1
|
Tang MX, He LY, Xia SY, Jiang Z, He DY, Guo S, Hu RZ, Zeng H, Huang XF. Coarse particles compensate for missing daytime sources of nitrous acid and enhance atmospheric oxidation capacity in a coastal atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170037. [PMID: 38232856 DOI: 10.1016/j.scitotenv.2024.170037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/19/2024]
Abstract
Large missing sources of daytime atmospheric nitrous acid (HONO), a vital source of hydroxyl radicals (OH) through its photolysis, frequently exist in global coastal regions. In this study, ambient HONO and relevant species were measured at a coastal site in the Pearl River Delta (PRD), China, during October 2019. Relatively high concentrations (0.32 ± 0.19 ppbv) and daytime peaks at approximately 13:00 of HONO were observed, and HONO photolysis was found to be the dominant (55.5 %) source of the primary OH production. A budget analysis of HONO based on traditional sources suggested large unknown sources during the daytime (66.4 %), which had a significant correlation with the mass of coarse particles (PM2.5-10) and photolysis frequency (J(NO2)). When incorporating photolysis of the abundant nitrate measured in coarse particles with a reasonable enhancement factor relative to fine particles due to favorable aerosol conditions, the missing daytime sources of HONO could be fully compensated by coarse particles serving as the largest source at this coastal site. Our study revealed great potential of coarse particles as a strong daytime HONO source, which has been ignored before but can efficiently promote NOx recycling and thus significantly enhance atmospheric oxidation capacity.
Collapse
Affiliation(s)
- Meng-Xue Tang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ling-Yan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shi-Yong Xia
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Jiang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dong-Yi He
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ren-Zhi Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Hui Zeng
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiao-Feng Huang
- Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
2
|
Wang L, Gao K, Li W, Lu L. Research progress on the characteristics, sources, and environmental and potential health effects of water-soluble organic compounds in atmospheric particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11472-11489. [PMID: 38198085 DOI: 10.1007/s11356-023-31723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
Water-soluble organic compounds (WSOCs) have received extensive attention due to their indistinct chemical components, complex sources, negative environmental impact, and potential health effects. To the best of our knowledge, until now, there has been no comprehensive review focused on the research progress of WSOCs. This paper reviewed the studies on chemical constituent and characterization, distribution condition, sources, environmental impact, as well as the potential health effects of WSOCs in the past 13 years. Moreover, the main existing challenges and directions for the future research on WSOCs were discussed from several aspects. Because of the complex composition of WSOCs and many unknown individual components that have not been detected, there is still a need for the identification and quantification of WSOCs. As modern people spend more time in indoor environments, it is meaningful to fill the gaps in the component characteristics and sources of indoor WSOCs. In addition, although in vitro cell experiments have shown that WSOCs could induce cellular oxidative stress and trigger the inflammatory response, the corresponding mechanisms of action need to be further explored. The current population epidemiology research of WSOCs is missing. Prospectively, we propose to conduct a comprehensive and simultaneous analysis strategy for concentration screening, source apportionment, potential health effects, and action mechanisms of WSOCs based on high throughput omics coupled with machine learning simulation and prediction.
Collapse
Affiliation(s)
- Linxiao Wang
- Key Laboratory of Beijing On Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Ke Gao
- Key Laboratory of Beijing On Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Wei Li
- Key Laboratory of Beijing On Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Liping Lu
- Key Laboratory of Beijing On Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Department of Chemistry and Biology, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing, 100124, People's Republic of China
| |
Collapse
|
3
|
Wang Y, Meng J, Huang T, Ma J, Wang Y, Zhang X, Guo Q, Yang J, Hou Z. Contrasting molecular characteristics and formation mechanisms of biogenic and anthropogenic secondary organic aerosols at the summit and foot of Mt. Huang, East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165116. [PMID: 37364833 DOI: 10.1016/j.scitotenv.2023.165116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Secondary organic aerosol (SOA) exerts a considerable influence on atmospheric chemistry. However, little information about the vertical distribution of SOA in the alpine setting is available, which limited the simulation of SOA using chemical transport models. Here, a total of 15 biogenic and anthropogenic SOA tracers were measured in PM2.5 aerosols at both the summit (1840 m a.s.l.) and foot (480 m a.s.l.) of Mt. Huang during the winter of 2020 to explore their vertical distribution and formation mechanism. Most of the determined chemical species (e.g., BSOA and ASOA tracers, carbonaceous components, major inorganic ions) and gaseous pollutants at the foot of Mt. Huang were 1.7-3.2 times higher concentrations than those at the summit, suggesting the relatively more significant effect of anthropogenic emissions at the ground level. The ISORROPIA-II model showed that aerosol acidity increases as altitude decreases. Air mass trajectories, potential source contribution function (PSCF), and correlation analysis of BSOA tracers with temperature revealed that SOA at the foot of Mt. Huang was mostly derived from the local oxidation of volatile organic compounds (VOCs), while SOA at the summit was mainly influenced by long-distance transport. The robust correlations of BSOA tracers with anthropogenic pollutants (e.g., NH3, NO2, and SO2) (r = 0.54-0.91, p < 0.05) indicated that anthropogenic emissions could promote BSOA productions in the mountainous background atmosphere. Moreover, most of SOA tracers (r = 0.63-0.96, p < 0.01) and carbonaceous species (r = 0.58-0.81, p < 0.01) were correlated well with levoglucosan in all samples, suggesting that biomass burning played an important role in the mountain troposphere. This work demonstrated that daytime SOA at the summit of Mt. Huang was significantly influenced by the valley breeze in winter. Our results provide new insights into the vertical distributions and provenance of SOA in the free troposphere over East China.
Collapse
Affiliation(s)
- Yachen Wang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Jingjing Meng
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China; Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China; State Key Laboratory of Loess and Quaternary Geology, Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Tonglin Huang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Jiangkai Ma
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Yanhui Wang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Xiaoting Zhang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Qingchun Guo
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Jiaoxue Yang
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China
| | - Zhanfang Hou
- School of Geography and Environment, Liaocheng University, Liaocheng 252000, China; Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
4
|
Cheng B, Ma Y, Li H, Feng F, Zhang Y, Qin P. Water-soluble ions and source apportionment of PM 2.5 depending on synoptic weather patterns in an urban environment in spring dust season. Sci Rep 2022; 12:21953. [PMID: 36536001 PMCID: PMC9762640 DOI: 10.1038/s41598-022-26615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Emission sources and meteorological conditions are key factors affecting the intensity and duration of air pollution events. In the current study, using the daily concentrations of PM2.5 (particulate matter with a diameter ≤ 2.5 μm) and the water-soluble ions thereof in Lanzhou from March 1, 2021, to May 31, 2021, we investigated the contributions of emission sources and locations of potential sources through positive matrix factorization and potential source contribution function analysis. In addition, synoptic weather patterns affecting pollution were typed using T-model principal component analysis. The results revealed that the average concentrations of PM2.5 for the entire spring, dust storm days, and normal days were 54.3, 158.1 and 33.0 μg/m3, respectively. During dust storm days, sulfate produced from primary emissions was mainly present in the form of K2SO4, Na2SO4, MgSO4, and CaSO4, and nitrate was mainly produced through secondary conversion and took the form of NH4NO3. Dust, industrial entities, biomass combustion, metal smelting, secondary aerosol, and sea salt contributed to 32.0, 29.8, 13.4, 11.2, 10.8 and 2.7% of the spring PM2.5, respectively, in Lanzhou. The main potential sources of PM2.5 during the normal days were in the western parts of Lanzhou. Dust storms entered Lanzhou through the Hexi Corridor from several dust sources: southeastern Kazakhstan, Mongolia, the Kurbantungut Desert, and the Badain Jaran Desert. The northwest high-pressure; northern strong high-pressure and southwest low-pressure; northwest high-pressure and southwest high-pressure synoptic weather circulation types were prone to dust storms. Our results may provide a basis for local environmental governance.
Collapse
Affiliation(s)
- Bowen Cheng
- Ministry of Education, College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Ma
- Ministry of Education, College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Lanzhou University, Lanzhou, 730000, China.
| | - Heping Li
- Ministry of Education, College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Lanzhou University, Lanzhou, 730000, China
| | - Fengliu Feng
- Ministry of Education, College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Lanzhou University, Lanzhou, 730000, China
| | - Yifan Zhang
- Ministry of Education, College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Lanzhou University, Lanzhou, 730000, China
| | - Pengpeng Qin
- Ministry of Education, College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Tao J, Zhang Z, Zhang L, Li J, Wu Y, Pei C, Nie F. Quantifying the relative contributions of aqueous phase and photochemical processes to water-soluble organic carbon formation in winter in a megacity of South China. CHEMOSPHERE 2022; 300:134598. [PMID: 35430199 DOI: 10.1016/j.chemosphere.2022.134598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
To identify potential formation mechanisms of water-soluble organic carbon (WSOC) and quantify their contributions to WSOC in urban Guangzhou of south China, a comprehensive campaign was carried out in winter of 2019-2020. During the campaign, WSOC, total carbon (TC), black carbon (BC), water-soluble inorganic ions (WSIIs) and fourteen elements in PM2.5 were collected using inline instruments. Bulk PM2.5 and size-segregated particle samples were also synchronously collected using offline instruments for analyzing the dominant chemical components including WSOC, organic carbon (OC), elemental carbon (EC) and WSIIs. In addition, gaseous pollutants (e.g., NH3, SO2, HNO3, NO2, O3) and meteorological parameters were also measured during the same period. PM2.5 pollution episodes during the campaign period were mainly driven by increased nitrate concentrations. The mass concentration of WSOC increased from 3.9 ± 1.1 μg m-3 on non-episode days to 6.8 ± 0.6 μg m-3 on episode days, although the mass ratio of WSOC to OC in PM2.5 changed little (<4%). Photochemical processes dominated WSOC formation in the afternoon and aqueous phase chemical processes played the dominant role in the night, from which newly formed WSOC distributed in the condensation mode and the droplet mode, respectively. Source apportionment analysis using positive matrix factorization (PMF) model suggested that on average 35% and 65% of WSOC mass in PM2.5 were related with the photochemical processes and aqueous phase chemical processes, respectively. Aqueous phase chemical processes were highly affected by nitrate pollution, which was closely related with O3 pollution.
Collapse
Affiliation(s)
- Jun Tao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China.
| | - Zhisheng Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Jiawei Li
- RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yunfei Wu
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Chenglei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou, China
| | - Fuli Nie
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangzhou, China
| |
Collapse
|
6
|
Navarro-Selma B, Clemente A, Nicolás JF, Crespo J, Carratalá A, Lucarelli F, Giardi F, Galindo N, Yubero E. Size segregated ionic species collected in a harbour area. CHEMOSPHERE 2022; 294:133693. [PMID: 35063561 DOI: 10.1016/j.chemosphere.2022.133693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Water-soluble ions were analysed in size segregated aerosol samples collected in the port of Alicante (Southeastern Spain) during summer and winter using a multistage cascade impactor. Seasonal variations in the size distributions of the analysed components and the influence of bulk materials handling (loading/unloading and stockpiling) at the docks were investigated. The size distributions of SO42-, NH4+ and K+ were characterized by prominent peaks in the condensation and droplet modes, both in summer and winter, while those of Ca2+, Na+, Mg2+ and Cl- had a main peak centred at ∼4 μm. Although oxalate size distributions were similar during both seasons, the fraction of coarse-mode oxalate increased in summer most likely as a result of volatilization and repartition processes or reactions of oxalic acid with coarse alkaline particles. Nitrate size distributions were dominated by a coarse mode; however, during winter, modal peaks in the submicron size range were also observed due to favourable conditions for the formation of fine-mode NH4NO3. Harbour activities had a significant impact only on the concentrations of calcium, particularly in the coarse fraction, during both summer and winter.
Collapse
Affiliation(s)
- B Navarro-Selma
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - A Clemente
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - J F Nicolás
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - J Crespo
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - A Carratalá
- Department of Chemical Engineering, University of Alicante, P. O. Box 99, 03080, Alicante, Spain
| | - F Lucarelli
- Department of Physics and Astronomy, University of Florence and INFN, 50019, Florence, Italy
| | - F Giardi
- Department of Physics and Astronomy, University of Florence and INFN, 50019, Florence, Italy
| | - N Galindo
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - E Yubero
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain.
| |
Collapse
|
7
|
Influence of Ambient Atmospheric Environments on the Mixing State and Source of Oxalate-Containing Particles at Coastal and Suburban Sites in North China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photodegradation is a key process impacting the lifetime of oxalate in the atmosphere, but few studies investigated this process in the field due to the complex mixing and sources of oxalate. Oxalate-containing particles were measured via single-particle aerosol mass spectrometry at coastal and suburban sites in Qingdao, a coastal city in North China in the summer of 2016. The mixing state and influence of different ambient conditions on the source and photodegradation of oxalate were investigated. Generally, 6.3% and 12.3% of the total particles (by number) contained oxalate at coastal and suburban sites, respectively. Twelve major types of oxalate-containing particles were identified, and they were classified into three groups. Biomass burning (BB)-related oxalate–K and oxalate–carbonaceous particles were the dominant groups, respectively, accounting for 68.9% and 13.6% at the coastal site and 72.0% and 16.8% at the suburban site. Oxalate–Heavy metals (HM)-related particles represented 14.6% and 9.3% of the oxalate particles at coastal and suburban sites, respectively, which were mainly from industrial emissions (Cu-rich, Fe-rich, Pb-rich), BB (Zn-rich), and residual fuel oil combustion (V-rich). The peak area of oxalate at the coastal site decreased immediately after sunrise, while it increased during the daytime at the suburban site. However, the oxalate peak area of Fe-rich particles at both sites decreased after sunrise, indicating that iron plays an important role in oxalate degradation in both environments. The decay rates (k) of Fe-rich and BB-Fe particles at the coastal site (−0.978 and −0.859 h−1, respectively), were greater than those at the suburban site (−0.512 and −0.178 h−1, respectively), owing to the high-water content of particles and fewer oxalate precursors. The estimated k values of oxalate peak area for different ambient conditions were in the same order of magnitude, which can help establish or validate the future atmospheric models.
Collapse
|
8
|
He DY, Huang XF, Wei J, Wei FH, Zhu B, Cao LM, He LY. Soil dust as a potential bridge from biogenic volatile organic compounds to secondary organic aerosol in a rural environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118840. [PMID: 35026325 DOI: 10.1016/j.envpol.2022.118840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The role of coarse particles has recently been proven to be underestimated in the atmosphere and can strongly influence clouds, ecosystems and climate. However, previous studies on atmospheric chemistry of volatile organic compounds (VOCs) have mostly focused on the products in fine particles, it remains less understood how coarse particles promote secondary organic aerosol (SOA) formation. In this study, we investigated water-soluble compounds of size-segregated aerosol samples (0.056 to >18 μm) collected at a coastal rural site in southern China during late summer and found that oxygenated organic matter was abundant in the coarse mode. Comprehensive source apportionment based on mass spectrum and 14C analysis indicated that different from fossil fuel SOA, biogenic SOA existed more in the coarse mode than in the fine mode. The SOA in the coarse mode showed a unique correlation with biogenic VOCs. 13C and elemental composition strongly suggested a pathway of heterogeneous reactions on coarse particles, which had an abundant low-acidic aqueous environment with soil dust to possibly initiate iron-catalytic oxidation reactions to form SOA. This potential pathway might complement understanding of both formation of biogenic SOA and sink of biogenic VOCs in global biogeochemical cycles, warrantying future relevant studies.
Collapse
Affiliation(s)
- Dong-Yi He
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiao-Feng Huang
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jing Wei
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Feng-Hua Wei
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bo Zhu
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Li-Ming Cao
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ling-Yan He
- Laboratory of Atmospheric Observation Supersite, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
9
|
Li H, Zhang Q, Jiang W, Collier S, Sun Y, Zhang Q, He K. Characteristics and sources of water-soluble organic aerosol in a heavily polluted environment in Northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143970. [PMID: 33338790 DOI: 10.1016/j.scitotenv.2020.143970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/24/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Water-soluble organic aerosol (WSOA) in fine particles (PM2.5) collected during wintertime in a polluted city (Handan) in Northern China was characterized using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS). Through comparing with real-time measurements from a collocated Aerosol Chemical Speciation Monitor (ACSM), we determined that WSOA on average accounts for 29% of total organic aerosol (OA) mass and correlates tightly with secondary organic aerosol (SOA; Pearson's r = 0.95). The mass spectra of WSOA closely resemble those of ambient SOA, but also show obvious influences from coal combustion and biomass burning. Positive matrix factorization (PMF) analysis of the WSOA mass spectra resolved a water-soluble coal combustion OA (WS-CCOA; O/C = 0.17), a water-soluble biomass burning OA (WS-BBOA; O/C = 0.32), and a water-soluble oxygenated OA (WS-OOA; O/C = 0.89), which account for 10.3%, 29.3% and 60.4% of the total WSOA mass, respectively. The water-solubility of the OA factors was estimated by comparing the offline AMS analysis results with the ambient ACSM measurements. OOA has the highest water-solubility of 49%, consistent with increased hygroscopicity of oxidized organics induced by atmospheric aging processes. In contrast, CCOA is the least water soluble, containing 17% WS-CCOA. The distinct characteristics of WSOA from different sources extend our knowledge of the complex aerosol chemistry in the polluted atmosphere of Northern China and the water-solubility analysis may help us to understand better aerosol hygroscopicity and its effects on radiative forcing in this region.
Collapse
Affiliation(s)
- Haiyan Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA.
| | - Wenqing Jiang
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Sonya Collier
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Zhou Y, Zhang Y, Griffith SM, Wu G, Li L, Zhao Y, Li M, Zhou Z, Yu JZ. Field Evidence of Fe-Mediated Photochemical Degradation of Oxalate and Subsequent Sulfate Formation Observed by Single Particle Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6562-6574. [PMID: 32339453 DOI: 10.1021/acs.est.0c00443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we deployed a single particle aerosol mass spectrometer (SPAMS) at a suburban coastal site in Hong Kong from February 04 to April 17, 2013 to study individual oxalate particles and a monitor for aerosols and gases in ambient air (MARGA) to track the bulk oxalate concentrations in particle matter smaller than 2.5 μm in diameter (PM2.5). A shallow dip in the bulk oxalate concentration was consistently observed before 10:00 am in the morning throughout the observation campaign, corresponding to a 20% decrease in the oxalate concentration on average during the decay process. Such a decrease in PM oxalate was found to be coincident with a decrease in Fe-containing oxalate particles, providing persuasive evidence of Fe-mediated photochemical degradation of oxalate. Oxalate mixed with Fe and Fe_NaK particles, from industry sources, were identified as the dominant factors for oxalate decay in the early morning. We further found an increase of sulfate intensity by a factor of 1.6 on these individual Fe-containing particles during the oxalate decomposition process, suggesting a facilitation of sulfur oxidation. This is the first report on the oxalate-Fe decomposition process with individual particle level information and provides unique evidence to advance our current understanding of oxalate and Fe cycling. The present work also indicates the importance of anthropogenic sourced iron in oxalate-Fe photochemical processing. In addition, V-containing oxalate particles, from ship emissions, also showed evidence of morning photodegradation and need further attention since current models rarely consider photochemical processing of oxalate_V particles.
Collapse
Affiliation(s)
- Yang Zhou
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- Institute of Environment, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yanjing Zhang
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Stephen M Griffith
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan
| | - Guanru Wu
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Lei Li
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University, Guangdong 510632, China
| | - Yunhui Zhao
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Mei Li
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University, Guangdong 510632, China
| | - Zhen Zhou
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University, Guangdong 510632, China
| | - Jian Zhen Yu
- Institute of Environment, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
11
|
Zhang C, Yang C, Liu X, Cao F, Zhang YL. Insight into the photochemistry of atmospheric oxalate through hourly measurements in the northern suburbs of Nanjing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137416. [PMID: 32145492 DOI: 10.1016/j.scitotenv.2020.137416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Oxalate-iron is an integral part of the photochemical system in the atmosphere. Here, we combined high-resolution online observations and laboratory simulations to discuss the distribution of oxalate and oxalate-iron photochemical system in Nanjing atmosphere at the molecular level. The results show that the oxidation state of iron in the oxalate-iron photochemical system changes significantly and regularly. Among them, Fe (II)/Fe (III) is 3.82 during the day and 0.76 at night. At the same time, Cl- may accelerate the generation of hydroxyl radicals in the system and promote the photooxidation rate of oxalate. Oxalate can be converted into formate (C1) and acetate (C2) in the photochemical system, but <4% of degraded oxalate is converted, which means that the photochemical system may not be the main source of formate and acetate in the atmosphere. Besides, the ratio of C1/C2 < 1 in the conversion is opposite to the ratio of C1/C2 > 1 in the general secondary conversion, which means that not all ratio of C1/C2 in the photochemical pathway is >1. These results are beneficial for us to understand the effect of the oxalate-iron photochemical system on the distribution of oxalate in the atmosphere, and also help us to analyze the conversion of organics in the atmospheric aqueous phase.
Collapse
Affiliation(s)
- Chunyan Zhang
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Chi Yang
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiaoyan Liu
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Fang Cao
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yan-Lin Zhang
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
12
|
Abstract
Aerosols deposited into the Great Barrier Reef (GBR) contain iron (Fe) and other trace metals, which may act as micronutrients or as toxins to this sensitive marine ecosystem. In this paper, we quantified the atmospheric deposition of Fe and investigated aerosol sources in Mission Beach (Queensland) next to the GBR. Leaching experiments were applied to distinguish pools of Fe with regard to its solubility. The labile Fe concentration in aerosols was 2.3–10.6 ng m−3, which is equivalent to 4.9%–11.4% of total Fe and was linked to combustion and biomass burning processes, while total Fe was dominated by crustal sources. A one-day precipitation event provided more soluble iron than the average dry deposition flux, 0.165 and 0.143 μmol m−2 day−1, respectively. Scanning Electron Microscopy indicated that alumina-silicates were the main carriers of total Fe and samples affected by combustion emissions were accompanied by regular round-shaped carbonaceous particulates. Collected aerosols contained significant amounts of Cd, Co, Cu, Mo, Mn, Pb, V, and Zn, which were mostly (47.5%–96.7%) in the labile form. In this study, we provide the first field data on the atmospheric delivery of Fe and other trace metals to the GBR and propose that this is an important delivery mechanism to this region.
Collapse
|
13
|
Martins V, Faria T, Diapouli E, Manousakas MI, Eleftheriadis K, Viana M, Almeida SM. Relationship between indoor and outdoor size-fractionated particulate matter in urban microenvironments: Levels, chemical composition and sources. ENVIRONMENTAL RESEARCH 2020; 183:109203. [PMID: 32050129 DOI: 10.1016/j.envres.2020.109203] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Exposure to particulate matter (PM) has been associated with adverse health outcomes, particularly in susceptible population groups such as children. This study aims to characterise children's exposure to PM and its chemical constituents. Size-segregated aerosol samples (PM0.25, PM0.25-0.5, PM0.5-1.0, PM1.0-2.5 and PM2.5-10) were collected in the indoor and outdoor of homes and schools located in Lisbon (Portugal). Organic and elemental carbon (OC and EC) were determined by a thermo-optical method, whereas major and trace elements were analysed by X-Ray Fluorescence. In school, the children were exposed to higher PM concentrations than in home, which might be associated not only to the elevated human occupancy but also to outdoor infiltration. The pattern of PM mass size distribution was dependent on the location (home vs. school and indoor vs. outdoor). The presence of EC in PM0.25 and OC in PM0.25-0.5 was linked to traffic exhaust emissions. OC and EC in PM2.5-10 may be explained by their adhesion to the surface of coarser particles. Generally, the concentrations of mineral and marine elements increased with increasing PM size, while for anthropogenic elements happened the opposite. In schools, the concentrations of mineral matter, anthropogenic elements and marine aerosol were higher than in homes. High mineral matter concentrations found in schools were related to the close proximity to busy roads and elevated human occupancy. Overall, the results suggest that exposure to PM is relevant and highlights the need for strategies that provide healthier indoor environments, principally in schools.
Collapse
Affiliation(s)
- Vânia Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal.
| | - Tiago Faria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal
| | - Evangelia Diapouli
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, N.C.S.R. 'Demokritos', Athens, Greece
| | - Manousos Ioannis Manousakas
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, N.C.S.R. 'Demokritos', Athens, Greece
| | - Konstantinos Eleftheriadis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, N.C.S.R. 'Demokritos', Athens, Greece
| | - Mar Viana
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Susana Marta Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal
| |
Collapse
|
14
|
Meng J, Liu X, Hou Z, Yi Y, Yan L, Li Z, Cao J, Li J, Wang G. Molecular characteristics and stable carbon isotope compositions of dicarboxylic acids and related compounds in the urban atmosphere of the North China Plain: Implications for aqueous phase formation of SOA during the haze periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135256. [PMID: 31838425 DOI: 10.1016/j.scitotenv.2019.135256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
In the past five years, Chinese government has promulgated stringent measures to mitigate air pollution. However, PM2.5 levels in the China North Plain (NCP), which is one of the regions with the heaviest air pollution in the world, are still far beyond the World Health Organization (WHO) standard. To improve our understanding on the sources and formation mechanisms of haze in the NCP, PM2.5 samples were collected during the winter of 2017 on a day/night basis at the urban site of Liaocheng, which is one of the most polluted cities in the NCP. The samples were determined for molecular distributions and stable carbon isotope compositions of dicarboxylic acids and their precursors (ketocarboxylic acids and α-dicarbonyls), levoglucosan, elemental carbon (EC), organic carbon (OC) and water-soluble organic carbon (WSOC). Our results showed that oxalic acid (C2) is the dominant dicarboxylic acid, followed by succinic acid (C4) and malonic acid (C3), and glyoxylic acid (ωC2) is the most abundant ketocarboxylic acids. Concentrations of C2, glyoxal (Gly) and methylglyoxal (mGly) presented robust correlations with levoglucosan, suggesting that biomass burning is a significant source of PM2.5 in the NCP. Moreover, C2 and Gly and mGly linearly correlated with SO42-, relative humidity (RH), aerosol liquid water content (LWC) as well as particle in-situ pH (pHis), indicating that aqueous-phase oxidation is the major formation pathway of these SOA, and is driven by acid-catalyzed oxidation. Concentrations and relative abundances of secondary species including SNA (SO42-, NO3- and NH4+), dicarboxylic acids, and aerosol LWC in PM2.5 are much higher in the haze periods than in the clean periods, suggesting that aqueous reaction is a vital role in the haze formation. In comparison with those in the clean periods, stable carbon isotopic compositions (δ13C) of major dicarboxylic acids and related SOA and the mass ratios of C2/diacids, C2/Gly and C2/mGly are higher in the haze periods, indicating that haze particles were more aged and enriched in secondary species.
Collapse
Affiliation(s)
- Jingjing Meng
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China; State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Xiaodi Liu
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Zhanfang Hou
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China; State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Yanan Yi
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Li Yan
- Chinese Academy for Environmental Planning, Beijing 100012, China
| | - Zheng Li
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Gehui Wang
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
15
|
Huang XF, Dai J, Zhu Q, Yu K, Du K. Abundant Biogenic Oxygenated Organic Aerosol in Atmospheric Coarse Particles: Plausible Sources and Atmospheric Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1425-1430. [PMID: 31891255 DOI: 10.1021/acs.est.9b06311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Secondary organic aerosol (SOA) is a key component in atmospheric aerosols, strongly influencing air quality and climate. Most previous studies focused on SOA formation in the fine aerosol mode, and little is known about SOA formation across a broader size range, especially for the coarse aerosol mode. In this study, we coupled radiocarbon analysis and the offline aerosol mass spectrometric method to characterize water-soluble organic matter in size-segregated samples between 0.056 and 18 μm collected in urban Shenzhen, China. For the first time, detailed size distributions of different types of oxygenated organic aerosols (OOAs) are obtained. Fossil fuel OOA was mostly distributed in fine particles, and biogenic OOA occurred mostly in coarse particles. Organic composition and correlation analyses suggested that the major source of the coarse-mode OOA was more plausible to be heterogeneous reactions of biogenic volatile organic compounds (VOCs) on soil dust rather than primary biological materials. If so, this mechanism would complement the missing sinks of biogenic VOCs, significantly influence the regional and global organic aerosol budgets, and thus should be considered in air quality and climate models. This study highlights the urgent need for laboratory simulations of heterogeneous reactions of various VOCs on soil dust.
Collapse
Affiliation(s)
- Xiao-Feng Huang
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Jing Dai
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Qiao Zhu
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Kuangyou Yu
- Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary T2N 1N4 , Canada
| | - Ke Du
- Department of Mechanical and Manufacturing Engineering , University of Calgary , Calgary T2N 1N4 , Canada
| |
Collapse
|
16
|
Chang D, Wang Z, Guo J, Li T, Liang Y, Kang L, Xia M, Wang Y, Yu C, Yun H, Yue D, Wang T. Characterization of organic aerosols and their precursors in southern China during a severe haze episode in January 2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:101-111. [PMID: 31319248 DOI: 10.1016/j.scitotenv.2019.07.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
The rapid industrialization and economic development in the Pearl River Delta (PRD) region of southern China have led to a substantial increase in anthropogenic emissions and hence frequent haze pollution over the past two decades. In early January 2017, a severe regional haze pollution episode was captured in the PRD region, with a peak PM2.5 concentration of around 400μgm-3, the highest value ever reported at this site. During the haze episode, elevated concentrations of oxygenated volatile organic compounds (OVOCs, 33±16 ppbv) and organic matter (41±15μg m-3) were observed, indicating the enhanced roles of secondary organic aerosols (SOAs) in the formation of haze pollution. Water-soluble organic carbon (WSOC, 12.8±5.5μg C m-3) dominated the organic aerosols, with a WSOC/OC ratio of 0.63±0.12 and high correlation (R=0.85) with estimated secondary organic carbon (SOC), suggesting the predominance of a secondary origin of the measured organic aerosols during the haze episode. Four carboxylic acids (oxalic, acetic, formic, and pyruvic acids) were characterized in the aerosols (1.30±0.38μgm-3) and accounted for 3.6±1.2% of WSOC in carbon mass, with oxalic acid as the most abundant species. The simultaneous measurements of volatile organic compounds (VOCs), OVOCs, and organic acids in aerosols at this site provided an opportunity to investigate the relationship between the precursors and the products, as well as the potential formation pathways. Water-soluble aldehydes and ketones, predominantly produced via the oxidation of anthropogenic VOCs (mainly propane, toluene, n-butane, and m, p-xylene), were the main contributors of the organic acids. The formation of OVOCs is largely attributed to gas-phase photochemical oxidation, whereas the WSOC and dicarboxylic acids were produced from both photochemistry and nocturnal heterogeneous reactions. These findings provided further insights into the oxidation and evolution of organic compounds during the haze pollution episode.
Collapse
Affiliation(s)
- Di Chang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zhe Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Jia Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tao Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yiheng Liang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lingyan Kang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Men Xia
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yaru Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chuan Yu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hui Yun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou 510308, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
17
|
Quijano MFC, Mateus VL, Saint'Pierre TD, Bott I, Gioda A. Exploratory and comparative analysis of the morphology and chemical composition of PM2.5 from regions with different socioeconomic characteristics. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Fang D, Huang W, Antkiewicz DS, Wang Y, Khuzestani RB, Zhang Y, Shang J, Shafer MM, He L, Schauer JJ, Zhang Y, Zhao S. Chemical composition and health risk indices associated with size-resolved particulate matter in Pearl River Delta (PRD) region, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12435-12445. [PMID: 30847817 DOI: 10.1007/s11356-019-04618-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Size-resolved particulate matter (PM) was collected at the Heshan Super-Station in the Pearl River Delta (PRD) region, China, to evaluate their chemical characteristics and potential health risks. The chemical mass closures illustrate that the dominant fraction in coarse (2.5 μm < Dp < 10 μm) PM was dust, while organic matter made up a substantial portion of both fine (0.1 < Dp < 2.5 μm) and ultra-fine (Dp < 0.10 μm) PM fractions. The size distribution of most PM components varied substantially. PM, NO3-, K+, Cl-, Na+ and most of the transition/redox metals displayed bimodal size distributions with the dominant peak at 0.32-0.56 μm plus a small peak at 1.8-3.2 μm. In contrast, unimodal size distributions were found for the rest of the species, such as water-soluble organic carbon (WSOC), NH4+, and SO42- and the majority of oxyanion metals with a single peak at 0.32-0.56 μm, and Mg2+, Ca2+, and dust tracer elements which mainly accumulated in coarse particles. Based on the crustal enrichment factor (CEF) analysis, Cd, Zn, Sb, Sn, As, Pb, Mo, Cu, and Cr primarily originated from anthropogenic activities, while Ti in all size fractions and Sr, Mg, Na, and Fe in fine and ultra-fine particles were mainly emitted from natural sources. The potential health risk assessment of trace metals was performed using the hazard quotient (HQ) and excess lifetime cancer risk (ELCR) indices. Although the adverse health effects of most metals were limited, significant potential carcinogenic risks were found for As and Cr in both fine and coarse particle size fractions, which contributed more than 95% of total ELCR. Therefore, considering that these two elements were mainly emitted from industrial processes, improvements in air quality and health risks in the PRD region can be largely achieved by reducing the emissions of local industrial sources.
Collapse
Affiliation(s)
- Dongqing Fang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Environmental Reference Materials of Ministry of Environmental Protection, Beijing, 100029, China
| | - Dagmara S Antkiewicz
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yuqin Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Reza Bashiri Khuzestani
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Shang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Martin M Shafer
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lingyan He
- Key Lab of Urban Habitat Environmental Science and Technology, School of Environmental and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518001, China
| | - James J Schauer
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Shuo Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Zhang G, Lin Q, Peng L, Yang Y, Jiang F, Liu F, Song W, Chen D, Cai Z, Bi X, Miller M, Tang M, Huang W, Wang X, Peng P, Sheng G. Oxalate Formation Enhanced by Fe-Containing Particles and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1269-1277. [PMID: 30354091 DOI: 10.1021/acs.est.8b05280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We used a single particle mass spectrometry to online detect chemical compositions of individual particles over four seasons in Guangzhou. Number fractions (Nfs) of all the measured particles that contained oxalate were 1.9%, 5.2%, 25.1%, and 15.5%, whereas the Nfs of Fe-containing particles that were internally mixed with oxalate were 8.7%, 23.1%, 45.2%, and 31.2% from spring to winter, respectively. The results provided the first direct field measurements for the enhanced formation of oxalate associated with Fe-containing particles. Other oxidized organic compounds including formate, acetate, methylglyoxal, glyoxylate, purivate, malonate, and succinate were also detected in the Fe-containing particles. It is likely that reactive oxidant species (ROS) via Fenton reactions enhanced the formation of these organic compounds and their oxidation product oxalate. Gas-particle partitioning of oxalic acid followed by coordination with Fe might also partly contribute to the enhanced oxalate. Aerosol water content likely played an important role in the enhanced oxalate formation when the relative humidity is >60%. Interactions with Fe drove the diurnal variation of oxalate in the Fe-containing particles. The study could provide a reference for model simulation to improve understanding on the formation and fate of oxalate, and the evolution and climate impacts of particulate Fe.
Collapse
Affiliation(s)
- Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Qinhao Lin
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Long Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Yuxiang Yang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Feng Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Fengxian Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Duohong Chen
- State Environmental Protection Key Laboratory of Regional Air Quality Monitoring , Guangdong Environmental Monitoring Center , Guangzhou 510308 , PR China
| | - Zhang Cai
- John and Willie Leone Family Department of Energy and Mineral Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Mark Miller
- Department of Environmental Sciences , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Weilin Huang
- Department of Environmental Sciences , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| |
Collapse
|
20
|
Chen Y, Liu H, Yang F, Zhang S, Li W, Shi G, Wang H, Tian M, Liu S, Huang R, Wang Q, Wang P, Cao J. Single particle characterization of summertime particles in Xi'an (China). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1279-1290. [PMID: 29913590 DOI: 10.1016/j.scitotenv.2018.04.388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Urban particles in Xi'an during summertime were investigated using a single particle aerosol mass spectrometer (SPAMS). Twelve major particle types were resolved, including EC-Sul-Nit (-Sul stands for sulfate, -Nit for nitrate, and 25% in number fraction), EC(6%), EC-Nit (12%) and, EC-Sul (8%), mixed Elemental and Organic Carbon-Sul-Nit (9%), ECOC-Sul (8%), K-Nit (12%), OC (8%), NaK-Nit (5%), Fe-Nit (5%), Ca-Nit (1%), and Other (1%). Among these particle types, chemical composition, mixing state, and wind-dependent analyses were conducted to investigate their originations and sources. During summertime, traffic-related particles were up to 83% in the SPAMS dataset. Two major originations of urban particles were identified, including the local aging and short-distance transport mainly from the southeast. Size-resolved relative acidity ((sulfate + nitrate) / ammonium) analysis suggested that urban particles were more acidic with an aerodynamic diameter < 0.8 μm. In diurnal cycle, the strongest relative aerosol acidity occurred between 7:00 and 9:00 in the morning when relative humidity was between 60 and 70%, and the weakest acidity occurred from 13:00-15:00. Among all major particle types, OC and K-Nit had stronger relative aerosol acidity than other types. Mixing state analysis indicated that the organic semi-volatile vapor is favorable to condense on the OC-related particles (OC, ECOC-Sul, and ECOC-Sul-Nit) as evidence that primary organic aerosol (POA) would enhance the secondary organic aerosol (SOA) formation via gas-to-particle phase partitioning when SOA and POA are miscible. Oxalate also tends to be observed in the droplet of OC-related particles. In addition, the enrichment of oxalate was observed in Fe-Nit particles. This study would be useful to understand the characterization, mixing state, source, origination, and processing of urban particles during summertime in Xi'an as well as the urban areas in the Guanzhong Basin.
Collapse
Affiliation(s)
- Yang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Huanwu Liu
- Xi'an Environmental Monitor Station, Xi'an 710061, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Shumin Zhang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Wentao Li
- Xi'an Environmental Monitor Station, Xi'an 710061, China
| | - Guangming Shi
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Huanbo Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Mi Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Suixin Liu
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Rujin Huang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Qiyuan Wang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ping Wang
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
21
|
Li H, Huang X, Cao L, Zhai Y, Zeng L, He L. Development of an on-line measurement system for water-soluble organic matter in PM 2.5 and its application in China. J Environ Sci (China) 2018; 69:33-40. [PMID: 29941266 DOI: 10.1016/j.jes.2017.03.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 06/08/2023]
Abstract
Water-soluble organic matter (WSOM) represents a critical fraction of fine particles (PM2.5) in the air, but its changing behaviors and formation mechanisms are not well understood yet, partly due to the lack of fast techniques for the ambient measurements. In this study, a novel system for the on-line measurement of water-soluble components in PM2.5, the particle-into-liquid sampler (PILS)-Nebulizer-aerosol chemical speciation monitor (ACSM), was developed by combining a PILS, a nebulizer, and an ACSM. High time resolution concentrations of WSOM, sulfate, nitrate, ammonium, and chloride, as well as mass spectra, can be obtained with satisfied quality control results. The system was firstly applied in China for field measurement of WSOM. The mass spectrum of WSOM was found to resemble that of oxygenated organic aerosol, and WSOM agreed well with secondary inorganic ions. All evidence collected in the field campaign demonstrated that WSOM could be a good surrogate of secondary organic aerosol (SOA). The PILS-Nebulizer-ACSM system can thus be a useful tool for intensive study of WSOM and SOA in PM2.5.
Collapse
Affiliation(s)
- Huiying Li
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaofeng Huang
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liming Cao
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuhong Zhai
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liwu Zeng
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lingyan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
22
|
Liu Z, Xie Y, Hu B, Wen T, Xin J, Li X, Wang Y. Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. CHEMOSPHERE 2017; 183:119-131. [PMID: 28544897 DOI: 10.1016/j.chemosphere.2017.05.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Size-segregated water-soluble ionic species (WSIs) were measured using an Anderson cascade impactor from Jul. to Aug. 2008 and from Dec. 2009 to Feb. 2010 in urban Beijing. The results showed that fine particles (PM2.1, Dp < 2.1 μm) accounted for ∼49% (summer) and ∼34% (winter) of the total particulate mass, and WSIs accounted for 23-82% of the mass concentration of PM2.1. Secondary inorganic aerosols (SIAs, the sum of SO42-, NO3- and NH4+) accounted for more than 30% of the fine particles, which were greatly elevated during particle pollution events (PM events), thereby leading to an alteration of the size distributions of SO42- and NO3- to nearly single fine-mode distributions peaking at 0.65-2.1 μm. This finding suggests that heterogeneous aqueous reactions were enhanced at high RH values. SIAs also increased during dust events, particularly for coarse mode SO42-, which indicated enhanced heterogeneous reactions on the dust surface. The positive matrix factorization (PMF) model was used to resolve the bulk mass size distributions into condensation, droplet, and coarse modes, representing the three major sources of the particles. The formation of SO42- was attributed primarily to in-cloud or aerosol droplet processes during summer (45%), and the heterogeneous reaction of SO2 on mineral dust surfaces was an important formation pathway during winter (45%). The formation pathways of NO3- in fine particles were similar to those of SO42-, where over 30% were formed by in-cloud processes. This work provides important field measurement-based evidence for understanding the formation pathway of secondary inorganic aerosols in the megacity of Beijing.
Collapse
Affiliation(s)
- Zirui Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Yuzhu Xie
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Bo Hu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Tianxue Wen
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Jinyuan Xin
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xingru Li
- Department of Chemistry, Analytical and Testing Center, Capital Normal University, Beijing 100048, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| |
Collapse
|
23
|
Yu GH, Park S, Lee KH. Source contributions and potential source regions of size-resolved water-soluble organic carbon measured at an urban site over one year. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1343-1358. [PMID: 27722488 DOI: 10.1039/c6em00416d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, 24 h size-segregated particulate matter (PM) samples were collected between September 2012 and August 2013 at an urban site in Korea to investigate seasonal mass size distributions of PM and its water-soluble components as well as to infer the possible sources of size-resolved water-soluble organic carbon (WSOC) using a positive matrix factorization (PMF) model. The potential source contribution function (PSCF) was also computed to identify the possible source regions of size-resolved WSOC. The seasonal average contribution of water-soluble organic matter to PM1.8 was in the range from 12.7 to 19.7%, but higher (21.0%) and lower contributions (8.9%) were observed during a severe haze event and an Asian dust event, respectively. The seasonal mass size distribution of WSOC had a dominant droplet mode peaking at 0.55 μm and a minor coarse mode peaking at 3.1 μm. The droplet mode WSOC was found to strongly correlate with oxalate, SO42-, NO3-, and K+, suggesting that in-cloud processes and biomass burning emissions are important sources of droplet mode WSOC. This finding was verified by the results obtained using PMF models. Secondary organic aerosols (oxalate + SO42- + NO3-) and biomass burning were the most important contributors (70.3%) to condensation mode WSOC. In the droplet mode, in-cloud processes and secondary NO3- (+biomass burning) were important sources of WSOC, contributing on average 46.4 and 25.9% to the WSOC, respectively. In the coarse mode, soil dust and secondary processes contributed 52.5 and 42.5% to the WSOC, respectively. The PMF analyses and PSCF maps of WSOC, SO42-, and K+ indicate that condensation mode WSOC was mostly influenced by the secondary organic aerosols and biomass burning from both local and long-range transported pollutants, while droplet mode WSOC was primarily the result of atmospheric processing during the long range transport of biogenic and anthropogenic pollutants from the eastern regions of China.
Collapse
Affiliation(s)
- Geun-Hye Yu
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-gu, Gwangju 61186, Korea.
| | - Seungshik Park
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-gu, Gwangju 61186, Korea.
| | - Kwon-Ho Lee
- Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University, Korea
| |
Collapse
|
24
|
Deshmukh DK, Kawamura K, Deb MK. Dicarboxylic acids, ω-oxocarboxylic acids, α-dicarbonyls, WSOC, OC, EC, and inorganic ions in wintertime size-segregated aerosols from central India: Sources and formation processes. CHEMOSPHERE 2016; 161:27-42. [PMID: 27414241 DOI: 10.1016/j.chemosphere.2016.06.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
The size distributions of aerosols can provide evidences for their sources and formation processes in the atmosphere. Size-segregated aerosols (9-sizes) were collected in urban site (Raipur: 21.2°N and 82.3°E) in central India during winter of 2012-2013. The samples were analyzed for dicarboxylic acids (C2-C12), ω-oxocarboxylic acids (ωC2-ωC9), pyruvic acid and α-dicarbonyls (C2-C3) as well as elemental carbon (EC), organic carbon (OC), water-soluble OC (WSOC) and inorganic ions. Diacids showed a predominance of oxalic acid (C2) followed by succinic and azelaic acid whereas ω-oxoacids exhibited a predominance of glyoxylic acid and glyoxal was more abundant than methylglyoxal in all the sizes. Diacids, ω-oxoacids and α-dicarbonyls showed bimodal size distribution with peaks in fine and coarse modes. High correlations of fine mode diacids and related compounds with potassium and levoglucosan suggest that they were presumably due to a substantial contribution of primary emission from biomass burning and secondary production from biomass burning derived precursors. High correlations of C2 with higher carbon number diacids (C3-C9) suggest that they have similar sources and C2 may be produced via the decay of its higher homologous diacids in fine mode. Considerable portions of diacids and related compounds in coarse mode suggest that they were associated with mineral dust particles by their adsorption and photooxidation of anthropogenic and biogenic precursors via heterogeneous reaction on dust surface. This study demonstrates that biomass burning and dust particles are two major factors to control the size distribution of diacids and related compounds in the urban aerosols from central India.
Collapse
Affiliation(s)
- Dhananjay K Deshmukh
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
| | - Manas K Deb
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, India
| |
Collapse
|
25
|
Qiao T, Zhao M, Xiu G, Yu J. Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:386-94. [PMID: 27017073 DOI: 10.1016/j.scitotenv.2016.03.095] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 05/12/2023]
Abstract
A year-long simultaneous observation of PM1 and PM2.5 were conducted at ECUST campus in Shanghai, the compositions were analyzed and compared. Results showed that PM2.5 was dominated by PM1 on clear days while the contribution of PM1-2.5 to PM2.5 increased on haze days, indicating that PM2.5 should be given priority to characterize or predict haze pollution. On haze days, accumulation of organic carbon (OC), elemental carbon (EC) and primary organic carbon (POC) in PM1-2.5 was faster than that in PM1. Humic-like substances carbon (Hulis-C) in both PM2.5 and PM1 formed faster than water soluble organic carbon (WSOC) on haze days, hence Hulis-C/WSOC increased with the intensification of haze pollution. In terms of water soluble ions, NO3(-)/SO4(2-) in PM1 increased with the aggravation of haze pollution, implying that mobile sources dominated on haze days, so is nitrogen oxidation ratio (NOR). Liquid water content (LWC) in both PM1 and PM2.5 had positive correlations with relative humidity (RH) but negative correlations with visibility, implying that hygroscopic growth might be a factor for visibility impairment, especially LWC in PM1. By comparison with multi-linear equations of LWC in PM1 and PM2.5, NO3(-) exerted a higher influence on hygroscopicity of PM1 than PM2.5, while RH, WSOC, SO4(2-) and NH4(+) had higher effects on PM2.5, especially WSOC. Source apportionment of PM2.5 was also investigated to provide reference for policy making. Cluster analysis by HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model showed that PM2.5 originated from marine aerosols, middle-scale transportation and large-scale transportation. Furthermore, PM2.5 on haze days was dominated by middle-scale transportation. In line with source apportionment by positive matrix factorization (PMF) model, PM2.5 was attributed to secondary inorganics, aged sea salt, combustion emissions, hygroscopic growth and secondary organics. Secondary formation was the principle source of PM2.5. Furthermore, the contribution of combustion emissions to PM2.5 increased with the intensification of haze pollution, which was just opposite to hygroscopic growth, while that of secondary formation kept quite stable on clear days and haze days.
Collapse
Affiliation(s)
- Ting Qiao
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, China; The People's Government of Dong Ping Town, Chongming County, Shanghai Municipality, China
| | - Mengfei Zhao
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, China
| | - Guangli Xiu
- State Environmental Protection Key Laboratory of Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology (ECUST), Shanghai 200237, China; Australia-China Centre for Air Quality Science and Management (ACC-AQSM), China
| | - Jianzhen Yu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
26
|
Park S, Son SC. Size distribution and sources of humic-like substances in particulate matter at an urban site during winter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:32-41. [PMID: 26618283 DOI: 10.1039/c5em00423c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study investigates the size distribution and possible sources of humic-like substances (HULIS) in ambient aerosol particles collected at an urban site in Gwangju, Korea during the winter of 2015. A total of 10 sets of size-segregated aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI), and the samples were analyzed to determine the mass as well as the presence of ionic species (Na(+), NH4(+), K(+), Ca(2+), Mg(2+), Cl(-), NO3(-), and SO4(2-)), water-soluble organic carbon (WSOC) and HULIS. The separation and quantification of the size-resolved HULIS components from the MOUDI samples was accomplished using a Hydrophilic-Lipophilic Balanced (HLB) solid phase extraction method and a total organic carbon analyzer, respectively. The entire sampling period was divided into two periods: non-Asian dust (NAD) and Asian dust (AD) periods. The contributions of water-soluble organic mass (WSOM = 1.9 × WSOC) and HULIS (=1.9 × HULIS-C) to fine particles (PM1.8) were approximately two times higher in the NAD samples (23.2 and 8.0%) than in the AD samples (12.8 and 4.2%). However, the HULIS-C/WSOC ratio in PM1.8 showed little difference between the NAD (0.35 ± 0.07) and AD (0.35 ± 0.05) samples. The HULIS exhibited a uni-modal size distribution (@0.55 μm) during NAD and a bimodal distribution (@0.32 and 1.8 μm) during AD, which was quite similar to the mass size distributions of particulate matter, WSOC, NO3(-), SO4(2-), and NH4(+) in both the NAD and AD samples. The size distribution characteristics and the results of the correlation analyses indicate that the sources of HULIS varied according to the particle size. In the fine mode (≤1.8 μm), the HULIS composition during the NAD period was strongly associated with secondary organic aerosol (SOA) formation processes similar to those of secondary ionic species (cloud processing and/or heterogeneous reactions) and primary emissions during the biomass burning period, and during the AD period, it was only associated with SOA formation. In the coarse mode (3.1-10 μm), it was difficult to identify the HULIS sources during the NAD period, and during the AD period, the HULIS was most likely associated with soil-related particles [Ca(NO3]2 and CaSO4) and/or sea-salt particles (NaNO3 and Na2SO4).
Collapse
Affiliation(s)
- Seungshik Park
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-gu, Gwangju 500-757, Korea.
| | - Se-Chang Son
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-gu, Gwangju 500-757, Korea.
| |
Collapse
|
27
|
Park S, Cho SY, Bae MS. Source identification of water-soluble organic aerosols at a roadway site using a positive matrix factorization analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 533:410-421. [PMID: 26184904 DOI: 10.1016/j.scitotenv.2015.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/24/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
Daily PM2.5 measurements were carried out at a local roadway every sixth day from May 2011 to August 2013 to obtain seasonal quantitative information on the primary and secondary sources of two water-soluble organic carbon (WSOC) fractions. Filter samples were analyzed for OC, elemental carbon (EC), WSOC, hydrophilic and hydrophobic WSOC fractions (WSOC(HPI) and WSOC(HPO)), and ionic species. An XAD solid phase extraction method and a total organic carbon analyzer were used to isolate the two WSOC fractions and determine their amounts, respectively. The WSOC/OC and WSOC(HPI)/WSOC ratios were 0.62±0.13 and 0.47±0.14, respectively. Similar seasonal profiles in EC, OC, and WSOC concentrations were observed, with higher concentrations occurring in the cold season and lower concentrations in the warm season. However, opposite results were obtained in WSOC/OC and WSOC(HPI)/WSOC ratios, with the higher in the warm season and the lower in the cold season. Correlation analyses indicated that two WSOC fractions in winter were likely attributed to secondary formation processes, biomass burning (BB), and traffic emissions, while WSOC(HPI) observed in other seasons were associated with secondary formation processes similar to those of oxalate and secondary inorganic species. A positive matrix factorization (PMF) model was employed to investigate the sources of two WSOC fractions. PMF indicated that concentrations of WSOC fractions were affected by five sources: secondary NO3(-) related, secondary SO4(2-) and oxalate related, traffic emissions, BB emissions, and sea-salt. Throughout the study period, secondary organic aerosols were estimated to be the most dominant contributor of WSOC fractions, with higher contributions occurring in the warm seasons. The contribution of secondary aerosol formation processes (NO3(-) related+SO4(2-) and oxalate related) to WSOC(HPI) and WSOC(HPO) was on an average 56.2% (45.0-73.8%) and 47.7% (39.6-52.1%), respectively. The seasonal average contribution of WSOC(HPI) and WSOC(HPO) attributed to BB was 19.0% (14.3-25.3%) and 14.8% (7.2-19.5%), respectively, with higher fractions occurring in the fall and winter. Traffic sources contributed to WSOC(HPI) and WSOC(HPO) from 4.2 to 21.0% (an average of 11.6%) and from 7.9 to 32.3% (an average of 19.9%), respectively, with higher fractions in the fall and winter compared with the other seasons. During the study period, for an episode associated with high local O3 level (~110 ppbv) and high WSOC(HPI)/WSOC (0.80), secondary formation processes contributed 67.1% to WSOCHPI, and 72.6% to WSOC(HPO), respectively. However, for an episode associated with local and severe regional haze pollutions, contributions of secondary formation processes to WSOC fractions were observed to be low (32.4-43.1%), while traffic and BB emissions contributed 16.8% and 24.3% to WSOC(HPI), respectively, and 18.3% and 18.7% to WSOC(HPO), respectively. The PMF results suggest that the contribution of traffic emissions to concentrations of two WSOC fractions cannot be neglected at the studied roadway site.
Collapse
Affiliation(s)
- Seungshik Park
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 500-757, Republic of Korea.
| | - Sung Yong Cho
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-ku, Gwangju 500-757, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, Mokpo National University, Jeolanam-do Mokpo, Republic of Korea
| |
Collapse
|
28
|
Paraskevopoulou D, Liakakou E, Gerasopoulos E, Mihalopoulos N. Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:165-178. [PMID: 25958364 DOI: 10.1016/j.scitotenv.2015.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
To identify the sources of aerosols in Greater Athens Area (GAA), a total of 1510 daily samples of fine (PM 2.5) and coarse (PM 10-2,5) aerosols were collected at a suburban site (Penteli), during a five year period (May 2008-April 2013) corresponding to the period before and during the financial crisis. In addition, aerosol sampling was also conducted in parallel at an urban site (Thissio), during specific, short-term campaigns during all seasons. In all these samples mass and chemical composition measurements were performed, the latest only at the fine fraction. Particulate organic matter (POM) and ionic masses (IM) are the main contributors of aerosol mass, equally contributing by accounting for about 24% of the fine aerosol mass. In the IM, nss-SO4(-2) is the prevailing specie followed by NO3(-) and NH4(+) and shows a decreasing trend during the 2008-2013 period similar to that observed for PM masses. The contribution of water in fine aerosol is equally significant (21 ± 2%), while during dust transport, the contribution of dust increases from 7 ± 2% to 31 ± 9%. Source apportionment (PCA and PMF) and mass closure exercises identified the presence of six sources of fine aerosols: secondary photochemistry, primary combustion, soil, biomass burning, sea salt and traffic. Finally, from winter 2012 to winter 2013 the contribution of POM to the urban aerosol mass is increased by almost 30%, reflecting the impact of wood combustion (dominant fuel for domestic heating) to air quality in Athens, which massively started in winter 2013.
Collapse
Affiliation(s)
- D Paraskevopoulou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa and Vas. Pavlou, 15236, P. Penteli, Athens, Greece; Environmental Chemical Processes laboratory (ECPL), Department of Chemistry, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece
| | - E Liakakou
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa and Vas. Pavlou, 15236, P. Penteli, Athens, Greece
| | - E Gerasopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa and Vas. Pavlou, 15236, P. Penteli, Athens, Greece
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa and Vas. Pavlou, 15236, P. Penteli, Athens, Greece; Environmental Chemical Processes laboratory (ECPL), Department of Chemistry, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece.
| |
Collapse
|
29
|
Natural and Unnatural Organic Matter in the Atmosphere: Recent Perspectives on the High Molecular Weight Fraction of Organic Aerosol. ACTA ACUST UNITED AC 2014. [DOI: 10.1021/bk-2014-1160.ch005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Cheng Y, Engling G, He KB, Duan FK, Du ZY, Ma YL, Liang LL, Lu ZF, Liu JM, Zheng M, Weber RJ. The characteristics of Beijing aerosol during two distinct episodes: impacts of biomass burning and fireworks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 185:149-157. [PMID: 24275313 DOI: 10.1016/j.envpol.2013.10.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/16/2013] [Accepted: 10/19/2013] [Indexed: 06/02/2023]
Abstract
The chemical composition of Beijing aerosol was measured during summer and winter. Two distinct episodes were identified. Water-soluble potassium (K(+)) increased significantly during the firework episode in winter with an episode to non-episode ratio of 4.97, whereas the biomass burning (BB) episode in summer was characterized by high episode to non-episode ratios of levoglucosan (6.38) and K(+) (6.90). The BB and firework episodes had only a minor influence on the water-soluble OC (organic carbon) to OC ratio. Based on separate investigations of episode and non-episode periods, it was found that: (i) sulfate correlated strongly with both relative humidity and nitrate during the typical winter period presumably indicating the importance of the aqueous-phase oxidation of sulfur dioxide by nitrogen dioxide, (ii) oxalate and WSOC during both winter and summer in Beijing were mainly due to secondary formation, and (iii) high humidity can significantly enhance the formation potential of WSOC in winter.
Collapse
Affiliation(s)
- Yuan Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Guenter Engling
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ke-bin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, China.
| | - Feng-kui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Zhen-yu Du
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yong-liang Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Lin-lin Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Zi-feng Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jiu-meng Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Mei Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
31
|
|
32
|
Psichoudaki M, Pandis SN. Atmospheric aerosol water-soluble organic carbon measurement: a theoretical analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9791-9798. [PMID: 23883352 DOI: 10.1021/es402270y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The measurement of Water-Soluble Organic Carbon (WSOC) in atmospheric aerosol is usually carried out by sample collection on filters, extraction in ultrapure water, filtration, and measurement of the total organic carbon. This paper investigates the role of different conditions of sampling and extraction as well as the range of solubilities of the organic compounds that contribute to the WSOC. The sampling and extraction of WSOC can be described by a single parameter, P, expressing the ratio of water used per volume of air sampled on the analyzed filter. Two cases are examined in order to bound the range of interactions of the various organic aerosol components with each other. In the first we assume that the organic species form an ideal solution in the particle and in the second that the extraction of a single compound is independent of the presence of the other organics. The ideal organic solution model predicts that species with water solubility as low as 10(-4) g L(-1) contribute to the measured WSOC. In the other end, the independent compounds model predicts that low-solubility (as low as 10(-7) g L(-1)) compounds are part of the WSOC. Studies of the WSOC composition are consistent with the predictions of the ideal organic solution model. A value of P = 0.1 cm(3) m(-3) is proposed for the extraction of WSOC for typical organic aerosol concentrations (1-10 μg m(-3)). WSOC measurements under high concentration conditions often used during source sampling will tend to give low WSOC values unless higher P values are used.
Collapse
Affiliation(s)
- Magda Psichoudaki
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology Hellas (ICEHT/FORTH) , Patras, Greece
| | | |
Collapse
|
33
|
Cho SY, Park SS. Resolving sources of water-soluble organic carbon in fine particulate matter measured at an urban site during winter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:524-534. [PMID: 25208718 DOI: 10.1039/c2em30730h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Measurements of daily PM2.5 were carried out during winter between January 11 and February 27, 2010 in an urban area of Korea, in order to better understand the influence of sources and atmospheric processing of organic aerosols. The aerosol samples were analyzed for organic carbon and elemental carbon (OC and EC), water-soluble OC (WSOC), eight ionic species, and oxalate. The water-soluble fraction of OC was between 33 and 58% with an average of 45%. Strong correlations among WSOC, sulfate (SO 4(2-)) (R(2) = 0.69), and oxalate (R(2) = 0.82) concentrations, and between potassium (K (+)) and WSOC concentrations (R(2) = 0.81) suggest that the observed WSOC could originate from similar oxidation processes to those for SO 4(2-) and oxalate, as well as biomass burning. Also moderate correlations of the WSOC with EC and carbon monoxide (CO) indicate that there was some contribution to WSOC from primary fossil fuel combustion. Results from a principle component analysis (PCA) indicate that in addition to the biomass burning and primary non-biomass burning emissions, the observed WSOC could be formed through production pathways similar to secondary organic carbon (SOC), SO 4(2-), and oxalate. Sources of WSOC inferred, based on the correlations, were confirmed by source categories identified by the PCA. Over the study period, three haze episodes exceeding a 24 h PM 2.5 concentration of 50 μg m(-3) were identified. Of the major components in PM 2.5, EC concentrations were elevated during episode I (18-19 January), while the secondary SO 4(2-) concentrations were enhanced during episodes II (30-31 January) and III (22-23 February). However, little difference in OC concentrations among the episodes was observed. It is suggested that the aerosol particles collected during episodes II and III were more aged than those during episode I. Estimates of fossil fuel combustion, biomass burning, and SOC contributions to WSOC indicate that the fossil fuel combustion provided the highest contribution (62.3%) to WSOC in episode I, while the greatest contribution (60.6%) to WSOC from SOC was observed in episode II. The results demonstrate that the sampled aerosol particles were more aged or further processed during episodes II and III than during episode I.
Collapse
Affiliation(s)
- Sung Yong Cho
- Department of Environmental Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-ku, Gwangju 500-757, Republic of Korea.
| | | |
Collapse
|
34
|
Tsitouridou R, Papazova P, Simeonova P, Simeonov V. Chemical and statistical interpretation of sized aerosol particles collected at an urban site in Thessaloniki, Greece. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2013; 48:1815-28. [PMID: 24007436 DOI: 10.1080/10934529.2013.823337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The size distribution of aerosol particles (PM0.015-PM18) in relation to their soluble inorganic species and total water soluble organic compounds (WSOC) was investigated at an urban site of Thessaloniki, Northern Greece. The sampling period was from February to July 2007. The determined compounds were compared with mass concentrations of the PM fractions for nano (N: 0.015 < Dp < 0.06), ultrafine (UFP: 0.015 < Dp < 0.125), fine (FP: 0.015 < Dp < 2.0) and coarse particles (CP: 2.0 < Dp < 8.0) in order to perform mass closure of the water soluble content for the respective fractions. Electrolytes were the dominant species in all fractions (24-27%), followed by WSOC (16-23%). The water soluble inorganic and organic content was found to account for 53% of the nanoparticle, 48% of the ultrafine particle, 45% of the fine particle and 44% of the coarse particle mass. Correlations between the analyzed species were performed and the effect of local and long-range transported emissions was examined by wind direction and backward air mass trajectories. Multivariate statistical analysis (cluster analysis and principal components analysis) of the collected data was performed in order to reveal the specific data structure. Possible sources of air pollution were identified and an attempt is made to find patterns of similarity between the different sized aerosols and the seasons of monitoring. It was proven that several major latent factors are responsible for the data structure despite the size of the aerosols - mineral (soil) dust, sea sprays, secondary emissions, combustion sources and industrial impact. The seasonal separation proved to be not very specific.
Collapse
Affiliation(s)
- Roxani Tsitouridou
- Laboratory of Analytical Chemistry, Chemical Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | |
Collapse
|
35
|
Zhang X, Liu J, Parker ET, Hayes PL, Jimenez JL, de Gouw JA, Flynn JH, Grossberg N, Lefer BL, Weber RJ. On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions: 1. Bulk water-soluble organic carbon. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017908] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Park SS, Kim JH, Jeong JU. Abundance and sources of hydrophilic and hydrophobic water-soluble organic carbon at an urban site in Korea in summer. ACTA ACUST UNITED AC 2012; 14:224-32. [DOI: 10.1039/c1em10617a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
He LY, Huang XF, Xue L, Hu M, Lin Y, Zheng J, Zhang R, Zhang YH. Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd014566] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Kwok RHF, Fung JCH, Lau AKH, Fu JS. Numerical study on seasonal variations of gaseous pollutants and particulate matters in Hong Kong and Pearl River Delta Region. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012809] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Hu D, Bian Q, Lau AKH, Yu JZ. Source apportioning of primary and secondary organic carbon in summer PM2.5in Hong Kong using positive matrix factorization of secondary and primary organic tracer data. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009jd012498] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Saarnio K, Aurela M, Timonen H, Saarikoski S, Teinilä K, Mäkelä T, Sofiev M, Koskinen J, Aalto PP, Kulmala M, Kukkonen J, Hillamo R. Chemical composition of fine particles in fresh smoke plumes from boreal wild-land fires in Europe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2527-42. [PMID: 20359735 DOI: 10.1016/j.scitotenv.2010.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 01/20/2010] [Accepted: 03/03/2010] [Indexed: 04/14/2023]
Abstract
A series of smoke plumes was detected in Helsinki, Finland, during a one-month-lasting period in August 2006. The smoke plumes originated from wildfires close to Finland, and they were short-term and had a high particulate matter (PM) concentration. Physical and chemical properties of fine particles in those smokes were characterised by a wide range of real-time measurements that enabled the examination of individual plume events. Concurrently PM(1) filter samples were collected and analysed off-line. Satellite observations employing MODIS sensor on board of NASA EOS Terra satellite with the dispersion model SILAM and the Fire Assimilation System were used for evaluation of the emission fluxes from wildfires. The model predicted well the timing of the plumes but the predicted PM concentrations differed from the observed. The measurements showed that the major growth in PM concentration was caused by submicrometer particles consisting mainly of particulate organic matter (POM). POM had not totally oxidised during the transport based on the low WSOC-to-OC ratio. The fresh plumes were compared to another major smoke episode that was observed in Helsinki during April-May 2006. The duration and the source areas of the two episode periods differed. The episode in April-May was a period of nearly constantly upraised level of long-range transported PM and it was composed of aged particles when arriving in Helsinki. The two episodes had differences also in the chemical composition of PM. The mass concentrations of biomass burning tracers (levoglucosan, potassium, and oxalate) increased during both the episodes but different concentration levels of elemental carbon and potassium indicated that the episodes differed in the form of burning as well as in the burning material. In spring dry crop residue and hay from the previous season were burnt whereas in August smokes from smouldering and incomplete burning of fresh vegetation were detected.
Collapse
Affiliation(s)
- Karri Saarnio
- Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Miyazaki Y, Aggarwal SG, Singh K, Gupta PK, Kawamura K. Dicarboxylic acids and water-soluble organic carbon in aerosols in New Delhi, India, in winter: Characteristics and formation processes. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011790] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Miyazaki Y, Kondo Y, Shiraiwa M, Takegawa N, Miyakawa T, Han S, Kita K, Hu M, Deng ZQ, Zhao Y, Sugimoto N, Blake DR, Weber RJ. Chemical characterization of water-soluble organic carbon aerosols at a rural site in the Pearl River Delta, China, in the summer of 2006. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2009jd011736] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
He LY, Hu M, Zhang YH, Huang XF, Yao TT. Fine particle emissions from on-road vehicles in the Zhujiang Tunnel, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:4461-6. [PMID: 18605571 DOI: 10.1021/es7022658] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Little is known about the characteristics of particulate matter emissions from vehicles in China, although such information is critical in source apportionment modeling, emission inventories, and health effect studies. In this paper, we report a comprehensive characterization of PM2.5 emissions in the Zhujiang Tunnel in the Pearl River Delta region of China. The chemical speciation included elemental carbon, organic carbon, inorganic ions, trace elements, and organic compounds. The emission factors of individual species and their relative distributions were obtained for a mixed fleet of heavy-duty vehicles (19.8%) and light-duty vehicles (80.2%). In addition, separate emission factors of PM2.5 mass, elemental carbon, and organic matter for heavy-duty vehicles and light-duty vehicles also were derived. As compared to the results of other tunnel studies previously conducted, we found that the abundances and distributions of the trace elements in PM2.5 emissions were more varied. In contrast, the characteristics of the trace organic compounds in the PM2.5 emissions in our study were consistent with characteristics found in other tunnel studies and dynamometer tests. Our results suggested that vehicular PM2.5 emissions of organic compounds are less influenced by the geographic area and fleet composition and thereby are more suitable for use in aerosol source apportionment modeling implemented across extensive regions.
Collapse
Affiliation(s)
- Ling-Yan He
- Laboratory for Environmental and Urban Sciences, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | | | | | | | | |
Collapse
|
44
|
de Gouw JA, Brock CA, Atlas EL, Bates TS, Fehsenfeld FC, Goldan PD, Holloway JS, Kuster WC, Lerner BM, Matthew BM, Middlebrook AM, Onasch TB, Peltier RE, Quinn PK, Senff CJ, Stohl A, Sullivan AP, Trainer M, Warneke C, Weber RJ, Williams EJ. Sources of particulate matter in the northeastern United States in summer: 1. Direct emissions and secondary formation of organic matter in urban plumes. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007jd009243] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Pan YL, Pinnick RG, Hill SC, Rosen JM, Chang RK. Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: Measurements at New Haven, Connecticut, and Las Cruces, New Mexico. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008741] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Weber RJ, Sullivan AP, Peltier RE, Russell A, Yan B, Zheng M, de Gouw J, Warneke C, Brock C, Holloway JS, Atlas EL, Edgerton E. A study of secondary organic aerosol formation in the anthropogenic‐influenced southeastern United States. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008408] [Citation(s) in RCA: 438] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rodney J. Weber
- School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Amy P. Sullivan
- School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta Georgia USA
- Department of Atmospheric Science Colorado State University Fort Collins Colorado USA
| | - Richard E. Peltier
- School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Armistead Russell
- School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta Georgia USA
| | - Bo Yan
- School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Mei Zheng
- School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta Georgia USA
| | - Joost de Gouw
- Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory NOAA Boulder Colorado USA
| | - Carsten Warneke
- Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory NOAA Boulder Colorado USA
| | - Charles Brock
- Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory NOAA Boulder Colorado USA
| | - John S. Holloway
- Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder Colorado USA
- Chemical Sciences Division, Earth System Research Laboratory NOAA Boulder Colorado USA
| | - Elliot L. Atlas
- Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric Science University of Miami Miami Florida USA
| | - Eric Edgerton
- Atmospheric Research and Analysis, Inc. Cary North Carolina USA
| |
Collapse
|
47
|
Sorooshian A, Ng NL, Chan AWH, Feingold G, Flagan RC, Seinfeld JH. Particulate organic acids and overall water‐soluble aerosol composition measurements from the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2007jd008537] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Armin Sorooshian
- Department of Chemical Engineering California Institute of Technology Pasadena California USA
| | - Nga L. Ng
- Department of Chemical Engineering California Institute of Technology Pasadena California USA
| | - Arthur W. H. Chan
- Department of Chemical Engineering California Institute of Technology Pasadena California USA
| | - Graham Feingold
- Chemical Sciences Division, Earth System Research Laboratory NOAA Boulder Colorado USA
| | - Richard C. Flagan
- Department of Chemical Engineering California Institute of Technology Pasadena California USA
| | - John H. Seinfeld
- Department of Chemical Engineering California Institute of Technology Pasadena California USA
| |
Collapse
|