1
|
Möhrle D, Murari K, Rho JM, Cheng N. Vocal communication in asocial BTBR mice is more malleable by a ketogenic diet in juveniles than adults. Neuroscience 2024; 561:43-64. [PMID: 39413868 DOI: 10.1016/j.neuroscience.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Deficits in social communication and language development are a hallmark of autism spectrum disorder currently with no effective approaches to reduce the negative impact. Interventional studies using animal models have been very limited in demonstrating improved vocal communication. Autism has been proposed to involve metabolic dysregulation. Ketogenic diet (KD) is a metabolism-based therapy for medically intractable epilepsy, and its applications in other neurological conditions have been increasingly tested. However, how KD would affect vocal communication has not been explored. The BTBR mouse strain is widely used to model asocial phenotypes. They display robust and pronounced deficits in vocalization during social interaction, and have metabolic changes implicated in autism. We investigated the effects of KD on ultrasonic vocalizations (USVs) in juvenile and adult BTBR mice during male-female social encounters. After a brief treatment with KD, the number, spectral bandwidth, and much of the temporal structure of USVs were robustly closer to control levels in both juvenile and adult BTBR mice. Composition of call categories and transitioning between individual call subtypes were more effectively altered to more closely align with the control group in juvenile BTBR mice. Together, our data provide further support to the hypothesis that metabolism-based dietary intervention could modify disease expression, including core symptoms, in autism. Future studies should tease apart the molecular mechanisms of KD's effects on vocalization.
Collapse
Affiliation(s)
- Dorit Möhrle
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Cum M, Santiago Pérez JA, Wangia E, Lopez N, Wright ES, Iwata RL, Li A, Chambers AR, Padilla-Coreano N. A systematic review and meta-analysis of how social memory is studied. Sci Rep 2024; 14:2221. [PMID: 38278973 PMCID: PMC10817899 DOI: 10.1038/s41598-024-52277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Social recognition is crucial for survival in social species, and necessary for group living, selective reproduction, pair bonding, and dominance hierarchies. Mice and rats are the most commonly used animal models in social memory research, however current paradigms do not account for the complex social dynamics they exhibit in the wild. To assess the range of social memories being studied, we conducted a systematic analysis of neuroscience articles testing the social memory of mice and rats published within the past two decades and analyzed their methods. Our results show that despite these rodent's rich social memory capabilities, the majority of social recognition papers explore short-term memories and short-term familiarity levels with minimal exposure between subject and familiar stimuli-a narrow type of social memory. We have identified several key areas currently understudied or underrepresented: kin relationships, mates, social ranks, sex variabilities, and the effects of aging. Additionally, reporting on social stimulus variables such as housing history, strain, and age, is limited, which may impede reproducibility. Overall, our data highlight large gaps in the diversity of social memories studied and the effects social variables have on social memory mechanisms.
Collapse
Affiliation(s)
- Meghan Cum
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | | | - Erika Wangia
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Naeliz Lopez
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Elizabeth S Wright
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Ryo L Iwata
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Albert Li
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Amelia R Chambers
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | | |
Collapse
|
3
|
Cum M, Pérez JS, Wangia E, Lopez N, Wright ES, Iwata RL, Li A, Chambers AR, Padilla-Coreano N. Mind the gap: A systematic review and meta-analysis of how social memory is studied. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572606. [PMID: 38187659 PMCID: PMC10769336 DOI: 10.1101/2023.12.20.572606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Social recognition is crucial for survival in social species, and necessary for group living, selective reproduction, pair bonding, and dominance hierarchies. Mice and rats are the most commonly used animal models in social memory research, however current paradigms do not account for the complex social dynamics they exhibit in the wild. To assess the range of social memories being studied, we conducted a systematic analysis of neuroscience articles testing the social memory of mice and rats published within the past two decades and analyzed their methods. Our results show that despite these rodent's rich social memory capabilities, the majority of social recognition papers explore short-term memories and short-term familiarity levels with minimal exposure between subject and familiar stimuli - a narrow type of social memory. We have identified several key areas currently understudied or underrepresented: kin relationships, mates, social ranks, sex variabilities, and the effects of aging. Additionally, reporting on social stimulus variables such as housing history, strain, and age, is limited, which may impede reproducibility. Overall, our data highlight large gaps in the diversity of social memories studied and the effects social variables have on social memory mechanisms.
Collapse
|
4
|
Subashi E, Lemaire V, Petroni V, Pietropaolo S. The Impact of Mild Chronic Stress and Maternal Experience in the Fmr1 Mouse Model of Fragile X Syndrome. Int J Mol Sci 2023; 24:11398. [PMID: 37511156 PMCID: PMC10380347 DOI: 10.3390/ijms241411398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Fragile X syndrome (FXS) is a pervasive developmental disorder and the most common monogenic cause of autism spectrum disorder (ASD). Female heterozygous (HET) carriers play a major role in the transmission of the pathology and present several FXS- and ASD-like behavioral alterations. Despite their clear genetic origins, FXS symptoms are known to be modulated by environmental factors, e.g., exposure to chronic stress, especially during critical life periods, such as pregnancy. Pregnancy, together with pups' care, constitutes maternal experience, i.e., another powerful environmental factor affecting several neurobehavioral functions in females. Here we investigated the impact of maternal experience on the long-term effects of stress in Fmr1-HET female mice. Our findings demonstrated that the behavioral abnormalities of HET females, i.e., hyperactivity and memory deficits, were unaffected by stress or maternal experience. In contrast, stress, independently of maternal experience, induced the appearance of cognitive deficits in WT mice. Maternal experience increased anxiety levels in all mice and enhanced their corticosterone levels, concomitantly promoting the effects of stress on social communication and adrenal glands. In translational terms, these results advance our understanding of the environmental modulation of the behavioral alterations observed in FXS female carriers and highlight the long-term impact of maternal experience and its interactions with chronic stress.
Collapse
Affiliation(s)
- Enejda Subashi
- University Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Valerie Lemaire
- University Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Valeria Petroni
- University Bordeaux, CNRS, EPHE, INCIA, UMR 5287, F-33000 Bordeaux, France
| | | |
Collapse
|
5
|
Wilson EN, Mabry S, Bradshaw JL, Gardner JJ, Rybalchenko N, Engelland R, Fadeyibi O, Osikoya O, Cushen SC, Goulopoulou S, Cunningham RL. Gestational hypoxia in late pregnancy differentially programs subcortical brain maturation in male and female rat offspring. Biol Sex Differ 2022; 13:54. [PMID: 36175941 PMCID: PMC9524087 DOI: 10.1186/s13293-022-00463-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Hypoxia is associated with pregnancy complications, such as preeclampsia, placental abruption, and gestational sleep apnea. Hypoxic insults during gestation can impact the brain maturation of cortical and subcortical pathways, such as the nigrostriatal pathway. However, the long-term effects of in utero hypoxic stress exposure on brain maturation in offspring are unclear, especially exposure during late gestation. The purpose of this study was to determine the impact of gestational hypoxia in late pregnancy on developmental programming of subcortical brain maturation by focusing on the nigrostriatal pathway. METHODS Timed pregnant Long-Evans rats were exposed to chronic intermittent hypoxia or room air normoxia from gestational day (GD) 15-19 (term 22-23 days). Male and female offspring were assessed during two critical periods: puberty from postnatal day (PND) 40-45 or young adulthood (PND 60-65). Brain maturation was quantified by examining (1) the structural development of the nigrostriatal pathway via analysis of locomotor behaviors and the substantia nigra dopaminergic neuronal cell bodies and (2) the refinement of the nigrostriatal pathway by quantifying ultrasonic vocalizations (USVs). RESULTS The major findings of this study are gestational hypoxia has age- and sex-dependent effects on subcortical brain maturation in offspring by adversely impacting the refinement of the nigrostriatal pathway in the absence of any effects on the structural development of the pathway. During puberty, female offspring were impacted more than male offspring, as evidenced by decreased USV call frequency, chirp USV call duration, and simple call frequency. In contrast, male offspring were impacted more than female offspring during young adulthood, as evidenced by increased latency to first USV, decreased simple USV call intensity, and increased harmonic USV call bandwidth. No effects of gestational hypoxia on the structural development of the nigrostriatal pathway were observed. CONCLUSIONS These novel findings demonstrate hypoxic insults during pregnancy mediate developmental programming of the cortical and subcortical pathways, in which male offspring exhibit long-term adverse effects compared to female offspring. Impairment of cortical and subcortical pathways maturation, such as the nigrostriatal pathway, may increase risk for neuropsychiatric disorders (e.g., mood disorders, cognitive dysfunction, brain connectivity dysfunction).
Collapse
Affiliation(s)
- E Nicole Wilson
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Steve Mabry
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jennifer J Gardner
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Nataliya Rybalchenko
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Rachel Engelland
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Oluwadarasimi Fadeyibi
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Department of Basic Sciences, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
6
|
Premoli M, Petroni V, Bulthuis R, Bonini SA, Pietropaolo S. Ultrasonic Vocalizations in Adult C57BL/6J Mice: The Role of Sex Differences and Repeated Testing. Front Behav Neurosci 2022; 16:883353. [PMID: 35910678 PMCID: PMC9330122 DOI: 10.3389/fnbeh.2022.883353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Ultrasonic vocalizations (USVs) are a major tool for assessing social communication in laboratory mice during their entire lifespan. At adulthood, male mice preferentially emit USVs toward a female conspecific, while females mostly produce ultrasonic calls when facing an adult intruder of the same sex. Recent studies have developed several sophisticated tools to analyze adult mouse USVs, especially in males, because of the increasing relevance of adult communication for behavioral phenotyping of mouse models of autism spectrum disorder (ASD). Little attention has been instead devoted to adult female USVs and impact of sex differences on the quantitative and qualitative characteristics of mouse USVs. Most of the studies have also focused on a single testing session, often without concomitant assessment of other social behaviors (e.g., sniffing), so little is still known about the link between USVs and other aspects of social interaction and their stability/variations across multiple encounters. Here, we evaluated the USVs emitted by adult male and female mice during 3 repeated encounters with an unfamiliar female, with equal or different pre-testing isolation periods between sexes. We demonstrated clear sex differences in several USVs' characteristics and other social behaviors, and these were mostly stable across the encounters and independent of pre-testing isolation. The estrous cycle of the tested females exerted quantitative effects on their vocal and non-vocal behaviors, although it did not affect the qualitative composition of ultrasonic calls. Our findings obtained in B6 mice, i.e., the strain most widely used for engineering of transgenic mouse lines, contribute to provide new guidelines for assessing ultrasonic communication in male and female adult mice.
Collapse
Affiliation(s)
- Marika Premoli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | |
Collapse
|
7
|
Autistic-like behavioral effects of prenatal stress in juvenile Fmr1 mice: the relevance of sex differences and gene-environment interactions. Sci Rep 2022; 12:7269. [PMID: 35508566 PMCID: PMC9068699 DOI: 10.1038/s41598-022-11083-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Fragile X Syndrome (FXS) is the most common heritable form of mental retardation and monogenic cause of autism spectrum disorder (ASD). FXS is due to a mutation in the X-linked FMR1 gene and is characterized by motor, cognitive and social alterations, mostly overlapping with ASD behavioral phenotypes. The severity of these symptoms and their timing may be exacerbated and/or advanced by environmental adversity interacting with the genetic mutation. We therefore tested the effects of the prenatal exposure to unpredictable chronic stress on the behavioral phenotype of juveniles of both sexes in the Fmr1 knock-out (KO) mouse model of FXS. Mice underwent behavioral tests at 7-8 weeks of age, that is, when most of the relevant behavioral alterations are absent or mild in Fmr1-KOs. Stress induced the early appearance of deficits in spontaneous alternation in KO male mice, without exacerbating the behavioral phenotype of mutant females. In males stress also altered social interaction and communication, but mostly in WT mice, while in females it induced effects on locomotion and communication in mice of both genotypes. Our data therefore highlight the sex-dependent relevance of early environmental stressors to interact with genetic factors to influence the appearance of selected FXS- and ASD-like phenotypes.
Collapse
|
8
|
Warren MR, Campbell D, Borie AM, Ford CL, Dharani AM, Young LJ, Liu RC. Maturation of Social-Vocal Communication in Prairie Vole ( Microtus ochrogaster) Pups. Front Behav Neurosci 2022; 15:814200. [PMID: 35087387 PMCID: PMC8787284 DOI: 10.3389/fnbeh.2021.814200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Impairments in social communication are common among neurodevelopmental disorders. While traditional animal models have advanced our understanding of the physiological and pathological development of social behavior, they do not recapitulate some aspects where social communication is essential, such as biparental care and the ability to form long-lasting social bonds. Prairie voles (Microtus ochrogaster) have emerged as a valuable rodent model in social neuroscience because they naturally display these behaviors. Nonetheless, the role of vocalizations in prairie vole social communication remains unclear. Here, we studied the ontogeny [from postnatal days (P) 8-16] of prairie vole pup ultrasonic vocalizations (USVs), both when isolated and when the mother was present but physically unattainable. In contrast to other similarly sized rodents such as mice, prairie vole pups of all ages produced isolation USVs with a relatively low fundamental frequency between 22 and 50 kHz, often with strong harmonic structure. Males consistently emitted vocalizations with a lower frequency than females. With age, pups vocalized less, and the acoustic features of vocalizations (e.g., duration and bandwidth) became more stereotyped. Manipulating an isolated pup's social environment by introducing its mother significantly increased vocal production at older (P12-16) but not younger ages, when pups were likely unable to hear or see her. Our data provide the first indication of a maturation in social context-dependent vocal emission, which may facilitate more active acoustic communication. These results help lay a foundation for the use of prairie voles as a model organism to probe the role of early life experience in the development of social-vocal communication.
Collapse
Affiliation(s)
- Megan R. Warren
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Drayson Campbell
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Amélie M. Borie
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Charles L. Ford
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, United States
| | - Ammar M. Dharani
- Summer Opportunities of Academic Research Program, James T. Laney School of Graduate Studies, Emory University, Atlanta, GA, United States
| | - Larry J. Young
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert C. Liu
- Department of Biology, Emory University, Atlanta, GA, United States
- Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, United States
| |
Collapse
|
9
|
Zhao X, Ziobro P, Pranic NM, Chu S, Rabinovich S, Chan W, Zhao J, Kornbrek C, He Z, Tschida KA. Sex- and context-dependent effects of acute isolation on vocal and non-vocal social behaviors in mice. PLoS One 2021; 16:e0255640. [PMID: 34469457 PMCID: PMC8409668 DOI: 10.1371/journal.pone.0255640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
Humans are extraordinarily social, and social isolation has profound effects on our behavior, ranging from increased social motivation following short periods of social isolation to increased anti-social behaviors following long-term social isolation. Mice are frequently used as a model to understand how social isolation impacts the brain and behavior. While the effects of chronic social isolation on mouse social behavior have been well studied, much less is known about how acute isolation impacts mouse social behavior and whether these effects vary according to the sex of the mouse and the behavioral context of the social encounter. To address these questions, we characterized the effects of acute (3-day) social isolation on the vocal and non-vocal social behaviors of male and female mice during same-sex and opposite-sex social interactions. Our experiments uncovered pronounced effects of acute isolation on social interactions between female mice, while revealing more subtle effects on the social behaviors of male mice during same-sex and opposite-sex interactions. Our findings advance the study of same-sex interactions between female mice as an attractive paradigm to investigate neural mechanisms through which acute isolation enhances social motivation and promotes social behavior.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Patryk Ziobro
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Nicole M. Pranic
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Samantha Chu
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Samantha Rabinovich
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - William Chan
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Jennifer Zhao
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Caroline Kornbrek
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Zichen He
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
| | - Katherine A. Tschida
- Department of Psychology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
10
|
von Merten S, Pfeifle C, Künzel S, Hoier S, Tautz D. A humanized version of Foxp2 affects ultrasonic vocalization in adult female and male mice. GENES BRAIN AND BEHAVIOR 2021; 20:e12764. [PMID: 34342113 DOI: 10.1111/gbb.12764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/02/2021] [Accepted: 07/31/2021] [Indexed: 01/03/2023]
Abstract
The transcription factor FoxP2 is involved in setting up the neuronal circuitry for vocal learning in mammals and birds and is thought to have played a special role in the evolution of human speech and language. It has been shown that an allele with a humanized version of the murine Foxp2 gene changes the ultrasonic vocalization of mouse pups compared to pups of the wild-type inbred strain. Here we tested if this humanized allele would also affect the ultrasonic vocalization of adult female and male mice. In a previous study, in which only male vocalization was considered and the mice were recorded under a restricted spatial and temporal regime, no difference in adult vocalization between genotypes was found. Here, we use a different test paradigm in which both female and male vocalizations are recorded in extended social contact. We found differences in temporal, spectral and syntactical parameters between the genotypes in both sexes, and between sexes. Mice carrying the humanized Foxp2 allele were using higher frequencies and more complex syllable types than mice of the corresponding wildtype inbred strain. Our results support the notion that the humanized Foxp2 allele has a differential effect on mouse ultrasonic vocalization. As mice carrying the humanized version of the Foxp2 gene show effects opposite to those of mice carrying disrupted or mutated alleles of this gene, we conclude that this mouse line represents an important model for the study of human speech and language evolution.
Collapse
Affiliation(s)
- Sophie von Merten
- CESAM - Centro de Estudos do Ambiente e do Mar, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Christine Pfeifle
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sven Künzel
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Svenja Hoier
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
11
|
Warren MR, Spurrier MS, Sangiamo DT, Clein RS, Neunuebel JP. Mouse vocal emission and acoustic complexity do not scale linearly with the size of a social group. J Exp Biol 2021; 224:jeb239814. [PMID: 34096599 PMCID: PMC8214829 DOI: 10.1242/jeb.239814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/22/2021] [Indexed: 11/20/2022]
Abstract
Adult mice emit ultrasonic vocalizations (USVs), sounds above the range of human hearing, during social encounters. While mice alter their vocal emissions between isolated and social contexts, technological impediments have hampered our ability to assess how individual mice vocalize in group social settings. We overcame this challenge by implementing an 8-channel microphone array system, allowing us to determine which mouse emitted individual vocalizations across multiple social contexts. This technology, in conjunction with a new approach for extracting and categorizing a complex, full repertoire of vocalizations, facilitated our ability to directly compare how mice modulate their vocal emissions between isolated, dyadic and group social environments. When comparing vocal emission during isolated and social settings, we found that socializing male mice increase the proportion of vocalizations with turning points in frequency modulation and instantaneous jumps in frequency. Moreover, males change the types of vocalizations emitted between social and isolated contexts. In contrast, there was no difference in male vocal emission between dyadic and group social contexts. Female vocal emission, while predominantly absent in isolation, was also similar during dyadic and group interactions. In particular, there were no differences in the proportion of vocalizations with frequency jumps or turning points. Taken together, the findings lay the groundwork necessary for elucidating the stimuli underlying specific features of vocal emission in mice.
Collapse
Affiliation(s)
- Megan R. Warren
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Morgan S. Spurrier
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Daniel T. Sangiamo
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Rachel S. Clein
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Joshua P. Neunuebel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
12
|
Sasaki E, Tomita Y, Kanno K. Sex differences in vocalizations to familiar or unfamiliar females in mice. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201529. [PMID: 33489288 PMCID: PMC7813254 DOI: 10.1098/rsos.201529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Mice, both wild and laboratory strains, emit ultrasound to communicate. The sex differences between male to female (male-female) and female to female (female-female) ultrasonic vocalizations (USVs) have been discussed for decades. In the present study, we compared the number of USVs emitted to familiar and unfamiliar females by both males (male-female USVs) and females (female-female USVs). We found that females vocalized more to unfamiliar than to familiar females. By contrast, males exhibited more USVs to familiar partners. This sexually dimorphic behaviour suggests that mice change their vocal behaviour in response to the social context, and their perception of the context is based on social cognition and memory. In addition, because males vocalized more to familiar females, USVs appear to be not only a response to novel objects or individuals, but also a social response.
Collapse
Affiliation(s)
| | | | - Kouta Kanno
- Author for correspondence: Kouta Kanno e-mail:
| |
Collapse
|
13
|
Warren MR, Clein RS, Spurrier MS, Roth ED, Neunuebel JP. Ultrashort-range, high-frequency communication by female mice shapes social interactions. Sci Rep 2020; 10:2637. [PMID: 32060312 PMCID: PMC7021676 DOI: 10.1038/s41598-020-59418-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/29/2020] [Indexed: 11/08/2022] Open
Abstract
Animals engage in complex social encounters that influence social groups and resource allocation. During these encounters, acoustic signals, used at both short and long ranges, play pivotal roles in regulating the behavior of conspecifics. Mice, for instance, emit ultrasonic vocalizations, signals above the range of human hearing, during close-range social interactions. How these signals shape behavior, however, is unknown due to the difficulty in discerning which mouse in a group is vocalizing. To overcome this impediment, we used an eight-channel microphone array system to determine which mouse emitted individual vocal signals during 30 minutes of unrestrained social interaction between a female and a single male or female conspecific. Females modulated both the timing and context of vocal emission based upon their social partner. Compared to opposite-sex pairings, females in same-sex pairs vocalized when closer to a social partner and later in the 30 minutes of social engagement. Remarkably, we found that female mice exhibited no immediate changes in acceleration (movement) to male-emitted vocal signals. Both males and females, in contrast, modulated their behavior following female-emitted vocal signals in a context-dependent manner. Thus, our results suggest female vocal signals function as a means of ultrashort-range communication that shapes mouse social behavior.
Collapse
Affiliation(s)
- M R Warren
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - R S Clein
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - M S Spurrier
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - E D Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - J P Neunuebel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
14
|
Mhaouty-Kodja S. Courtship vocalizations: A potential biomarker of adult exposure to endocrine disrupting compounds? Mol Cell Endocrinol 2020; 501:110664. [PMID: 31765692 DOI: 10.1016/j.mce.2019.110664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023]
Abstract
In rodents, male courtship is stimulated by pheromones emitted by the sexually receptive female. In response, the male produces ultrasonic vocalizations, which appear to play a role in female attraction and facilitate copulation. The present review summarizes the main findings on courtship vocalizations and their tight regulation by sex steroid hormones. It describes studies that address the effects of exposure to endocrine disrupting compounds (EDC) on ultrasound production, as changes in hormone levels or their signaling pathways may interfere with the emission of ultrasonic vocalizations. It also discusses the potential use of this behavior as a noninvasive biomarker of adult exposure to EDC.
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris-Seine, 7 quai St Bernard, Bât A 3ème étage, 75005, Paris, France.
| |
Collapse
|
15
|
Medial Preoptic Area Modulates Courtship Ultrasonic Vocalization in Adult Male Mice. Neurosci Bull 2019; 35:697-708. [PMID: 30900143 DOI: 10.1007/s12264-019-00365-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/11/2018] [Indexed: 01/02/2023] Open
Abstract
Adult male mice emit highly complex ultrasonic vocalizations (USVs) in response to female conspecifics. Such USVs, thought to facilitate courtship behaviors, are routinely measured as a behavioral index in mouse models of neurodevelopmental and psychiatric disorders such as autism. While the regulation of USVs by genetic factors has been extensively characterized, the neural mechanisms that control USV production remain largely unknown. Here, we report that optogenetic activation of the medial preoptic area (mPOA) elicited the production of USVs that were acoustically similar to courtship USVs in adult mice. Moreover, mPOA vesicular GABA transporter-positive (Vgat +) neurons were more effective at driving USV production than vesicular glutamate transporter 2-positive neurons. Furthermore, ablation of mPOA Vgat+ neurons resulted in altered spectral features and syllable usage of USVs in targeted males. Together, these results demonstrate that the mPOA plays a crucial role in modulating courtship USVs and this may serve as an entry point for future dissection of the neural circuitry underlying USV production.
Collapse
|
16
|
Matsumoto YK, Okanoya K. Mice modulate ultrasonic calling bouts according to sociosexual context. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180378. [PMID: 30110406 PMCID: PMC6030292 DOI: 10.1098/rsos.180378] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Mice produce various sounds within the ultrasonic range in social contexts. Although these sounds are often used as an index of sociability in biomedical research, their biological significance remains poorly understood. We previously showed that mice repeatedly produced calls in a sequence (i.e. calling bout), which can vary in their structure, such as Simple, Complex or Harmonics. In this study, we investigated the use of the three types of calling bouts in different sociosexual interactions, including both same- and opposite-sex contexts. In same-sex contexts, males typically produced a Simple calling bout, whereas females mostly produced a Complex one. By contrast, in the opposite-sex context, they produced all the three types of calling bouts, but the use of each calling type varied according to the progress and mode of sociosexual interaction (e.g. Harmonic calling bout was specifically produced during reproductive behaviour). These results indicate that mice change the structure of calling bout according to sociosexual contexts, suggesting the presence of multiple functional signals in their ultrasonic communication.
Collapse
Affiliation(s)
- Yui K. Matsumoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
17
|
Capela D, Dombret C, Poissenot K, Poignant M, Malbert-Colas A, Franceschini I, Keller M, Mhaouty-Kodja S. Adult male mice exposure to nonylphenol alters courtship vocalizations and mating. Sci Rep 2018; 8:2988. [PMID: 29445187 PMCID: PMC5813014 DOI: 10.1038/s41598-018-21245-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
The neural circuitry processing male sexual behavior is tightly regulated by testosterone and its neural metabolite estradiol. The present study evaluated the effects of adult exposure to low doses of nonylphenol (NP), a widespread environmental contaminant, on the neuroendocrine regulation of testosterone and expression of sexual behavior. Oral exposure of C57BL/6J males to NP (0.5, 5 or 50 μg/kg/day) for 4 weeks did not affect circulating levels of testosterone or the kisspeptin system, a key regulator of the gonadotropic axis. In contrast, mice exposed to NP at 5 μg/kg/day emitted an increased number and duration of ultrasonic vocalizations, took longer to reach ejaculation and showed increased number of mounts, intromissions and thrusts. This was associated with normal olfactory preference and locomotor activity, and increased anxiety level. Analysis of the neural circuitry that underlies sexual behavior showed changes in the number of cells expressing androgen and estrogen receptors in males exposed to NP at 5 μg/kg/day. The neural circuitry underlying sexual behavior is thus highly sensitive to adult exposure to NP. Furthermore, almost all the observed effects were induced at 5 μg/kg/day of NP, indicating that this endocrine disrupter triggers a non-monotonic response in the adult male mouse brain.
Collapse
Affiliation(s)
- Daphné Capela
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Paris, 75005, France
| | - Carlos Dombret
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Paris, 75005, France
| | - Kevin Poissenot
- Institut National de la Recherche Agronomique, UMR 85, Nouzilly, 37380, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, 37380, France.,Université François Rabelais, Tours, 37000, France.,Institut Français du Cheval et de l'Equitation, Nouzilly, 37380, France
| | - Manon Poignant
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Paris, 75005, France
| | - Aude Malbert-Colas
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Paris, 75005, France
| | - Isabelle Franceschini
- Institut National de la Recherche Agronomique, UMR 85, Nouzilly, 37380, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, 37380, France.,Université François Rabelais, Tours, 37000, France.,Institut Français du Cheval et de l'Equitation, Nouzilly, 37380, France
| | - Matthieu Keller
- Institut National de la Recherche Agronomique, UMR 85, Nouzilly, 37380, France.,Centre National de la Recherche Scientifique, UMR 7247, Nouzilly, 37380, France.,Université François Rabelais, Tours, 37000, France.,Institut Français du Cheval et de l'Equitation, Nouzilly, 37380, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Paris, 75005, France.
| |
Collapse
|
18
|
High channel count microphone array accurately and precisely localizes ultrasonic signals from freely-moving mice. J Neurosci Methods 2018; 297:44-60. [PMID: 29309793 DOI: 10.1016/j.jneumeth.2017.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/19/2017] [Accepted: 12/20/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND An integral component in the assessment of vocal behavior in groups of freely interacting animals is the ability to determine which animal is producing each vocal signal. This process is facilitated by using microphone arrays with multiple channels. NEW METHOD AND COMPARISON WITH EXISTING METHODS Here, we made important refinements to a state-of-the-art microphone array based system used to localize vocal signals produced by freely interacting laboratory mice. Key changes to the system included increasing the number of microphones as well as refining the methodology for localizing and assigning vocal signals to individual mice. RESULTS We systematically demonstrate that the improvements in the methodology for localizing mouse vocal signals led to an increase in the number of signals detected as well as the number of signals accurately assigned to an animal. CONCLUSIONS These changes facilitated the acquisition of larger and more comprehensive data sets that better represent the vocal activity within an experiment. Furthermore, this system will allow more thorough analyses of the role that vocal signals play in social communication. We expect that such advances will broaden our understanding of social communication deficits in mouse models of neurological disorders.
Collapse
|
19
|
Garcia AN, Depena C, Bezner K, Yin W, Gore AC. The timing and duration of estradiol treatment in a rat model of the perimenopause: Influences on social behavior and the neuromolecular phenotype. Horm Behav 2018; 97:75-84. [PMID: 29108778 PMCID: PMC5771824 DOI: 10.1016/j.yhbeh.2017.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 01/06/2023]
Abstract
This study tested the effects of timing and duration of estradiol (E2) treatment, factors that are clinically relevant to hormone replacement in perimenopausal women, on social behavior and expression of genes in brain regions that regulate these behaviors. Female rats were ovariectomized (OVX) at 1year of age, roughly equivalent to middle-age in women, and given E2 or vehicle for different durations (3 or 6months) and timing (immediately or after a 3-month delay) relative to OVX. Social and ultrasonic vocalization (USV) behaviors were assessed at the 3 and 6month timepoints, and the rats' brains were then used for gene expression profiling in hypothalamus (supraoptic nucleus, paraventricular nucleus), bed nucleus of the stria terminalis, medial amygdala, and prefrontal cortex using a 48-gene qPCR platform. At the 3-month post-OVX testing period, E2 treatment significantly decreased the number of frequency-modulated USVs emitted. No effects of hormone were found at the 6-month testing period. There were few effects of timing and duration of E2 in a test of social preference of a rat given a choice between her same-sex cagemate and a novel conspecific. For gene expression, effects of timing and duration of E2 were region-specific, with the majority of changes found for genes involved in regulating social behavior such as neuropeptides (Oxt, Oxtr &Avp), neurotransmitters (Drd1, Drd2, Htr2a, Grin2d &Gabbr1), and steroid hormone receptors (Esr2, Ar, Pgr). These data suggest that the mode of E2 treatment has specific effects on social behavior and expression of target genes involved in the regulation of these behaviors.
Collapse
Affiliation(s)
- Alexandra N Garcia
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Christina Depena
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kelsey Bezner
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Kalcounis-Rueppell MC, Pultorak JD, Marler CA. Ultrasonic Vocalizations of Mice in the Genus Peromyscus. HANDBOOK OF ULTRASONIC VOCALIZATION - A WINDOW INTO THE EMOTIONAL BRAIN 2018. [DOI: 10.1016/b978-0-12-809600-0.00022-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Rendall AR, Ford AL, Perrino PA, Holly Fitch R. Auditory processing enhancements in the TS2-neo mouse model of Timothy Syndrome, a rare genetic disorder associated with autism spectrum disorders. ADVANCES IN NEURODEVELOPMENTAL DISORDERS 2017; 1:176-189. [PMID: 29159279 PMCID: PMC5693350 DOI: 10.1007/s41252-017-0029-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Amanda R. Rendall
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| | - Aiden L. Ford
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| | - Peter A. Perrino
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| | - R. Holly Fitch
- Department of Psychology/Behavioral Neuroscience and Institute for Systems Genomics, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269
| |
Collapse
|
22
|
Heckman JJ, Proville R, Heckman GJ, Azarfar A, Celikel T, Englitz B. High-precision spatial localization of mouse vocalizations during social interaction. Sci Rep 2017; 7:3017. [PMID: 28592832 PMCID: PMC5462771 DOI: 10.1038/s41598-017-02954-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 05/02/2017] [Indexed: 02/06/2023] Open
Abstract
Mice display a wide repertoire of vocalizations that varies with age, sex, and context. Especially during courtship, mice emit ultrasonic vocalizations (USVs) of high complexity, whose detailed structure is poorly understood. As animals of both sexes vocalize, the study of social vocalizations requires attributing single USVs to individuals. The state-of-the-art in sound localization for USVs allows spatial localization at centimeter resolution, however, animals interact at closer ranges, involving tactile, snout-snout exploration. Hence, improved algorithms are required to reliably assign USVs. We develop multiple solutions to USV localization, and derive an analytical solution for arbitrary vertical microphone positions. The algorithms are compared on wideband acoustic noise and single mouse vocalizations, and applied to social interactions with optically tracked mouse positions. A novel, (frequency) envelope weighted generalised cross-correlation outperforms classical cross-correlation techniques. It achieves a median error of ~1.4 mm for noise and ~4–8.5 mm for vocalizations. Using this algorithms in combination with a level criterion, we can improve the assignment for interacting mice. We report significant differences in mean USV properties between CBA mice of different sexes during social interaction. Hence, the improved USV attribution to individuals lays the basis for a deeper understanding of social vocalizations, in particular sequences of USVs.
Collapse
Affiliation(s)
- Jesse J Heckman
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Rémi Proville
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Gert J Heckman
- Department of Mathematics, Institute for Mathematics, Astrophysics and Particle Physics, Radboud University, Nijmegen, The Netherlands
| | - Alireza Azarfar
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Bernhard Englitz
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Keesom SM, Finton CJ, Sell GL, Hurley LM. Early-Life Social Isolation Influences Mouse Ultrasonic Vocalizations during Male-Male Social Encounters. PLoS One 2017; 12:e0169705. [PMID: 28056078 PMCID: PMC5215938 DOI: 10.1371/journal.pone.0169705] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
Early-life social isolation has profound effects on adult social competence. This is often expressed as increased aggression or inappropriate displays of courtship-related behaviors. The social incompetence exhibited by isolated animals could be in part due to an altered ability to participate in communicatory exchanges. House mice (Mus musculus) present an excellent model for exploring this idea, because social isolation has a well-established influence on their social behavior, and mice engage in communication via multiple sensory modalities. Here, we tested the prediction that social isolation during early life would influence ultrasonic vocalizations (USVs) emitted by adult male mice during same-sex social encounters. Starting at three weeks of age, male mice were housed individually or in social groups of four males for five weeks, after which they were placed in one of three types of paired social encounters. Pair types consisted of: two individually housed males, two socially housed males, or an individually housed and a socially housed male (“mixed” pairs). Vocal behavior (USVs) and non-vocal behaviors were recorded from these 15-minute social interactions. Pairs of mice consisting of at least one individually housed male emitted more and longer USVs, with a greater proportional use of USVs containing frequency jumps and 50-kHz components. Individually housed males in the mixed social pairs exhibited increased levels of mounting behavior towards the socially housed males. Mounting in these pairs was positively correlated with increased number and duration of USVs as well as increased proportional use of spectrally more complex USVs. These findings demonstrate that USVs are part of the suite of social behaviors influenced by early-life social isolation, and suggest that altered vocal communication following isolation reflects reduced social competence.
Collapse
Affiliation(s)
- Sarah M. Keesom
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| | - Caitlyn J. Finton
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Gabrielle L. Sell
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Laura M. Hurley
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
24
|
Garcia AN, Bezner K, Depena C, Yin W, Gore AC. The effects of long-term estradiol treatment on social behavior and gene expression in adult female rats. Horm Behav 2017; 87:145-154. [PMID: 27871902 PMCID: PMC5203957 DOI: 10.1016/j.yhbeh.2016.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022]
Abstract
This study tested the effects of long-term estradiol (E2) replacement on social behavior and gene expression in brain nuclei involved in the regulation of these social behaviors in adult female rats. We developed an ultrasonic vocalization (USV) test and a sociability test to examine communications, social interactions, and social preference, using young adult female cagemates. All rats were ovariectomized (OVX) and implanted with a Silastic capsule containing E2 or vehicle, and housed in same-treatment pairs for a 3-month period. Then, rats were behaviorally tested, euthanized, and 5 nuclei in the brain's social decision-making circuit were selected for neuromolecular profiling by a multiplex qPCR method. Our novel USV test proved to be a robust tool to measure numbers and types of calls emitted by cagemates that had been reintroduced after a 1-week separation. Results also showed that E2-treated OVX rats had profoundly decreased numbers of USV calls compared to vehicle-treated OVX rats. In a test of sociability, in which a female was allowed to choose between her cagemate or a same-treatment novel rat, we found few effects of E2 compared to vehicle, although interestingly, rats chose the cagemate over an unfamiliar conspecific. Gene expression results revealed that the supraoptic nucleus had the greatest number of gene changes caused by E2: Oxt, Oxtr and Avp were increased, and Drd2, Htr1a, Grin2b, and Gabbr1 were decreased, by E2. No genes were affected in the prefrontal cortex, and 1-4 genes were changed in paraventricular nucleus (Pgr), bed nucleus of the stria terminalis (Oxtr, Esr2, Dnmt3a), and medial amygdala (Oxtr, Ar, Foxp1, Tac3). Thus, E2 changes communicative interactions between adult female rats, together with selected expression of genes in the brain, especially in the supraoptic nucleus.
Collapse
Affiliation(s)
- Alexandra N Garcia
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kelsey Bezner
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Christina Depena
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea C Gore
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
25
|
Schmidt M, Lapert F, Brandwein C, Deuschle M, Kasperk C, Grimsley JM, Gass P. Prenatal stress changes courtship vocalizations and bone mineral density in mice. Psychoneuroendocrinology 2017; 75:203-212. [PMID: 27838514 DOI: 10.1016/j.psyneuen.2016.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 02/03/2023]
Abstract
Stress during the prenatal period has various effects on social and sexual behavior in both human and animal offspring. The present study examines the effects of chronic restraint stress in the second vs third trimester in pregnancy and glucocorticoid receptor (GR) heterozygous mutation on C57BL/6N male offspring's vocal courtship behavior in adulthood by applying a novel analyzing method. Finally, corticosterone and testosterone levels as well as bone mineral density were measured. Prenatal stress in the third, but not in the second trimester caused a significant qualitative change in males' courtship vocalizations, independent of their GR genotype. Bone mineral density was decreased also by prenatal stress exclusively in the third trimester in GR mutant and wildtype mice and - in contrast to corticosterone and testosterone - highly correlated with courtship vocalizations. In Gr+/- males corticosterone serum levels were significantly increased in animals that had experienced prenatal stress in the third trimester. Testosterone serum levels were overall increased in Gr+/- males in comparison to wildtypes as a tendency - whereas prenatal stress had no influence. Prenatal stress alters adult males' courtship vocalizations exclusively when applied in the third trimester, with closely related changes in bone mineral density. Bone mineral density seems to reflect best the complex neuroendocrine mechanisms underlying the production of courtship vocalizations. Besides, we demonstrated for the first time elevated basal corticosterone levels in Gr+/- males after prenatal stress which suggests that the Gr+/- mouse model of depression might also serve as a model of prenatal stress in male offspring.
Collapse
Affiliation(s)
- Michaela Schmidt
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany.
| | - Florian Lapert
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Christiane Brandwein
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Michael Deuschle
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Christian Kasperk
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Jasmine M Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Peter Gass
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| |
Collapse
|
26
|
Torquet N, de Chaumont F, Faure P, Bourgeron T, Ey E. mouseTube - a database to collaboratively unravel mouse ultrasonic communication. F1000Res 2016; 5:2332. [PMID: 27830061 PMCID: PMC5081159 DOI: 10.12688/f1000research.9439.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2016] [Indexed: 11/20/2022] Open
Abstract
Ultrasonic vocalisation is a broadly used proxy to evaluate social communication in mouse models of neuropsychiatric disorders. The efficacy and robustness of testing these models suffer from limited knowledge of the structure and functions of these vocalisations as well as of the way to analyse the data. We created mouseTube, an open database with a web interface, to facilitate sharing and comparison of ultrasonic vocalisations data and metadata attached to a recording file. Metadata describe 1) the acquisition procedure, e.g., hardware, software, sampling frequency, bit depth; 2) the biological protocol used to elicit ultrasonic vocalisations; 3) the characteristics of the individual emitting ultrasonic vocalisations ( e.g., strain, sex, age). To promote open science and enable reproducibility, data are made freely available. The website provides searching functions to facilitate the retrieval of recording files of interest. It is designed to enable comparisons of ultrasonic vocalisation emission between strains, protocols or laboratories, as well as to test different analysis algorithms and to search for protocols established to elicit mouse ultrasonic vocalisations. Over the long term, users will be able to download and compare different analysis results for each data file. Such application will boost the knowledge on mouse ultrasonic communication and stimulate sharing and comparison of automatic analysis methods to refine phenotyping techniques in mouse models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nicolas Torquet
- Université Pierre et Marie Curie Paris 06, CNRS UMR 8246, INSERM U1130, Institut de Biologie Paris-Seine (IBPS), Sorbonne Universités, Paris, 75005, France
| | | | - Philippe Faure
- Université Pierre et Marie Curie Paris 06, CNRS UMR 8246, INSERM U1130, Institut de Biologie Paris-Seine (IBPS), Sorbonne Universités, Paris, 75005, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, CNRS UMR 3571 Genes, Synapses and Cognition, University Paris Diderot, Sorbonne Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Elodie Ey
- Human Genetics and Cognitive Functions, CNRS UMR 3571 Genes, Synapses and Cognition, University Paris Diderot, Sorbonne Paris Cité, Institut Pasteur, Paris, 75015, France
| |
Collapse
|
27
|
Toccalino DC, Sun H, Sakata JT. Social Memory Formation Rapidly and Differentially Affects the Motivation and Performance of Vocal Communication Signals in the Bengalese Finch (Lonchura striata var. domestica). Front Behav Neurosci 2016; 10:113. [PMID: 27378868 PMCID: PMC4906024 DOI: 10.3389/fnbeh.2016.00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/24/2016] [Indexed: 01/24/2023] Open
Abstract
Cognitive processes like the formation of social memories can shape the nature of social interactions between conspecifics. Male songbirds use vocal signals during courtship interactions with females, but the degree to which social memory and familiarity influences the likelihood and structure of male courtship song remains largely unknown. Using a habituation-dishabituation paradigm, we found that a single, brief (<30 s) exposure to a female led to the formation of a short-term memory for that female: adult male Bengalese finches were significantly less likely to produce courtship song to an individual female when re-exposed to her 5 min later (i.e., habituation). Familiarity also rapidly decreased the duration of courtship songs but did not affect other measures of song performance (e.g., song tempo and the stereotypy of syllable structure and sequencing). Consistent with a contribution of social memory to the decrease in courtship song with repeated exposures to the same female, the likelihood that male Bengalese finches produced courtship song increased when they were exposed to a different female (i.e., dishabituation). Three consecutive exposures to individual females also led to the formation of a longer-term memory that persisted over days. Specifically, when courtship song production was assessed 2 days after initial exposures to females, males produced fewer and shorter courtship songs to familiar females than to unfamiliar females. Measures of song performance, however, were not different between courtship songs produced to familiar and unfamiliar females. The formation of a longer-term memory for individual females seemed to require at least three exposures because males did not differentially produce courtship song to unfamiliar females and females that they had been exposed to only once or twice. Taken together, these data indicate that brief exposures to individual females led to the rapid formation and persistence of social memories and support the existence of distinct mechanisms underlying the motivation to produce and the performance of courtship song.
Collapse
Affiliation(s)
| | - Herie Sun
- Department of Biology, McGill University Montreal, QC, Canada
| | - Jon T Sakata
- Integrated Program in Neuroscience, McGill UniversityMontreal, QC, Canada; Department of Biology, McGill UniversityMontreal, QC, Canada; Center for Research in Behavioral NeurobiologyMontreal, QC, Canada
| |
Collapse
|
28
|
Hoier S, Pfeifle C, von Merten S, Linnenbrink M. Communication at the Garden Fence--Context Dependent Vocalization in Female House Mice. PLoS One 2016; 11:e0152255. [PMID: 27022749 PMCID: PMC4811528 DOI: 10.1371/journal.pone.0152255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/13/2016] [Indexed: 11/23/2022] Open
Abstract
House mice (Mus musculus) live in social groups where they frequently interact with conspecifics, thus communication (e.g. chemical and/or auditory) is essential. It is commonly known that male and female mice produce complex vocalizations in the ultrasonic range (USV) that remind of high-pitched birdsong (so called mouse song) which is mainly used in social interactions. Earlier studies suggest that mice use their USVs for mate attraction and mate choice, but they could also be used as signal during hierarchy establishment and familiarization, or other communication purposes. In this study we elucidated the vocalization behaviour of interacting female mice over an extended period of time under semi-natural conditions. We asked, if the rate or structure of female vocalization differs between different social and non-social contexts. We found that female USV is mainly used in social contexts, driven by direct communication to an unknown individual, the rate of which is decreased over time by a familiarization process. In addition we could show that female mice use two distinct types of USVs, differing in their frequency, which they use differently depending on whether they directly or indirectly communicate with another female. This supports the notion that vocalization in mice is context dependent, driven by a reasonable and yet underestimated amount of complexity that also involves the interplay between different sensory signals, like chemical and auditory cues.
Collapse
Affiliation(s)
- Svenja Hoier
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | | | - Miriam Linnenbrink
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail: (ML); (SvM)
| |
Collapse
|
29
|
Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, Crawley JN. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr Top Behav Neurosci 2016; 28:1-52. [PMID: 27305922 PMCID: PMC5116923 DOI: 10.1007/7854_2015_5003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal models provide preclinical tools to investigate the causal role of genetic mutations and environmental factors in the etiology of autism spectrum disorder (ASD). Knockout and humanized knock-in mice, and more recently knockout rats, have been generated for many of the de novo single gene mutations and copy number variants (CNVs) detected in ASD and comorbid neurodevelopmental disorders. Mouse models incorporating genetic and environmental manipulations have been employed for preclinical testing of hypothesis-driven pharmacological targets, to begin to develop treatments for the diagnostic and associated symptoms of autism. In this review, we summarize rodent behavioral assays relevant to the core features of autism, preclinical and clinical evaluations of pharmacological interventions, and strategies to improve the translational value of rodent models of autism.
Collapse
Affiliation(s)
- Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Prescott T Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Mu Yang
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Jill L Silverman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Marjorie Solomon
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Room 1001A Research 2 Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA.
| |
Collapse
|
30
|
Kabitzke PA, Simpson EH, Kandel ER, Balsam PD. Social behavior in a genetic model of dopamine dysfunction at different neurodevelopmental time points. GENES BRAIN AND BEHAVIOR 2015; 14:503-15. [PMID: 26176662 DOI: 10.1111/gbb.12233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 01/05/2023]
Abstract
Impairments in social behavior characterize many neurodevelopmental psychiatric disorders. In fact, the temporal emergence and trajectory of these deficits can define the disorder, specify their treatment and signal their prognosis. The sophistication of mouse models with neurobiological endophenotypes of many aspects of psychiatric diseases has increased in recent years, with the necessity to evaluate social behavior in these models. We adapted an assay for the multimodal characterization of social behavior at different development time points (juvenile, adolescent and adult) in control mice in different social contexts (specifically, different sex pairings). Although social context did not affect social behavior in juvenile mice, it did have an effect on the quantity and type of social interaction as well as ultrasonic vocalizations in both adolescence and adulthood. We compared social development in control mice to a transgenic mouse model of the increase in postsynaptic striatal D2R activity observed in patients with schizophrenia (D2R-OE mice). Genotypic differences in social interactions emerged in adolescence and appeared to become more pronounced in adulthood. That vocalizations emitted from dyads with a D2R-OE subject were negatively correlated with active social behavior while vocalizations from control dyads were positively correlated with both active and passive social behavior also suggest social deficits. These data show that striatal dopamine dysfunction plays an important role in the development of social behavior and mouse models such as the one studied here provide an opportunity for screening potential therapeutics at different developmental time points.
Collapse
Affiliation(s)
- P A Kabitzke
- Department of Psychiatry, Columbia University.,New York State Psychiatric Institute
| | - E H Simpson
- Department of Psychiatry, Columbia University.,New York State Psychiatric Institute
| | - E R Kandel
- Department of Neuroscience, Columbia University.,Kavli Institute for Brain Science.,Howard Hughes Medical Institute
| | - P D Balsam
- Department of Psychiatry, Columbia University.,New York State Psychiatric Institute.,Department of Psychology, Barnard College, Columbia University, New York, NY, USA
| |
Collapse
|
31
|
Neunuebel JP, Taylor AL, Arthur BJ, Egnor SER. Female mice ultrasonically interact with males during courtship displays. eLife 2015; 4:e06203. [PMID: 26020291 PMCID: PMC4447045 DOI: 10.7554/elife.06203] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/06/2015] [Indexed: 01/24/2023] Open
Abstract
During courtship males attract females with elaborate behaviors. In mice, these displays include ultrasonic vocalizations. Ultrasonic courtship vocalizations were previously attributed to the courting male, despite evidence that both sexes produce virtually indistinguishable vocalizations. Because of this similarity, and the difficulty of assigning vocalizations to individuals, the vocal contribution of each individual during courtship is unknown. To address this question, we developed a microphone array system to localize vocalizations from socially interacting, individual adult mice. With this system, we show that female mice vocally interact with males during courtship. Males and females jointly increased their vocalization rates during chases. Furthermore, a female's participation in these vocal interactions may function as a signal that indicates a state of increased receptivity. Our results reveal a novel form of vocal communication during mouse courtship, and lay the groundwork for a mechanistic dissection of communication during social behavior.
Collapse
Affiliation(s)
- Joshua P Neunuebel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Psychological and Brain Sciences, University of Delaware, Newark, United States
| | - Adam L Taylor
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ben J Arthur
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - SE Roian Egnor
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
32
|
Venerosi A, Tait S, Stecca L, Chiarotti F, De Felice A, Cometa MF, Volpe MT, Calamandrei G, Ricceri L. Effects of maternal chlorpyrifos diet on social investigation and brain neuroendocrine markers in the offspring - a mouse study. Environ Health 2015; 14:32. [PMID: 25889763 PMCID: PMC4448273 DOI: 10.1186/s12940-015-0019-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/20/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Chlorpyrifos (CPF) is one of the most widely used organophosphate pesticides worldwide. Epidemiological studies on pregnant women and their children suggest a link between in utero CPF exposure and delay in psychomotor and cognitive maturation. A large number of studies in animal models have shown adverse effects of CPF on developing brain and more recently on endocrine targets. Our aim was to determine if developmental exposure to CPF affects social responsiveness and associated molecular neuroendocrine markers at adulthood. METHOD Pregnant CD1 outbred mice were fed from gestational day 15 to lactation day 14 with either a CPF-added (equivalent to 6 mg/kg/bw/day during pregnancy) or a standard diet. We then assessed in the offspring the long-term effects of CPF exposure on locomotion, social recognition performances and gene expression levels of selected neurondocrine markers in amygdala and hypothalamus. RESULTS No sign of CPF systemic toxicity was detected. CPF induced behavioral alterations in adult offspring of both sexes: CPF-exposed males displayed enhanced investigative response to unfamiliar social stimuli, whereas CPF-exposed females showed a delayed onset of social investigation and lack of reaction to social novelty. In parallel, molecular effects of CPF were sex dimorphic: in males CPF increased expression of estrogen receptor beta in hypothalamus and decreased oxytocin expression in amygdala; CPF increased vasopressin 1a receptor expression in amygdala in both sexes. CONCLUSIONS These data indicate that developmental CPF affects mouse social behavior and interferes with development of sex-dimorphic neuroendocrine pathways with potential disruptive effects on neuroendocrine axes homeostasis. The route of exposure selected in our study corresponds to relevant human exposure scenarios, our data thus supports the view that neuroendocrine effects, especially in susceptible time windows, should deserve more attention in risk assessment of OP insecticides.
Collapse
Affiliation(s)
- Aldina Venerosi
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Sabrina Tait
- Department Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Stecca
- Department Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | - Flavia Chiarotti
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Alessia De Felice
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Maria Teresa Volpe
- Department Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | - Gemma Calamandrei
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Ricceri
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
33
|
Portfors CV, Perkel DJ. The role of ultrasonic vocalizations in mouse communication. Curr Opin Neurobiol 2014; 28:115-20. [PMID: 25062471 DOI: 10.1016/j.conb.2014.07.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/20/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022]
Abstract
Human speech and language underlie many aspects of social behavior and thus understanding their ultimate evolutionary function and proximate genetic and neural mechanisms is a fundamental goal in neuroscience. Mouse ultrasonic vocalizations have recently received enormous attention as possible models for human speech. This attention has raised the question of whether these vocalizations are learned and what roles they play in communication. In this review, we first discuss recent evidence that ultrasonic vocalizations are not learned. We then review current evidence addressing how adult vocalizations may communicate courtship, territorial and/or other information. While there is growing evidence that these signals play key roles in communication, many important questions remain unanswered.
Collapse
Affiliation(s)
- Christine V Portfors
- School of Biological Sciences, Washington State University, Vancouver, WA 98686, United States.
| | - David J Perkel
- Depts. Biology & Otolaryngology, University of Washington, Seattle, WA 98195-6515, United States
| |
Collapse
|
34
|
von Merten S, Hoier S, Pfeifle C, Tautz D. A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus). PLoS One 2014; 9:e97244. [PMID: 24816836 PMCID: PMC4016290 DOI: 10.1371/journal.pone.0097244] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/16/2014] [Indexed: 11/18/2022] Open
Abstract
It has long been known that rodents emit signals in the ultrasonic range, but their role in social communication and mating is still under active exploration. While inbred strains of house mice have emerged as a favourite model to study ultrasonic vocalisation (USV) patterns, studies in wild animals and natural situations are still rare. We focus here on two wild derived mouse populations. We recorded them in dyadic encounters for extended periods of time to assess possible roles of USVs and their divergence between allopatric populations. We have analysed song frequency and duration, as well as spectral features of songs and syllables. We show that the populations have indeed diverged in several of these aspects and that USV patterns emitted in a mating context differ from those emitted in same sex encounters. We find that females vocalize not less, in encounters with another female even more than males. This implies that the current focus of USVs being emitted mainly by males within the mating context needs to be reconsidered. Using a statistical syntax analysis we find complex temporal sequencing patterns that could suggest that the syntax conveys meaningful information to the receivers. We conclude that wild mice use USV for complex social interactions and that USV patterns can diverge fast between populations.
Collapse
Affiliation(s)
- Sophie von Merten
- Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail:
| | - Svenja Hoier
- Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Christine Pfeifle
- Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
35
|
Yang M, Loureiro D, Kalikhman D, Crawley JN. Male mice emit distinct ultrasonic vocalizations when the female leaves the social interaction arena. Front Behav Neurosci 2013; 7:159. [PMID: 24312027 PMCID: PMC3832782 DOI: 10.3389/fnbeh.2013.00159] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/25/2013] [Indexed: 12/30/2022] Open
Abstract
Adult male mice emit large number of complex ultrasonic vocalizations (USVs) when interacting with adult females. Call numbers and call categories differ greatly among inbred mouse strains. Little is known about USV emissions when the social partner departs. To investigate whether call repertoires and call rates are different when the male is interacting with a female and after the removal of the female, we designed a novel male-female social interaction test in which vocalizations were recorded across three phases. During phase 1, the male subject freely interacts with an unfamiliar estrus female mouse in a clean cage for 5 min. During phase 2, the female is removed while the male remains in the cage for 3 min. During phase 3, the same female is returned to the cage to rejoin the male subject mouse for 3 min. C57BL/6J (B6), FVB.129P2-Pde6b(+) Tyr(c-ch)/Ant (FVB), and BTBR T+ tf/J (BTBR) male subject mice were tested in this paradigm. All three strains emitted USVs during their initial interaction with the female partner. When the female was reintroduced in phase 3, numbers of USVs were similar to the initial introductory phase 1. Strain comparisons indicated fewer calls in pairs of BTBR males and stimulus females than in pairs of B6 males and stimulus females and pairs of FVB males and stimulus females. In the absence of the female, all FVB males vocalized, while only one third of B6 males and one third of BTBR males vocalized. In all three strains, changes in call category repertoires were detected after the female was removed. Call categories reverted to the phase 1 pattern when the female was returned in phase 3. Present findings indicate that males of commonly used inbred strains emit USVs when a partner female leaves the testing arena, suggesting that removing a salient social stimulus may be a unique approach to elicit USVs from mice. Our three-phase paradigm may also be useful for studying attention to social cues, and qualitative differences in vocalizations when a social partner is present vs. suddenly absent.
Collapse
Affiliation(s)
- Mu Yang
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine California, CA, USA ; Laboratory of Behavioral Neuroscience, National Institute of Mental Health Bethesda, MD, USA
| | | | | | | |
Collapse
|
36
|
Liu HX, Lopatina O, Higashida C, Fujimoto H, Akther S, Inzhutova A, Liang M, Zhong J, Tsuji T, Yoshihara T, Sumi K, Ishiyama M, Ma WJ, Ozaki M, Yagitani S, Yokoyama S, Mukaida N, Sakurai T, Hori O, Yoshioka K, Hirao A, Kato Y, Ishihara K, Kato I, Okamoto H, Cherepanov SM, Salmina AB, Hirai H, Asano M, Brown DA, Nagano I, Higashida H. Displays of paternal mouse pup retrieval following communicative interaction with maternal mates. Nat Commun 2013; 4:1346. [PMID: 23299896 PMCID: PMC4089749 DOI: 10.1038/ncomms2336] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/27/2012] [Indexed: 01/29/2023] Open
Abstract
Compared with the knowledge of maternal care, much less is known about the factors required for paternal parental care. Here we report that new sires of laboratory mice, though not spontaneously parental, can be induced to show maternal-like parental care (pup retrieval) using signals from dams separated from their pups. During this interaction, the maternal mates emit 38-kHz ultrasonic vocalizations to their male partners, which are equivalent to vocalizations that occur following pheromone stimulation. Without these signals or in the absence of maternal mates, the sires do not retrieve their pups within 5 min. These results show that, in mice, the maternal parent communicates to the paternal parent to encourage pup care. This new paradigm may be useful in the analysis of the parental brain during paternal care induced by interactive communication. Parental responsibilities in mice are usually carried out by the mother of the pups. In this study, the authors show that when mothers are separated from their mouse pups, they emit ultrasonic vocalizations to their male partners, who respond by administering paternal care to the pups.
Collapse
Affiliation(s)
- Hong-Xiang Liu
- Kanazawa University 21st Century COE Program on Innovative Brain Science on Development, Learning and Memory, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fujimoto H, Liu HX, Lopatina O, Brown DA, Higashida H. Scopolamine modulates paternal parental retrieval behavior in mice induced by the maternal mate. Neurosci Lett 2013; 546:63-6. [DOI: 10.1016/j.neulet.2013.04.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 11/24/2022]
|
38
|
Engineered deafness reveals that mouse courtship vocalizations do not require auditory experience. J Neurosci 2013; 33:5573-83. [PMID: 23536072 DOI: 10.1523/jneurosci.5054-12.2013] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Auditory experience during development is necessary for normal language acquisition in humans. Although songbirds, some cetaceans, and maybe bats may also be vocal learners, vocal learning has yet to be well established for a laboratory mammal. Mice are potentially an excellent model organism for studying mechanisms underlying vocal communication. Mice vocalize in different social contexts, yet whether they learn their vocalizations remains unresolved. To address this question, we compared ultrasonic courtship vocalizations emitted by chronically deaf and normal hearing adult male mice. We deafened CBA/CaJ male mice, engineered to express diphtheria toxin (DT) receptors in hair cells, by systemic injection of DT at postnatal day 2 (P2). By P9, almost all inner hair cells were absent and by P16 all inner and outer hair cells were absent in DTR mice. These mice did not show any auditory brainstem responses as adults. Wild-type littermates, also treated with DT at P2, had normal hair cells and normal auditory brainstem responses. We compared the temporal structure of vocalization bouts, the types of vocalizations, the patterns of syllables, and the acoustic features of each syllable type emitted by hearing and deaf males in the presence of a female. We found that almost all of the vocalization features we examined were similar in hearing and deaf animals. These findings indicate that mice do not need auditory experience during development to produce normal ultrasonic vocalizations in adulthood. We conclude that mouse courtship vocalizations are not acquired through auditory feedback-dependent learning.
Collapse
|
39
|
Wöhr M, Schwarting RKW. Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell Tissue Res 2013; 354:81-97. [DOI: 10.1007/s00441-013-1607-9] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
40
|
Hanson JL, Hurley LM. Female presence and estrous state influence mouse ultrasonic courtship vocalizations. PLoS One 2012; 7:e40782. [PMID: 22815817 PMCID: PMC3399843 DOI: 10.1371/journal.pone.0040782] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/13/2012] [Indexed: 02/02/2023] Open
Abstract
The laboratory mouse is an emerging model for context-dependent vocal signaling and reception. Mouse ultrasonic vocalizations are robustly produced in social contexts. In adults, male vocalization during courtship has become a model of interest for signal-receiver interactions. These vocalizations can be grouped into syllable types that are consistently produced by different subspecies and strains of mice. Vocalizations are unique to individuals, vary across development, and depend on social housing conditions. The behavioral significance of different syllable types, including the contexts in which different vocalizations are made and the responses listeners have to different types of vocalizations, is not well understood. We examined the effect of female presence and estrous state on male vocalizations by exploring the use of syllable types and the parameters of syllables during courtship. We also explored correlations between vocalizations and other behaviors. These experimental manipulations produced four main findings: 1) vocalizations varied among males, 2) the production of USVs and an increase in the use of a specific syllable type were temporally related to mounting behavior, 3) the frequency (kHz), bandwidth, and duration of syllables produced by males were influenced by the estrous phase of female partners, and 4) syllable types changed when females were removed. These findings show that mouse ultrasonic courtship vocalizations are sensitive to changes in female phase and presence, further demonstrating the context-sensitivity of these calls.
Collapse
Affiliation(s)
- Jessica L Hanson
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America.
| | | |
Collapse
|
41
|
Hammerschmidt K, Radyushkin K, Ehrenreich H, Fischer J. The structure and usage of female and male mouse ultrasonic vocalizations reveal only minor differences. PLoS One 2012; 7:e41133. [PMID: 22815941 PMCID: PMC3398926 DOI: 10.1371/journal.pone.0041133] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/18/2012] [Indexed: 11/18/2022] Open
Abstract
Ultrasonic vocalizations (USV) of mice are increasingly recognized as informative dependent variables in studies using mouse models of human diseases. While pup vocalizations primarily serve to re-establish contact with the mother, adult male "songs" were considered to be courtship signals. Alternatively, mouse USVs may generally function as territorial signals. To distinguish between these two hypotheses, we compared the structure and usage of adult male and female USVs in staged resident-intruder encounters. If calls function primarily as courtship signals, males should respond stronger than females, specifically when presented with a female intruder. Refuting this hypothesis, we found that in response to female intruders, females called more than males (228±32 calls/min vs. 71±15 calls/min), and males called more to female than to male intruders (14±7.5 calls/min). There were no significant differences in the acoustic characteristics of the calls given by females and males. To control for the influence of the intruder's behavior on calling, we repeated the experiments using anaesthetized intruders. Again, females produced more calls to female than male intruders (173±17 calls/min vs. 71±15 calls/min), while males called more in response to female than male intruders (39±17 calls/min), and there were no acoustic differences in female and male calls. The vocal activity did not differ significantly with regard to intruder state (awake or anaesthetized), while the acoustic structure exhibited significant differences. Taken together, our findings support the view that calls do not mainly function as courtship signals, although they might serve both a territorial (sex-independent) and a courtship function. The comparison of responses to awake vs. anaesthetized intruders suggests that the latter are sufficient to elicit vocal activity. The subtle acoustic differences, however, indicate that the subject differentiates between intruder states.
Collapse
Affiliation(s)
- Kurt Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany.
| | | | | | | |
Collapse
|
42
|
Testing social acoustic memory in rats: effects of stimulus configuration and long-term memory on the induction of social approach behavior by appetitive 50-kHz ultrasonic vocalizations. Neurobiol Learn Mem 2012; 98:154-64. [PMID: 22677211 DOI: 10.1016/j.nlm.2012.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 02/03/2023]
Abstract
Rats emit distinct types of ultrasonic vocalizations (USVs), which serve as situation-dependent affective signals. In appetitive situations, such as rough-and-tumble-play, high-frequency 50-kHz USVs occur, whereas low-frequency 22-kHz USVs can be observed in aversive situations, such as social defeat. USVs serve distinct communicative functions and induce call-specific behavioral responses in the receiver. While aversive 22-kHz USVs serve as alarm calls and induce behavioral inhibition, appetitive 50-kHz USVs have a pro-social communicative function and elicit social approach behavior, supporting the notion that they serve as social contact calls to (re)establish or maintain contact among conspecifics. The aim of the present study was to use the rat's ability to communicate in the ultrasonic range via high-frequency 50-kHz USVs in order to develop a test for social acoustic memory in rats with relevance for human verbal memory. Verbal learning and memory is among the seven cognitive domains identified as commonly deficient in human schizophrenia patients, but particularly difficult to model. We therefore tested whether the induction of social approach behavior by playback of appetitive 50-kHz USVs is dependent on (1) acoustic stimulus configuration and (2) social long-term memory, and whether (3) social long-term memory effects can be blocked by the administration of scopolamine, a muscarinic acetylcholine antagonist producing amnesia. Results show that social approach behavior in response to playback of natural 50-kHz USVs depends on acoustic stimulus configuration and occurs only when sound energy is concentrated to a critical frequency band in the ultrasonic range. Social approach behavior was detected during the first exposure to playback of 50-kHz USVs, whereas no such response was observed during the second exposure 1week later, indicating a stable memory trace. In contrast, when memory formation was blocked by i.p. administration of scopolamine (0.5mg/kg or 1.5mg/kg) immediately after the first exposure, rats displayed social approach behavior during the second exposure as well. Induction of social approach behavior in response to repeated playback of natural 50-kHz USVs may therefore provide a new and rather unique approach for testing social acoustic memory in rats with relevance to human verbal memory.
Collapse
|
43
|
Schechter M, Pinhasov A, Weller A, Fride E. Blocking the postpartum mouse dam's CB1 receptors impairs maternal behavior as well as offspring development and their adult social–emotional behavior. Behav Brain Res 2012; 226:481-92. [DOI: 10.1016/j.bbr.2011.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 11/28/2022]
|
44
|
Similar acoustic structure and behavioural context of vocalizations produced by male and female California mice in the wild. Anim Behav 2011. [DOI: 10.1016/j.anbehav.2011.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Hoffmann F, Musolf K, Penn DJ. Ultrasonic courtship vocalizations in wild house mice: spectrographic analyses. J ETHOL 2011. [DOI: 10.1007/s10164-011-0312-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
46
|
Hoffmann F, Musolf K, Penn DJ. Spectrographic analyses reveal signals of individuality and kinship in the ultrasonic courtship vocalizations of wild house mice. Physiol Behav 2011; 105:766-71. [PMID: 22037196 DOI: 10.1016/j.physbeh.2011.10.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 11/15/2022]
Abstract
Male house mice produce ultrasonic vocalizations (USVs) during courtship; however, it is unclear why males produce USVs and what information their calls communicate. In laboratory mice, male USVs are attractive to females [1,2]. They appear to facilitate mating and coordinate copulation behavior [3,4] perhaps because USVs provide information about males' quality or compatibility. In our studies on wild house mice (Mus musculus musculus), we found that females can discriminate the USVs of unrelated males versus siblings [5]. In this study we conducted spectrographic and temporal analyses on recordings of courtship USVs of wild males. We found evidence that males' vocalizations contain signatures of individuality and kinship. The individuality of males' USVs could be due to differences in the filter function of the vocal tract or differences of the vocal apparatus, which might directly influence the temporal and spectral features of vocalizations. Further studies are needed to determine the consistency of individual USVs over longer periods of time and across contexts, and whether the familial effects we found are due to genetic relatedness, social learning (imprinting), or both.
Collapse
Affiliation(s)
- Frauke Hoffmann
- Konrad Lorenz Institute for Ethology, Austrian Academy of Sciences, Savoyenstr. 1a, A-1160 Vienna, Austria.
| | | | | |
Collapse
|
47
|
Portfors C, Mayko Z, Jonson K, Cha G, Roberts P. Spatial organization of receptive fields in the auditory midbrain of awake mouse. Neuroscience 2011; 193:429-39. [DOI: 10.1016/j.neuroscience.2011.07.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 07/09/2011] [Indexed: 10/18/2022]
|
48
|
Wöhr M, Moles A, Schwarting RKW, D'Amato FR. Lack of social exploratory activation in male μ-opioid receptor KO mice in response to playback of female ultrasonic vocalizations. Soc Neurosci 2011; 6:76-87. [DOI: 10.1080/17470911003765560] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Scattoni ML, Ricceri L, Crawley JN. Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. GENES, BRAIN, AND BEHAVIOR 2011; 10:44-56. [PMID: 20618443 PMCID: PMC2972364 DOI: 10.1111/j.1601-183x.2010.00623.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BTBR T+tf/J (BTBR) is an inbred mouse strain that displays social deficits and repetitive behaviors analogous to the first and third diagnostic symptoms of autism. We previously reported an unusual pattern of ultrasonic vocalizations in BTBR pups that may represent a behavioral homolog to the second diagnostic symptom of autism, impaired communication. This study investigated the social and vocal repertoire in adult BTBR mice, to evaluate the role of ultrasonic vocalizations in multiple social situations at the adult stage of development. Three different social contexts were considered: male-female, male-male (resident-intruder) and female-female interactions. Behavioral responses and ultrasonic vocalizations were recorded for BTBR and for the highly social control strain C57BL/6J (B6). No episodes of overt fighting or mating were observed during the short durations of the three different experimental encounters. BTBR displayed lower levels of vocalizations and social investigation in all three social contexts as compared with B6. In addition, the correlation analyses between social investigation and ultrasonic vocalization emission rate showed that in B6 mice, the two variables were positively correlated in all the three different social settings, whereas in BTBR mice, the positive correlation was significant only in the male-female interactions. These findings strongly support the value of simultaneously recording two aspects of the mouse social repertoire: social motivation and bioacoustic communication. Moreover, our findings in adults are consistent with previous results in pups, showing an unusual vocal repertoire in BTBR as compared with B6.
Collapse
Affiliation(s)
- M L Scattoni
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA.
| | | | | |
Collapse
|
50
|
Rodriguiz RM, Colvin JS, Wetsel WC. Neurophenotyping genetically modified mice for social behavior. Methods Mol Biol 2011; 768:343-63. [PMID: 21805253 DOI: 10.1007/978-1-61779-204-5_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sociability in mice is a multidimensional adaptive and functional response. Due to its complexity, it is important that researchers use well-defined behavioral assays that are easily replicated with clearly defined ethograms. In the Mouse Behavioral and Neuroendocrine Analysis Core Facility at Duke University, we have developed a broad series of tests that examine different components of neonatal and adult social behaviors that include sociability, sexual behavior, aggressive and territorial responses, and maternal behaviors. While the purpose of this chapter is not to provide an exhaustive description of all mouse social tests available, we provide investigators with a description of basic procedures and considerations necessary to develop a successful social behavior testing program within their laboratories.
Collapse
Affiliation(s)
- Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences and Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|