1
|
Hopkins WD, Spocter MA, Mulholland MM, Sherwood CC. Gray matter volume and asymmetry in Broca's and Wernicke's area homologs in chimpanzees (Pan troglodytes) using a probabilistic region of interest approach. Neuroimage 2025; 307:121038. [PMID: 39826775 DOI: 10.1016/j.neuroimage.2025.121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
Broca's and Wernicke's areas are comprised of Brodmann areas 44, 45 and 22 in the human brain. Because of their roles in higher cognitive and linguistic function, there has been historical and contemporary interest in comparative studies on the morphology and cytoarchitectonic organization in Broca's and Wernicke's between primate species. One challenge to comparative morphological studies between human and nonhuman primates for Broca's and Wernicke's areas is the absence in homologous sulci used to define these regions. To address this limitation, we created probabilistic atlas maps of BA44, BA45 and BA22 based on previously reported cytoarchitectonic maps of these regions in chimpanzees. We then applied the maps to segmented gray matter volume to estimate gray matter within each region and hemisphere. Females were found to have significantly higher gray matter volumes for BA44 and BA45 compared males. Significant negative associations were found between age and gray matter volume for BA44 and BA45 but not BA22. Population-level asymmetries were found for BA44, BA45 and BA22 but there are some limitations in the interpretation of these findings. Lastly, using quantitative genetic analyses, we found significant heritability in the average gray matter volume for BA44 and BA45 but not BA22. The sex and age effects found in chimpanzees are consistent with previous studies in humans.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA.
| | | | - Michele M Mulholland
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington DC, USA
| |
Collapse
|
2
|
Haussler KK, le Jeune SS, MacKechnie-Guire R, Latif SN, Clayton HM. The Challenge of Defining Laterality in Horses: Is It Laterality or Just Asymmetry? Animals (Basel) 2025; 15:288. [PMID: 39943060 PMCID: PMC11816311 DOI: 10.3390/ani15030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
The defining characteristic of laterality is the dominance of one side of the brain controlling specific functions of paired organs or on one side of the body. Structural and functional asymmetries are ubiquitous in horses and range from anatomical features (e.g., the length of long bones) to the gathering of sensory information (e.g., which eye is used to observe unfamiliar scenes) and motor functions (e.g., left-right differences in locomotion). There is a common tendency to assign observed structural or functional asymmetries to lateralization, which often involves more than a simple left-right difference in observed behavior. This narrative review explores the concept of laterality relative to the structural and functional asymmetries reported in horses. Inconsistent and poorly defined terminology, a widely disparate methodology, and a lack of standardized thresholds make it difficult to assess the presence or degree of laterality. Within this context, there seems to be limited evidence of laterality in horses and much more prevalent and stronger support for structural and functional asymmetries due to a wide range of well-established behavioral, nociceptive, and biomechanical mechanisms. The authors caution against generalizing the idea that all observed structural or functional asymmetries in horses are due to laterality.
Collapse
Affiliation(s)
- Kevin K. Haussler
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Sarah S. le Jeune
- Department of Surgical and Radiological Sciences, University of California-Davis, Davis, CA 95616, USA;
| | | | - Selma N. Latif
- Pferdepraxis Vetcheck GmbH, Wierezwil-Rüberi 273, 3255 Rapperswil BE, Bern, Switzerland;
| | - Hilary M. Clayton
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
3
|
Guerra S, Castiello U, Bonato B, Dadda M. Handedness in Animals and Plants. BIOLOGY 2024; 13:502. [PMID: 39015821 PMCID: PMC7616222 DOI: 10.3390/biology13070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Structural and functional asymmetries are traceable in every form of life, and some lateralities are homologous. Functionally speaking, the division of labour between the two halves of the brain is a basic characteristic of the nervous system that arose even before the appearance of vertebrates. The most well-known expression of this specialisation in humans is hand dominance, also known as handedness. Even if hand/limb/paw dominance is far more commonly associated with the presence of a nervous system, it is also observed in its own form in aneural organisms, such as plants. To date, little is known regarding the possible functional significance of this dominance in plants, and many questions remain open (among them, whether it reflects a generalised behavioural asymmetry). Here, we propose a comparative approach to the study of handedness, including plants, by taking advantage of the experimental models and paradigms already used to study laterality in humans and various animal species. By taking this approach, we aim to enrich our knowledge of the concept of handedness across natural kingdoms.
Collapse
Affiliation(s)
- Silvia Guerra
- Department of General Psychology (DPG), University of Padova, 35131 Padova, Italy; (U.C.); (B.B.); (M.D.)
| | | | | | | |
Collapse
|
4
|
Caspar KR, Pallasdies F, Mader L, Sartorelli H, Begall S. The evolution and biological correlates of hand preferences in anthropoid primates. eLife 2022; 11:e77875. [PMID: 36454207 PMCID: PMC9714969 DOI: 10.7554/elife.77875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
The evolution of human right-handedness has been intensively debated for decades. Manual lateralization patterns in non-human primates have the potential to elucidate evolutionary determinants of human handedness, but restricted species samples and inconsistent methodologies have so far limited comparative phylogenetic studies. By combining original data with published literature reports, we assembled data on hand preferences for standardized object manipulation in 1786 individuals from 38 species of anthropoid primates, including monkeys, apes, and humans. Based on that, we employ quantitative phylogenetic methods to test prevalent hypotheses on the roles of ecology, brain size, and tool use in primate handedness evolution. We confirm that human right-handedness represents an unparalleled extreme among anthropoids and found taxa displaying population-level handedness to be rare. Species-level direction of manual lateralization was largely uniform among non-human primates and did not strongly correlate with any of the selected biological predictors, nor with phylogeny. In contrast, we recovered highly variable patterns of hand preference strength, which show signatures of both ecology and phylogeny. In particular, terrestrial primates tend to display weaker hand preferences than arboreal species. These results challenge popular ideas on primate handedness evolution, including the postural origins hypothesis. Furthermore, they point to a potential adaptive benefit of disparate lateralization strength in primates, a measure of hand preference that has often been overlooked in the past. Finally, our data show that human lateralization patterns do not align with trends found among other anthropoids, suggesting that unique selective pressures gave rise to the unusual hand preferences of our species.
Collapse
Affiliation(s)
- Kai R Caspar
- Department of General Zoology, University of Duisburg-EssenEssenGermany
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life SciencesPrahaCzech Republic
| | - Fabian Pallasdies
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
| | - Larissa Mader
- Department of General Zoology, University of Duisburg-EssenEssenGermany
| | | | - Sabine Begall
- Department of General Zoology, University of Duisburg-EssenEssenGermany
| |
Collapse
|
5
|
Nelson EL. Developmental cascades as a framework for primate handedness. Front Behav Neurosci 2022; 16:1063348. [PMID: 36419909 PMCID: PMC9676354 DOI: 10.3389/fnbeh.2022.1063348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
|
6
|
Hopkins WD. Neuroanatomical asymmetries in nonhuman primates in the homologs to Broca's and Wernicke's areas: a mini-review. Emerg Top Life Sci 2022; 6:ETLS20210279. [PMID: 36073786 PMCID: PMC9472819 DOI: 10.1042/etls20210279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/01/2023]
Abstract
Population-level lateralization in structure and function is a fundamental measure of the human nervous system. To what extent nonhuman primates exhibit similar patterns of asymmetry remains a topic of considerable scientific interest. In this mini-review, a brief summary of findings on brain asymmetries in nonhuman primates in brain regions considered to the homolog's to Broca's and Wernicke's area are presented. Limitations of existing and directions for future studies are discussed in the context of facilitating comparative investigations in primates.
Collapse
Affiliation(s)
- William D. Hopkins
- Department of Comparative Medicine, Michale E Keeling Center for Comparative Medicine and Research, M D Anderson Cancer Center, Bastrop, TX 78602, U.S.A
| |
Collapse
|
7
|
Soto C, Gázquez JMM, Llorente M. Hand preferences in coordinated bimanual tasks in non-human primates: A systematic review and meta-analysis. Neurosci Biobehav Rev 2022; 141:104822. [PMID: 35961384 DOI: 10.1016/j.neubiorev.2022.104822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022]
Abstract
The evolutionary significance of hand preferences among non-human primates and humans has been studied for decades with the aim of determining the origins of the population-level tendency. In this study, a meta-analysis was conducted to statistically integrate data on hand preferences in non-human primates performing the tube task and other bimanual tasks to determine the presence and direction of manual laterality. Significant individual-level lateralization was obtained for these bimanual tasks. In nonhuman primates, 82% of the animals analysed showed right or left-hand preference performing the tube task, this figure being 90% for other bimanual tasks. In contrast with humans, no asymmetry was found at the population level. Additionally, population-level preferences were not found in either of the tasks, although a strong manual preference was found when performing the tube task and other bimanual tasks. Species was studied as a variable moderator throughout the meta-analysis. These results highlight the importance of standardized testing methodologies across species and institutions to obtain comparable data and fill the gaps in the taxonomy.
Collapse
Affiliation(s)
- Cristina Soto
- Fundació UdG: Innovació i Formació, Universitat de Girona, Carrer Pic de Peguera 11, 17003 Girona, Spain
| | - José M M Gázquez
- Fundació UdG: Innovació i Formació, Universitat de Girona, Carrer Pic de Peguera 11, 17003 Girona, Spain
| | - Miquel Llorente
- Fundació UdG: Innovació i Formació, Universitat de Girona, Carrer Pic de Peguera 11, 17003 Girona, Spain; Grup de Recerca "Llenguatge i Cognició", Departament de Psicologia, Facultat d'Educació i Psicologia, Universitat de Girona, Plaça Sant Domènec 9, 17004 Girona, Spain.
| |
Collapse
|
8
|
Structural Brain Asymmetries for Language: A Comparative Approach across Primates. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Humans are the only species that can speak. Nonhuman primates, however, share some ‘domain-general’ cognitive properties that are essential to language processes. Whether these shared cognitive properties between humans and nonhuman primates are the results of a continuous evolution [homologies] or of a convergent evolution [analogies] remain difficult to demonstrate. However, comparing their respective underlying structure—the brain—to determinate their similarity or their divergence across species is critical to help increase the probability of either of the two hypotheses, respectively. Key areas associated with language processes are the Planum Temporale, Broca’s Area, the Arcuate Fasciculus, Cingulate Sulcus, The Insula, Superior Temporal Sulcus, the Inferior Parietal lobe, and the Central Sulcus. These structures share a fundamental feature: They are functionally and structurally specialised to one hemisphere. Interestingly, several nonhuman primate species, such as chimpanzees and baboons, show human-like structural brain asymmetries for areas homologous to key language regions. The question then arises: for what function did these asymmetries arise in non-linguistic primates, if not for language per se? In an attempt to provide some answers, we review the literature on the lateralisation of the gestural communication system, which may represent the missing behavioural link to brain asymmetries for language area’s homologues in our common ancestor.
Collapse
|
9
|
Nelson EL. Insights Into Human and Nonhuman Primate Handedness From Measuring Both Hands. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2022. [DOI: 10.1177/09637214211062876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Handedness is part of our everyday lives, but where does it come from? Researchers studying nonhuman primates and young children have approached this question from different perspectives—evolutionary and developmental, respectively. Their work converges on the conclusion that measurement matters in the science of handedness. Coming to a consensus on assessment will guide future research into the origins of handedness. A candidate behavior for promoting multidisciplinary comparison is role-differentiated bimanual manipulation.
Collapse
|
10
|
Becker Y, Claidière N, Margiotoudi K, Marie D, Roth M, Nazarian B, Anton JL, Coulon O, Meguerditchian A. Broca area homologue's asymmetry reflects gestural communication lateralisation in monkeys (Papio anubis). eLife 2022; 11:70521. [PMID: 35108197 PMCID: PMC8846582 DOI: 10.7554/elife.70521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Manual gestures and speech recruit a common neural network, involving Broca’s area in the left hemisphere. Such speech-gesture integration gave rise to theories on the critical role of manual gesturing in the origin of language. Within this evolutionary framework, research on gestural communication in our closer primate relatives has received renewed attention for investigating its potential language-like features. Here, using in vivo anatomical MRI in 50 baboons, we found that communicative gesturing is related to Broca homologue’s marker in monkeys, namely the ventral portion of the Inferior Arcuate sulcus (IA sulcus). In fact, both direction and degree of gestural communication’s handedness – but not handedness for object manipulation are associated and correlated with contralateral depth asymmetry at this exact IA sulcus portion. In other words, baboons that prefer to communicate with their right hand have a deeper left-than-right IA sulcus, than those preferring to communicate with their left hand and vice versa. Interestingly, in contrast to handedness for object manipulation, gestural communication’s lateralisation is not associated to the Central sulcus depth asymmetry, suggesting a double dissociation of handedness’ types between manipulative action and gestural communication. It is thus not excluded that this specific gestural lateralisation signature within the baboons’ frontal cortex might reflect a phylogenetical continuity with language-related Broca lateralisation in humans.
Collapse
Affiliation(s)
- Yannick Becker
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Nicolas Claidière
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Konstantina Margiotoudi
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Damien Marie
- UMR7290, Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| | - Muriel Roth
- Centre IRMf Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Bruno Nazarian
- Centre IRM Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Jean-Luc Anton
- Centre IRM Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille University, Marseille, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
11
|
Limb Preference in Animals: New Insights into the Evolution of Manual Laterality in Hominids. Symmetry (Basel) 2022. [DOI: 10.3390/sym14010096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Until the 1990s, the notion of brain lateralization—the division of labor between the two hemispheres—and its more visible behavioral manifestation, handedness, remained fiercely defined as a human specific trait. Since then, many studies have evidenced lateralized functions in a wide range of species, including both vertebrates and invertebrates. In this review, we highlight the great contribution of comparative research to the understanding of human handedness’ evolutionary and developmental pathways, by distinguishing animal forelimb asymmetries for functionally different actions—i.e., potentially depending on different hemispheric specializations. Firstly, lateralization for the manipulation of inanimate objects has been associated with genetic and ontogenetic factors, with specific brain regions’ activity, and with morphological limb specializations. These could have emerged under selective pressures notably related to the animal locomotion and social styles. Secondly, lateralization for actions directed to living targets (to self or conspecifics) seems to be in relationship with the brain lateralization for emotion processing. Thirdly, findings on primates’ hand preferences for communicative gestures accounts for a link between gestural laterality and a left-hemispheric specialization for intentional communication and language. Throughout this review, we highlight the value of functional neuroimaging and developmental approaches to shed light on the mechanisms underlying human handedness.
Collapse
|
12
|
Boulinguez-Ambroise G, Pouydebat E, Disarbois É, Meguerditchian A. Maternal cradling bias in baboons: The first environmental factor affecting early infant handedness development? Dev Sci 2021; 25:e13179. [PMID: 34626051 DOI: 10.1111/desc.13179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 01/19/2023]
Abstract
The most emblematic behavioral manifestation of human brain asymmetries is handedness. While the precise mechanisms behind the development of handedness are still widely debated, empirical evidences highlight that besides genetic factors, environmental factors may play a crucial role. As one of these factors, maternal cradling behavior may play a key role in the emergence of early handedness in the offspring. In the present study we followed 41 Papio anubis infants living in social groups with their mother for which direction (e.g., left- or right-arm) and degree of maternal cradling-side bias were available from a previous published study. We assessed hand preferences for an unimanual grasping task at three developmental stages: (A) 0-4, (B) 4-6, and (C) 9-10 months of age. We found that individual hand preferences for grasping exist as soon as the first months of age, with a population-level left-handedness predominance, being stable until 6 months; to wit the period during which juveniles are mainly carried by their mothers. More importantly, this early postnatal handedness is positively correlated with maternal cradling lateralization. Interestingly, hand preferences assessed later in the development, once juveniles are no longer carried (i.e., from 9 to 10 months of age), are less dependent from the maternal cradling bias and less consistent with the earlier developmental stages, especially in infants initially cradled on the right maternal side. Our findings suggest that the ontogenetic dynamics of the infant's hand preference and its changes might ultimately rely on the degree of infant dependence from the mother across development.
Collapse
Affiliation(s)
- Grégoire Boulinguez-Ambroise
- Laboratoire de Psychologie Cognitive UMR7290, CNRS, Institut Language, Communication and the Brain, Aix-Marseille Univ, Paris, France.,Station de Primatologie CNRS, Rousset-sur-Arc, Paris, France.,Mecanismes Adaptatifs et Évolution UMR 7179-CNRS - National Museum of Natural History, Paris, France
| | - Emmanuelle Pouydebat
- Mecanismes Adaptatifs et Évolution UMR 7179-CNRS - National Museum of Natural History, Paris, France
| | - Éloïse Disarbois
- Laboratoire de Psychologie Cognitive UMR7290, CNRS, Institut Language, Communication and the Brain, Aix-Marseille Univ, Paris, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive UMR7290, CNRS, Institut Language, Communication and the Brain, Aix-Marseille Univ, Paris, France.,Station de Primatologie CNRS, Rousset-sur-Arc, Paris, France
| |
Collapse
|
13
|
Tamura M, Akomo-Okoue EF. Hand preference in unimanual and bimanual coordinated tasks in wild western lowland gorillas (Gorilla gorilla gorilla) feeding on African ginger (Zingiberaceae). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:531-545. [PMID: 33429467 DOI: 10.1002/ajpa.24227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Bimanual coordinated behaviors are critical for detecting robust individual hand preference in nonhuman primates but are particularly challenging to observe in the wild. This study focuses on spontaneous feeding behavior on African ginger (Aframomum sp. and Renealmia sp.), which involves a unimanual task (reaching and pulling out a ginger stem) and a bimanual coordinated task (extracting pith from a ginger stem) by wild western lowland gorillas. MATERIALS AND METHODS Study subjects were 21 gorillas in the Moukalaba-Doudou National Park, Gabon. We examined whether they exhibit significant hand preference at the individual and group levels for both tasks. RESULTS Sixteen gorillas showed significant hand preference in the unimanual task, whereas all 21 individuals showed significant hand preference in the bimanual coordinated task. Hand preference was significantly stronger in the bimanual coordinated task than in the unimanual task. It is noteworthy that gorillas showed a significant right-hand preference at the group level for the bimanual task (roughly 70% of the subjects). DISCUSSION This study confirmed that bimanual coordinated tasks are more sensitive in detecting hand preferences in nonhuman primates. In addition to the bimanual nature of the task, the precision grip for processing and the importance of African ginger as a food resource might influence the expression of hand preference. Evidence of a group-level right-hand preference may support the "postural origins theory." Because all wild African great apes feed on the pith of African ginger, comparing this task and its hand preferences can contribute toward a better understanding of the evolution of handedness in Hominidae.
Collapse
Affiliation(s)
- Masaya Tamura
- Laboratory of Human Evolution Studies, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
14
|
Abstract
Since foot preference of cockatoos and parrots to hold and manipulate food and other objects has been associated with better ability to perform certain tasks, we predicted that either strength or direction of foot preference would correlate with brain size. Our study of 25 psittacine species of Australia found that species with larger absolute brain mass have stronger foot preferences and that percent left-footedness is correlated positively with brain mass. In a sub-sample of 11 species, we found an association between foot preference and size of the nidopallial region of the telencephalon, an area equivalent to the mammalian cortex and including regions with executive function and other higher-level functions. Our analysis showed that percent left-foot use correlates positively and significantly with size of the nidopallium relative to the whole brain, but not with the relative size of the optic tecta. Psittacine species with stronger left-foot preferences have larger brains, with the nidopallium making up a greater proportion of those brains. Our results are the first to show an association between brain size and asymmetrical limb use by parrots and cockatoos. Our results support the hypothesis that limb preference enhances brain capacity and higher (nidopallial) functioning.
Collapse
|
15
|
Poirier C, Hamed SB, Garcia-Saldivar P, Kwok SC, Meguerditchian A, Merchant H, Rogers J, Wells S, Fox AS. Beyond MRI: on the scientific value of combining non-human primate neuroimaging with metadata. Neuroimage 2021; 228:117679. [PMID: 33359343 PMCID: PMC7903159 DOI: 10.1016/j.neuroimage.2020.117679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
Sharing and pooling large amounts of non-human primate neuroimaging data offer new exciting opportunities to understand the primate brain. The potential of big data in non-human primate neuroimaging could however be tremendously enhanced by combining such neuroimaging data with other types of information. Here we describe metadata that have been identified as particularly valuable by the non-human primate neuroimaging community, including behavioural, genetic, physiological and phylogenetic data.
Collapse
Affiliation(s)
- Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle 6, UK.
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France
| | - Pamela Garcia-Saldivar
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230 México
| | - Sze Chai Kwok
- Shanghai Key Laboratory of Brain Functional Genomics, Key Laboratory of Brain Functional Genomics Ministry of Education, Shanghai Key Laboratory of Magnetic Resonance, Affiliated Mental Health Center (ECNU), Shanghai Changning Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China; Division of Natural and Applied Sciences, Duke Kunshan University, Duke Institute for Brain Sciences, Kunshan, Jiangsu, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, UMR7290, Université Aix-Marseille/CNRS, Institut Language, Communication and the Brain 13331 Marseille, France
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230 México
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA 77030
| | - Sara Wells
- Centre for Macaques, MRC Harwell Institute, Porton Down, Salisbury, United Kingdom
| | - Andrew S Fox
- California National Primate Research Center, Department of Psychology, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
16
|
Xiang L, Crow TJ, Hopkins WD, Roberts N. Comparison of Surface Area and Cortical Thickness Asymmetry in the Human and Chimpanzee Brain. Cereb Cortex 2020; 34:bhaa202. [PMID: 33026423 PMCID: PMC10859246 DOI: 10.1093/cercor/bhaa202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Comparative study of the structural asymmetry of the human and chimpanzee brain may shed light on the evolution of language and other cognitive abilities in humans. Here we report the results of vertex-wise and ROI-based analyses that compared surface area (SA) and cortical thickness (CT) asymmetries in 3D MR images obtained for 91 humans and 77 chimpanzees. The human brain is substantially more asymmetric than the chimpanzee brain. In particular, the human brain has 1) larger total SA in the right compared with the left cerebral hemisphere, 2) a global torque-like asymmetry pattern of widespread thicker cortex in the left compared with the right frontal and the right compared with the left temporo-parieto-occipital lobe, and 3) local asymmetries, most notably in medial occipital cortex and superior temporal gyrus, where rightward asymmetry is observed for both SA and CT. There is also 4) a prominent asymmetry specific to the chimpanzee brain, namely, rightward CT asymmetry of precentral cortex. These findings provide evidence of there being substantial differences in asymmetry between the human and chimpanzee brain. The unique asymmetries of the human brain are potential neural substrates for cognitive specializations, and the presence of significant CT asymmetry of precentral gyrus in the chimpanzee brain should be further investigated.
Collapse
Affiliation(s)
- Li Xiang
- School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Timothy J Crow
- POWIC, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK
| | - William D Hopkins
- The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Neil Roberts
- School of Clinical Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
17
|
Frenkel-Toledo S, Ofir-Geva S, Soroker N. Lesion Topography Impact on Shoulder Abduction and Finger Extension Following Left and Right Hemispheric Stroke. Front Hum Neurosci 2020; 14:282. [PMID: 32765245 PMCID: PMC7379861 DOI: 10.3389/fnhum.2020.00282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
The existence of shoulder abduction and finger extension movement capacity shortly after stroke onset is an important prognostic factor, indicating favorable functional outcomes for the hemiparetic upper limb (HUL). Here, we asked whether variation in lesion topography affects these two movements similarly or distinctly and whether lesion impact is similar or distinct for left and right hemisphere damage. Shoulder abduction and finger extension movements were examined in 77 chronic post-stroke patients using relevant items of the Fugl-Meyer test. Lesion effects were analyzed separately for left and right hemispheric damage patient groups, using voxel-based lesion-symptom mapping. In the left hemispheric damage group, shoulder abduction and finger extension were affected only by damage to the corticospinal tract in its passage through the corona radiata. In contrast, following the right hemispheric damage, these two movements were affected not only by corticospinal tract damage but also by damage to white matter association tracts, the putamen, and the insular cortex. In both groups, voxel clusters have been found where damage affected shoulder abduction and also finger extension, along with voxels where damage affected only one of the two movements. The capacity to execute shoulder abduction and finger extension movements following stroke is affected significantly by damage to shared and distinct voxels in the corticospinal tract in left-hemispheric damage patients and by damage to shared and distinct voxels in a larger array of cortical and subcortical regions in right hemispheric damage patients.
Collapse
Affiliation(s)
- Silvi Frenkel-Toledo
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel.,Department of Neurological Rehabilitation, Loewenstein Rehabilitation Hospital, Raanana, Israel
| | - Shay Ofir-Geva
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Hospital, Raanana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nachum Soroker
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Hospital, Raanana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Abstract
By examining the development of lateralization in the sensory and motor systems of the human fetus and chick embryo, this paper debates which lateralized functions develop first and what interactions may occur between the different sensory and motor systems during development. It also discusses some known influences of inputs from the environment on the development of lateralization, particularly the effects of light exposure on the development of visual and motor lateralization in chicks. The effects of light on the human fetus are related in this context. Using the chick embryo as a model to elucidate the genetic and environmental factors involved in development of lateralization, some understanding has been gained about how these lateralized functions emerge. At the same time, the value of carrying out much more research on the development of the various types of lateralization has become apparent.
Collapse
|
19
|
Loutit AJ, Potas JR. Restoring Somatosensation: Advantages and Current Limitations of Targeting the Brainstem Dorsal Column Nuclei Complex. Front Neurosci 2020; 14:156. [PMID: 32184706 PMCID: PMC7058659 DOI: 10.3389/fnins.2020.00156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Current neural prostheses can restore limb movement to tetraplegic patients by translating brain signals coding movements to control a variety of actuators. Fast and accurate somatosensory feedback is essential for normal movement, particularly dexterous tasks, but is currently lacking in motor neural prostheses. Attempts to restore somatosensory feedback have largely focused on cortical stimulation which, thus far, have succeeded in eliciting minimal naturalistic sensations. Yet, a question that deserves more attention is whether the cortex is the best place to activate the central nervous system to restore somatosensation. Here, we propose that the brainstem dorsal column nuclei are an ideal alternative target to restore somatosensation. We review some of the recent literature investigating the dorsal column nuclei functional organization and neurophysiology and highlight some of the advantages and limitations of the dorsal column nuclei as a future neural prosthetic target. Recent evidence supports the dorsal column nuclei as a potential neural prosthetic target, but also identifies several gaps in our knowledge as well as potential limitations which need to be addressed before such a goal can become reality.
Collapse
Affiliation(s)
| | - Jason R. Potas
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Handedness in monkeys reflects hemispheric specialization within the central sulcus. An in vivo MRI study in right- and left-handed olive baboons. Cortex 2019; 118:203-211. [DOI: 10.1016/j.cortex.2019.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/03/2018] [Accepted: 01/03/2019] [Indexed: 01/01/2023]
|
21
|
Prieur J, Lemasson A, Barbu S, Blois‐Heulin C. History, development and current advances concerning the evolutionary roots of human right‐handedness and language: Brain lateralisation and manual laterality in non‐human primates. Ethology 2018. [DOI: 10.1111/eth.12827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jacques Prieur
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| | - Alban Lemasson
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| | - Stéphanie Barbu
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| | - Catherine Blois‐Heulin
- CNRS, EthoS (Ethologie animale et humaine) – UMR 6552 Universite de Rennes, Normandie Universite Paimpont France
| |
Collapse
|
22
|
de Andrade AC, de Sousa AB. Hand preferences and differences in extractive foraging in seven capuchin monkey species. Am J Primatol 2018; 80:e22901. [DOI: 10.1002/ajp.22901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/03/2018] [Accepted: 07/05/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Antonio C. de Andrade
- Universidade Federal da Paraiba, Centro de Ciencias Aplicadas e Educacao; Departamento de Engenharia e Meio Ambiente; Rio Tinto Paraíba Brazil
| | - Allana B. de Sousa
- Universidade Federal da Paraiba, Centro de Ciencias Aplicadas e Educacao; Departamento de Engenharia e Meio Ambiente; Rio Tinto Paraíba Brazil
| |
Collapse
|
23
|
Caspar KR, Mader L, Pallasdies F, Lindenmeier M, Begall S. Captive gibbons (Hylobatidae) use different referential cues in an object-choice task: insights into lesser ape cognition and manual laterality. PeerJ 2018; 6:e5348. [PMID: 30128182 PMCID: PMC6098942 DOI: 10.7717/peerj.5348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Utilization of visual referential cues by non-human primates is a subject of constant scientific interest. However, only few primate species, mostly great apes, have been studied thoroughly in that regard, rendering the understanding of phylogenetic influences on the underlying cognitive patterns difficult. METHODS We tested six species of captive gibbons in an object-choice task (n = 11) for their ability to interpret two different pointing gestures, a combination of body orientation and gaze direction as well as glancing as referential cues. Hand preferences were tested in the object-choice task and in a bimanual tube task (n = 18). RESULTS We found positive responses to all signals except for the glancing cue at the individual as well as at the group level. The gibbons' success rates partially exceed results reported for great apes in comparable tests and appear to be similarly influenced by prior exposure to human communicative cues. Hand preferences exhibited by the gibbons in the object-choice task as well as in a bimanual tube task suggest that crested gibbons (Nomascus sp.) are strongly lateralized at individual but not at population level for tasks involving object manipulation. DISCUSSION Based on the available data, it can be assumed that the cognitive foundations to utilize different visual cues essential to human communication are conserved in extant hominoids and can be traced back at least to the common ancestor of great and lesser apes. However, future studies have to further investigate how the social environment of gibbons influences their ability to exploit referential signals. Gibbons' manual laterality patterns appear to differ in several aspects from the situation found in great apes. While not extensive enough to allow for general conclusions about the evolution of hand preferences in gibbons or apes in general, our results add to the expanding knowledge on manual lateralization in the Hylobatidae.
Collapse
Affiliation(s)
- Kai R. Caspar
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Larissa Mader
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Fabian Pallasdies
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Miriam Lindenmeier
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Czech University of Agriculture, Department of Game Management and Wildlife Biology, Prague, Czech Republic
| |
Collapse
|
24
|
Prieur J, Pika S, Blois-Heulin C, Barbu S. Captive chimpanzees' manual laterality in tool use context: Influence of communication and of sociodemographic factors. Behav Processes 2018; 157:610-624. [PMID: 29665416 DOI: 10.1016/j.beproc.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 12/27/2022]
Abstract
Understanding variations of apes' laterality between activities is a central issue when investigating the evolutionary origins of human hemispheric specialization of manual functions and language. We assessed laterality of 39 chimpanzees in a non-communication action similar to termite fishing that we compared with data on five frequent conspecific-directed gestures involving a tool previously exploited in the same subjects. We evaluated, first, population-level manual laterality for tool-use in non-communication actions; second, the influence of sociodemographic factors (age, sex, group, and hierarchy) on manual laterality in both non-communication actions and gestures. No significant right-hand bias at the population level was found for non-communication tool use, contrary to our previous findings for gestures involving a tool. A multifactorial analysis revealed that hierarchy and age particularly modulated manual laterality. Dominants and immatures were more right-handed when using a tool in gestures than in non-communication actions. On the contrary, subordinates, adolescents, young and mature adults as well as males were more right-handed when using a tool in non-communication actions than in gestures. Our findings support the hypothesis that some primate species may have a specific left-hemisphere processing gestures distinct from the cerebral system processing non-communication manual actions and to partly support the tool use hypothesis.
Collapse
Affiliation(s)
- Jacques Prieur
- Ethos "Ethologie Animale et Humaine'', Université de Rennes 1 - CNRS UMR 6552, Station Biologique de Paimpont, France.
| | - Simone Pika
- Max Planck Institute for Evolutionary Anthropology, Department of Primatology, "Virtual Geesehouse", Deutscher Platz 6, 04103 Leipzig, Germany
| | - Catherine Blois-Heulin
- Ethos "Ethologie Animale et Humaine'', Université de Rennes 1 - CNRS UMR 6552, Station Biologique de Paimpont, France
| | - Stéphanie Barbu
- Ethos "Ethologie Animale et Humaine'', Université de Rennes 1 - CNRS UMR 6552, Station Biologique de Paimpont, France
| |
Collapse
|
25
|
Robira B, Pouydebat E, San-Galli A, Meulman EJM, Aubaile F, Breuer T, Masi S. Handedness in gestural and manipulative actions in male hunter-gatherer Aka pygmies from Central African Republic. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 166:481-491. [PMID: 29427288 DOI: 10.1002/ajpa.23435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 02/04/2023]
Abstract
OBJECTIVES All human populations display a right-biased handedness. Nonetheless, if studies on western populations are plenty, investigations of traditional populations living at subsistence levels are rare. Yet, understanding the geographical variation of phenotypes of handedness is crucial for testing evolutionary hypotheses. We aimed to provide a preliminary investigation of factors affecting handedness in 25 Aka pygmies from Central African Republic when spontaneously gesturing or manipulating food/tools (Nactions = 593). MATERIALS AND METHODS We recorded spontaneous behaviors and characterized individuals' hand preference using GLMM with descriptive variables as target position, task complexity (unimanual/bimanual), task nature (food/tool manipulation, gesture), and task physical/cognitive constraints (precision or power for manipulative actions and informative content for gestures). RESULTS Individuals were lateralized to the right (93%, N = 15) when manipulating food/tools but not when gesturing. Hand preference was affected by target position but not by task complexity. While nonexplicitly informative gestures were more biased to the right compared to explicitly informative ones, no differences were found within food/tool manipulation (power or precision vs. none). DISCUSSION Although we do not intend to assume generalizable results due to our reduced sample, our observations provide additional information on handedness in a contemporary traditional society. Especially, the study mainly evidenced considerable cultural effects in gestures while also supporting theories considering active tool manipulation as one of the overriding factor in human handedness evolution.
Collapse
Affiliation(s)
- Benjamin Robira
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.,Département Hommes, Natures, and Sociétés, Muséum National d'Histoire Naturelle, Musée de l'Homme, UMR 7206-CNRS/MNHN, Paris, France
| | - Emmanuelle Pouydebat
- Department of Ecology and Management of Biodiversity, Muséum National d'Histoire Naturelle, UMR 7179-CNRS/MNHN, MECADEV, Paris, France
| | - Aurore San-Galli
- Département Hommes, Natures, and Sociétés, Muséum National d'Histoire Naturelle, Musée de l'Homme, UMR 7206-CNRS/MNHN, Paris, France
| | - Ellen J M Meulman
- Département Hommes, Natures, and Sociétés, Muséum National d'Histoire Naturelle, Musée de l'Homme, UMR 7206-CNRS/MNHN, Paris, France
| | - Françoise Aubaile
- Département Hommes, Natures, and Sociétés, Muséum National d'Histoire Naturelle, Musée de l'Homme, UMR 7206-CNRS/MNHN, Paris, France
| | - Thomas Breuer
- Global Conservation Program, Wildlife Conservation Society, 2300 Southern Boulevard, Bronx, New York
| | - Shelly Masi
- Département Hommes, Natures, and Sociétés, Muséum National d'Histoire Naturelle, Musée de l'Homme, UMR 7206-CNRS/MNHN, Paris, France
| |
Collapse
|
26
|
Loutit AJ, Maddess T, Redmond SJ, Morley JW, Stuart GJ, Potas JR. Characterisation and functional mapping of surface potentials in the rat dorsal column nuclei. J Physiol 2017; 595:4507-4524. [PMID: 28333372 DOI: 10.1113/jp273759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/10/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The brainstem dorsal column nuclei (DCN) process sensory information arising from the body before it reaches the brain and becomes conscious. Despite significant investigations into sensory coding in peripheral nerves and the somatosensory cortex, little is known about how sensory information arising from the periphery is represented in the DCN. Following stimulation of hind-limb nerves, we mapped and characterised the evoked electrical signatures across the DCN surface. We show that evoked responses recorded from the DCN surface are highly reproducible and are unique to nerves carrying specific sensory information. ABSTRACT The brainstem dorsal column nuclei (DCN) play a role in early processing of somatosensory information arising from a variety of functionally distinct peripheral structures, before being transmitted to the cortex via the thalamus. To improve our understanding of how sensory information is represented by the DCN, we characterised and mapped low- (<200 Hz) and high-frequency (550-3300 Hz) components of nerve-evoked DCN surface potentials. DCN surface potentials were evoked by electrical stimulation of the left and right nerves innervating cutaneous structures (sural nerve), or a mix of cutaneous and deep structures (peroneal nerve), in 8-week-old urethane-anaesthetised male Wistar rats. Peroneal nerve-evoked DCN responses demonstrated low-frequency events with significantly longer durations, more high-frequency events and larger magnitudes compared to responses evoked from sural nerve stimulation. Hotspots of low- and high-frequency DCN activity were found ipsilateral to stimulated nerves but were not symmetrically organised. In conclusion, we find that sensory inputs from peripheral nerves evoke unique and characteristic DCN activity patterns that are highly reproducible both within and across animals.
Collapse
Affiliation(s)
- Alastair J Loutit
- The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, 2601, Australia.,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ted Maddess
- The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Stephen J Redmond
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Sydney, New South Wales, 2560, Australia.,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Greg J Stuart
- The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Jason R Potas
- The Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, 2601, Australia.,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia.,ANU Medical School, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
27
|
Sebastianutto L, Mengotti P, Spiezio C, Rumiati RI, Balaban E. Dual-route imitation in preschool children. Acta Psychol (Amst) 2017; 173:94-100. [PMID: 28024255 DOI: 10.1016/j.actpsy.2016.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/01/2016] [Accepted: 12/13/2016] [Indexed: 11/18/2022] Open
Abstract
Imitation can be realized via two different routes: a direct route that translates visual input into motor output when gestures are meaningless or unknown, and a semantic route for known/meaningful gestures. Young infants show imitative behaviours compatible with the direct route, but little is known about the development of the semantic route, studied here for the first time. The present study examined preschool children (3-5years of age) imitating gestures that could be transitive or intransitive, and meaningful or meaningless. Both routes for imitation were already present by three years of age, and children were more accurate at imitating meaningful-intransitive gestures than meaningless-intransitive ones; the reverse pattern was found for transitive gestures. Children preferred to use their dominant hand even if they had to anatomically imitate the model to do this, showing that a preference for specular imitation is not exclusive at these ages.
Collapse
Affiliation(s)
| | | | - Caterina Spiezio
- "Parco Natura Viva", Garda Zoological Park, Research and Conservation Department, Verona, Italy
| | | | | |
Collapse
|
28
|
Hopkins WD, Meguerditchian A, Coulon O, Misiura M, Pope S, Mareno MC, Schapiro SJ. Motor skill for tool-use is associated with asymmetries in Broca's area and the motor hand area of the precentral gyrus in chimpanzees (Pan troglodytes). Behav Brain Res 2017; 318:71-81. [PMID: 27816558 PMCID: PMC5459306 DOI: 10.1016/j.bbr.2016.10.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023]
Abstract
Among nonhuman primates, chimpanzees are well known for their sophistication and diversity of tool use in both captivity and the wild. The evolution of tool manufacture and use has been proposed as a driving mechanism for the development of increasing brain size, complex cognition and motor skills, as well as the population-level handedness observed in modern humans. Notwithstanding, our understanding of the neurological correlates of tool use in chimpanzees and other primates remains poorly understood. Here, we assessed the hand preference and performance skill of chimpanzees on a tool use task and correlated these data with measures of neuroanatomical asymmetries in the inferior frontal gyrus (IFG) and the pli-de-passage fronto-parietal moyen (PPFM). The IFG is the homolog to Broca's area in the chimpanzee brain and the PPFM is a buried gyrus that connects the pre- and post-central gyri and corresponds to the motor-hand area of the precentral gyrus. We found that chimpanzees that performed the task better with their right compared to left hand showed greater leftward asymmetries in the IFG and PPFM. This association between hand performance and PPFM asymmetry was particularly robust for right-handed individuals. Based on these findings, we propose that the evolution of tool use was associated with increased left hemisphere specialization for motor skill. We further suggest that lateralization in motor planning, rather than hand preference per se, was selected for with increasing tool manufacture and use in Hominid evolution.
Collapse
Affiliation(s)
- William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, United States; Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30029, United States.
| | - Adrien Meguerditchian
- Laboratory of Cognitive Psychology, UMR 7290, Aix-Marseille University, CNRS, Marseille, France
| | - Olivier Coulon
- Aix-Marseille Université, LSIS, UMR CNRS 7296, Marseille, France
| | - Maria Misiura
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, United States
| | - Sarah Pope
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302, United States
| | - Mary Catherine Mareno
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, United States
| | - Steven J Schapiro
- Department of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, United States
| |
Collapse
|
29
|
Fan P, Liu C, Chen H, Liu X, Zhao D, Zhang J, Liu D. Preliminary study on hand preference in captive northern white-cheeked gibbons (Nomascus leucogenys). Primates 2016; 58:75-82. [DOI: 10.1007/s10329-016-0573-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022]
|
30
|
Zhao D, Wang Y, Wei X. Hand preference during bimanual coordinated task in northern pig-tailed macaques Macaca leonina. Curr Zool 2016; 62:385-391. [PMID: 29491927 PMCID: PMC5804279 DOI: 10.1093/cz/zow064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/29/2015] [Indexed: 01/21/2023] Open
Abstract
In humans, handedness is one defining characteristic regardless of cultures and ethnicity. Population-level right handedness is considered to be related with the evolution of left hemisphere for manual control and language. In order to further understand evolutionary origins of human cerebral lateralization and its behavioral adaptation, standardized measures on hand preference are required to make reliable comparison in nonhuman primate species. In this study, we present the first evidence on hand preference during bimanual coordinated tasks in northern pig-tailed macaques Macaca leonina. The classical TUBE task was applied to examine hand preference among nine individuals from Tianjin Zoo of China. We recorded and made analysis on both frequency and bout data on manual laterality. The results consistently show that subjects displayed strong individual hand preferences, whereas no significant group-level handedness was found. There were no sex and age significant differences on both direction and strength of hand preference. The M. leonina preferred to use the index finger to extract the baited food inside the tube. Our findings fill the knowledge gap on primate handedness, and efficiently affirm the robustness of the TUBE task as one efficient measure of hand preference in primates.
Collapse
Affiliation(s)
- Dapeng Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387.,Wildlife Institute, Beijing Forestry University, and.,Eco-Bridge Continental, Beijing 100083, China
| | - Yuan Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387
| | - Xueyan Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387
| |
Collapse
|
31
|
Atkinson EG, Rogers J, Cheverud JM. Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree. Evolution 2016; 70:707-15. [PMID: 26813679 PMCID: PMC4801758 DOI: 10.1111/evo.12867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/26/2015] [Accepted: 01/18/2016] [Indexed: 11/28/2022]
Abstract
Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution, and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a population-level trend in length measurements indicating that baboons are genetically predisposed to be asymmetrical, with the right side longer than the left in the anterior cerebrum while the left side is longer than the right posteriorly. We also find a corresponding bias to display a right frontal petalia (overgrowth of the anterior pole of the cerebral cortex on the right side). By quantifying fluctuating asymmetry, we assess canalization of brain features and the susceptibility of the baboon brain to developmental perturbations. We find that features are differentially canalized depending on their ontogenetic timing. We further deduce that development of the two hemispheres is to some degree independent. This independence has important implications for the evolution of cerebral hemispheres and their separate specialization. Asymmetry is a major feature of primate brains and is characteristic of both brain structure and function.
Collapse
Affiliation(s)
- Elizabeth G. Atkinson
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - James M. Cheverud
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, Missouri, 63110
| |
Collapse
|
32
|
Meguerditchian A, Phillips KA, Chapelain A, Mahovetz LM, Milne S, Stoinski T, Bania A, Lonsdorf E, Schaeffer J, Russell J, Hopkins WD. Handedness for Unimanual Grasping in 564 Great Apes: The Effect on Grip Morphology and a Comparison with Hand Use for a Bimanual Coordinated Task. Front Psychol 2015; 6:1794. [PMID: 26635693 PMCID: PMC4655229 DOI: 10.3389/fpsyg.2015.01794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/06/2015] [Indexed: 11/13/2022] Open
Abstract
A number of factors have been proposed to influence within and between species variation in handedness in non-human primates. In the initial study, we assessed the influence of grip morphology on hand use for simple reaching in a sample of 564 great apes including 49 orangutans Pongo pygmaeus, 66 gorillas Gorilla gorilla, 354 chimpanzees Pan troglodytes and 95 bonobos Pan paniscus. Overall, we found a significant right hand bias for reaching. We also found a significant effect of the grip morphology of hand use. Grasping with the thumb and index finger was more prevalent in the right compared to left hand in all four species. There was no significant sex effect on the patterns of handedness. In a subsample of apes, we also compared consistency in hand use for simple reaching with previously published data on a task that measures handedness for bimanual actions. We found that the ratio of subjects with consistent right compared to left hand use was more prevalent in bonobos, chimpanzees and gorillas but not orangutans. However, for all species, the proportion of subjects with inconsistent hand preferences between the tasks was relatively high suggesting some measures may be more sensitive in assessing handedness than others.
Collapse
Affiliation(s)
- Adrien Meguerditchian
- CNRS, Laboratory of Cognitive Psychology, UMR 7290, Brain and Language Research Institute, Aix-Marseille University, Marseille, France
| | | | - Amandine Chapelain
- CNRS, Laboratoire d’Éthologie Animale et Humaine EthoS, UMR 6552, Université de Rennes 1, Paimpont, France
| | | | - Scott Milne
- Department of Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Tara Stoinski
- The Dian Fossey Gorilla Fund International, Atlanta, GA, USA
| | | | - Elizabeth Lonsdorf
- Department of Psychology, Franklin and Marshall College, Lancaster, PA, USA
| | - Jennifer Schaeffer
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Jamie Russell
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - William D. Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
- Language Research Center, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
33
|
Hopkins WD, Misiura M, Pope SM, Latash EM. Behavioral and brain asymmetries in primates: a preliminary evaluation of two evolutionary hypotheses. Ann N Y Acad Sci 2015; 1359:65-83. [PMID: 26426409 PMCID: PMC4715693 DOI: 10.1111/nyas.12936] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Contrary to many historical views, recent evidence suggests that species-level behavioral and brain asymmetries are evident in nonhuman species. Here, we briefly present evidence of behavioral, perceptual, cognitive, functional, and neuroanatomical asymmetries in nonhuman primates. In addition, we describe two historical accounts of the evolutionary origins of hemispheric specialization and present data from nonhuman primates that address these specific theories. Specifically, we first discuss the evidence that genes play specific roles in determining left-right differences in anatomical and functional asymmetries in primates. We next consider and present data on the hypothesis that hemispheric specialization evolved as a by-product of increasing brain size relative to the surface area of the corpus callosum in different primate species. Last, we discuss some of the challenges in the study of hemispheric specialization in primates and offer some suggestions on how to advance the field.
Collapse
Affiliation(s)
- William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, Georgia
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Sarah M Pope
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, Georgia
| | - Elitaveta M Latash
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta, Georgia
| |
Collapse
|
34
|
Nelson EL, Boeving ER. Precise digit use increases the expression of handedness in Colombian spider monkeys (Ateles fusciceps rufiventris). Am J Primatol 2015; 77:1253-62. [PMID: 26339782 DOI: 10.1002/ajp.22478] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/24/2015] [Accepted: 08/23/2015] [Indexed: 01/18/2023]
Abstract
Decades of research on the hand use patterns of nonhuman primates can be aptly summarized by the following phrase: measurement matters. There is a general consensus that simple reaching is a poor indicator of handedness in most species, while tasks that constrain how the hands are used elicit individual, and in some cases, population-level biases. The TUBE task has become a popular measure of handedness, although there is variability in its administration across studies. The goal of this study was to investigate whether TUBE performance is affected by tube diameter, with the hypothesis that decreasing tube diameter would increase task complexity, and therefore the expression of handedness. We predicted that hand preference strength, but not direction, would be affected by tube diameter. We administered the TUBE task using a 1.3 cm tube to Colombian spider monkeys, and compared their performance to a previous study using a larger 2.5 cm diameter tube. Hand preference strength increased significantly on the smaller diameter tube. Hand preference direction was not affected. Notably, spider monkeys performed the TUBE task using a single digit, despite the longstanding view that this species has poor dexterity. We encourage investigators who use the TUBE task to carefully consider the diameter of the tube used in testing, and to report digit use consistently across studies. In addition, we recommend that researchers who cannot use the TUBE task try to incorporate the key features from this task into their own species appropriate measures: bimanual coordination and precise digit use.
Collapse
Affiliation(s)
- Eliza L Nelson
- Department of Psychology, Florida International University, Miami, Florida
| | - Emily R Boeving
- Department of Psychology, Florida International University, Miami, Florida
| |
Collapse
|
35
|
Mangalam M, Desai N, Singh M. Division of labor in hand usage is associated with higher hand performance in free-ranging bonnet macaques, Macaca radiate [corrected]. PLoS One 2015; 10:e0119337. [PMID: 25806511 PMCID: PMC4373831 DOI: 10.1371/journal.pone.0119337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/23/2015] [Indexed: 11/19/2022] Open
Abstract
A practical approach to understanding lateral asymmetries in body, brain, and cognition would be to examine the performance advantages/disadvantages associated with the corresponding functions and behavior. In the present study, we examined whether the division of labor in hand usage, marked by the preferential usage of the two hands across manual operations requiring maneuvering in three-dimensional space (e.g., reaching for food, grooming, and hitting an opponent) and those requiring physical strength (e.g., climbing), is associated with higher hand performance in free-ranging bonnet macaques, Macaca radiate [corrected]. We determined the extent to which the macaques exhibit laterality in hand usage in an experimental unimanual and a bimanual food-reaching task, and the extent to which manual laterality is associated with hand performance in an experimental hand-performance-differentiation task. We observed negative relationships between (a) the latency in food extraction by the preferred hand in the hand-performance-differentiation task (wherein, lower latency implies higher performance), the preferred hand determined using the bimanual food-reaching task, and the normalized difference between the performance of the two hands, and (b) the normalized difference between the performance of the two hands and the absolute difference between the laterality in hand usage in the unimanual and the bimanual food-reaching tasks (wherein, lesser difference implies higher manual specialization). Collectively, these observations demonstrate that the division of labor between the two hands is associated with higher hand performance.
Collapse
Affiliation(s)
- Madhur Mangalam
- Department of Psychology, University of Georgia, Athens, Georgia, United States of America
| | - Nisarg Desai
- Indian Institute of Science Education and Research Pune, Pune, India
| | - Mewa Singh
- Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysore, India
- Evolutionary & Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
36
|
Pouydebat E, Borel A, Chotard H, Fragaszy D. Hand preference in fast-moving versus slow-moving actions in capuchin, Sapajus spp., and squirrel monkeys, Saimiri sciureus. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Sainburg RL. Convergent models of handedness and brain lateralization. Front Psychol 2014; 5:1092. [PMID: 25339923 PMCID: PMC4189332 DOI: 10.3389/fpsyg.2014.01092] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 12/05/2022] Open
Abstract
The pervasive nature of handedness across human history and cultures is a salient consequence of brain lateralization. This paper presents evidence that provides a structure for understanding the motor control processes that give rise to handedness. According to the Dynamic Dominance Model, the left hemisphere (in right handers) is proficient for processes that predict the effects of body and environmental dynamics, while the right hemisphere is proficient at impedance control processes that can minimize potential errors when faced with unexpected mechanical conditions, and can achieve accurate steady-state positions. This model can be viewed as a motor component for the paradigm of brain lateralization that has been proposed by Rogers et al. (MacNeilage et al., 2009) that is based upon evidence from a wide range of behaviors across many vertebrate species. Rogers proposed a left-hemisphere specialization for well-established patterns of behavior performed in familiar environmental conditions, and a right hemisphere specialization for responding to unforeseen environmental events. The dynamic dominance hypothesis provides a framework for understanding the biology of motor lateralization that is consistent with Roger's paradigm of brain lateralization.
Collapse
Affiliation(s)
- Robert L Sainburg
- Department of Neurology, Penn State College of Medicine, The Pennsylvania State University University Park, PA, USA
| |
Collapse
|
38
|
Hopkins WD, Meguerditchian A, Coulon O, Bogart S, Mangin JF, Sherwood CC, Grabowski MW, Bennett AJ, Pierre PJ, Fears S, Woods R, Hof PR, Vauclair J. Evolution of the central sulcus morphology in primates. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:19-30. [PMID: 25139259 PMCID: PMC4166656 DOI: 10.1159/000362431] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/22/2013] [Indexed: 12/16/2022]
Abstract
The central sulcus (CS) divides the pre- and postcentral gyri along the dorsal-ventral plane of which all motor and sensory functions are topographically organized. The motor-hand area of the precentral gyrus or KNOB has been described as the anatomical substrate of the hand in humans. Given the importance of the hand in primate evolution, here we examine the evolution of the motor-hand area by comparing the relative size and pattern of cortical folding of the CS surface area from magnetic resonance images in 131 primates, including Old World monkeys, apes and humans. We found that humans and great apes have a well-formed motor-hand area that can be seen in the variation in depth of the CS along the dorsal-ventral plane. We further found that great apes have relatively large CS surface areas compared to Old World monkeys. However, relative to great apes, humans have a small motor-hand area in terms of both adjusted and absolute surface areas.
Collapse
Affiliation(s)
- William D. Hopkins
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30322
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, Aix-Marseille University/CNRS, UMR7290, Marseille, France
| | - Olivier Coulon
- Laboratoire des Sciences de l'Information et des Systèmes, Aix-Marseille Universite, Marseille, France
| | - Stephanie Bogart
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, Georgia 30322
| | | | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Hominid Paleobiology, The George Washington University, Washington, DC 20052
| | - Mark W. Grabowski
- Department of Anthropology and Center for the Advanced Study of Hominid Paleobiology, The George Washington University, Washington, DC 20052
| | - Allyson J. Bennett
- Harlow Center for Biological Psychology, Psychology Department, University of Wisconsin, Madison, Wisconsin 53715
| | - Peter J. Pierre
- Department of Behavioral Management, Wisconsin National Primate Research Center, Madison, Wisconsin 53115
| | - Scott Fears
- Center for Neurobehavioral Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095
- Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, California 90095
| | - Roger Woods
- Center for Neurobehavioral Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095
- Department of Neurology, University of California, Los Angeles (UCLA), Los Angeles, California 90095
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029
- New York Consortium in Evolutionary Primatology, New York, New York 10029
| | - Jacques Vauclair
- Department of Psychology, Research Center in Psychology of Cognition, Language & Emotion, Aix-Marseille University, Aix-en-Provence, France
| |
Collapse
|
39
|
Communication, latéralité et cerveau chez les primates humains et non humains : vers une origine gestuelle ou multimodale du langage ?1. REVUE DE PRIMATOLOGIE 2013. [DOI: 10.4000/primatologie.1717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Tabiowo E, Forrester GS. Structured bimanual actions and hand transfers reveal population-level right-handedness in captive gorillas. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
|
42
|
Hopkins WD. Comparing human and nonhuman primate handedness: challenges and a modest proposal for consensus. Dev Psychobiol 2013; 55:621-36. [PMID: 23913784 PMCID: PMC4041077 DOI: 10.1002/dev.21139] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/30/2013] [Indexed: 11/08/2022]
Abstract
In the past 20-25 years, there have been a number of studies published on handedness in nonhuman primates. The goal of these studies has been to evaluate whether monkeys and apes show patterns of hand preference that resemble the right-handedness found in the human species. The extant findings on handedness in nonhuman primates have revealed inconsistent evidence for population-level handedness within and between species. In this article, I discuss some of the methodological and statistical challenges to comparative studies of handedness in human and nonhuman primates. I further offer a framework for developing some consensus on evaluating the validity of different handedness measures and the characterization of individual hand preferences.
Collapse
Affiliation(s)
- William D Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, P.O. Box 5030, Atlanta, GA, 30302-5030, USA.
| |
Collapse
|
43
|
Chatagny P, Badoud S, Kaeser M, Gindrat AD, Savidan J, Fregosi M, Moret V, Roulin C, Schmidlin E, Rouiller EM. Distinction between hand dominance and hand preference in primates: a behavioral investigation of manual dexterity in nonhuman primates (macaques) and human subjects. Brain Behav 2013; 3:575-95. [PMID: 24392278 PMCID: PMC3869985 DOI: 10.1002/brb3.160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/29/2013] [Accepted: 06/30/2013] [Indexed: 11/17/2022] Open
Abstract
Background The present study aimed to determine and confront hand preference (hand chosen in priority to perform a manual dexterity task) and hand dominance (hand with best motor performance) in eight macaques (Macaca fascicularis) and in 20 human subjects (10 left-handers and 10 right-handers). Methods Four manual dexterity tests have been executed by the monkeys, over several weeks during learning and stable performance phases (in controlled body position): the modified Brinkman board, the reach and grasp drawer, the tube and the bimanual board tasks. Three behavioral tests, adapted versions from the monkeys tasks (modified Brinkman board, tube and bimanual board tasks), as well as a handedness questionnaire, have been conducted in human subjects. Results In monkeys, there was a large disparity across individuals and motor tasks. For hand dominance, two monkeys were rather right lateralized, three monkeys rather left lateralized, whereas in three monkeys, the different parameters measured were not consistent. For hand preference, none of the eight monkeys exhibited a homogeneous lateralization across the four motor tasks. Macaca fascicularis do not exhibit a clear hand preference. Furthermore, hand preference often changed with task repetition, both during training and plateau phases. For human subjects, the hand preference mostly followed the self-assessment of lateralization by the subjects and the questionnaire (in the latter, right-handers were more lateralized than left-handers), except a few discrepancies based on the tube task. There was no hand dominance in seven right-handers (the other three performed better with the right hand) and in four left-handers. Five left-handers showed left-hand dominance, whereas surprisingly, one left-hander performed better with the right hand. In the modified Brinkman board task, females performed better than males, right-handers better than left-handers. Conclusions The present study argues for a distinction between hand preference and hand dominance, especially in macaque monkeys.
Collapse
Affiliation(s)
- Pauline Chatagny
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Simon Badoud
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Mélanie Kaeser
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Anne-Dominique Gindrat
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Julie Savidan
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Michela Fregosi
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Véronique Moret
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Christine Roulin
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Eric Schmidlin
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Eric M Rouiller
- Unit of Physiology Department of Medicine Faculty of Sciences and Fribourg Center for Cognition, University of Fribourg Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| |
Collapse
|
44
|
Meguerditchian A, Vauclair J, Hopkins WD. On the origins of human handedness and language: A comparative review of hand preferences for bimanual coordinated actions and gestural communication in nonhuman primates. Dev Psychobiol 2013; 55:637-50. [DOI: 10.1002/dev.21150] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/14/2013] [Indexed: 11/10/2022]
Affiliation(s)
| | - Jacques Vauclair
- Research Center in Psychology of Cognition, Language & Emotion; Aix-Marseille University; 13621; Aix-en-Provence; France
| | | |
Collapse
|
45
|
Wey HY, Phillips KA, McKay DR, Laird AR, Kochunov P, Davis MD, Glahn DC, Blangero J, Duong TQ, Fox PT. Multi-region hemispheric specialization differentiates human from nonhuman primate brain function. Brain Struct Funct 2013; 219:2187-94. [PMID: 23928747 PMCID: PMC4219928 DOI: 10.1007/s00429-013-0620-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/15/2013] [Indexed: 12/01/2022]
Abstract
The human behavioral repertoire greatly exceeds that of nonhuman primates. Anatomical specializations of the human brain include an enlarged neocortex and prefrontal cortex (Semendeferi et al. in Am J Phys Anthropol 114:224–241, 2001), but regional enlargements alone cannot account for these vast functional differences. Hemispheric specialization has long believed to be a major contributing factor to such distinctive human characteristics as motor dominance, attentional control and language. Yet structural cerebral asymmetries, documented in both humans and some nonhuman primate species, are relatively minor compared to behavioral lateralization. Identifying the mechanisms that underlie these functional differences remains a goal of considerable interest. Here, we investigate the intrinsic connectivity networks in four primate species (humans, chimpanzees, baboons, and capuchin monkeys) using resting-state fMRI to evaluate the intra- and inter- hemispheric coherences of spontaneous BOLD fluctuation. All three nonhuman primate species displayed lateralized functional networks that were strikingly similar to those observed in humans. However, only humans had multi-region lateralized networks, which provide fronto-parietal connectivity. Our results indicate that this pattern of within-hemisphere connectivity distinguishes humans from nonhuman primates.
Collapse
Affiliation(s)
- Hsiao-Ying Wey
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Phillips KA, Thompson CR. Hand preference for tool-use in capuchin monkeys (Cebus apella) is associated with asymmetry of the primary motor cortex. Am J Primatol 2013; 75:435-40. [PMID: 22987442 PMCID: PMC3527644 DOI: 10.1002/ajp.22079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/07/2012] [Accepted: 08/20/2012] [Indexed: 11/09/2022]
Abstract
Skilled motor actions are associated with handedness and neuroanatomical specializations in humans. Recent reports have documented similar neuroanatomical asymmetries and their relationship to hand preference in some nonhuman primate species, including chimpanzees and capuchin monkeys. We investigated whether capuchins displayed significant hand preferences for a tool-use task and whether such preferences were associated with motor-processing regions of the brain. Handedness data on a dipping tool-use task and high-resolution 3T MRI scans were collected from 15 monkeys. Capuchins displayed a significant group-level left-hand preference for this type of tool use, and handedness was associated with asymmetry of the primary motor cortex. Left-hand preferent individuals displayed a deeper central sulcus in the right hemisphere. Our results suggest that capuchins show an underlying right-hemisphere bias for skilled movement.
Collapse
|
47
|
Gilissen EP, Hopkins WD. Asymmetries of the parietal operculum in chimpanzees (Pan troglodytes) in relation to handedness for tool use. Cereb Cortex 2013; 23:411-22. [PMID: 22368087 PMCID: PMC3539455 DOI: 10.1093/cercor/bhs029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A left larger than right planum temporale (PT) is a neuroanatomical asymmetry common to both humans and chimpanzees. A similar asymmetry was observed in the human parietal operculum (PO), and the convergence of PT and PO asymmetries is strongly associated with right-handedness. Here, we assessed whether this combination also exists in common chimpanzees. Magnetic resonance scans were obtained in 83 captive subjects. PT was quantified following procedures previously employed and PO was defined as the maximal linear distance between the end point of the sylvian fissure and the central sulcus. Handedness was assessed using 2 tasks that were designed to simulate termite fishing of wild chimpanzees and to elicit bimanual coordination without tool use. Chimpanzees showed population-level leftward asymmetries for both PT and PO. As in humans, these leftward asymmetries were not correlated. Handedness for tool use but not for nontool use motor actions mediated the expression of asymmetries in PT and PO, with right-handed apes showing more pronounced leftward asymmetries. Consistent PT and PO asymmetry combinations were observed in chimpanzees. The proportions of individuals showing these combinations were comparable in humans and chimpanzees; however, interaction between handedness and patterns of combined PO and PT asymmetries differed between the 2 species.
Collapse
Affiliation(s)
- Emmanuel P Gilissen
- Department of African Zoology, Royal Museum for Central Africa, 3080 Tervuren, Belgium.
| | | |
Collapse
|
48
|
Barros A, Soligo C. Bilateral Asymmetry of Humeral Torsion and Length in African Apes and Humans. Folia Primatol (Basel) 2013; 84:220-38. [DOI: 10.1159/000353177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 05/21/2013] [Indexed: 11/19/2022]
|
49
|
Keller SS, Deppe M, Herbin M, Gilissen E. Variability and asymmetry of the sulcal contours defining Broca's area homologue in the chimpanzee brain. J Comp Neurol 2012; 520:1165-80. [PMID: 21826664 DOI: 10.1002/cne.22747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There has been recent motivation to search for neuroanatomical asymmetries in nonhuman primates in order to provide comparative information on how the human brain is structurally organized to support specific cognitive capabilities, such as language functions. We took the opportunity to study Broca's area homologue in a novel sample of 80 preserved postmortem chimpanzee (Pan troglodytes) cerebral hemispheres. Consistent with the only prior study documenting the morphology of Broca's area homologue in the chimpanzee (Sherwood et al. [2003] Anat Rec 271:276–285), we report great interindividual variation in the structure and connections of the sulci investigated, most notably a left-sided bias in the bifurcation of the inferior precentral sulcus, an anatomical feature that occurs much more frequently in chimpanzees relative to humans. Consistent with our recent neuroimaging report (Keller et al. [2009b] J Neurosci 29:14607–14616), no population-based interhemispheric asymmetries of sulcal length existed that could be considered markers of the size of Broca's area homologue. With strict anatomical guidelines, we report that the diagonal sulcus was present in 25% left and 20% right chimpanzee hemispheres studied, which is substantially less that the general prevalence in humans. Through the presentation of schematic drawings, photographs, morphological recordings and sulcal length metrics, our data illustrate the interindividual variability of Broca's area homologue in the chimpanzee and support the notion of no macroscopic asymmetry of this important homologous language brain region in one of the closest evolutionary ancestor to modern humans.
Collapse
Affiliation(s)
- Simon S Keller
- Department of Clinical Neuroscience, Institute of Psychiatry, King’s College London, UK.
| | | | | | | |
Collapse
|
50
|
Potier C, Meguerditchian A, Fagard J. Handedness for bimanual coordinated actions in infants as a function of grip morphology. Laterality 2012; 18:576-93. [PMID: 23231501 DOI: 10.1080/1357650x.2012.732077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the emergence of bimanual handedness in tasks involving complementary roles for the two hands, one hand holding a base object and the other hand removing several pieces from the base object. Infants aged 12, 16, and 20 months were tested on bimanual tasks differing mainly in the precision of the movement required to remove the pieces. The results show that the right hand was more often used than the left hand not only to grasp the base object but also to remove the pieces, often after transferring the base object from the right to the left hand. As of 12 months of age, right hand preference for the active part of the bimanual task was stronger in the precision grip than in the whole-hand grip tasks. These results indicate that even though infants often do not anticipate that they will need their preferred hand to remove the pieces, they show clear handedness in such coordinated repeated bimanual actions, and do so to a greater degree on tasks requiring precision grip than on ones requiring whole-hand grip. These results agree with the notion that handedness develops very early and is related to the precision required from the active hand.
Collapse
Affiliation(s)
- Claire Potier
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Paris, France
| | | | | |
Collapse
|