1
|
Ams MR, McAuliffe JR, Semenick RS, Zeller M. Self-Replication Without Hydrogen-Bonds: An Exobiotic Design. Chemistry 2024; 30:e202401446. [PMID: 38958604 DOI: 10.1002/chem.202401446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Life on Earth uses DNA as the central template for self-replication, genetic encoding, and information transfer. However, there are no physical laws precluding life's existence elsewhere in space, and alternative life forms may not need DNA. In the search for exobiology, knowing what to look for as a biosignature remains a challenge - especially if it is not from the obvious list of biologic building blocks. Clues from chemicals recently discovered on Mars and in the Taurus Molecular Cloud 1 (TMC-1), show that intriguing organic compounds exist beyond Earth, which could provide a starting point for unconventional exobiotic designs. Here we present a new potential self-replicating system with structural similarities to recently discovered compounds on Mars and TMC-1. Rather than using DNA's hydrogen-bonding motif for reliable base-paring, our design employs sulfur-nitrogen interactions to selectively template unique benzothiadiazole units in sequence. We synthesized and studied two versions of this system, one reversible and the other irreversible, and found experimental evidence of self-replication in d-chloroform solvent. These results are part of a larger pursuit in our lab for developing a basis for a potential exobiological system using starting blocks closely related to these cosmic compounds.
Collapse
Affiliation(s)
- Mark R Ams
- Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM, 87801, USA
| | - Joseph R McAuliffe
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, PA, 16335, USA
| | - Raina S Semenick
- Department of Chemistry, Allegheny College, 520 North Main Street, Meadville, PA, 16335, USA
| | - Matt Zeller
- X-ray Crystallography, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907, USA
| |
Collapse
|
2
|
Liu L, Kang M, Wang Z, Shen J, Pan Y, Lin W. Perchlorate-tolerant bacterial strains isolated from the Mars-analog Qaidam Basin soils exposed to Earth's near space. MLIFE 2024; 3:471-475. [PMID: 39359672 PMCID: PMC11442124 DOI: 10.1002/mlf2.12142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 10/04/2024]
Abstract
Earth's lower near space of 20-40 km above sea level with polyextreme conditions serves as a unique Mars analog for astrobiological research to investigate the limits of life on Earth and planetary protection considerations for Mars exploration. In this study, we exposed Mars-like desert regolith to near space at a float altitude of ~35 km and isolated four bacterial strains after exposure. In addition to stress tolerance to extreme environmental stressors, these strains represent a remarkable tolerance to perchlorate that is widespread in present-day Martian soils. These extremophilic bacterial strains screened through near-space exposure could serve as promising candidates for future astrobiological research in space stations or in laboratory-based planetary simulation environments.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China
- College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
| | - Mengling Kang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China
- College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
| | - Zhe Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China
- College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
| | - Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China
- College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China
- College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
3
|
Abrahamsson V, Henderson BL, Friedman A, Gross J, Prothmann J, Davila AF, Williams AJ, Lin Y, Kanik I, Zhong F. Supercritical CO 2 and Subcritical H 2O Analysis Instrument: Automated Lipid Analysis for In Situ Planetary Life Detection. Anal Chem 2024; 96:13389-13397. [PMID: 39120043 DOI: 10.1021/acs.analchem.4c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The search for extraterrestrial extant or extinct life in our Solar System will require highly capable instrumentation and methods for detecting low concentrations of biosignatures. This paper introduces the Supercritical CO2 and Subcritical H2O Analysis (SCHAN) instrument, a portable and automated system that integrates supercritical fluid extraction (SFE), supercritical fluid chromatography (SFC), and subcritical water extraction coupled with liquid chromatography. The instrument is compact and weighs 6.3 kg, making it suitable for spaceflight missions to planetary bodies. Traditional techniques, such as gas chromatography-mass spectrometry (MS), face challenges with involatile and thermally labile analytes, necessitating derivatization. The SCHAN instrument, however, eliminates the need for derivatization and cosolvents by utilizing neat supercritical CO2 with water as an additive. This SFE-SFC-MS method gives efficient lipid biosignature separations with median detection limits of 10 pg/g (ppt) for fatty acids and 50 pg/g (ppt) for sterols. Several free fatty acids and cholesterol were among the detected peaks in biologically lean samples from the Atacama Desert, demonstrating the instrument's potential for in situ life detection missions. The SCHAN instrument addresses the challenges of conventional systems, offering a compact, portable, and spaceflight-compatible tool for the analysis of organics for future astrobiology-focused missions.
Collapse
Affiliation(s)
- Victor Abrahamsson
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Bryana L Henderson
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Adam Friedman
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Johannes Gross
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Jens Prothmann
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Alfonso F Davila
- NASA Ames Research Center, Moffett Field ,California 94035-1000, United States
| | - Amy J Williams
- University of Florida, Gainesville ,Florida 32611-7011, United States
| | - Ying Lin
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Isik Kanik
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| | - Fang Zhong
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena ,California 91109-8001, United States
| |
Collapse
|
4
|
McIntosh O, García-Florentino C, Fornaro T, Marabello D, Alberini A, Siljeström S, Biczysko M, Szopa C, Brucato J. Undecanoic Acid and L-Phenylalanine in Vermiculite: Detection, Characterization, and UV Degradation Studies for Biosignature Identification on Mars. ASTROBIOLOGY 2024; 24:518-537. [PMID: 38669050 DOI: 10.1089/ast.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Solar radiation that arrives on the surface of Mars interacts with organic molecules present in the soil. The radiation can degrade or transform the organic matter and make the search for biosignatures on the planet's surface difficult. Therefore, samples to be analyzed by instruments on board Mars probes for molecular content should be selectively chosen to have the highest organic preservation content. To support the identification of organic molecules on Mars, the behavior under UV irradiation of two organic compounds, undecanoic acid and L-phenylalanine, in the presence of vermiculite and two chloride salts, NaCl and MgCl, was studied. The degradation of the molecule's bands was monitored through IR spectroscopy. Our results show that, while vermiculite acts as a photoprotective mineral with L-phenylalanine, it catalyzes the photodegradation of undecanoic acid molecules. On the other hand, both chloride salts studied decreased the degradation of both organic species acting as photoprotectors. While these results do not allow us to conclude on the preservation capabilities of vermiculite, they show that places where chloride salts are present could be good candidates for in situ analytic experiments on Mars due to their organic preservation capacity under UV radiation.
Collapse
Affiliation(s)
- Ophélie McIntosh
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
- INAF - Astrophysical Observatory of Arcetri, Firenze, Italy
| | - Cristina García-Florentino
- INAF - Astrophysical Observatory of Arcetri, Firenze, Italy
- Department of Analytical Chemistry, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Teresa Fornaro
- INAF - Astrophysical Observatory of Arcetri, Firenze, Italy
| | - Domenica Marabello
- Department of Chemistry, University of Torino, Torino, Italy
- Interdepartmental Center for Crystallography, University of Torino, Torino, Italy
| | | | - Sandra Siljeström
- Department of Methodology, Textiles and Medical Technology, RISE Research Institutes of Sweden, Stockholm, Sweden
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, Physics Department, College of Science, Shanghai University, Shanghai, China
| | - Cyril Szopa
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - John Brucato
- INAF - Astrophysical Observatory of Arcetri, Firenze, Italy
| |
Collapse
|
5
|
Wilanowska PA, Rzymski P, Kaczmarek Ł. Long-Term Survivability of Tardigrade Paramacrobiotus experimentalis (Eutardigrada) at Increased Magnesium Perchlorate Levels: Implications for Astrobiological Research. Life (Basel) 2024; 14:335. [PMID: 38541660 PMCID: PMC10971682 DOI: 10.3390/life14030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 05/26/2024] Open
Abstract
Perchlorate salts, including magnesium perchlorate, are highly toxic compounds that occur on Mars at levels far surpassing those on Earth and pose a significant challenge to the survival of life on this planet. Tardigrades are commonly known for their extraordinary resistance to extreme environmental conditions and are considered model organisms for space and astrobiological research. However, their long-term tolerance to perchlorate salts has not been the subject of any previous studies. Therefore, the present study aimed to assess whether the tardigrade species Paramacrobiotus experimentalis can survive and grow in an environment contaminated with high levels of magnesium perchlorates (0.25-1.0%, 1.5-6.0 mM ClO4- ions). The survival rate of tardigrades decreased with an increase in the concentration of the perchlorate solutions and varied from 83.3% (0.10% concentration) to 20.8% (0.25% concentration) over the course of 56 days of exposure. Tardigrades exposed to 0.15-0.25% magnesium perchlorate revealed significantly decreased body length. Our study indicates that tardigrades can survive and grow in relatively high concentrations of magnesium perchlorates, largely exceeding perchlorate levels observed naturally on Earth, indicating their potential use in Martian experiments.
Collapse
Affiliation(s)
- Paulina Anna Wilanowska
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland;
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland;
| |
Collapse
|
6
|
Maggiori C, Fernández-Martínez MA, Bourdages LJ, Sánchez-García L, Moreno-Paz M, Sobrado JM, Carrizo D, Vicente-Retortillo Á, Goordial J, Whyte LG. Biosignature Detection and MinION Sequencing of Antarctic Cryptoendoliths After Exposure to Mars Simulation Conditions. ASTROBIOLOGY 2024; 24:44-60. [PMID: 38153386 DOI: 10.1089/ast.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In the search for life in our Solar System, Mars remains a promising target based on its proximity and similarity to Earth. When Mars transitioned from a warmer, wetter climate to its current dry and freezing conditions, any putative extant life probably retreated into habitable refugia such as the subsurface or the interior of rocks. Terrestrial cryptoendolithic microorganisms (i.e., those inhabiting rock interiors) thus represent possible modern-day Mars analogs, particularly those from the hyperarid McMurdo Dry Valleys in Antarctica. As DNA is a strong definitive biosignature, given that there is no known abiotic chemistry that can polymerize nucleobases, we investigated DNA detection with MinION sequencing in Antarctic cryptoendoliths after an ∼58-sol exposure in MARTE, a Mars environmental chamber capable of simulating martian temperature, pressure, humidity, ultraviolet (UV) radiation, and atmospheric composition, in conjunction with protein and lipid detection. The MARTE conditions resulted in changes in community composition and DNA, proteins, and cell membrane-derived lipids remained detectable postexposure. Of the multitude of extreme environmental conditions on Mars, UV radiation (specifically UVC) is the most destructive to both cells and DNA. As such, we further investigated if a UVC exposure corresponding to ∼278 martian years would impede DNA detection via MinION sequencing. The MinION was able to successfully detect and sequence DNA after this UVC radiation exposure, suggesting its utility for life detection in future astrobiology missions focused on finding relatively recently exposed biomarkers inside possible martian refugia.
Collapse
Affiliation(s)
- Catherine Maggiori
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Miguel Angel Fernández-Martínez
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste. Anne-de-Bellevue, Quebec, Canada
- Department of Ecology, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Louis-Jacques Bourdages
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste. Anne-de-Bellevue, Quebec, Canada
| | | | | | | | | | | | - Jacqueline Goordial
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste. Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
7
|
Georgiou CD, McKay C, Reymond JL. Organic Catalytic Activity as a Method for Agnostic Life Detection. ASTROBIOLOGY 2023; 23:1118-1127. [PMID: 37523279 DOI: 10.1089/ast.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An ideal life detection instrument would have high sensitivity but be insensitive to abiotic processes and would be capable of detecting life with alternate molecular structures. In this study, we propose that catalytic activity can be the basis of a nearly ideal life detection instrument. There are several advantages to catalysis as an agnostic life detection method. Demonstrating catalysis does not necessarily require culturing/growing the alien life and in fact may persist even in dead biomass for some time, and the amplification by catalysis is large even by minute amounts of catalysts and, hence, can be readily detected against abiotic background rates. In specific, we propose a hydrolytic catalysis detection instrument that could detect activity in samples of extraterrestrial organic material from unknown life. The instrument uses chromogenic assay-based detection of various hydrolytic catalytic activities, which are matched to corresponding artificial substrates having the same, chromogenic (preferably fluorescent) upon release, group; D- and L-enantiomers of these substrates can be used to also answer the question whether unknown life is chiral. Since catalysis is a time-proportional product-concentration amplification process, hydrolytic catalytic activity can be measured on a sample of even a minute size, and with instruments based on, for example, optofluidic chip technology.
Collapse
Affiliation(s)
| | | | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Sigvartssøn MKK, Bak EN, Nørnberg P, Jensen SJK, Thøgersen J, Begnhøj M, Finster K. Investigation of the Cytotoxicity of Mars-Relevant Minerals upon Abrasion. ASTROBIOLOGY 2023; 23:1090-1098. [PMID: 37672600 DOI: 10.1089/ast.2023.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Since the Viking Labeled Release experiments were carried out on Mars in the 1970s, it has been evident that the martian surface regolith has a strong oxidizing capacity that can convert organic compounds into CO2 and probably water. While H2O2 was suggested originally for being the oxidizing agent responsible for the outcome of the Viking experiments, recent analyses of the martian regolith by the Phoenix lander and by consecutive missions point toward radiation-mediated decomposition products of perchlorate salts as the primary oxidant. In a series of experiments, we have shown that abrasion and triboelectric charging of basalt by simulated saltation could be an additional way of activating regolith. We have also shown that abraded basalt with a chemical composition close to that of martian regolith is toxic to several bacterial species and thus may affect the habitability of the martian surface. In the present study, we investigated the effect of the quantitatively most important minerals (olivine, augite, and plagioclase) and iron oxides (hematite, magnetite, and maghemite) on the survival of bacterial cells to elucidate whether a specific mineral that constitutes basalt is responsible for our observations. We observed that suspensions of iron-containing minerals olivine and augite in phosphate-buffered saline (1 × PBS) significantly reduce the number of surviving cells of our model organism Pseudomonas putida after 24 h of incubation. In contrast, the iron-free mineral plagioclase showed no effect. We also observed that suspending abraded olivine and augite in 1 × PBS led to a dramatic increase in pH compared to the pH of 1 × PBS alone. The sudden increase in pH caused by the presence of these minerals may partly explain the observed cytotoxicity. The cytotoxic effect of augite could be relieved when a strong buffer (20 × PBS) was used. In contrast, olivine, despite the stronger buffer, maintained its cytotoxicity. Iron oxides per se have no negative effect on the survival of our test organism. Overall, our experiments confirm the cytotoxicity of basalt and show that no single constituent mineral of the basalt can account for its toxicity. We could show that abraded iron-containing minerals (olivine and augite) change the pH of water when brought into suspension and thereby could affect the habitability of martian regolith.
Collapse
Affiliation(s)
| | - Ebbe Norskov Bak
- Department of Biology, Microbiology section, Aarhus University, Aarhus C, Denmark
| | - Per Nørnberg
- Department of Biology, Microbiology section, Aarhus University, Aarhus C, Denmark
- Department of Geoscience, Aarhus University, Aarhus C, Denmark
| | | | - Jan Thøgersen
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Mikkel Begnhøj
- Department of Biology, Microbiology section, Aarhus University, Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Kai Finster
- Department of Biology, Microbiology section, Aarhus University, Aarhus C, Denmark
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
9
|
Diloreto Z, Ahmad MS, Al Saad Al-Kuwari H, Sadooni F, Bontognali TRR, Dittrich M. Raman Spectroscopic and Microbial Study of Biofilms Hosted Gypsum Deposits in the Hypersaline Wetlands: Astrobiological Perspective. ASTROBIOLOGY 2023; 23:991-1005. [PMID: 37672713 DOI: 10.1089/ast.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Gypsum (CaSO4·2H2O) has been identified at the surface of Mars, by both orbiters and rovers. Because gypsum mostly forms in the presence of liquid water as an essential element for sustaining microbial life and has a low porosity, which is ideal for preserving organic material, it is a promising target to look for signs of past microbial life. In this article, we studied organic matter preservation within gypsum that precipitates in a salt flat or a so-called coastal sabkha located in Qatar. Sabkha's ecosystem is considered a modern analog to evaporitic environments that may have existed on early Mars. We collected the sediment cores in the areas where gypsum is formed and performed DNA analysis to characterize the community of extremophilic microorganisms that is present at the site of gypsum formation. Subsequently, we applied Raman spectroscopy, a technique available on several rovers that are currently exploring Mars, to evaluate which organic molecules can be detected through the translucent gypsum crystals. We showed that organic material can be encapsulated into evaporitic gypsum and detected via Raman microscopy with simple, straightforward sample preparation. The molecular biology data proved useful for assessing to what extent complex Raman spectra can be linked to the original microbial community, dominated by Halobacteria and methanogenic archaea, providing a reference for a signal that may be detected on Mars.
Collapse
Affiliation(s)
- Zach Diloreto
- Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
| | - Mirza Shaharyar Ahmad
- Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
| | | | | | - Tomaso R R Bontognali
- Space Exploration Institute, Neuchâtel, Switzerland
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Maria Dittrich
- Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Toronto, Ontario, Canada
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Chaouche-Mechidal N, Stalport F, Caupos E, Mebold E, Azémard C, Szopa C, Coll P, Cottin H. Effects of UV and Calcium Perchlorates on Uracil Deposited on Strontium Fluoride Substrates at Mars Pressure and Temperature. ASTROBIOLOGY 2023; 23:959-978. [PMID: 37672714 DOI: 10.1089/ast.2022.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Organic matter is actively searched on Mars with current and future space missions as it is a key to detecting potential biosignatures. Given the current harsh environmental conditions at the surface of Mars, many organic compounds might not be preserved over a long period as they are exposed to energetic radiation such as ultraviolet light, which is not filtered above 190 nm by the martian atmosphere. Moreover, the presence of strong oxidizing species in the regolith, such as perchlorate salts, might enhance the photodegradation of organic compounds of astrobiological interest. Because current space instruments analyze samples collected in the upper surface layer, it is necessary to investigate the stability of organic matter at the surface of Mars. Previous experimental studies have shown that uracil, a molecule relevant to astrobiology, is quickly photolyzed when exposed to UV radiation under the temperature and pressure conditions of the martian surface with an experimental quantum efficiency of photodecomposition (φexp) of 0.30 ± 0.26 molecule·photon-1. Moreover, the photolysis of uracil leads to the formation of more stable photoproducts that were identified as uracil dimers. The present work aims to characterize the additional effect of calcium perchlorate detected on Mars on the degradation of uracil. Results show that the presence of calcium perchlorate enhances the photodecomposition of uracil with φexp = 12.3 ± 8.3 molecule·photon-1. Although some of the photoproducts formed during these experiments are common to those formed from pure uracil only, the Fourier transformation infrared (FTIR) detection of previously unseen chemical functions such as alkyne C ≡ C or nitrile C ≡ N has shown that additional chemical species are formed in the presence of calcium perchlorate in the irradiated sample. This implies that the effect of calcium perchlorate on the photolysis of uracil is not only kinetic but also related to the nature of the photoproducts formed.
Collapse
Affiliation(s)
- N Chaouche-Mechidal
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - F Stalport
- Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - E Caupos
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
- Ecole des Ponts, LEESU, F-77455 Champs-sur-Marne, France
| | - E Mebold
- Univ Paris Est Creteil, CNRS, OSU-EFLUVE, F-94010 Créteil, France
| | - C Azémard
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - C Szopa
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, 78280 Guyancourt, France
| | - P Coll
- Université Paris Cité and Univ Paris Est Creteil, CNRS, LISA, F-75013 Paris, France
| | - H Cottin
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| |
Collapse
|
11
|
Azua-Bustos A, Fairén AG, González-Silva C, Prieto-Ballesteros O, Carrizo D, Sánchez-García L, Parro V, Fernández-Martínez MÁ, Escudero C, Muñoz-Iglesias V, Fernández-Sampedro M, Molina A, Villadangos MG, Moreno-Paz M, Wierzchos J, Ascaso C, Fornaro T, Brucato JR, Poggiali G, Manrique JA, Veneranda M, López-Reyes G, Sanz-Arranz A, Rull F, Ollila AM, Wiens RC, Reyes-Newell A, Clegg SM, Millan M, Johnson SS, McIntosh O, Szopa C, Freissinet C, Sekine Y, Fukushi K, Morida K, Inoue K, Sakuma H, Rampe E. Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits. Nat Commun 2023; 14:808. [PMID: 36810853 PMCID: PMC9944251 DOI: 10.1038/s41467-023-36172-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/17/2023] [Indexed: 02/24/2023] Open
Abstract
Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan-fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as "dark microbiome", and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment. Our analyses by testbed instruments that are on or will be sent to Mars unveil that although the mineralogy of Red Stone matches that detected by ground-based instruments on the red planet, similarly low levels of organics will be hard, if not impossible to detect in Martian rocks depending on the instrument and technique used. Our results stress the importance in returning samples to Earth for conclusively addressing whether life ever existed on Mars.
Collapse
Affiliation(s)
- Armando Azua-Bustos
- Centro de Astrobiología (CAB) (CSIC-INTA), 28850, Madrid, Spain. .,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| | - Alberto G Fairén
- Centro de Astrobiología (CAB) (CSIC-INTA), 28850, Madrid, Spain.,Department of Astronomy, Cornell University, Ithaca, 14853, NY, USA
| | | | | | - Daniel Carrizo
- Centro de Astrobiología (CAB) (CSIC-INTA), 28850, Madrid, Spain
| | | | - Victor Parro
- Centro de Astrobiología (CAB) (CSIC-INTA), 28850, Madrid, Spain
| | | | | | | | | | - Antonio Molina
- Centro de Astrobiología (CAB) (CSIC-INTA), 28850, Madrid, Spain
| | | | | | - Jacek Wierzchos
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - Carmen Ascaso
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - Teresa Fornaro
- INAF-Astrophysical Observatory of Arcetri, Florence, Italy
| | | | | | - Jose Antonio Manrique
- Universidad de Valladolid, Valladolid, Spain.,Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France
| | | | | | | | | | - Ann M Ollila
- Purdue University, Earth, Atmospheric, and Planetary Sciences, West Lafayette, USA
| | - Roger C Wiens
- Purdue University, Earth, Atmospheric, and Planetary Sciences, West Lafayette, USA
| | | | - Samuel M Clegg
- Purdue University, Earth, Atmospheric, and Planetary Sciences, West Lafayette, USA
| | - Maëva Millan
- Department of Biology, Georgetown University, Washington, DC, 20057, USA.,NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, MD, 20771, USA.,LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - Sarah Stewart Johnson
- Department of Biology, Georgetown University, Washington, DC, 20057, USA.,Science, Technology, and International Affairs Program, Georgetown University, Washington, DC, 20057, USA
| | - Ophélie McIntosh
- INAF-Astrophysical Observatory of Arcetri, Florence, Italy.,Science, Technology, and International Affairs Program, Georgetown University, Washington, DC, 20057, USA
| | - Cyril Szopa
- Science, Technology, and International Affairs Program, Georgetown University, Washington, DC, 20057, USA
| | - Caroline Freissinet
- Science, Technology, and International Affairs Program, Georgetown University, Washington, DC, 20057, USA
| | - Yasuhito Sekine
- Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, Tokyo, Japan.,Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| | - Keisuke Fukushi
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| | - Koki Morida
- Division of Natural System, Kanazawa University, Kanazawa, Japan
| | - Kosuke Inoue
- Division of Natural System, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Sakuma
- National Institute for Materials Science, Tsukuba, Japan
| | - Elizabeth Rampe
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| |
Collapse
|
12
|
Stoker CR. Life on Mars, can we detect it? Nat Commun 2023; 14:807. [PMID: 36810588 PMCID: PMC9944262 DOI: 10.1038/s41467-023-36176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 02/24/2023] Open
Affiliation(s)
- Carol R Stoker
- NASA Ames Research Center, Space Science Division, MS 245-3, Moffett Field, California, CA, 94035, USA.
| |
Collapse
|
13
|
Self-Similar Patterns from Abiotic Decarboxylation Metabolism through Chemically Oscillating Reactions: A Prebiotic Model for the Origin of Life. Life (Basel) 2023; 13:life13020551. [PMID: 36836908 PMCID: PMC9960873 DOI: 10.3390/life13020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The origin of life must have included an abiotic stage of carbon redox reactions that involved electron transport chains and the production of lifelike patterns. Chemically oscillating reactions (COR) are abiotic, spontaneous, out-of-equilibrium, and redox reactions that involve the decarboxylation of carboxylic acids with strong oxidants and strong acids to produce CO2 and characteristic self-similar patterns. Those patterns have circular concentricity, radial geometries, characteristic circular twins, colour gradients, cavity structures, and branching to parallel alignment. We propose that COR played a role during the prebiotic cycling of carboxylic acids, furthering the new model for geology where COR can also explain the patterns of diagenetic spheroids in sediments. The patterns of COR in Petri dishes are first considered and compared to those observed in some eukaryotic lifeforms. The molecular structures and functions of reactants in COR are then compared to key biological metabolic processes. We conclude that the newly recognised similarities in compositions and patterns warrant future research to better investigate the role of halogens in biochemistry; COR in life-forms, including in humans; and the COR-stage of prebiotic carbon cycling on other planets, such as Mars.
Collapse
|
14
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
15
|
Kashyap S, Sklute EC, Wang P, Tague TJ, Dyar MD, Holden JF. Spectral Detection of Nanophase Iron Minerals Produced by Fe(III)-Reducing Hyperthermophilic Crenarchaea. ASTROBIOLOGY 2023; 23:43-59. [PMID: 36070586 PMCID: PMC9810357 DOI: 10.1089/ast.2022.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Mineral transformations by two hyperthermophilic Fe(III)-reducing crenarchaea, Pyrodictium delaneyi and Pyrobaculum islandicum, were examined using synthetic nanophase ferrihydrite, lepidocrocite, and akaganeite separately as terminal electron acceptors and compared with abiotic mineral transformations under similar conditions. Spectral analyses using visible-near-infrared, Fourier-transform infrared attenuated total reflectance (FTIR-ATR), Raman, and Mössbauer spectroscopies were complementary and revealed formation of various biomineral assemblages distinguishable from abiotic phases. The most extensive biogenic mineral transformation occurred with ferrihydrite, which formed primarily magnetite with spectral features similar to biomagnetite relative to a synthetic magnetite standard. The FTIR-ATR spectra of ferrihydrite bioreduced by P. delaneyi also showed possible cell-associated organics such as exopolysaccharides. Such combined detections of biomineral assemblages and organics might serve as biomarkers for hyperthermophilic Fe(III) reduction. With lepidocrocite, P. delaneyi produced primarily a ferrous carbonate phase reminiscent of siderite, and with akaganeite, magnetite and a ferrous phosphate phase similar to vivianite were formed. P. islandicum showed minor biogenic production of a ferrous phosphate similar to vivianite when grown on lepidocrocite, and a mixed valent phosphate or sulfate mineral when grown on akaganeite. These results expand the range of biogenic mineral transformations at high temperatures and identify spacecraft-relevant spectroscopies suitable for discriminating mineral biogenicity.
Collapse
Affiliation(s)
- Srishti Kashyap
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Peng Wang
- Bruker Optics, Inc., Billerica, Massachusetts, USA
| | | | - M. Darby Dyar
- Planetary Science Institute, Tucson, Arizona, USA
- Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - James F. Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
16
|
Scheller EL, Razzell Hollis J, Cardarelli EL, Steele A, Beegle LW, Bhartia R, Conrad P, Uckert K, Sharma S, Ehlmann BL, Abbey WJ, Asher SA, Benison KC, Berger EL, Beyssac O, Bleefeld BL, Bosak T, Brown AJ, Burton AS, Bykov SV, Cloutis E, Fairén AG, DeFlores L, Farley KA, Fey DM, Fornaro T, Fox AC, Fries M, Hickman-Lewis K, Hug WF, Huggett JE, Imbeah S, Jakubek RS, Kah LC, Kelemen P, Kennedy MR, Kizovski T, Lee C, Liu Y, Mandon L, McCubbin FM, Moore KR, Nixon BE, Núñez JI, Rodriguez Sanchez-Vahamonde C, Roppel RD, Schulte M, Sephton MA, Sharma SK, Siljeström S, Shkolyar S, Shuster DL, Simon JI, Smith RJ, Stack KM, Steadman K, Weiss BP, Werynski A, Williams AJ, Wiens RC, Williford KH, Winchell K, Wogsland B, Yanchilina A, Yingling R, Zorzano MP. Aqueous alteration processes in Jezero crater, Mars-implications for organic geochemistry. Science 2022; 378:1105-1110. [PMID: 36417498 DOI: 10.1126/science.abo5204] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments.
Collapse
Affiliation(s)
- Eva L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph Razzell Hollis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.,The Natural History Museum, London, UK
| | - Emily L Cardarelli
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - Luther W Beegle
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Pamela Conrad
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - Kyle Uckert
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sunanda Sharma
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Bethany L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - William J Abbey
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sanford A Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV, USA
| | - Eve L Berger
- Texas State University, San Marcos, TX, USA.,Jacobs Johnson Space Center Engineering, Technology and Science Contract, Houston, TX, USA.,NASA Johnson Space Center, Houston, TX, USA
| | - Olivier Beyssac
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | | | - Tanja Bosak
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Sergei V Bykov
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ed Cloutis
- Geography, The University of Winnipeg, Winnipeg, MB, Canada
| | - Alberto G Fairén
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain.,Department of Astronomy, Cornell University, Ithaca, NY, USA
| | - Lauren DeFlores
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kenneth A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | | | - Teresa Fornaro
- Astrophysical Observatory of Arcetri, Istituto Nazionale di Astrofisica, Florence, Italy
| | | | - Marc Fries
- NASA Johnson Space Center, Houston, TX, USA
| | - Keyron Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London, UK.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | | | | | | | | | - Linda C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Peter Kelemen
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | | | - Tanya Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Carina Lee
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX, USA
| | - Yang Liu
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Lucia Mandon
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, 92195 Meudon, France
| | | | - Kelsey R Moore
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Jorge I Núñez
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | | | - Ryan D Roppel
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mitchell Schulte
- Mars Exploration Program, NASA Headquarters, Washington, DC, USA
| | - Mark A Sephton
- Earth Science and Engineering, South Kensington Campus, Imperial College London, SW7 2AZ London, UK
| | - Shiv K Sharma
- Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, MD, USA.,NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - David L Shuster
- Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
| | | | - Rebecca J Smith
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - Kathryn M Stack
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kim Steadman
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Benjamin P Weiss
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Amy J Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Roger C Wiens
- Los Alamos National Laboratory, Los Alamos, NM, USA.,Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - Kenneth H Williford
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.,Blue Marble Space Institute of Science, Seattle, WA, USA
| | | | - Brittan Wogsland
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | | | | | - Maria-Paz Zorzano
- Centro de Astrobiología, Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Tecnica Aeroespacial, Madrid, Spain
| |
Collapse
|
17
|
Wu JH, McGenity TJ, Rettberg P, Simões MF, Li WJ, Antunes A. The archaeal class Halobacteria and astrobiology: Knowledge gaps and research opportunities. Front Microbiol 2022; 13:1023625. [PMID: 36312929 PMCID: PMC9608585 DOI: 10.3389/fmicb.2022.1023625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 09/19/2023] Open
Abstract
Water bodies on Mars and the icy moons of the outer solar system are now recognized as likely being associated with high levels of salt. Therefore, the study of high salinity environments and their inhabitants has become increasingly relevant for Astrobiology. Members of the archaeal class Halobacteria are the most successful microbial group living in hypersaline conditions and are recognized as key model organisms for exposure experiments. Despite this, data for the class is uneven across taxa and widely dispersed across the literature, which has made it difficult to properly assess the potential for species of Halobacteria to survive under the polyextreme conditions found beyond Earth. Here we provide an overview of published data on astrobiology-linked exposure experiments performed with members of the Halobacteria, identifying clear knowledge gaps and research opportunities.
Collapse
Affiliation(s)
- Jia-Hui Wu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| | - Terry J. McGenity
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Marta F. Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| |
Collapse
|
18
|
Špaček J, Benner SA. Agnostic Life Finder (ALF) for Large-Scale Screening of Martian Life During In Situ Refueling. ASTROBIOLOGY 2022; 22:1255-1263. [PMID: 35796703 DOI: 10.1089/ast.2021.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Before the first humans depart for Mars in the next decade, hundreds of tons of martian water-ice must be harvested to produce propellant for the return vehicle, a process known as in situ resource utilization (ISRU). We describe here an instrument, the Agnostic Life Finder (ALF), that is an inexpensive life-detection add-on to ISRU. ALF exploits a well-supported view that informational genetic biopolymers in life in water must have two structural features: (1) Informational biopolymers must carry a repeating charge; they must be polyelectrolytes. (2) Their building blocks must fit into an aperiodic crystal structure; the building blocks must be size-shape regular. ALF exploits the first structural feature to extract polyelectrolytes from ∼10 cubic meters of mined martian water by applying a voltage gradient perpendicularly to the water's flow. This gradient diverts polyelectrolytes from the flow toward their respective electrodes (polyanions to the anode, polycations to the cathode), where they are captured in cartridges before they encounter the electrodes. There, they can later be released to analyze their building blocks, for example, by mass spectrometry or nanopore. Upstream, martian cells holding martian informational polyelectrolytes are disrupted by ultrasound. To manage the (unknown) conductivity of the water due to the presence of salts, the mined water is preconditioned by electrodialysis using porous membranes. ALF uses only resources and technology that must already be available for ISRU. Thus, life detection is easily and inexpensively integrated into SpaceX or NASA ISRU missions.
Collapse
Affiliation(s)
- Jan Špaček
- Firebird Biomolecular Sciences, LLC, Alachua, Florida, USA
| | | |
Collapse
|
19
|
Weingarten EA, Zee PC, Jackson CR. Microbial Communities in Saltpan Sediments Show Tolerance to Mars Analog Conditions, but Susceptibility to Chloride and Perchlorate Toxicity. ASTROBIOLOGY 2022; 22:838-850. [PMID: 35731161 PMCID: PMC9464085 DOI: 10.1089/ast.2021.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Brines at or near the surface of present-day Mars are a potential explanation for seasonally recurring dark streaks on the walls of craters, termed recurring slope lineae (RSL). Deliquescence and freezing point depression are possible drivers of brine stability, attributable to the high salinity observed in martian regolith including chlorides and perchlorates. Investigation of life, which may inhabit RSL, and the cellular mechanisms necessary for survival, must consider the tolerance of highly variable hydration, freeze-thaw cycles, and high osmolarity in addition to the anaerobic, oligotrophic, and irradiated environment. We propose the saltpan, an ephemeral, hypersaline wetland as an analogue for putative RSL hydrology. Saltpan sediment archaeal and bacterial communities showed tolerance of the Mars-analogous atmosphere, hydration, minerology, salinity, and temperature. Although active growth and a shift to well-adapted taxa were observed, susceptibility to low-concentration chloride and perchlorate addition suggested that such a composition was insufficient for beneficial water retention relative to added salt stress.
Collapse
Affiliation(s)
- Eric A. Weingarten
- Department of Biology, University of Mississippi, University, Mississippi, USA
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, USA
| | - Peter C. Zee
- Department of Biology, University of Mississippi, University, Mississippi, USA
| | - Colin R. Jackson
- Department of Biology, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
20
|
Seaton KM, Cable ML, Stockton AM. Analytical Chemistry Throughout This Solar System. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:197-219. [PMID: 35300527 DOI: 10.1146/annurev-anchem-061020-125416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the greatest and most long-lived scientific pursuits of humankind has been to discover and study the planetary objects comprising our solar system. Information gained from solar system observations, via both remote sensing and in situ measurements, is inherently constrained by the analytical (often chemical) techniques we employ in these endeavors. The past 50 years of planetary science missions have resulted in immense discoveries within and beyond our solar system, enabled by state-of-the-art analytical chemical instrument suites on board these missions. In this review, we highlight and discuss some of the most impactful analytical chemical instruments flown on planetary science missions within the last 20 years, including analytical techniques ranging from remote spectroscopy to in situ chemical separations. We first highlight mission-based remote and in situ spectroscopic techniques, followed by in situ separation and mass spectrometry analyses. The results of these investigations are discussed, and their implications examined, from worlds as close as Venus and familiar as Mars to as far away and exotic as Titan. Instruments currently in development for planetary science missions in the near future are also discussed, as are the promises their capabilities bring. Analytical chemistry is critical to understanding what lies beyond Earth in our solar system, and this review seeks to highlight how questions, analytical tools, and answers have intersected over the past 20 years and their implications for the near future.
Collapse
Affiliation(s)
- Kenneth Marshall Seaton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA;
| | - Morgan Leigh Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | |
Collapse
|
21
|
Kloprogge JT(T, Hartman H. Clays and the Origin of Life: The Experiments. Life (Basel) 2022; 12:259. [PMID: 35207546 PMCID: PMC8880559 DOI: 10.3390/life12020259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/08/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
There are three groups of scientists dominating the search for the origin of life: the organic chemists (the Soup), the molecular biologists (RNA world), and the inorganic chemists (metabolism and transient-state metal ions), all of which have experimental adjuncts. It is time for Clays and the Origin of Life to have its experimental adjunct. The clay data coming from Mars and carbonaceous chondrites have necessitated a review of the role that clays played in the origin of life on Earth. The data from Mars have suggested that Fe-clays such as nontronite, ferrous saponites, and several other clays were formed on early Mars when it had sufficient water. This raised the question of the possible role that these clays may have played in the origin of life on Mars. This has put clays front and center in the studies on the origin of life not only on Mars but also here on Earth. One of the major questions is: What was the catalytic role of Fe-clays in the origin and development of metabolism here on Earth? First, there is the recent finding of a chiral amino acid (isovaline) that formed on the surface of a clay mineral on several carbonaceous chondrites. This points to the formation of amino acids on the surface of clay minerals on carbonaceous chondrites from simpler molecules, e.g., CO2, NH3, and HCN. Additionally, there is the catalytic role of small organic molecules, such as dicarboxylic acids and amino acids found on carbonaceous chondrites, in the formation of Fe-clays themselves. Amino acids and nucleotides adsorb on clay surfaces on Earth and subsequently polymerize. All of these observations and more must be subjected to strict experimental analysis. This review provides an overview of what has happened and is now happening in the experimental clay world related to the origin of life. The emphasis is on smectite-group clay minerals, such as montmorillonite and nontronite.
Collapse
Affiliation(s)
- Jacob Teunis (Theo) Kloprogge
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemistry, College of Arts and Sciences, University of the Philippines Visayas, Miagao 5023, Philippines
| | - Hyman Hartman
- Department of Earth Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Royle SH, Watson JS, Sephton MA. Transformation of Cyanobacterial Biomolecules by Iron Oxides During Flash Pyrolysis: Implications for Mars Life-Detection Missions. ASTROBIOLOGY 2021; 21:1363-1386. [PMID: 34402652 DOI: 10.1089/ast.2020.2428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Answering the question of whether life ever existed on Mars is a key goal of both NASA's and ESA's imminent Mars rover missions. The obfuscatory effects of oxidizing salts, such as perchlorates and sulfates, on organic matter during thermal decomposition analysis techniques are well established. Less well studied are the transformative effects of iron oxides and (oxy)hydroxides, which are present in great abundances in the martian regolith. We examined the products of flash pyrolysis-gas chromatography-mass spectrometry (a technique analogous to the thermal techniques employed by past, current, and future landed Mars missions) which form when the cyanobacteria Arthrospira platensis are heated in the presence of a variety of Mars-relevant iron-bearing minerals. We found that iron oxides/(oxy)hydroxides have transformative effects on the pyrolytic products of cyanobacterial biomolecules. Both the abundance and variety of molecular species detected were decreased as iron substrates transformed biomolecules, by both oxidative and reductive processes, into lower fidelity alkanes, aromatic and aryl-bonded hydrocarbons. Despite the loss of fidelity, a suite that contains mid-length alkanes and polyaromatic hydrocarbons and/or aryl-bonded molecules in iron-rich samples subjected to pyrolysis may allude to the transformation of cyanobacterially derived mid-long chain length fatty acids (particularly unsaturated fatty acids) originally present in the sample. Hematite was found to be the iron oxide with the lowest transformation potential, and because this iron oxide has a high affinity for codeposition of organic matter and preservation over geological timescales, sampling at Mars should target sediments/strata that have undergone a diagenetic history encouraging the dehydration, dihydroxylation, and oxidation of more reactive iron-bearing phases to hematite by looking for (mineralogical) evidence of the activity of oxidizing, acidic/neutral, and either hot or long-lived fluids.
Collapse
Affiliation(s)
- Samuel H Royle
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Jonathan S Watson
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Mark A Sephton
- Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
A Remote Raman System and Its Applications for Planetary Material Studies. SENSORS 2021; 21:s21216973. [PMID: 34770280 PMCID: PMC8587591 DOI: 10.3390/s21216973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022]
Abstract
A remote Raman prototype with a function of excitation energy adjusting for the purpose of obtaining a Raman signal with good signal-to-noise ratio (SNR), saving power consumption, and possibly avoiding destroying a target by high energy pulses, which may have applications for Chinese planetary explorations, has been setup and demonstrated for detecting different minerals. The system consists of a spectrograph equipped with a thermoelectrically cooled charge-coupled device (CCD) detector, a telescope with 150 mm diameter and 1500 mm focus length, and a compact 1064 nm Nd:YAG Q-switched laser with an electrical adjusted pulse energy from 0 to 200 mJ/pulse. A KTP crystal was used for second harmonic generation in a 1064 nm laser to generate a 532 nm laser, which is the source of Raman scatting. Different laser pulse energies and integration time were used to obtain distinguishable remote Raman spectra of various samples. Results show that observed remote Raman spectra at a distance of 4 m enable us to identify silicates, carbonates, sulfates, perchlorates, water/water ice, and organics that have been found or may exist on extraterrestrial planets. Detailed Raman spectral assignments of the measured planetary materials and the feasible applications of remote Raman system for planetary explorations are discussed.
Collapse
|
24
|
He Y, Buch A, Szopa C, Millan M, Freissinet C, Navarro-Gonzalez R, Guzman M, Johnson S, Glavin D, Williams A, Eigenbrode J, Teinturier S, Malespin C, Coscia D, Bonnet JY, Lu P, Cabane M, Mahaffy P. Influence of Calcium Perchlorate on the Search for Martian Organic Compounds with MTBSTFA/DMF Derivatization. ASTROBIOLOGY 2021; 21:1137-1156. [PMID: 34534003 DOI: 10.1089/ast.2020.2393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA), mixed with the solvent N,N-dimethylformamide (DMF), is used as a derivatizing reagent by the Sample Analysis at Mars (SAM) experiment onboard NASA's Curiosity rover and will soon be utilized by the Mars Organic Molecule Analyzer experiment onboard the ESA/Roscosmos Rosalind Franklin rover. The pyrolysis products of MTBSTFA, DMF, and the MTBSTFA/DMF mixtures, obtained at different temperatures, were analyzed. Two different pyrolysis modes were studied, flash pyrolysis and ramp pyrolysis (35°C/min), to evaluate the potential influence of the sample heating speed on the production of products in space chromatographs. The effect of the presence of calcium perchlorate on the pyrolysis products of MTBSTFA/DMF was also studied to ascertain the potential effect of perchlorate species known to be present at the martian surface. The results show that MTBSTFA/DMF derivatization should be applied below 300°C when using flash pyrolysis, as numerous products of MTBSTFA/DMF were formed at high pyrolysis temperatures. However, when an SAM-like ramp pyrolysis was applied, the final pyrolysis temperature did not appear to influence the degradation products of MTBSTFA/DMF. All products of MTBSTFA/DMF pyrolysis are listed in this article, providing a major database of products for the analysis of martian analog samples, meteorites, and the in situ analysis of martian rocks and soils. In addition, the presence of calcium perchlorate does not show any obvious effects on the pyrolysis of MTBSTFA/DMF: Only chloromethane and TBDMS-Cl (chloro-tertbutyldimethylsilane) were detected, whereas chlorobenzene and other chlorine-bearing compounds were not detected. However, other chlorine-bearing compounds were detected after pyrolysis of the Murchison meteorite in the presence of calcium perchlorate. This result reinforces previous suggestions that chloride-bearing compounds could be reaction products of martian samples and perchlorate.
Collapse
Affiliation(s)
- Yuanyuan He
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, Gif-sur-Yvette, France
| | - Arnaud Buch
- Laboratoire Génie des Procédés et Matériaux, CentraleSupélec, University Paris-Saclay, Gif-sur-Yvette, France
| | - Cyril Szopa
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Maëva Millan
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Caroline Freissinet
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Rafael Navarro-Gonzalez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, Mexico
| | - Melissa Guzman
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Sarah Johnson
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Danny Glavin
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Amy Williams
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
| | - Jennifer Eigenbrode
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Samuel Teinturier
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Charles Malespin
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - David Coscia
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Jean-Yves Bonnet
- Department of Geological Sciences, University of Florida, Gainesville, Florida, USA
- Telespazio France, Toulouse, France
| | - Pin Lu
- LGPM, CentraleSupélec, SFR Condorcet FR CNRS 3417, Université Paris-Saclay, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| | - Michel Cabane
- LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Paul Mahaffy
- Space Science Exploration Division (Code 690), NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
25
|
Harris RL, Schuerger AC, Wang W, Tamama Y, Garvin ZK, Onstott TC. Transcriptional response to prolonged perchlorate exposure in the methanogen Methanosarcina barkeri and implications for Martian habitability. Sci Rep 2021; 11:12336. [PMID: 34117335 PMCID: PMC8196204 DOI: 10.1038/s41598-021-91882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Observations of trace methane (CH4) in the Martian atmosphere are significant to the astrobiology community given the overwhelming contribution of biological methanogenesis to atmospheric CH4 on Earth. Previous studies have shown that methanogenic Archaea can generate CH4 when incubated with perchlorates, highly oxidizing chaotropic salts which have been found across the Martian surface. However, the regulatory mechanisms behind this remain completely unexplored. In this study we performed comparative transcriptomics on the methanogen Methanosarcina barkeri, which was incubated at 30˚C and 0˚C with 10-20 mM calcium-, magnesium-, or sodium perchlorate. Consistent with prior studies, we observed decreased CH4 production and apparent perchlorate reduction, with the latter process proceeding by heretofore essentially unknown mechanisms. Transcriptomic responses of M. barkeri to perchlorates include up-regulation of osmoprotectant transporters and selection against redox-sensitive amino acids. Increased expression of methylamine methanogenesis genes suggest competition for H2 with perchlorate reduction, which we propose is catalyzed by up-regulated molybdenum-containing enzymes and maintained by siphoning diffused H2 from energy-conserving hydrogenases. Methanogenesis regulatory patterns suggest Mars' freezing temperatures alone pose greater constraints to CH4 production than perchlorates. These findings increase our understanding of methanogen survival in extreme environments and confers continued consideration of a potential biological contribution to Martian CH4.
Collapse
Affiliation(s)
- Rachel L Harris
- Department of Geosciences, Princeton University, Princeton, NJ, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Andrew C Schuerger
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Wei Wang
- Lewis-Sigler Institute for Integrative Genomics, Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yuri Tamama
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Zachary K Garvin
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
26
|
Megevand V, Viennet JC, Balan E, Gauthier M, Rosier P, Morand M, Garino Y, Guillaumet M, Pont S, Beyssac O, Bernard S. Impact of UV Radiation on the Raman Signal of Cystine: Implications for the Detection of S-rich Organics on Mars. ASTROBIOLOGY 2021; 21:566-574. [PMID: 33691484 DOI: 10.1089/ast.2020.2340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Traces of life may have been preserved in ancient martian rocks in the form of molecular fossils. Yet the surface of Mars is continuously exposed to intense UV radiation detrimental to the preservation of organics. Because the payload of the next rovers going to Mars to seek traces of life will comprise Raman spectroscopy tools, laboratory simulations that document the effect of UV radiation on the Raman signal of organics appear critically needed. The experiments conducted here evidence that UV radiation is directly responsible for the increase of disorder and for the creation of electronic defects and radicals within the molecular structure of S-rich organics such as cystine, enhancing the contribution of light diffusion processes to the Raman signal. The present results suggest that long exposure to UV radiation would ultimately be responsible for the total degradation of the Raman signal of cystine. Yet because the degradation induced by UV is not instantaneous, it should be possible to detect freshly excavated S-rich organics with the Raman instruments on board the rovers. Alternatively, given the very short lifetime of organic fluorescence (nanoseconds) compared to most mineral luminescence (micro- to milliseconds), exploiting fluorescence signals might allow the detection of S-rich organics on Mars. In any case, as illustrated here, we should not expect to detect pristine S-rich organic compounds on Mars, but rather by-products of their degradation.
Collapse
Affiliation(s)
- V Megevand
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
- Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - J C Viennet
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - E Balan
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - M Gauthier
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - P Rosier
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - M Morand
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - Y Garino
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - M Guillaumet
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - S Pont
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - O Beyssac
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| | - S Bernard
- Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS UMR 7590, Sorbonne Université, Paris, France
| |
Collapse
|
27
|
Razzell Hollis J, Fornaro T, Rapin W, Wade J, Vicente-Retortillo Á, Steele A, Bhartia R, Beegle LW. Detection and Degradation of Adenosine Monophosphate in Perchlorate-Spiked Martian Regolith Analog, by Deep-Ultraviolet Spectroscopy. ASTROBIOLOGY 2021; 21:511-525. [PMID: 33493410 DOI: 10.1089/ast.2020.2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The search for organic biosignatures on Mars will depend on finding material protected from the destructive ambient radiation. Solar ultraviolet can induce photochemical degradation of organic compounds, but certain clays have been shown to preserve organic material. We examine how the SHERLOC instrument on the upcoming Mars 2020 mission will use deep-ultraviolet (UV) (248.6 nm) Raman and fluorescence spectroscopy to detect a plausible biosignature of adenosine 5'-monophosphate (AMP) adsorbed onto Ca-montmorillonite clay. We found that the spectral signature of AMP is not altered by adsorption in the clay matrix but does change with prolonged exposure to the UV laser over dosages equivalent to 0.2-6 sols of ambient martian UV. For pure AMP, UV exposure leads to breaking of the aromatic adenine unit, but in the presence of clay the degradation is limited to minor alteration with new Raman peaks and increased fluorescence consistent with formation of 2-hydroxyadenosine, while 1 wt % Mg perchlorate increases the rate of degradation. Our results confirm that clays are effective preservers of organic material and should be considered high-value targets, but that pristine biosignatures may be altered within 1 sol of martian UV exposure, with implications for Mars 2020 science operations and sample caching.
Collapse
Affiliation(s)
- Joseph Razzell Hollis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Teresa Fornaro
- Carnegie Institution for Science, Washington, District of Columbia, USA
- INAF-Astrophysical Observatory of Arcetri, Florence, Italy
| | - William Rapin
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Sorbonne Université, IMPMC, CNRS, Paris, France
| | - Jessica Wade
- Department of Physics, Imperial College London, London, United Kingdom
| | - Álvaro Vicente-Retortillo
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Andrew Steele
- Carnegie Institution for Science, Washington, District of Columbia, USA
| | | | - Luther W Beegle
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
28
|
Abrahamsson V, Henderson BL, Herman J, Zhong F, Lin Y, Kanik I, Nixon CA. Extraction and Separation of Chiral Amino Acids for Life Detection on Ocean Worlds Without Using Organic Solvents or Derivatization. ASTROBIOLOGY 2021; 21:575-586. [PMID: 33533680 DOI: 10.1089/ast.2020.2298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In situ instrumentation that can detect amino acids at parts-per-billion concentration levels and distinguish an enantiomeric excess of either d- or l-amino acids is vital for future robotic life-detection missions to promising targets in our solar system. In this article, a novel chiral amino acid analysis method is described, which reduces the risk of organic contamination and spurious signals from by-products by avoiding organic solvents and organic additives. Online solid-phase extraction, chiral liquid chromatography, and mass spectrometry were used for automated analysis of amino acids from solid and aqueous environmental samples. Carbonated water (pH ∼3, ∼5 wt % CO2 achieved at 6 MPa) was used as the extraction solvent for solid samples at 150°C and as the mobile phase at ambient temperature for chiral chromatographic separation. Of 18 enantiomeric amino acids, 5 enantiomeric pairs were separated with a chromatographic resolution >1.5 and 12 pairs with a resolution >0.7. The median lower limit of detection of amino acids was 2.5 μg/L, with the lowest experimentally verified as low as 0.25 μg/L. Samples from a geyser site (Great Fountain Geyser) and a geothermal spring site (Lemon Spring) in Yellowstone National Park were analyzed to demonstrate the viability of the method for future in situ missions to Ocean Worlds.
Collapse
Affiliation(s)
- Victor Abrahamsson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Bryana L Henderson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Julia Herman
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| | - Fang Zhong
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Ying Lin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Isik Kanik
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Icy Worlds, NASA Astrobiology Institute, Pasadena, California, USA
| | - Conor A Nixon
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
29
|
A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars. MINERALS 2021. [DOI: 10.3390/min11050475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover has detected evidence of oxychlorine compounds (i.e., perchlorates and chlorates) in Gale crater, which has implications for past habitability, diagenesis, aqueous processes, interpretation of in situ organic analyses, understanding the martian chlorine cycle, and hazards and resources for future human exploration. Pure oxychlorines and mixtures of oxychlorines with Mars-analog phases have been analyzed for their oxygen (O2) and hydrogen chloride (HCl) releases on SAM laboratory analog instruments in order to constrain which phases are present in Gale crater. These studies demonstrated that oxychlorines evolve O2 releases with peaks between ~200 and 600 °C, although the thermal decomposition temperatures and the amount of evolved O2 decrease when iron phases are present in the sample. Mg and Fe oxychlorines decompose into oxides and release HCl between ~200 and 542 °C. Ca, Na, and K oxychlorines thermally decompose into chlorides and do not evolve HCl by themselves. However, the chlorides (original or from oxychlorine decomposition) can react with water-evolving phases (e.g., phyllosilicates) in the sample and evolve HCl within the temperature range of SAM (<~870 °C). These laboratory analog studies support that the SAM detection of oxychlorine phases is consistent with the presence of Mg, Ca, Na, and K perchlorate and/or chlorate along with possible contributions from adsorbed oxychlorines in Gale crater samples.
Collapse
|
30
|
Seaton KM, Cable ML, Stockton AM. Analytical Chemistry in Astrobiology. Anal Chem 2021; 93:5981-5997. [PMID: 33835785 DOI: 10.1021/acs.analchem.0c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This Feature introduces and discusses the findings of key analytical techniques used to study planetary bodies in our solar system in the search for life beyond Earth, future missions planned for high-priority astrobiology targets in our solar system, and the challenges we face in performing these investigations.
Collapse
Affiliation(s)
- Kenneth Marshall Seaton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| | - Morgan Leigh Cable
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, United States
| | - Amanda Michelle Stockton
- School of Chemistry & Biochemistry, Georgia Institute of Technology, North Avenue NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
31
|
Rojas Vivas JA, Navarro-González R, de la Rosa J, Molina P, Sedov S, McKay CP. Radiolytic Degradation of Soil Carbon from the Mojave Desert by 60Co Gamma Rays: Implications for the Survival of Martian Organic Compounds Due to Cosmic Radiation. ASTROBIOLOGY 2021; 21:381-393. [PMID: 33351679 DOI: 10.1089/ast.2020.2257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The martian surface has been continuously exposed to galactic cosmic radiation. Since organic compounds are degraded by ionizing radiation, knowledge of their decay constants is fundamental to predicting their stability on the martian surface. In this study, we report the radiolysis constant for the destruction of soil organic compounds at a starting concentration of ∼2011 μg C/gsoil from the Mojave Desert. The soils were exposed to gamma irradiation with absorbed doses of up to 19 MGy at room temperature, representing ∼250 million years of exposure to galactic cosmic rays. The destruction of total soil organic carbon and the formation of gases were investigated by a sequential on-line analytical array coupled to gas chromatography-mass spectrometry. Soil inorganic and organic carbon were degraded exponentially with a radiolysis constant 0.3 MGy-1(30%) producing mostly carbon dioxide (93.2%), carbon monoxide (6.2%), and methane (0.6%). Using the dose rate measured by the Radiation Assessment Detector on board the Curiosity rover, we make predictions on the survival of organic compounds in the cold martian subsurface. It is estimated that soil organic compounds with initial concentrations as those found today at the Mojave Desert would have been destroyed to levels <1 ppb at 0.1 m in depth in ∼2000 Myr. Pristine organic compounds are expected to be present at a depth of ∼1.5 m. These results are relevant for the search of organic compounds in past, present, and future missions to Mars. In particular, we predict that the upcoming ExoMars will encounter pristine organic compounds at this depth.
Collapse
Affiliation(s)
- José Alfredo Rojas Vivas
- Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Circuito de la investigación S/N, Ciudad Universitaria, Ciudad de México, Mexico
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de México, Mexico
| | - Rafael Navarro-González
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de México, Mexico
| | - José de la Rosa
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de México, Mexico
| | - Paola Molina
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de México, Mexico
| | - Sergey Sedov
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la investigación S/N, Ciudad Universitaria, Ciudad de México, Mexico
| | | |
Collapse
|
32
|
Rizzo V, Armstrong R, Hua H, Cantasano N, Nicolò T, Bianciardi G. Life on Mars: Clues, Evidence or Proof? SOLAR PLANETS AND EXOPLANETS [WORKING TITLE] 2021. [DOI: 10.5772/intechopen.95531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The search for life on Mars is one of the main objectives of space missions. At “Pahrump Hills Field Site” (Gale Crater, Mojave target), inside the mudstones of the Murray lacustrine sequence, Curiosity rover found organic materials and lozenge shaped laths considered by NASA as pseudomorphic crystals. Besides it detected mineral assemblages suggesting both oxidizing (hematite) and reducing (magnetite) environments, as well as acidic (diagenetic and/or authigenic jarosite) and neutral (apatite) conditions, that might suggest bacterially mediated reactions. Our morphological and morphometrical investigations show that such diagenetic microstructures are unlikely to be lozenge shapes and, in addition to several converging features, they suggest the presence of remnants of complex algal-like biota, similar to terrestrial procaryotes and/or eukaryotes; possible microorganisms that, on the base of absolute dating criteria used by other scholars, lived on Mars about 2.12 +/−0.36 Ga ago.
Collapse
|
33
|
Broz AP. Organic Matter Preservation in Ancient Soils of Earth and Mars. Life (Basel) 2020; 10:E113. [PMID: 32708606 PMCID: PMC7400377 DOI: 10.3390/life10070113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/28/2020] [Accepted: 07/11/2020] [Indexed: 11/21/2022] Open
Abstract
The emerging field of astropedology is the study of ancient soils on Earth and other planetary bodies. Examination of the complex factors that control the preservation of organic matter and other biosignatures in ancient soils is a high priority for current and future missions to Mars. Though previously defined by biological activity, an updated definition of soil as planetary surfaces altered in place by biological, chemical or physical processes was adopted in 2017 by the Soil Science Society of America in response to mounting evidence of pedogenic-like features on Mars. Ancient (4.1-3.7 billion year old [Byr]) phyllosilicate-rich surface environments on Mars show evidence of sustained subaerial weathering of sediments with liquid water at circumneutral pH, which is a soil-forming process. The accumulation of buried, fossilized soils, or paleosols, has been widely observed on Earth, and recent investigations suggest paleosol-like features may be widespread across the surface of Mars. However, the complex array of preservation and degradation factors controlling the fate of biosignatures in paleosols remains unexplored. This paper identifies the dominant factors contributing to the preservation and degradation of organic carbon in paleosols through the geological record on Earth, and offers suggestions for prioritizing locations for in situ biosignature detection and Mars Sample Return across a diverse array of potential paleosols and paleoenvironments of early Mars. A compilation of previously published data and original research spanning a diverse suite of paleosols from the Pleistocene (1 Myr) to the Archean (3.7 Byr) show that redox state is the predominant control for the organic matter content of paleosols. Most notably, the chemically reduced surface horizons (layers) of Archean (2.3 Byr) paleosols have organic matter concentrations ranging from 0.014-0.25%. However, clay mineralogy, amorphous phase abundance, diagenetic alteration and sulfur content are all significant factors that influence the preservation of organic carbon. The surface layers of paleosols that formed under chemically reducing conditions with high amounts of iron/magnesium smectites and amorphous colloids should be considered high priority locations for biosignature investigation within subaerial paleoenvironments on Mars.
Collapse
Affiliation(s)
- Adrian P Broz
- Department of Earth Sciences, University of Oregon, Eugene, OR 97405, USA
| |
Collapse
|
34
|
Caporale AG, Vingiani S, Palladino M, El-Nakhel C, Duri LG, Pannico A, Rouphael Y, De Pascale S, Adamo P. Geo-mineralogical characterisation of Mars simulant MMS-1 and appraisal of substrate physico-chemical properties and crop performance obtained with variable green compost amendment rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137543. [PMID: 32135285 DOI: 10.1016/j.scitotenv.2020.137543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
The configuration of a biologically fertile substrate for edible plant growth during long-term manned missions to Mars constitutes one of the main challenges in space research. Mars regolith amendment with compost derived from crew and crop waste in bioregenerative life support systems (BLSS) may generate a substrate able to extend crew autonomy and long-term survival in space. In this context, the aim of our work was threefold: first, to study the geochemistry and mineralogy of Mojave Mars Simulant (MMS-1) and the physico-chemical and hydraulic properties of mixtures obtained by mixing MMS-1 and green compost at varying rates (0:100, 30:70, 70:30, 100:0; v:v); secondly, to evaluate the potential use of MMS-1 as a growing medium of two lettuce (Lactuca sativa L.) cultivars; thirdly, to assess how compost addition may impact on sustainability of space agriculture by exploiting in situ resources. MMS-1 is a coarse-textured alkaline substrate consisting mostly of plagioclase, amorphous material and secondarily of zeolite, hematite and smectites. Although it can be a source of nutrients, it lacks organic matter, nitrogen, phosphorus and sulphur, which may be supplied by compost. Both cultivars grew well on all mixtures for 19 days under fertigation. Red Salanova lettuce produced a statistically higher dry biomass, leaf number and area than Green Salanova. Leaf area and plant dry biomass were the highest on 30:70 simulant:compost mixture. Nevertheless, the 70:30 mixture was the best substrate in terms of pore-size distribution for water-plant relationship and the best compromise for plant growth and sustainable use of compost, a limited resource in BLSS. Many remaining issues warrant further investigation concerning the dynamics of compost production, standardisation of supply during space missions and representativeness of simulants to real Mars regolith.
Collapse
Affiliation(s)
- Antonio G Caporale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Simona Vingiani
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; Interdepartmental Research Centre on the 'Earth Critical Zone' for Supporting the Landscape and Agroenvironment Management (CRISP), University of Naples Federico II, Portici, Italy.
| | - Mario Palladino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi G Duri
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Paola Adamo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy; Interdepartmental Research Centre on the 'Earth Critical Zone' for Supporting the Landscape and Agroenvironment Management (CRISP), University of Naples Federico II, Portici, Italy
| |
Collapse
|
35
|
Abstract
Life emerged on Earth within the first quintile of its habitable window, but a technological civilization did not blossom until its last. Efforts to infer the rate of abiogenesis, based on its early emergence, are frustrated by the selection effect that if the evolution of intelligence is a slow process, then life's early start may simply be a prerequisite to our existence, rather than useful evidence for optimism. In this work, we interpret the chronology of these two events in a Bayesian framework, extending upon previous work by considering that the evolutionary timescale is itself an unknown that needs to be jointly inferred, rather than fiducially set. We further adopt an objective Bayesian approach, such that our results would be agreed upon even by those using wildly different priors for the rates of abiogenesis and evolution-common points of contention for this problem. It is then shown that the earliest microfossil evidence for life indicates that the rate of abiogenesis is at least 2.8 times more likely to be a typically rapid process, rather than a slow one. This modest limiting Bayes factor rises to 8.7 if we accept the more disputed evidence of 13C-depleted zircon deposits [E. A. Bell, P. Boehnke, T. M. Harrison, W. L. Mao, Proc. Natl. Acad. Sci. U.S.A. 112, 14518-14521 (2015)]. For intelligence evolution, it is found that a rare-intelligence scenario is slightly favored at 3:2 betting odds. Thus, if we reran Earth's clock, one should statistically favor life to frequently reemerge, but intelligence may not be as inevitable.
Collapse
|
36
|
Carrier B, Beaty D, Meyer M, Blank J, Chou L, DasSarma S, Des Marais D, Eigenbrode J, Grefenstette N, Lanza N, Schuerger A, Schwendner P, Smith H, Stoker C, Tarnas J, Webster K, Bakermans C, Baxter B, Bell M, Benner S, Bolivar Torres H, Boston P, Bruner R, Clark B, DasSarma P, Engelhart A, Gallegos Z, Garvin Z, Gasda P, Green J, Harris R, Hoffman M, Kieft T, Koeppel A, Lee P, Li X, Lynch K, Mackelprang R, Mahaffy P, Matthies L, Nellessen M, Newsom H, Northup D, O'Connor B, Perl S, Quinn R, Rowe L, Sauterey B, Schneegurt M, Schulze-Makuch D, Scuderi L, Spilde M, Stamenković V, Torres Celis J, Viola D, Wade B, Walker C, Wiens R, Williams A, Williams J, Xu J. Mars Extant Life: What's Next? Conference Report. ASTROBIOLOGY 2020; 20:785-814. [PMID: 32466662 PMCID: PMC7307687 DOI: 10.1089/ast.2020.2237] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/24/2020] [Indexed: 05/19/2023]
Abstract
On November 5-8, 2019, the "Mars Extant Life: What's Next?" conference was convened in Carlsbad, New Mexico. The conference gathered a community of actively publishing experts in disciplines related to habitability and astrobiology. Primary conclusions are as follows: A significant subset of conference attendees concluded that there is a realistic possibility that Mars hosts indigenous microbial life. A powerful theme that permeated the conference is that the key to the search for martian extant life lies in identifying and exploring refugia ("oases"), where conditions are either permanently or episodically significantly more hospitable than average. Based on our existing knowledge of Mars, conference participants highlighted four potential martian refugium (not listed in priority order): Caves, Deep Subsurface, Ices, and Salts. The conference group did not attempt to reach a consensus prioritization of these candidate environments, but instead felt that a defensible prioritization would require a future competitive process. Within the context of these candidate environments, we identified a variety of geological search strategies that could narrow the search space. Additionally, we summarized a number of measurement techniques that could be used to detect evidence of extant life (if present). Again, it was not within the scope of the conference to prioritize these measurement techniques-that is best left for the competitive process. We specifically note that the number and sensitivity of detection methods that could be implemented if samples were returned to Earth greatly exceed the methodologies that could be used at Mars. Finally, important lessons to guide extant life search processes can be derived both from experiments carried out in terrestrial laboratories and analog field sites and from theoretical modeling.
Collapse
Affiliation(s)
- B.L. Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - D.W. Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - J.G. Blank
- NASA Ames Research Center, Moffett Field, California, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - L. Chou
- Georgetown University, Washington, DC, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - S. DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - N.L. Lanza
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - A.C. Schuerger
- University of Florida/Space Life Sciences Laboratory, Kennedy Space Center, Florida, USA
| | - P. Schwendner
- University of Florida/Space Life Sciences Laboratory, Kennedy Space Center, Florida, USA
| | - H.D. Smith
- NASA Ames Research Center, Moffett Field, California, USA
| | - C.R. Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | - J.D. Tarnas
- Brown University, Providence, Rhode Island, USA
| | - K.D. Webster
- Planetary Science Institute, Tucson, Arizona, USA
| | - C. Bakermans
- Pennsylvania State University, Altoona, Pennsylvania, USA
| | - B.K. Baxter
- Westminster College, Salt Lake City, Utah, USA
| | - M.S. Bell
- NASA Johnson Space Center, Houston, Texas, USA
| | - S.A. Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
| | - H.H. Bolivar Torres
- Universidad Nacional Autonoma de Mexico, Coyoacan, Distrito Federal Mexico, Mexico
| | - P.J. Boston
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, California, USA
| | - R. Bruner
- Denver Museum of Nature and Science, Denver, Colorado, USA
| | - B.C. Clark
- Space Science Institute, Littleton, Colorado, USA
| | - P. DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Z.E. Gallegos
- University of New Mexico, Albuquerque, New Mexico, USA
| | - Z.K. Garvin
- Princeton University, Princeton, New Jersey, USA
| | - P.J. Gasda
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - J.H. Green
- Texas Tech University, Lubbock, Texas, USA
| | - R.L. Harris
- Princeton University, Princeton, New Jersey, USA
| | - M.E. Hoffman
- University of New Mexico, Albuquerque, New Mexico, USA
| | - T. Kieft
- New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | | | - P.A. Lee
- College of Charleston, Charleston, South Carolina, USA
| | - X. Li
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - K.L. Lynch
- Lunar and Planetary Institute/USRA, Houston, Texas, USA
| | - R. Mackelprang
- California State University Northridge, Northridge, California, USA
| | - P.R. Mahaffy
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - L.H. Matthies
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - H.E. Newsom
- University of New Mexico, Albuquerque, New Mexico, USA
| | - D.E. Northup
- University of New Mexico, Albuquerque, New Mexico, USA
| | | | - S.M. Perl
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - R.C. Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - L.A. Rowe
- Valparaiso University, Valparaiso, Indiana, USA
| | | | | | | | - L.A. Scuderi
- University of New Mexico, Albuquerque, New Mexico, USA
| | - M.N. Spilde
- University of New Mexico, Albuquerque, New Mexico, USA
| | - V. Stamenković
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J.A. Torres Celis
- Universidad Nacional Autonoma de Mexico, Coyoacan, Distrito Federal Mexico, Mexico
| | - D. Viola
- NASA Ames Research Center, Moffett Field, California, USA
| | - B.D. Wade
- Michigan State University, East Lansing, Michigan, USA
| | - C.J. Walker
- Delaware State University, Dover, Delaware, USA
| | - R.C. Wiens
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - J.M. Williams
- University of New Mexico, Albuquerque, New Mexico, USA
| | - J. Xu
- University of Texas, El Paso, Texas, USA
| |
Collapse
|
37
|
Abstract
The Curiosity rover is unveiling the persistence of habitable environments more than three-billion years ago at Gale crater, Mars. New analyses of Gale's ancient sediments show that chemical processing of organic material occurred on a liquid-water rich and freezing early Mars.
Collapse
Affiliation(s)
- Alberto G Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, USA
| |
Collapse
|
38
|
Koike M, Nakada R, Kajitani I, Usui T, Tamenori Y, Sugahara H, Kobayashi A. In-situ preservation of nitrogen-bearing organics in Noachian Martian carbonates. Nat Commun 2020; 11:1988. [PMID: 32332762 PMCID: PMC7181736 DOI: 10.1038/s41467-020-15931-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/03/2020] [Indexed: 11/09/2022] Open
Abstract
Understanding the origin of organic material on Mars is a major issue in modern planetary science. Recent robotic exploration of Martian sedimentary rocks and laboratory analyses of Martian meteorites have both reported plausible indigenous organic components. However, little is known about their origin, evolution, and preservation. Here we report that 4-billion-year-old (Ga) carbonates in Martian meteorite, Allan Hills 84001, preserve indigenous nitrogen(N)-bearing organics by developing a new technique for high-spatial resolution in situ N-chemical speciation. The organic materials were synthesized locally and/or delivered meteoritically on Mars during Noachian age. The carbonates, alteration minerals from the Martian near-surface aqueous fluid, trapped and kept the organic materials intact over long geological times. This presence of N-bearing compounds requires abiotic or possibly biotic N-fixation and ammonia storage, suggesting that early Mars had a less oxidizing environment than today.
Collapse
Affiliation(s)
- Mizuho Koike
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan.
| | - Ryoichi Nakada
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 200 Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Iori Kajitani
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiro Usui
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
| | - Yusuke Tamenori
- Spectroscopy and Imaging Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Haruna Sugahara
- Department of Solar System Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
| | - Atsuko Kobayashi
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
39
|
Abstract
The question whether organic compounds occur on Mars remained unanswered for decades. However, the recent discovery of various classes of organic matter in martian sediments by the Curiosity rover seems to strongly suggest that indigenous organic compounds exist on Mars. One intriguing group of detected organic compounds were thiophenes, which typically occur on Earth in kerogen, coal, and crude oil as well as in stromatolites and microfossils. Here we provide a brief synopsis of conceivable pathways for the generation and degradation of thiophenes on Mars. We show that the origin of thiophene derivatives can either be biotic or abiotic, for example, through sulfur incorporation in organic matter during early diagenesis. The potential of thiophenes to represent martian biomarkers is discussed as well as a correlation between abundances of thiophenes and sulfate-bearing minerals. Finally, this study provides suggestions for future investigations on Mars and in Earth-based laboratories to answer the question whether the martian thiophenes are of biological origin.
Collapse
Affiliation(s)
- Jacob Heinz
- Center for Astronomy and Astrophysics (ZAA), Astrobiology Research Group, Technische Universität Berlin, Berlin, Germany
| | - Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics (ZAA), Astrobiology Research Group, Technische Universität Berlin, Berlin, Germany
- German Research Centre for Geosciences (GFZ), Section Geomicrobiology, Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
- School of the Environment, Washington State University, Pullman, WA, USA
| |
Collapse
|
40
|
Szopa C, Freissinet C, Glavin DP, Millan M, Buch A, Franz HB, Summons RE, Sumner DY, Sutter B, Eigenbrode JL, Williams RH, Navarro-González R, Guzman M, Malespin C, Teinturier S, Mahaffy PR, Cabane M. First Detections of Dichlorobenzene Isomers and Trichloromethylpropane from Organic Matter Indigenous to Mars Mudstone in Gale Crater, Mars: Results from the Sample Analysis at Mars Instrument Onboard the Curiosity Rover. ASTROBIOLOGY 2020; 20:292-306. [PMID: 31880468 DOI: 10.1089/ast.2018.1908] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chromatographic analysis of the Cumberland mudstone in Gale crater by the Sample Analysis at Mars (SAM) instrument revealed the detection of two to three isomers of dichlorobenzene. Their individual concentrations were estimated to be in the 0.5-17 ppbw range relative to the sample mass. We also report the first detection of trichloromethylpropane and the confirmation of the detection of chlorobenzene previously reported. Supporting laboratory experiments excluded the SAM internal background as the source of those compounds, thus confirming the organic carbon and chlorine of the newly detected chlorohydrocarbons are indigenous to the mudstone sample. Laboratory experiments also demonstrated that the chlorohydrocarbons were mainly produced from chemical reactions occurring in the SAM ovens between organic molecules and oxychlorines contained in the sample. The results we obtained show that meteoritic organics and tested chemical species (a polycyclic aromatic hydrocarbon, an amino acid, and a carboxylic acid) were plausible organic precursors of the chlorinated aromatic molecules detected with SAM, thus suggesting that they could be among the organic molecules present in the mudstone. Results from this study coupled with previously reported detections of chlorinated aromatics (<300 ppbw) indigenous to the same mudstone highlight that organics can be preserved from the harsh surface conditions even at shallow depth. The detection of new chlorohydrocarbons with SAM confirms that organic molecules should have been available in an environment favorable to life forms, strengthening the habitability aspect of Gale crater.
Collapse
Affiliation(s)
- Cyril Szopa
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
- Institut Universitaire de France, Paris, France
| | - Caroline Freissinet
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
| | - Daniel P Glavin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Maeva Millan
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
- Department of Biology, Georgetown University, Washington, District of Columbia
| | - Arnaud Buch
- Laboratoire de Génie des Procédés et Matériaux (LGPM), EA 4038, Centrale-Supelec, Rue Joliot Curie, Gif-sur-Yvette, France
| | - Heather B Franz
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Dawn Y Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, California
| | - Brad Sutter
- Jacobs Technology, Inc., Johnson Space Center, National Aeronautics and Space Administration, Houston, Texas
| | - Jennifer L Eigenbrode
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Ross H Williams
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
- Department of Astronomy and CRESST II, University of Maryland, College Park, Maryland
| | - Rafael Navarro-González
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Distrito Federal, México
| | - Melissa Guzman
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
| | - Charles Malespin
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Samuel Teinturier
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
- Universities Space Research Association, Goddard Earth Sciences Technology and Research Studies and Investigations, Greenbelt, Maryland
| | - Paul R Mahaffy
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland
| | - Michel Cabane
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06, CNRS, Guyancourt, France
| |
Collapse
|
41
|
Arevalo R, Ni Z, Danell RM. Mass spectrometry and planetary exploration: A brief review and future projection. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4454. [PMID: 31663201 PMCID: PMC7050511 DOI: 10.1002/jms.4454] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 05/11/2023]
Abstract
Since the inception of mass spectrometry more than a century ago, the field has matured as analytical capabilities have progressed, instrument configurations multiplied, and applications proliferated. Modern systems are able to characterize volatile and nonvolatile sample materials, quantitatively measure abundances of molecular and elemental species with low limits of detection, and determine isotopic compositions with high degrees of precision and accuracy. Consequently, mass spectrometers have a rich history and promising future in planetary exploration. Here, we provide a short review on the development of mass analyzers and supporting subsystems (eg, ionization sources and detector assemblies) that have significant heritage in spaceflight applications, and we introduce a selection of emerging technologies that may enable new and/or augmented mission concepts in the coming decades.
Collapse
Affiliation(s)
- Ricardo Arevalo
- Department of GeologyUniversity of MarylandCollege ParkMaryland
| | - Ziqin Ni
- Department of GeologyUniversity of MarylandCollege ParkMaryland
| | | |
Collapse
|
42
|
Veneranda M, Manrique-Martinez JA, Lopez-Reyes G, Medina J, Torre-Fdez I, Castro K, Madariaga JM, Lantz C, Poulet F, Krzesińska AM, Hellevang H, Werner SC, Rull F. Spectroscopic study of olivine-bearing rocks and its relevance to the ExoMars rover mission. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117360. [PMID: 31319272 DOI: 10.1016/j.saa.2019.117360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
We present the compositional analysis of three terrestrial analogues of Martian olivine-bearing rocks derived from both laboratory and flight-derived analytical instruments. In the first step, state-of-the-art spectroscopic (XRF, NIR and Raman) and diffractometric (XRD) laboratory systems were complementary used. Besides providing a detailed mineralogical and geochemical characterization of the samples, results comparison shed light on the advantages ensured by the combined use of Raman and NIR techniques, being these the spectroscopic instruments that will soon deploy (2021) on Mars as part of the ExoMars/ESA rover payload. In order to extrapolate valuable indicators of the mineralogical data that could derive from the ExoMars/Raman Laser Spectrometer (RLS), laboratory results were then compared with the molecular data gathered through the RLS ExoMars Simulator. Beside correctly identifying all major phases (feldspar, pyroxene and olivine), the RLS ExoMars Simulator confirmed the presence of additional minor compounds (i.e. hematite and apatite) that were not detected by complementary techniques. Furthermore, concerning the in-depth study of olivine grains, the RLS ExoMars simulator was able to effectively detect the shifting of the characteristic double peak around 820 and 850 cm-1, from which the FeMg content of the analyzed crystals can be extrapolated. Considering that olivine is one of the main mineral phases of the ExoMars landing site (Oxia Planum), this study suggests that the ExoMars/RLS system has the potential to provide detailed information about the elemental composition of olivine on Mars.
Collapse
Affiliation(s)
- Marco Veneranda
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain.
| | - Jose Antonio Manrique-Martinez
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain
| | - Guillermo Lopez-Reyes
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain
| | - Jesús Medina
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain
| | - Imanol Torre-Fdez
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Kepa Castro
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Cateline Lantz
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, France
| | - Francois Poulet
- Institut d'Astrophysique Spatiale, CNRS/Université Paris-Sud, France
| | - Agata M Krzesińska
- Department of Geosciences, Centre for Earth Evolution and Dynamics, University of Oslo, Norway
| | - Helge Hellevang
- Department of Geosciences, Centre for Earth Evolution and Dynamics, University of Oslo, Norway
| | - Stephanie C Werner
- Department of Geosciences, Centre for Earth Evolution and Dynamics, University of Oslo, Norway
| | - Fernando Rull
- Department of Condensed Matter Physics, Crystallography and Mineralogy, University of Valladolid, Ave. Francisco Vallés, 8, Boecillo 47151, Spain
| |
Collapse
|
43
|
Abrahamsson V, Henderson BL, Zhong F, Lin Y, Kanik I. Online supercritical fluid extraction and chromatography of biomarkers analysis in aqueous samples for in situ planetary applications. Anal Bioanal Chem 2019; 411:8091-8101. [DOI: 10.1007/s00216-019-02189-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
|
44
|
Mißbach H, Steininger H, Thiel V, Goetz W. Investigating the Effect of Perchlorate on Flight-like Gas Chromatography-Mass Spectrometry as Performed by MOMA on board the ExoMars 2020 Rover. ASTROBIOLOGY 2019; 19:1339-1352. [PMID: 31532228 DOI: 10.1089/ast.2018.1997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Mars Organic Molecule Analyzer (MOMA) instrument on board ESA's ExoMars 2020 rover will be essential in the search for organic matter. MOMA applies gas chromatography-mass spectrometry (GC-MS) techniques that rely on thermal volatilization. Problematically, perchlorates and chlorates in martian soils and rocks become highly reactive during heating (>200°C) and can lead to oxidation and chlorination of organic compounds, potentially rendering them unidentifiable. Here, we analyzed a synthetic sample (alkanols and alkanoic acids on silica gel) and a Silurian chert with and without Mg-perchlorate to evaluate the applicability of MOMA-like GC-MS techniques to different sample types and assess the impact of perchlorate. We used a MOMA flight analog system coupled to a commercial GC-MS to perform MOMA-like pyrolysis, in situ derivatization, and in situ thermochemolysis. We show that pyrolysis can provide a sufficient overview of the organic inventory but is strongly affected by the presence of perchlorates. In situ derivatization facilitates the identification of functionalized organics but showed low efficiency for n-alkanoic acids. Thermochemolysis is shown to be an effective technique for the identification of both refractory and functional compounds. Most importantly, this technique was barely affected by perchlorates. Therefore, MOMA GC-MS analyses of martian surface/subsurface material may be less affected by perchlorates than commonly thought, in particular when applying the full range of available MOMA GC-MS techniques.
Collapse
Affiliation(s)
- Helge Mißbach
- Geobiology, Geoscience Centre, University of Goettingen, Goettingen, Germany
- Max Planck Institute for Solar System Research, Goettingen, Germany
| | - Harald Steininger
- Max Planck Institute for Solar System Research, Goettingen, Germany
- OHB System AG, Weßling-Oberpfaffenhofen, Germany
| | - Volker Thiel
- Geobiology, Geoscience Centre, University of Goettingen, Goettingen, Germany
| | - Walter Goetz
- Max Planck Institute for Solar System Research, Goettingen, Germany
| |
Collapse
|
45
|
Georgiou CD, McKay CP, Quinn RC, Kalaitzopoulou E, Papadea P, Skipitari M. The Oxygen Release Instrument: Space Mission Reactive Oxygen Species Measurements for Habitability Characterization, Biosignature Preservation Potential Assessment, and Evaluation of Human Health Hazards. Life (Basel) 2019; 9:E70. [PMID: 31461989 PMCID: PMC6789740 DOI: 10.3390/life9030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 11/17/2022] Open
Abstract
We describe the design of an instrument, the OxR (for Oxygen Release), for the enzymatically specific and non-enzymatic detection and quantification of the reactive oxidant species (ROS), superoxide radicals (O2•-), and peroxides (O22-, e.g., H2O2) on the surface of Mars and Moon. The OxR instrument is designed to characterize planetary habitability, evaluate human health hazards, and identify sites with high biosignature preservation potential. The instrument can also be used for missions to the icy satellites of Saturn's Titan and Enceladus, and Jupiter's Europa. The principle of the OxR instrument is based on the conversion of (i) O2•- to O2 via its enzymatic dismutation (which also releases H2O2), and of (ii) H2O2 (free or released by the hydrolysis of peroxides and by the dismutation of O2•-) to O2 via enzymatic decomposition. At stages i and ii, released O2 is quantitatively detected by an O2 sensor and stoichiometrically converted to moles of O2•- and H2O2. A non-enzymatic alternative approach is also designed. These methods serve as the design basis for the construction of a new small-footprint instrument for specific oxidant detection. The minimum detection limit of the OxR instrument for O2•- and O22- in Mars, Lunar, and Titan regolith, and in Europa and Enceladus ice is projected to be 10 ppb. The methodology of the OxR instrument can be rapidly advanced to flight readiness by leveraging the Phoenix Wet Chemical Laboratory, or microfluidic sample processing technologies.
Collapse
Affiliation(s)
| | | | - Richard C Quinn
- SETI Institute, Carl Sagan Center, Mountain View, CA 94043, USA
| | | | | | | |
Collapse
|
46
|
Habitability of Mars: How Welcoming Are the Surface and Subsurface to Life on the Red Planet? GEOSCIENCES 2019. [DOI: 10.3390/geosciences9090361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mars is a planet of great interest in the search for signatures of past or present life beyond Earth. The years of research, and more advanced instrumentation, have yielded a lot of evidence which may be considered by the scientific community as proof of past or present habitability of Mars. Recent discoveries including seasonal methane releases and a subglacial lake are exciting, yet challenging findings. Concurrently, laboratory and environmental studies on the limits of microbial life in extreme environments on Earth broaden our knowledge of the possibility of Mars habitability. In this review, we aim to: (1) Discuss the characteristics of the Martian surface and subsurface that may be conducive to habitability either in the past or at present; (2) discuss laboratory-based studies on Earth that provide us with discoveries on the limits of life; and (3) summarize the current state of knowledge in terms of direction for future research.
Collapse
|
47
|
Performance of the SAM gas chromatographic columns under simulated flight operating conditions for the analysis of chlorohydrocarbons on Mars. J Chromatogr A 2019; 1598:183-195. [DOI: 10.1016/j.chroma.2019.03.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 11/21/2022]
|
48
|
Martínez-Pabello PU, Navarro-González R, Walls X, Pi-Puig T, González-Chávez JL, de la Rosa JG, Molina P, Zamora O. Production of nitrates and perchlorates by laser ablation of sodium chloride in simulated Martian atmospheres. Implications for their formation by electric discharges in dust devils. LIFE SCIENCES IN SPACE RESEARCH 2019; 22:125-136. [PMID: 31421844 DOI: 10.1016/j.lssr.2019.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 06/10/2023]
Abstract
Nitrates and perchlorates are present both on Earth and Mars. In the Martian environment perchlorates dominate over nitrates whereas on Earth is contrariwise. This implies that the mechanisms responsible for their formation are different for both planets. The chemical elements required for their formation are nitrogen and chlorine, which are present in the atmosphere and surface, respectively. Dust in the Martian atmosphere causes atmospheric perturbations that lead to the development of dust-devils and sandstorms. Dust devils contain both chemical elements simultaneously, and normally generate high electric fields that can trigger the formation of electric discharges. Here we present laboratory experiments of this phenomenon using laser ablation of a sodium chloride (NaCl) plate in two different simulated atmospheres: (1) 96% CO2, 2% N2 and 2% Ar; and (2) 66% CO2, 33% N2 and 1% Ar. The dust that condensed and accumulated on the walls of the reactor was analyzed by different analytical techniques that included Fourier transform infrared spectroscopy, visible spectroscopy using azo dyes, thermogravimetry/simultaneous thermal analyses coupled to mass spectrometry, powder X-ray diffraction, and ion chromatography. The main components of the ablated dust corresponded to NaCl ≥ 91.5%, sodium nitrate (NaNO3 = 1.6-6.0%), and sodium perchlorate (NaClO4 ∼ 0.2-0.3%). It is interesting to note that these salts formed in a dry process that is relevant to Mars today. A thermochemical model was used to understand the chemical steps that led to the formation of these salts in the gas phase. The NaNO3NaClO4 (wt/wt) ratio of this process was estimated to vary from 5.0 to 30.0; this ratio is too high compared to that found on Mars (NO3-ClO4- (wt/wt)) from 0.004 to 0.13). This implies that gaseous NaCl was not efficiently oxidized to perchlorate by the electric discharge process. We propose instead that gaseous metal chlorides (e.g., MgCl2, NaCl, CaCl2, KCl) were supplied to the atmosphere by the volatilization of chloride minerals present in the dust by electric discharges generated in dust devils and were subsequently oxidized to perchlorate by photochemical processes. Further work is required to assess the relative contribution of this possible source.
Collapse
Affiliation(s)
- Pável U Martínez-Pabello
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, Coyoacán, Ciudad de México 04510, Mexico
| | - Rafael Navarro-González
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, Coyoacán, Ciudad de México 04510, Mexico.
| | - Xavier Walls
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, Coyoacán, Ciudad de México 04510, Mexico
| | - Teresa Pi-Puig
- Departamento de Geoquímica, Instituto de Geología y LANGEM (Laboratorio Nacional de Geoquímica y Mineralogía), Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Coyoacán, Ciudad de México 04510, Mexico
| | - José L González-Chávez
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - José G de la Rosa
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, Coyoacán, Ciudad de México 04510, Mexico
| | - Paola Molina
- Laboratorio de Química de Plasmas y Estudios Planetarios, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Apartado Postal 70-543, Coyoacán, Ciudad de México 04510, Mexico
| | - Olivia Zamora
- Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología y LANGEM, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
49
|
Stalport F, Rouquette L, Poch O, Dequaire T, Chaouche-Mechidal N, Payart S, Szopa C, Coll P, Chaput D, Jaber M, Raulin F, Cottin H. The Photochemistry on Space Station (PSS) Experiment: Organic Matter under Mars-like Surface UV Radiation Conditions in Low Earth Orbit. ASTROBIOLOGY 2019; 19:1037-1052. [PMID: 31314573 DOI: 10.1089/ast.2018.2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The search for organic molecules at the surface of Mars is a top priority of the Mars Science Laboratory (NASA) and ExoMars 2020 (ESA) space missions. Their main goal is to search for past and/or present molecular compounds related to a potential prebiotic chemistry and/or a biological activity on the Red Planet. A key step to interpret their data is to characterize the preservation or the evolution of organic matter in the martian environmental conditions. Several laboratory experiments have been developed especially concerning the influence of ultraviolet (UV) radiation. However, the experimental UV sources do not perfectly reproduce the solar UV radiation reaching the surface of Mars. For this reason, the International Space Station (ISS) can be advantageously used to expose the same samples studied in the laboratory to UV radiation representative of martian conditions. Those laboratory simulations can be completed by experiments in low Earth orbit (LEO) outside the ISS. Our study was part of the Photochemistry on the Space Station experiment on board the EXPOSE-R2 facility that was kept outside the ISS from October 2014 to February 2016. Chrysene, adenine, and glycine, pure or deposited on an iron-rich amorphous mineral phase, were exposed to solar UV. The total duration of exposure to UV radiation is estimated to be in the 1250-1420 h range. Each sample was characterized prior to and after the flight by Fourier transform infrared (FTIR) spectroscopy. These measurements showed that all exposed samples were partially degraded. Their quantum efficiencies of photodecomposition were calculated in the 200-250 nm wavelength range. They range from 10-4 to 10-6 molecules·photon-1 for pure organic samples and from 10-2 to 10-5 molecules·photon-1 for organic samples shielded by the mineral phase. These results highlight that none of the tested organics are stable under LEO solar UV radiation conditions. The presence of an iron-rich mineral phase increases their degradation.
Collapse
Affiliation(s)
- Fabien Stalport
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Laura Rouquette
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Olivier Poch
- 2Université Grenoble Alpes, CNRS, CNES, IPAG, Grenoble, France
| | - Tristan Dequaire
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Naïla Chaouche-Mechidal
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Shanèle Payart
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Cyril Szopa
- 3Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), UMR CNRS 8190, Université Pierre et Marie Curie, Université Versailles St-Quentin, Paris, France
| | - Patrice Coll
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Didier Chaput
- 4Centre National d'Etudes Spatiales, Toulouse, France
| | - Maguy Jaber
- 5Sorbonne Université, Laboratoire d'Archéologie Moléculaire et Structurale (LAMS), CNRS UMR 8220, Paris, France
| | - François Raulin
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| | - Hervé Cottin
- 1Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Université Paris Est Créteil et Université de Paris, Institut Pierre Simon Laplace, Créteil, France
| |
Collapse
|
50
|
Montgomery W, Jaramillo EA, Royle SH, Kounaves SP, Schulze-Makuch D, Sephton MA. Effects of Oxygen-Containing Salts on the Detection of Organic Biomarkers on Mars and in Terrestrial Analog Soils. ASTROBIOLOGY 2019; 19:711-721. [PMID: 31062993 DOI: 10.1089/ast.2018.1888] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The detection of chlorinated hydrocarbons by Curiosity on Mars has been attributed to the presence of unidentified indigenous organic matter. Similarly, oxychlorines on Earth have been proposed to be responsible for the apparent lack of organics in the Atacama Desert. The presence of perchlorate (ClO4-) poses a unique challenge to the measurement of organic matter due to the oxidizing power of oxychlorines during commonly used pyrolysis-gas chromatography-mass spectrometry (py-GC-MS) methods. Here, we show that perchlorates and other oxyanion salts inhibit the detection of organic compounds but that removing these problematic species prior to pyrolysis by using an optimal sample extraction duration and suitable ratios of water to sample mass enables analysis. We have characterized leached and unleached samples containing perchlorates from the Atacama Desert and have found that after leaching, the py-GC-MS chromatograms of the dried mineral residues show identifiable biomarkers associated with indigenous cyanobacteria. Samples which were pyrolyzed without leaching showed no detectable organic matter other than background siloxane and very weak or no trace of detectable polychlorinated benzenes. Dried sample residues remaining after leaching, the mineral matrix and water-insoluble organic matter, showed a strong organic response in all cases when analyzed by py-GC-MS. These residues are most likely the product of the pyrolysis of water-insoluble organics originally present in the samples. In addition, our results imply that previous soil analyses which contained high levels of oxyanions and concluded that organics were either not present or were present at extremely low levels should be reexamined.
Collapse
Affiliation(s)
- Wren Montgomery
- 1 Department of Earth Science and Engineering, Imperial College London, London, UK
| | | | - Samuel H Royle
- 1 Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Samuel P Kounaves
- 1 Department of Earth Science and Engineering, Imperial College London, London, UK
- 2 Department of Chemistry, Tufts University, Medford, Massachusetts, USA
| | - Dirk Schulze-Makuch
- 3 Astrobiology Group, Center of Astronomy and Astrophysics, Technical University of Berlin, Berlin, Germany
| | - Mark A Sephton
- 1 Department of Earth Science and Engineering, Imperial College London, London, UK
| |
Collapse
|