoul, 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
22
|
Liu J, Xie Y, Merrick BA, Shen J, Ducharme DMK, Collins J, Diwan BA, Logsdon D, Waalkes MP. Transplacental arsenic plus postnatal 12-O-teradecanoyl phorbol-13-acetate exposures associated with hepatocarcinogenesis induce similar aberrant gene expression patterns in male and female mouse liver. Toxicol Appl Pharmacol 2005; 213:216-23. [PMID: 16368122 DOI: 10.1016/j.taap.2005.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 10/25/2005] [Accepted: 10/26/2005] [Indexed: 11/15/2022]
Abstract
Our prior work shows that in utero arsenic exposure alone is a complete transplacental carcinogen, producing hepatocellular carcinoma in adult male offspring but not in females. In a follow-up study to potentially promote arsenic-initiated tumors, mice were exposed to arsenic (85 ppm) from gestation day 8 to 18 and then exposed to 12-O-teradecanoyl phorbol-13-acetate (TPA), a well-known tumor promoter after weaning. The dermal application of TPA (2 mug/0.1 ml acetone, twice/week for 21 weeks) after transplacental arsenic did not further increase arsenic-induced liver tumor formation in adult males but significantly increased liver tumor formation in adult females. Thus, for comparison, liver tumors and normal liver samples taken from adult male and female mice at necropsy were analyzed for aberrant gene/protein expression by microarray, real-time RT-PCR and Western blot analysis. Arsenic/TPA treatment resulted in increased expression of alpha-fetoprotein, k-ras, c-myc, estrogen receptor-alpha, cyclin D1, cdk2na, plasminogen activator inhibitor-1, cytokeratin-8, cytokeratin-18, glutathione S-transferases and insulin-like growth factor binding proteins in liver and liver tumors from both male and female mice. Arsenic/TPA also decreased the expression of BRCA1, betaine-homocysteine methyltransferase, CYP7B1, CYP2F2 and insulin-like growth factor-1 in normal and cancerous livers. Alterations in these gene products were associated with arsenic/TPA-induced liver tumors, regardless of sex. Thus, transplacental arsenic plus postnatal TPA exposure induced similar aberrant gene expression patterns in male and female mouse liver, which are persistent and potentially important to the mechanism of arsenic initiation of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Jie Liu
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at NIEHS, Mail Drop F0-09, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Leslie EM, Deeley RG, Cole SPC. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005; 204:216-37. [PMID: 15845415 DOI: 10.1016/j.taap.2004.10.012] [Citation(s) in RCA: 1008] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 10/20/2004] [Indexed: 12/21/2022]
Abstract
In tumor cell lines, multidrug resistance is often associated with an ATP-dependent decrease in cellular drug accumulation which is attributed to the overexpression of certain ATP-binding cassette (ABC) transporter proteins. ABC proteins that confer drug resistance include (but are not limited to) P-glycoprotein (gene symbol ABCB1), the multidrug resistance protein 1 (MRP1, gene symbol ABCC1), MRP2 (gene symbol ABCC2), and the breast cancer resistance protein (BCRP, gene symbol ABCG2). In addition to their role in drug resistance, there is substantial evidence that these efflux pumps have overlapping functions in tissue defense. Collectively, these proteins are capable of transporting a vast and chemically diverse array of toxicants including bulky lipophilic cationic, anionic, and neutrally charged drugs and toxins as well as conjugated organic anions that encompass dietary and environmental carcinogens, pesticides, metals, metalloids, and lipid peroxidation products. P-glycoprotein, MRP1, MRP2, and BCRP/ABCG2 are expressed in tissues important for absorption (e.g., lung and gut) and metabolism and elimination (liver and kidney). In addition, these transporters have an important role in maintaining the barrier function of sanctuary site tissues (e.g., blood-brain barrier, blood-cerebral spinal fluid barrier, blood-testis barrier and the maternal-fetal barrier or placenta). Thus, these ABC transporters are increasingly recognized for their ability to modulate the absorption, distribution, metabolism, excretion, and toxicity of xenobiotics. In this review, the role of these four ABC transporter proteins in protecting tissues from a variety of toxicants is discussed. Species variations in substrate specificity and tissue distribution of these transporters are also addressed since these properties have implications for in vivo models of toxicity used for drug discovery and development.
Collapse
Affiliation(s)
- Elaine M Leslie
- Division of Drug Delivery and Disposition, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
24
|
Xie Y, Trouba KJ, Liu J, Waalkes MP, Germolec DR. Biokinetics and subchronic toxic effects of oral arsenite, arsenate, monomethylarsonic acid, and dimethylarsinic acid in v-Ha-ras transgenic (Tg.AC) mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1255-63. [PMID: 15345372 PMCID: PMC1277119 DOI: 10.1289/txg.7152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 06/17/2004] [Indexed: 05/18/2023]
Abstract
Previous research demonstrated that 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment increased the number of skin papillomas in v-Ha-ras transgenic (Tg.AC) mice that had received sodium arsenite [(As(III)] in drinking water, indicating that this model is useful for studying the toxic effects of arsenic in vivo. Because the liver is a known target of arsenic, we examined the pathophysiologic and molecular effects of inorganic and organic arsenical exposure on Tg.AC mouse liver in this study. Tg.AC mice were provided drinking water containing As(III), sodium arsenate [As(V)], monomethylarsonic acid [(MMA(V)], and 1,000 ppm dimethylarsinic acid [DMA(V)] at dosages of 150, 200, 1,500, or 1,000 ppm as arsenic, respectively, for 17 weeks. Control mice received unaltered water. Four weeks after initiation of arsenic treatment, TPA at a dose of 1.25 microg/200 microL acetone was applied twice a week for 2 weeks to the shaved dorsal skin of all mice, including the controls not receiving arsenic. In some cases arsenic exposure reduced body weight gain and caused mortality (including moribundity). Arsenical exposure resulted in a dose-dependent accumulation of arsenic in the liver that was unexpectedly independent of chemical species and produced hepatic global DNA hypomethylation. cDNA microarray and reverse transcriptase-polymerase chain reaction analysis revealed that all arsenicals altered the expression of numerous genes associated with toxicity and cancer. However, organic arsenicals [MMA(V) and DMA(V)] induced a pattern of gene expression dissimilar to that of inorganic arsenicals. In summary, subchronic exposure of Tg.AC mice to inorganic or organic arsenicals resulted in toxic manifestations, hepatic arsenic accumulation, global DNA hypomethylation, and numerous gene expression changes. These effects may play a role in arsenic-induced hepatotoxicity and carcinogenesis and may be of particular toxicologic relevance.
Collapse
Affiliation(s)
- Yaxiong Xie
- Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|