1
|
Springer SD, Okelberry HJ, Willett MP, Johnson HJ, Meehan CE, Schantell M, Embury CM, Rempe MP, Wilson TW. Age-related alterations in the oscillatory dynamics serving verbal working memory processing. Aging (Albany NY) 2023; 15:14574-14590. [PMID: 38154102 PMCID: PMC10781444 DOI: 10.18632/aging.205403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023]
Abstract
Working memory (WM) is a foundational cognitive function involving the temporary storage of information. Unfortunately, WM is also one of the most sensitive cognitive functions to the detrimental effects of aging. Expanding the field's understanding of age-related WM changes is critical to advancing the development of strategies to mitigate age-related WM declines. In the current study, we investigated the neural mechanisms serving WM function in seventy-eight healthy aging adults (range: 20.2-65.2 years) using magnetoencephalography (MEG) and a Sternberg WM task with letter stimuli. Neural activity during the different phases of the WM task (i.e., encoding, maintenance, and retrieval) were imaged using a time-frequency resolved beamformer and whole-brain statistics were performed. We found stronger increases in theta activity and stronger decreases in alpha and beta activity (i.e., more negative relative to baseline) as a function of healthy aging. Specifically, age-related increases in theta activity were detected during the encoding period in the primary visual and left prefrontal cortices. Additionally, alpha and beta oscillations were stronger (i.e., more negative) during both encoding and maintenance in the left prefrontal cortex in older individuals. Finally, alpha and beta oscillations during the retrieval phase were stronger (i.e., more negative) in older participants within the prefrontal, parietal, and temporal cortices. Together, these results indicate that healthy aging strongly modulates the neural oscillatory dynamics serving WM function.
Collapse
Affiliation(s)
- Seth D. Springer
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chloe E. Meehan
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christine M. Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Maggie P. Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68131, USA
| |
Collapse
|
2
|
Guerrero L, Bouazzaoui B, Isingrini M, Angel L. Impact of working memory capacity on predominance of parietal over frontal P300 amplitude. Brain Cogn 2023; 170:106056. [PMID: 37339547 DOI: 10.1016/j.bandc.2023.106056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
Working memory-related neural activity varies with task load, and these neural variations can be constrained by working memory capacity (WMC). For instance, some studies suggest that parietal and frontal P300 amplitudes, reflecting working memory functioning, vary differentially with task load and WMC. The present study explored whether the predominance of parietal over frontal P300 amplitude is related to WMC, and whether this relationship varies according to task load. Thirty-one adults aged 20-40 years performed a Sternberg task with two set sizes (2 vs. 6 items), during which event-related potentials were recorded. This allowed us to explore the P300 and estimate the magnitude of its parietal over frontal predominance, calculated as a parietal over frontal predominance index (PFPI). Participants also performed the Digit Span and alpha span tests, which were used to compute an independent index of WMC. Results revealed the classic parietal over frontal P300 predominance. They also indicated that the PFPI decreased as task load increased, owing mainly to an increase in frontal P300 amplitude. Interestingly, WMC was positively correlated with the PFPI, suggesting that individuals with greater WMC exhibited greater parietal over frontal predominance. These correlations did not vary across set sizes. Parietal over frontal predominance was reduced in individuals with lower WMC, who relied more on frontal neural resources. This frontal upregulation may have reflected the recruitment of supplementary attentional executive operations to compensate for less efficient working memory maintenance operations.
Collapse
Affiliation(s)
- Lina Guerrero
- Nantes Université, Université d'Angers, Laboratoire de psychologie des Pays de la Loire, LPPL, UR 4638, Chemin la Censive du Tertre, 44312 Nantes Cedex 3, France.
| | - Badiâa Bouazzaoui
- Université de Tours, Université de Poitiers, UMR CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA), 3 Rue des Tanneurs, 37041 Tours Cedex 1, France.
| | - Michel Isingrini
- Université de Tours, Université de Poitiers, UMR CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA), 3 Rue des Tanneurs, 37041 Tours Cedex 1, France.
| | - Lucie Angel
- Université de Tours, Université de Poitiers, UMR CNRS 7295, Centre de Recherches sur la Cognition et l'Apprentissage (CeRCA), 3 Rue des Tanneurs, 37041 Tours Cedex 1, France.
| |
Collapse
|
3
|
Yang Y, Wang D, Hou W, Li H. Cognitive Decline Associated with Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:25-46. [PMID: 37418204 DOI: 10.1007/978-981-99-1627-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Cognitive decline is one of the most distinct signs of aging, and age-related cognitive decline is a heterogeneous issue varying in different cognitive domains and has significant differences among older adults. Identifying characteristics of cognitive aging is the basis of cognitive disease for early-detection and healthy aging promotion. In the current chapter, age-related decline of main cognitive domains, including sensory perception, memory, attention, executive function, language, reasoning, and space navigation ability are introduced respectively. From these aspects of cognition, we focus on the age-related effects, age-related cognitive diseases, and possible mechanisms of cognitive aging.
Collapse
Affiliation(s)
- Yiru Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dandan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Wenjie Hou
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - He Li
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Involvement of executive control in neural capacity related to working memory in aging: an ERP P300 study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1311-1333. [PMID: 35680698 DOI: 10.3758/s13415-022-01018-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 01/27/2023]
Abstract
Executive control could be involved in neural capacity, which corresponds to the modulation of neural activity with increased task difficulty. Thus, by exploring the P300-an electrophysiological correlate of working memory-we examined the role played by executive control in both the age-related decline in working memory and neural capacity in aging. Event-related potentials (ERPs) were recorded while younger and older participants performed a Sternberg task with two set sizes (2 vs. 6 items), allowing us to calculate a neural capacity index. Participants also completed two control tasks (Stroop and 3-back tests), which were used to calculate a composite executive control index. Results indicated that working memory performance decreased with aging and difficulty. At the neural level, results indicated that the P300 amplitude varied with aging and also with task difficulty. In the low difficulty condition, frontal P300 amplitude was higher for older than for younger adults, whereas in the high difficulty condition, the amplitude of frontal and parietal P300 did not differ between both age groups. Results also suggest that task difficulty led to a decrease in parietal amplitude in both age groups and to an increase in frontal amplitude in younger but not older adults. Both executive control and frontal neural capacity mediated the age-related variance in working memory for older adults. Moreover, executive control mediated the age-related variance in the frontal neural capacity of older adults. Thus, the present study suggests a model for older adults in which executive control deficits with advancing age lead to less efficient frontal recruitment to cope with task difficulty (neural capacity), which in turn has a negative impact on working memory functioning.
Collapse
|
5
|
Wang J, Kim BH, Kang SJ. Lack of changes in motor function of the brain in healthy older adults after participation in a cognitive walking program. J Exerc Rehabil 2022; 18:187-195. [PMID: 35846231 PMCID: PMC9271647 DOI: 10.12965/jer.2244166.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/23/2022] [Indexed: 11/22/2022] Open
Abstract
A walking-based exercise program, called the cognitive walking program (CWP), has been shown to be beneficial for improving cognitive function in healthy older adults. It remains unknown whether it is beneficial for improving motor function of the brain. We investigated the effects of CWP on motor function of the brain by examining changes in interlimb transfer of visuomotor adaptation in older adults. Subjects were divided based on their physical activity level (active vs. sedentary) and participated in CWP. A control group performed normal walking. Fifty-two healthy older adults, 67–78 years old, were studied. All subjects participated in CWP or normal walking for 6 months. To assess brain motor function, all subjects adapted to a rotated visual display during reaching movements with the right arm first, then with the left arm. Interlimb transfer of visuomotor adaptation was assessed at baseline, 3 months, and 6 months after training onset. It was hypothesized that if CWP had beneficial effects, the extent of transfer would change over time. The subject’s physical fitness was also assessed. Significant transfer from the right to the left arm occurred in all subject groups. Improvements in physical fitness were also observed. However, the extent of transfer did not change even after 6 months, with no group difference. Findings suggest that though beneficial for improving cognitive function in older adults, participating in CWP for 6 months is not long enough to improve brain motor function when the motor function is reflected as changes in interlimb transfer of visuomotor adaptation.
Collapse
Affiliation(s)
- Jinsung Wang
- University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Byung-Hoon Kim
- Sports Science Research Center, Sangmyung University, Seoul, Korea
| | - Suh-Jung Kang
- Sports Science Research Center, Sangmyung University, Seoul, Korea
- Department of Sports and Health Care, College of Culture and Arts, Sangmyung University, Seoul, Korea
- Corresponding author: Suh-Jung Kang, Department of Sports and Health Care, College of Culture and Arts, Sangmyung University, 20 Hongjimun 2-gil, Jongno-gu, Seoul 03016, Korea,
| |
Collapse
|
6
|
Habeck C, Gazes Y, Stern Y. Age-Specific Activation Patterns and Inter-Subject Similarity During Verbal Working Memory Maintenance and Cognitive Reserve. Front Psychol 2022; 13:852995. [PMID: 35756196 PMCID: PMC9218333 DOI: 10.3389/fpsyg.2022.852995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Cognitive Reserve (CR), according to a recent consensus definition of the NIH-funded Reserve and Resilience collaboratory, is constituted by any mechanism contributing to cognitive performance beyond, or interacting with, brain structure in the widest sense. To identity multivariate activation patterns fulfilling this postulate, we investigated a verbal Sternberg fMRI task and imaged 181 people with age coverage in the ranges 20-30 (44 participants) and 55-70 (137 participants). Beyond task performance, participants were characterized in terms of demographics, and neuropsychological assessments of vocabulary, episodic memory, perceptual speed, and abstract fluid reasoning. Participants studied an array of either one, three, or six upper-case letters for 3 s (=encoding phase), then a blank fixation screen was presented for 7 s (=maintenance phase), to be probed with a lower-case letter to which they responded with a differential button press whether the letter was part of the studied array or not (=retrieval phase). We focused on identifying maintenance-related activation patterns showing memory load increases in pattern score on an individual participant level for both age groups. We found such a pattern that increased with memory load for all but one person in the young participants (p < 0.001), and such a pattern for all participants in the older group (p < 0.001). Both patterns showed broad topographic similarities; however, relationships to task performance and neuropsychological characteristics were markedly different and point to individual differences in Cognitive Reserve. Beyond the derivation of group-level activation patterns, we also investigated the inter-subject spatial similarity of individual working memory rehearsal patterns in the older participants' group as a function of neuropsychological and task performance, education, and mean cortical thickness. Higher task accuracy and neuropsychological function was reliably associated with higher inter-subject similarity of individual-level activation patterns in older participants.
Collapse
Affiliation(s)
- Christian Habeck
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | | | | |
Collapse
|
7
|
Turner MP, Zhao Y, Abdelkarim D, Liu P, Spence JS, Hutchison JL, Sivakolundu DK, Thomas BP, Hubbard NA, Xu C, Taneja K, Lu H, Rypma B. Altered linear coupling between stimulus-evoked blood flow and oxygen metabolism in the aging human brain. Cereb Cortex 2022; 33:135-151. [PMID: 35388407 PMCID: PMC9758587 DOI: 10.1093/cercor/bhac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Neural-vascular coupling (NVC) is the process by which oxygen and nutrients are delivered to metabolically active neurons by blood vessels. Murine models of NVC disruption have revealed its critical role in healthy neural function. We hypothesized that, in humans, aging exerts detrimental effects upon the integrity of the neural-glial-vascular system that underlies NVC. To test this hypothesis, calibrated functional magnetic resonance imaging (cfMRI) was used to characterize age-related changes in cerebral blood flow (CBF) and oxygen metabolism during visual cortex stimulation. Thirty-three younger and 27 older participants underwent cfMRI scanning during both an attention-controlled visual stimulation task and a hypercapnia paradigm used to calibrate the blood-oxygen-level-dependent signal. Measurement of stimulus-evoked blood flow and oxygen metabolism permitted calculation of the NVC ratio to assess the integrity of neural-vascular communication. Consistent with our hypothesis, we observed monotonic NVC ratio increases with increasing visual stimulation frequency in younger adults but not in older adults. Age-related changes in stimulus-evoked cerebrovascular and neurometabolic signal could not fully explain this disruption; increases in stimulus-evoked neurometabolic activity elicited corresponding increases in stimulus-evoked CBF in younger but not in older adults. These results implicate age-related, demand-dependent failures of the neural-glial-vascular structures that comprise the NVC system.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Peiying Liu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Nicholas A Hubbard
- Department of Psychology, Center for Brain, Biology, and Behavior, University of Nebraska, Lincoln, NE 68588, USA
| | - Cuimei Xu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kamil Taneja
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bart Rypma
- Corresponding author: School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
8
|
St-Amant G, Salzman T, Michaud L, Polskaia N, Fraser S, Lajoie Y. Hemodynamic responses of quiet standing simultaneously performed with different cognitive loads in older adults. Hum Mov Sci 2022; 82:102931. [DOI: 10.1016/j.humov.2022.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
|
9
|
Tagliabue CF, Varesio G, Mazza V. Inter- and Intra-Hemispheric Age-Related Remodeling in Visuo-Spatial Working Memory. Front Aging Neurosci 2022; 13:807907. [PMID: 35111040 PMCID: PMC8803153 DOI: 10.3389/fnagi.2021.807907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Electroencephalography (EEG) studies investigating visuo-spatial working memory (vWM) in aging typically adopt an event-related potential (ERP) analysis approach that has shed light on the age-related changes during item retention and retrieval. However, this approach does not fully enable a detailed description of the time course of the neural dynamics related to aging. The most frequent age-related changes in brain activity have been described by two influential models of neurocognitive aging, the Hemispheric Asymmetry Reduction in Older Adults (HAROLD) and the Posterior-Anterior Shift in Aging (PASA). These models posit that older adults tend to recruit additional brain areas (bilateral as predicted by HAROLD and anterior as predicted by PASA) when performing several cognitive tasks. We tested younger (N = 36) and older adults (N = 35) in a typical vWM task (delayed match-to-sample) where participants have to retain items and then compare them to a sample. Through a data-driven whole scalp EEG analysis we aimed at characterizing the temporal dynamics of the age-related activations predicted by the two models, both across and within different stages of stimulus processing. Behaviorally, younger outperformed older adults. The EEG analysis showed that older adults engaged supplementary bilateral posterior and frontal sites when processing different levels of memory load, in line with both HAROLD and PASA-like activations. Interestingly, these age-related supplementary activations dynamically developed over time. Indeed, they varied across different stages of stimulus processing, with HAROLD-like modulations being mainly present during item retention, and PASA-like activity during both retention and retrieval. Overall, the present results suggest that age-related neural changes are not a phenomenon indiscriminately present throughout all levels of cognitive processing.
Collapse
|
10
|
Ward N, Menta A, Ulichney V, Raileanu C, Wooten T, Hussey EK, Marfeo E. The Specificity of Cognitive-Motor Dual-Task Interference on Balance in Young and Older Adults. Front Aging Neurosci 2022; 13:804936. [PMID: 35087396 PMCID: PMC8786904 DOI: 10.3389/fnagi.2021.804936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 01/16/2023] Open
Abstract
Standing upright on stable and unstable surfaces requires postural control. Postural control declines as humans age, presenting greater risk of fall-related injury and other negative health outcomes. Secondary cognitive tasks can further impact balance, which highlights the importance of coordination between cognitive and motor processes. Past research indicates that this coordination relies on executive function (EF; the ability to control, maintain, and flexibly direct attention to achieve goals), which coincidentally declines as humans age. This suggests that secondary cognitive tasks requiring EF may exert a greater influence on balance compared to non-EF secondary tasks, and this interaction could be exaggerated among older adults. In the current study, we had younger and older adults complete two Surface Stability conditions (standing upright on stable vs. unstable surfaces) under varying Cognitive Load; participants completed EF (Shifting, Inhibiting, Updating) and non-EF (Processing Speed) secondary cognitive tasks on tablets, as well as a single task control scenario with no secondary cognitive task. Our primary balance measure of interest was sway area, which was measured with an array of wearable inertial measurement unit sensors. Replicating prior work, we found a main effect of Surface Stability with less sway on stable surfaces compared to unstable surfaces, and we found an interaction between Age and Surface Stability with older adults exhibiting significantly greater sway selectively on unstable surfaces compared to younger adults. New findings revealed a main effect of Cognitive Load on sway, with the single task condition having significantly less sway than two of the EF conditions (Updating and Shifting) and the non-EF condition (Processing Speed). We also found an interaction of Cognitive Load and Surface Stability on postural control, where Surface Stability impacted sway the most for the single task and two of the executive function conditions (Inhibition and Shifting). Interestingly, Age did not interact with Cognitive Load, suggesting that both age groups were equally impacted by secondary cognitive tasks, regardless the presence or type of secondary cognitive task. Taken together, these patterns suggest that cognitive demands vary in their impact on posture control across stable vs. unstable surfaces, and that EF involvement may not be the driving mechanism explaining cognitive-motor dual-task interference on balance.
Collapse
Affiliation(s)
- Nathan Ward
- Department of Psychology, Tufts University, Medford, MA, United States
| | - Alekya Menta
- Department of Psychology, Tufts University, Medford, MA, United States
| | - Virginia Ulichney
- Department of Psychology, Temple University, Philadelphia, PA, United States
| | | | - Thomas Wooten
- Department of Psychology, Tufts University, Medford, MA, United States
| | | | - Elizabeth Marfeo
- Department of Occupational Therapy, Tufts University, Medford, MA, United States
| |
Collapse
|
11
|
Deng X, Wang J, Zang Y, Li Y, Fu W, Su Y, Chen X, Du B, Dong Q, Chen C, Li J. Intermittent theta burst stimulation over the parietal cortex has a significant neural effect on working memory. Hum Brain Mapp 2021; 43:1076-1086. [PMID: 34730863 PMCID: PMC8764471 DOI: 10.1002/hbm.25708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
The crucial role of the parietal cortex in working memory (WM) storage has been identified by fMRI studies. However, it remains unknown whether repeated parietal intermittent theta‐burst stimulation (iTBS) can improve WM. In this within‐subject randomized controlled study, under the guidance of fMRI‐identified parietal activation in the left hemisphere, 22 healthy adults received real and sham iTBS sessions (five consecutive days, 600 pulses per day for each session) with an interval of 9 months between the two sessions. Electroencephalography signals of each subject before and after both iTBS sessions were collected during a change detection task. Changes in contralateral delay activity (CDA) and K‐score were then calculated to reflect neural and behavioral WM improvement. Repeated‐measures ANOVA suggested that real iTBS increased CDA more than the sham one (p = .011 for iTBS effect). Further analysis showed that this effect was more significant in the left hemisphere than in the right hemisphere (p = .029 for the hemisphere‐by‐iTBS interaction effect). Pearson correlation analyses showed significant correlations for two conditions between CDA changes in the left hemisphere and K score changes (ps <.05). In terms of the behavioral results, significant K score changes after real iTBS were observed for two conditions, but a repeated‐measures ANOVA showed a nonsignificant main effect of iTBS (p = .826). These results indicate that the current iTBS protocol is a promising way to improve WM capability based on the neural indicator (CDA) but further optimization is needed to produce a behavioral effect.
Collapse
Affiliation(s)
- Xinping Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jue Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yufeng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Wenjin Fu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yanyan Su
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing, China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
12
|
Zhao Y, Liu P, Turner MP, Abdelkarim D, Lu H, Rypma B. The neural-vascular basis of age-related processing speed decline. Psychophysiology 2021; 58:e13845. [PMID: 34115388 DOI: 10.1111/psyp.13845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Most studies examining neurocognitive aging are based on the blood-oxygen level-dependent signal obtained during functional magnetic resonance imaging (fMRI). The physiological basis of this signal is neural-vascular coupling, the process by which neurons signal cerebrovasculature to dilate in response to an increase in active neural metabolism due to stimulation. These fMRI studies of aging rely on the hemodynamic equivalence assumption that this process is not disrupted by physiologic deterioration associated with aging. Studies of neural-vascular coupling challenge this assumption and show that neural-vascular coupling is closely related to cognition. In this review, we put forward a theory of processing speed decline in aging and how it is related to age-related neural-vascular coupling changes based on the results of studies elucidating the relationships between cognition, cerebrovascular dynamics, and aging.
Collapse
Affiliation(s)
- Yuguang Zhao
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Peiying Liu
- School of Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Monroe P Turner
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Hanzhang Lu
- School of Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
13
|
Motealleh A, Sinaei E, Nouraddinifard E, Rezaei I. Comparison of postural control in older adults under different dual-task conditions: A cross-sectional study. J Bodyw Mov Ther 2020; 26:443-447. [PMID: 33992281 DOI: 10.1016/j.jbmt.2020.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND and purpose: Performing a cognitive task while maintaining postural stability, known as "dual-task" condition, can increase the cognitive demand and reduce the postural control capacity. The inability to allocate attention to postural control under dual-task conditions may lead to balance impairments, particularly in older adults. The present study aimed to compare the effects of different dual-task conditions of backward counting (BC) and visual attention (VA) on older adults' postural balance performance. METHODS Twenty asymptomatic volunteers (mean age: 70.4 ± 4.1 years) were recruited. Participants stood on a foam surface placed over a force plate, and displacement and sway velocity of their center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions were recorded under three conditions: BC dual-task, VA dual-task (control of center of mass with a laser pointer), and quiet stance as the control task (CT). RESULTS Repeated measures ANOVA showed a significant difference in AP and ML sway velocities between conditions with p-values of 0.039 and 0.042, respectively. The LSD post-hoc test revealed that the BC task significantly increased AP sway velocity compared to the CT (p = 0.013), and the VA task significantly increased ML sway velocity compared to the CT (p = 0.034) and the BC tasks (p = 0.026). There were no statistically significant differences between conditions for ML (p = 0.058) and AP (p = 0.350) displacements and total sway velocity (p = 0.051). CONCLUSION Older adults' postural stability can be impaired under dual-task conditions and the present study revealed that various dual tasks increase postural sway in different directions.
Collapse
Affiliation(s)
- Alireza Motealleh
- Physical Therapy Department, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ehsan Sinaei
- Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Iman Rezaei
- Physical Therapy Department, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran; Rehabilitation Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Chen K, Azeez A, Chen DY, Biswal BB. Resting-State Functional Connectivity: Signal Origins and Analytic Methods. Neuroimaging Clin N Am 2020; 30:15-23. [PMID: 31759568 DOI: 10.1016/j.nic.2019.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Resting state functional connectivity (RSFC) has been widely studied in functional magnetic resonance imaging (fMRI) and is observed by a significant temporal correlation of spontaneous low-frequency signal fluctuations (SLFs) both within and across hemispheres during rest. Different hypotheses of RSFC include the biophysical origin hypothesis and cognitive origin hypothesis, which show that the role of SLFs and RSFC is still not completely understood. Furthermore, RSFC and age studies have shown an "age-related compensation" phenomenon. RSFC data analysis methods include time domain analysis, seed-based correlation, regional homogeneity, and principal and independent component analyses. Despite advances in RSFC, the authors also discuss challenges and limitations, ranging from head motion to methodological limitations.
Collapse
Affiliation(s)
- Kai Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China
| | - Azeezat Azeez
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA
| | - Donna Y Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, No.2006, Xiyuan Avenue, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ 07102, USA.
| |
Collapse
|
15
|
Steffener J, Rana Z, Dancey S, Chang YY, Hernandez FR, Guy C. Screen position effects on task performance in a delayed match to sample task. Acta Psychol (Amst) 2020; 208:103123. [PMID: 32585434 DOI: 10.1016/j.actpsy.2020.103123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022] Open
Abstract
Studies of working memory have used immediate and delayed recall of lists of items. Serial position effects are the phenomena where items at the beginning and end of a studied list are recalled differentially from items in the middle of the list. In matching versions of the task, study items may be presented serially or simultaneously in a grid. After a delay a single probe item is presented for which the participant determines whether or not it was in the study set. The effects of the position of an item when studied on a screen are currently not well understood and are the focus of the current work. Findings from a delayed match to sample task in 49 healthy young adults with 1 to 9 items presented in a 3 by 3 grid, demonstrate that the column of the studied items affect response time and accuracy. The effects of position on accuracy also significantly interact with task demands. The importance of screen position effects is demonstrated with simulations using the mean accuracies split by task demands and screen locations. Simulations demonstrate the possible range of accuracies based on screen effects when the number of trials presented to an individual is less than 20 for each task demand. This has important implications when a small number of trials are administered using randomly generated stimuli which is often the case in neuroimaging studies where tasks are delivered under constrained time limits.
Collapse
Affiliation(s)
- Jason Steffener
- Neural Cognitive Mapping Laboratory, Interdisciplinary School of Health Science, University of Ottawa, Ottawa, ON, Canada.
| | - Zoha Rana
- Neural Cognitive Mapping Laboratory, Interdisciplinary School of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Sonia Dancey
- Neural Cognitive Mapping Laboratory, Interdisciplinary School of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Yu-Yao Chang
- Neural Cognitive Mapping Laboratory, Interdisciplinary School of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Fernando Rosales Hernandez
- Neural Cognitive Mapping Laboratory, Interdisciplinary School of Health Science, University of Ottawa, Ottawa, ON, Canada
| | - Courtney Guy
- Neural Cognitive Mapping Laboratory, Interdisciplinary School of Health Science, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Fatima S, Khan M, Rosselli M, Ardila A. Age, executive functioning, and decision-making styles in adults: a moderated mediation model. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2020; 27:338-350. [PMID: 31084251 DOI: 10.1080/13825585.2019.1614142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
The current study aimed to assess: i) whether executive functioning (EF) mediates the association of age with different decision-making (DM) styles in adults, and ii) whether these mediational associations change with age in adulthood. Our sample included 195 adults (110 young adults and 85 middle-aged adults; 95 males) selected from different government, semi-government, and private sector organizations. They were assessed on a self-report measure of General Decision-making Styles and on two EF tests: the Design Fluency Test and the Color-Word Interference Test from the Delis-Kaplan Executive Functions System. Results indicated that EF mediated the association of age with three decision-making styles including dependent, avoidant, and spontaneous DM. However, a conditional indirect effect of EF was significant only for spontaneous DM, indicating stronger indirect effects for middle-aged adults than for young adults. The findings highlight the idea that EF is an important factor in DM, particularly during middle adulthood.
Collapse
Affiliation(s)
- Shameem Fatima
- Psychology, Department of Humanities, COMSATS University Islamabad, Lahore, Pakistan
| | - Manoor Khan
- Institute of Applied Psychology, University of the Punjab, Lahore, Pakistan
| | - Monica Rosselli
- Department of Psychology, Florida Atlantic University, Boca Raton, FL, USA
| | - Alfredo Ardila
- Institute of Linguistics and Intercultural Communication, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
17
|
Abdelkarim D, Zhao Y, Turner MP, Sivakolundu DK, Lu H, Rypma B. A neural-vascular complex of age-related changes in the human brain: Anatomy, physiology, and implications for neurocognitive aging. Neurosci Biobehav Rev 2019; 107:927-944. [DOI: 10.1016/j.neubiorev.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
|
18
|
Pergher V, Demaerel P, Soenen O, Saarela C, Tournoy J, Schoenmakers B, Karrasch M, Van Hulle MM. Identifying brain changes related to cognitive aging using VBM and visual rating scales. NEUROIMAGE-CLINICAL 2019; 22:101697. [PMID: 30739844 PMCID: PMC6370556 DOI: 10.1016/j.nicl.2019.101697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Aging is often associated with changes in brain structures as well as in cognitive functions. Structural changes can be visualized with Magnetic Resonance Imaging (MRI) using voxel-based grey matter morphometry (VBM) and visual rating scales to assess atrophy level. Several MRI studies have shown that possible neural correlates of cognitive changes can be seen in normal aging. It is still not fully understood how cognitive function as measured by tests and demographic factors are related to brain changes in the MRI. We recruited 55 healthy elderly subjects aged 50–79 years. A battery of cognitive tests was administered to all subjects prior to MRI scanning. Our aim was to assess correlations between age, sex, education, cognitive test performance, and the said two MRI-based measures. Our results show significant differences in VBM grey matter volume for education level (≤ 12 vs. > 12 years), with a smaller amount of grey matter volume in subjects with lower educational levels, and for age in interaction with education, indicating larger grey matter volume for young, higher educated adults. Also, grey matter volume was found to be correlated with working memory function (Digit Span Backward). Furthermore, significant positive correlations were found between visual ratings and both age and education, showing larger atrophy levels with increasing age and decreasing level of education. These findings provide supportive evidence that MRI-VBM detects structural differences for education level, and correlates with educational level and age, and working memory task performance. VBM grey matter volume differences were significant for the interaction of age and education level. Grey matter volume correlated with education level and working memory function (Digit Span Backward). Significant correlations were found between visual rating scales and both age and education. VBM is able to detect structural differences for age and education, and correlates with education and working memory.
Collapse
Affiliation(s)
- Valentina Pergher
- KU Leuven -University of Leuven, Department of Neurosciences, Laboratory for Neuro-& Psychophysiology, Leuven, Belgium.
| | - Philippe Demaerel
- Department of Radiology, University Hospitals Leuven, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Olivier Soenen
- Department of Radiology, University Hospitals Leuven, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Carina Saarela
- Department of Psychology, Åbo Akademi University, Turku, Finland; Department of Psychology, University of Turku, Turku, Finland
| | - Jos Tournoy
- Department of Chronic Diseases, Metabolism and Ageing, University Hospitals Leuven, KU Leuven, Belgium
| | - Birgitte Schoenmakers
- Academic Centre of General Practice, KU Leuven - University of Leuven, Leuven, Belgium
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Marc M Van Hulle
- KU Leuven -University of Leuven, Department of Neurosciences, Laboratory for Neuro-& Psychophysiology, Leuven, Belgium
| |
Collapse
|
19
|
Suzuki M, Kawagoe T, Nishiguchi S, Abe N, Otsuka Y, Nakai R, Asano K, Yamada M, Yoshikawa S, Sekiyama K. Neural Correlates of Working Memory Maintenance in Advanced Aging: Evidence From fMRI. Front Aging Neurosci 2018; 10:358. [PMID: 30459595 PMCID: PMC6232505 DOI: 10.3389/fnagi.2018.00358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/19/2018] [Indexed: 11/13/2022] Open
Abstract
Working memory (WM)-related brain activity is known to be modulated by aging; particularly, older adults demonstrate greater activity than young adults. However, it is still unclear whether the activity increase in older adults is also observed in advanced aging. The present functional magnetic resonance imaging (fMRI) study was designed to clarify the neural correlates of WM in advanced aging. Further, we set out to investigate in the case that adults of advanced age do show age-related increase in WM-related activity, what the functional significance of this over-recruitment might be. Two groups of older adults – “young–old” (61–70 years, n = 17) and “old–old” (77–82 years, n = 16) – were scanned while performing a visual WM task (the n-back task: 0-back and 1-back). WM effects (1-back > 0-back) common to both age groups were identified in several regions, including the bilateral dorsolateral prefrontal cortex (DLPFC), the inferior parietal cortex, and the insula. Greater WM effects in the old–old than in the young–old group were identified in the right caudal DLPFC. These results were replicated when we performed a separate analysis between two age groups with the same level of WM performance (the young–old vs. a “high-performing” subset of the old–old group). There were no regions where WM effects were greater in the young–old group than in the old–old group. Importantly, the magnitude of the over-recruitment WM effects positively correlated with WM performance in the old–old group, but not in the young–old group. The present findings suggest that cortical over-recruitment occurs in advanced old age, and that increased activity may serve a compensatory function in mediating WM performance.
Collapse
Affiliation(s)
- Maki Suzuki
- Division of Cognitive Psychology, Faculty of Letters, Kumamoto University, Kumamoto, Japan.,Department of Behavioral Neurology and Neuropsychiatry, United Graduate School of Child Development, Osaka University, Suita, Japan
| | - Toshikazu Kawagoe
- Division of Human and Social Sciences, Graduate School of Social and Cultural Sciences, Kumamoto University, Kumamoto, Japan
| | - Shu Nishiguchi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobuhito Abe
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Yuki Otsuka
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Ryusuke Nakai
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Kohei Asano
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Minoru Yamada
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Kaoru Sekiyama
- Division of Cognitive Psychology, Faculty of Letters, Kumamoto University, Kumamoto, Japan.,Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Anderson AA, Parsa K, Geiger S, Zaragoza R, Kermanian R, Miguel H, Dashtestani H, Chowdhry FA, Smith E, Aram S, Gandjbakhche AH. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task. PLoS One 2018; 13:e0198257. [PMID: 29870536 PMCID: PMC5988299 DOI: 10.1371/journal.pone.0198257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/16/2018] [Indexed: 11/19/2022] Open
Abstract
Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing.
Collapse
Affiliation(s)
- Afrouz A. Anderson
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Kian Parsa
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Sydney Geiger
- St. Olaf College, Northfield, MN, United States of America
| | - Rachel Zaragoza
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Riley Kermanian
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Helga Miguel
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Hadis Dashtestani
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Fatima A. Chowdhry
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Elizabeth Smith
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Siamak Aram
- Analytics Department, Harrisburg University of Science and Technology, Harrisburg, PA, United States of America
| | - Amir H. Gandjbakhche
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
21
|
Rosi A, Bruine de Bruin W, Del Missier F, Cavallini E, Russo R. Decision-making competence in younger and older adults: which cognitive abilities contribute to the application of decision rules? AGING NEUROPSYCHOLOGY AND COGNITION 2017; 26:174-189. [PMID: 29283001 DOI: 10.1080/13825585.2017.1418283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Older adults perform worse than younger adults when applying decision rules to choose between options that vary along multiple attributes. Although previous studies have shown that general fluid cognitive abilities contribute to the accurate application of decision rules, relatively little is known about which specific cognitive abilities play the most important role. We examined the independent roles of working memory, verbal fluency, semantic knowledge, and components of executive functioning. We found that age-related decline in applying decision rules was statistically mediated by age-related decline in working memory and verbal fluency. Our results have implications for theories of aging and decision-making.
Collapse
Affiliation(s)
- Alessia Rosi
- a Department of Brain and Behavioral Sciences , University of Pavia , Pavia , Italy
| | - Wändi Bruine de Bruin
- b Centre for Decision Research , Leeds University Business School , Leeds , UK.,c Department of Engineering and Public Policy , Carnegie Mellon University , Pittsburgh , PA , USA
| | - Fabio Del Missier
- d Department of Life Sciences , University of Trieste , Trieste , Italy.,e Department of Psychology , Stockholm University , Stockholm , Sweden
| | - Elena Cavallini
- a Department of Brain and Behavioral Sciences , University of Pavia , Pavia , Italy
| | - Riccardo Russo
- a Department of Brain and Behavioral Sciences , University of Pavia , Pavia , Italy.,f Department of Psychology , University of Essex , Colchester , UK
| |
Collapse
|
22
|
Toepper M. Dissociating Normal Aging from Alzheimer's Disease: A View from Cognitive Neuroscience. J Alzheimers Dis 2017; 57:331-352. [PMID: 28269778 PMCID: PMC5366251 DOI: 10.3233/jad-161099] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Both normal aging and Alzheimer's disease (AD) are associated with changes in cognition, grey and white matter volume, white matter integrity, neural activation, functional connectivity, and neurotransmission. Obviously, all of these changes are more pronounced in AD and proceed faster providing the basis for an AD diagnosis. Since these differences are quantitative, however, it was hypothesized that AD might simply reflect an accelerated aging process. The present article highlights the different neurocognitive changes associated with normal aging and AD and shows that, next to quantitative differences, there are multiple qualitative differences as well. These differences comprise different neurocognitive dissociations as different cognitive deficit profiles, different weights of grey and white matter atrophy, and different gradients of structural decline. These qualitative differences clearly indicate that AD cannot be simply described as accelerated aging process but on the contrary represents a solid entity.
Collapse
Affiliation(s)
- Max Toepper
- Department of Psychiatry and Psychotherapy Bethel, Research Division, Evangelisches Krankenhaus Bielefeld (EvKB), Bielefeld, Germany
- Department of Psychiatry and Psychotherapy Bethel, Department of Geriatric Psychiatry, Evangelisches Krankenhaus Bielefeld (EvKB), Bielefeld, Germany
| |
Collapse
|
23
|
A positive association between active lifestyle and hemispheric lateralization for motor control and learning in older adults. Behav Brain Res 2016; 314:38-44. [DOI: 10.1016/j.bbr.2016.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/29/2016] [Indexed: 11/20/2022]
|
24
|
Large-scale functional network overlap is a general property of brain functional organization: Reconciling inconsistent fMRI findings from general-linear-model-based analyses. Neurosci Biobehav Rev 2016; 71:83-100. [PMID: 27592153 DOI: 10.1016/j.neubiorev.2016.08.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022]
Abstract
Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain's properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings.
Collapse
|
25
|
Cassidy BS, Lee EJ, Krendl AC. Age and executive ability impact the neural correlates of race perception. Soc Cogn Affect Neurosci 2016; 11:1752-1761. [PMID: 27330185 DOI: 10.1093/scan/nsw081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 06/09/2016] [Indexed: 11/12/2022] Open
Abstract
Decreased executive ability elicits racial bias. We clarified the neural correlates of how executive ability contributes to race perception by comparing young adults (YA) to a population with highly variable executive ability: older adults (OA). After replicating work showing higher race bias in OA vs YA and a negative association between bias and executive ability, a subsample of White YA and OA perceived Black and White faces and cars during functional magnetic resonance imaging. YA had higher executive ability than OA, and OA had higher variability in executive ability. When perceiving Black vs White faces, YA exhibited more dorsolateral prefrontal cortex recruitment-a region previously implicated in regulating prejudiced responses-than OA. Moreover, OA with relatively impaired executive ability had more amygdala activity toward Black faces vs OA with relatively intact executive ability, whereas responses to White faces did not differ. Both YA and OA with relatively intact executive ability had stronger amygdala-ventrolateral prefrontal cortex connectivity when perceiving Black vs White faces. These findings are the first to disentangle age from executive ability differences in neural recruitment when perceiving race, potentially informing past behavioral work on aging and race perception.
Collapse
Affiliation(s)
- Brittany S Cassidy
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Eunice J Lee
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Anne C Krendl
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
26
|
Abstract
The primary motor cortex (M1) is traditionally implicated in voluntary movement control. In order to test the hypothesis that there is a functional topography of M1 activation in studies where it has been implicated in higher cognitive tasks we performed activation-likelihood-estimation (ALE) meta-analyses of functional neuroimaging experiments reporting M1 activation in relation to six cognitive functional categories for which there was a sufficient number of studies to include, namely motor imagery, working memory, mental rotation, social/emotion/empathy, language, and auditory processing. The six categories activated different sub-sectors of M1, either bilaterally or lateralized to one hemisphere. Notably, the activations found in the M1 of the left or right hemisphere detected in our study were unlikely due to button presses. In fact, all contrasts were selected in order to eliminate M1 activation due to activity related to the finger button press. In addition, we identified the M1 sub-region of Area 4a commonly activated by 4/6 categories, namely motor imagery and working memory, emotion/empathy, and language. Overall, our findings lend support to the idea that there is a functional topography of M1 activation in studies where it has been found activated in higher cognitive tasks and that the left Area 4a can be involved in a number of cognitive processes, likely as a product of implicit mental simulation processing.
Collapse
|
27
|
Johnson MK, Mitchell KJ, Raye CL, Greene EJ. An Age-Related Deficit in Prefrontal Cortical Function Associated With Refreshing Information. Psychol Sci 2016; 15:127-32. [PMID: 14738520 DOI: 10.1111/j.0963-7214.2004.01502009.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Older adults are slower than young adults to think of an item they just saw, that is, to engage or execute (or both) the simple reflective operation of refreshing just-activated information. In addition, they derive less long-term memory benefit from refreshing information. Using functional magnetic resonance imaging (fMRI), we found that relative to young adults, older adults showed reduced refresh-related activity in an area of dorsolateral prefrontal cortex (left middle frontal gyrus, Brodmann's Area 9), but not in other refresh-related areas. This provides strong evidence that a frontal component of the circuit that subserves this basic cognitive process is especially vulnerable to aging. Such a refresh deficit could contribute to poorer performance of older than young adults on a wide range of cognitive tasks.
Collapse
|
28
|
Trying to Put the Puzzle Together: Age and Performance Level Modulate the Neural Response to Increasing Task Load within Left Rostral Prefrontal Cortex. BIOMED RESEARCH INTERNATIONAL 2015; 2015:415458. [PMID: 26558269 PMCID: PMC4617870 DOI: 10.1155/2015/415458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/13/2015] [Indexed: 11/17/2022]
Abstract
Age-related working memory decline is associated with functional cerebral changes within prefrontal cortex (PFC). Kind and meaning of these changes are heavily discussed since they depend on performance level and task load. Hence, we investigated the effects of age, performance level, and load on spatial working memory retrieval-related brain activation in different subregions of the PFC. 19 younger (Y) and 21 older (O) adults who were further subdivided into high performers (HP) and low performers (LP) performed a modified version of the Corsi Block-Tapping test during fMRI. Brain data was analyzed by a 4 (groups: YHP, OHP, YLP, and OLP) × 3 (load levels: loads 4, 5, and 6) ANOVA. Results revealed significant group × load interaction effects within rostral dorsolateral and ventrolateral PFC. YHP showed a flexible neural upregulation with increasing load, whereas YLP reached a resource ceiling at a moderate load level. OHP showed a similar (though less intense) pattern as YHP and may have compensated age-effects at high task load. OLP showed neural inefficiency at low and no upregulation at higher load. Our findings highlight the relevance of age and performance level for load-dependent activation within rostral PFC. Results are discussed in the context of the compensation-related utilization of neural circuits hypothesis (CRUNCH) and functional PFC organization.
Collapse
|
29
|
Li HJ, Hou XH, Liu HH, Yue CL, Lu GM, Zuo XN. Putting age-related task activation into large-scale brain networks: A meta-analysis of 114 fMRI studies on healthy aging. Neurosci Biobehav Rev 2015; 57:156-74. [PMID: 26318367 DOI: 10.1016/j.neubiorev.2015.08.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 11/24/2022]
Abstract
Normal aging is associated with cognitive decline and underlying brain dysfunction. Previous studies concentrated less on brain network changes at a systems level. Our goal was to examine these age-related changes of fMRI-derived activation with a common network parcellation of the human brain function, offering a systems-neuroscience perspective of healthy aging. We conducted a series of meta-analyses on a total of 114 studies that included 2035 older adults and 1845 young adults. Voxels showing significant age-related changes in activation were then overlaid onto seven commonly referenced neuronal networks. Older adults present moderate cognitive decline in behavioral performance during fMRI scanning, and hypo-activate the visual network and hyper-activate both the frontoparietal control and default mode networks. The degree of increased activation in frontoparietal network was associated with behavioral performance in older adults. Age-related changes in activation present different network patterns across cognitive domains. The systems neuroscience approach used here may be useful for elucidating the underlying network mechanisms of various brain plasticity processes during healthy aging.
Collapse
Affiliation(s)
- Hui-Jie Li
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Laboratory for Functional Connectome and Development, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiao-Hui Hou
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Laboratory for Functional Connectome and Development, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Han-Hui Liu
- Youth Work Department, China Youth University of Political Studies, Beijing 100089, China
| | - Chun-Lin Yue
- Institute of Sports Medicine, Soochow University, Suzhou 215006, China
| | - Guang-Ming Lu
- Department of Medical Imaging, Nanjing University School of Medicine, Nanjing 210002, China
| | - Xi-Nian Zuo
- Key Laboratory of Behavioral Science and Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Laboratory for Functional Connectome and Development, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Faculty of Psychology, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
30
|
Electroencephalography-based real-time cortical monitoring system that uses hierarchical Bayesian estimations for the brain-machine interface. J Clin Neurophysiol 2015; 31:218-28. [PMID: 24887604 DOI: 10.1097/wnp.0000000000000064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this study, a real-time cortical activity monitoring system was constructed, which could estimate cortical activities every 125 milliseconds over 2,240 vertexes from 64 channel electroencephalography signals through the Hierarchical Bayesian estimation that uses functional magnetic resonance imaging data as its prior information. Recently, functional magnetic resonance imaging has mostly been used in the neurofeedback field because it allows for high spatial resolution. However, in functional magnetic resonance imaging, the time for the neurofeedback information to reach the patient is delayed several seconds because of its poor temporal resolution. Therefore, a number of problems need to be solved to effectively implement feedback training paradigms in patients. To address this issue, this study used a new cortical activity monitoring system that improved both spatial and temporal resolution by using both functional magnetic resonance imaging data and electroencephalography signals in conjunction with one another. This system is advantageous as it can improve applications in the fields of real-time diagnosis, neurofeedback, and the brain-machine interface.
Collapse
|
31
|
Marighetto A, Brayda-Bruno L, Etchamendy N. Studying the impact of aging on memory systems: contribution of two behavioral models in the mouse. Curr Top Behav Neurosci 2015; 10:67-89. [PMID: 21805395 DOI: 10.1007/7854_2011_151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present chapter, we describe our own attempts to improve our understanding of the pathophysiology of memory in aging. First, we tried to improve animal models of memory degradations occurring in aging, and develop common behavioral tools between mice and humans. Second, we began to use these behavioral tools to identify the molecular/intracellular changes occurring within the integrate network of memory systems in order to bridge the gap between the molecular and system level of analysis. The chapter is divided into three parts (i) modeling aging-related degradation in declarative memory (DM) in mice, (ii) assessing the main components of working memory (WM) with a common radial-maze task in mice and humans and (iii) studying the role of the retinoid cellular signaling path in aging-related changes in memory systems.
Collapse
Affiliation(s)
- Aline Marighetto
- Neurocentre Magendie-Inserm U862, 146 Rue Leo Saignat, 33077, Bordeaux-Cedex, France,
| | | | | |
Collapse
|
32
|
Brain functional correlates of working memory: reduced load-modulated activation and deactivation in aging without hyperactivation or functional reorganization. J Int Neuropsychol Soc 2014; 20:945-50. [PMID: 25263349 PMCID: PMC4624295 DOI: 10.1017/s1355617714000824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We aimed to identify brain functional correlates of working memory performance in aging, in hopes of facilitating understanding of mechanisms that promote better versus worse working memory in late-life. Among 64 healthy adults, aged 23 to 78, we examined the relationship between age, working memory performance, and brain functional response during task performance. We focused on the association between working memory load-modulated functional response and individual differences in performance and whether these function-performance relationships differed with age. As expected, older age was associated with poorer working memory performance. Older age was also associated with reduced load-modulated activation including in bilateral prefrontal and parietal regions and left caudate as well as reduced deactivation including in the medial prefrontal cortex. Contrary to findings of hyperactivation in aging, we found no evidence of increased activation with older age. Positive associations identified between brain response and performance did not differ with age. Our findings suggest that the neural mechanisms underlying better versus worse working memory performance are age-invariant across adulthood, and argue against a pattern of functional reorganization in aging. Results are discussed within the broader literature, in which significant heterogeneity in findings between studies has been common.
Collapse
|
33
|
Wiegand I, Töllner T, Dyrholm M, Müller HJ, Bundesen C, Finke K. Neural correlates of age-related decline and compensation in visual attention capacity. Neurobiol Aging 2014; 35:2161-73. [DOI: 10.1016/j.neurobiolaging.2014.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 01/09/2014] [Accepted: 02/26/2014] [Indexed: 12/01/2022]
|
34
|
The impact of age on prefrontal cortex integrity during spatial working memory retrieval. Neuropsychologia 2014; 59:157-68. [PMID: 24825744 DOI: 10.1016/j.neuropsychologia.2014.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 11/22/2022]
Abstract
Healthy aging is accompanied by a decline in spatial working memory that is related to functional cerebral changes within the spatial working memory network. In the last decade, important findings were presented concerning the location (e.g., prefrontal), kind (e.g., 'underactivation,' 'overactivation'), and meaning (e.g., functional deficits, compensation) of these changes. Less is known about how functional connections between specific brain regions are affected by age and how these changes are related to behavioral performance. To address these issues, we used functional magnetic resonance imaging to examine retrieval-related brain activation and functional connectivity in 18 younger individuals and 18 older individuals. We assessed working memory with a modified version of the Corsi Block-Tapping test, which requires the storage and reproduction of spatial target sequences. Analyses of group differences in brain activation and functional connectivity included comparisons between younger individuals, older individuals, older high-performers, and older low-performers. In addition, we conducted a functional connectivity analysis by using a seed region approach. In comparison to younger individuals, older individuals showed lower right-hemispheric dorsolateral prefrontal activation and lower functional connectivity between the right dorsolateral prefrontal cortex and the bilateral orbitofrontal cortex. Older high-performers showed higher right dorsolateral and anterior prefrontal cortex activation than older low-performers, as well as higher functional connectivity between these brain regions. The present results suggest age-related reductions of prefrontal activation during spatial working memory retrieval. Moreover, task-related functional connectivity appears to be lower in older adults. Performance accuracy in older adults is associated with right dorsolateral and anterior prefrontal cortex activation, and with the functional connection between these regions.
Collapse
|
35
|
Macpherson HN, White DJ, Ellis KA, Stough C, Camfield D, Silberstein R, Pipingas A. Age-related changes to the neural correlates of working memory which emerge after midlife. Front Aging Neurosci 2014; 6:70. [PMID: 24795625 PMCID: PMC3997023 DOI: 10.3389/fnagi.2014.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/29/2014] [Indexed: 11/13/2022] Open
Abstract
Previous research has indicated that the neural processes which underlie working memory change with age. Both age-related increases and decreases to cortical activity have been reported. This study investigated which stages of working memory are most vulnerable to age-related changes after midlife. To do this we examined age-differences in the 13 Hz steady state visually evoked potential (SSVEP) associated with a spatial working memory delayed response task. Participants were 130 healthy adults separated into a midlife (40–60 years) and an older group (61–82 years). Relative to the midlife group, older adults demonstrated greater bilateral frontal activity during encoding and this pattern of activity was related to better working memory performance. In contrast, evidence of age-related under activation was identified over left frontal regions during retrieval. Findings from this study suggest that after midlife, under-activation of frontal regions during retrieval contributes to age-related decline in working memory performance.
Collapse
Affiliation(s)
- Helen N Macpherson
- Centre for Human Psychopharmacology, Swinburne University Hawthorn, VIC, Australia
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University Hawthorn, VIC, Australia
| | - Kathryn A Ellis
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, St. Vincent's Aged Psychiatry Service, St. Georges Hospital, University of Melbourne Melbourne, VIC, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University Hawthorn, VIC, Australia
| | - David Camfield
- Centre for Human Psychopharmacology, Swinburne University Hawthorn, VIC, Australia
| | - Richard Silberstein
- Centre for Human Psychopharmacology, Swinburne University Hawthorn, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University Hawthorn, VIC, Australia
| |
Collapse
|
36
|
Toepper M, Gebhardt H, Bauer E, Haberkamp A, Beblo T, Gallhofer B, Driessen M, Sammer G. The impact of age on load-related dorsolateral prefrontal cortex activation. Front Aging Neurosci 2014; 6:9. [PMID: 24550826 PMCID: PMC3913830 DOI: 10.3389/fnagi.2014.00009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/15/2014] [Indexed: 01/18/2023] Open
Abstract
Healthy aging is accompanied by working memory-related functional cerebral changes. Depending on performance accuracy and the level of working memory demands, older adults show task-related patterns of either increased or decreased activation compared to younger adults. Controversies remain concerning the interpretation of these changes and whether they already manifest in earlier decades of life. To address these issues, functional magnetic resonance imaging (fMRI) was used to examine brain activation during spatial working memory retrieval in 45 healthy individuals between 20 and 68 years of age. Participants performed a modified version of the Corsi Block-Tapping test (CBT). The CBT requires the storage and subsequent reproduction of spatial target sequences and allows modulating working memory load by a variation of sequence length. Results revealed that activation intensity at the lowest CBT load level increased with increasing age and positively correlated with the number of errors. At higher CBT load levels, activation intensity decreased with increasing age together with a disproportional accuracy decline on the behavioral level. Moreover, results suggests that younger individuals showed higher activation intensity at high CBT load than at low CBT load switching to the opposite pattern at an age of about 40 years. Consistent with the assumptions of the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH), the present results reveal specific age-related alterations in left dorsolateral prefrontal cortex activation in response to increasing task load. Specifically, the results point toward increasing neural inefficiency with age at low task load and a progressive limitation of resources with age at higher task load. The present findings argue for an increasing functional cerebral dysfunction over a time span of 50 years that may partly be compensated on the behavioral level until a resource ceiling is approached.
Collapse
Affiliation(s)
- Max Toepper
- Research Department, Evangelic Hospital Bielefeld (EvKB) Bielefeld, Germany ; Cognitive Neuroscience at Centre for Psychiatry, Justus-Liebig-University Giessen Giessen, Germany
| | - Helge Gebhardt
- Cognitive Neuroscience at Centre for Psychiatry, Justus-Liebig-University Giessen Giessen, Germany ; Bender Institute of Neuroimaging, Justus-Liebig-University Giessen Giessen, Germany
| | - Eva Bauer
- Cognitive Neuroscience at Centre for Psychiatry, Justus-Liebig-University Giessen Giessen, Germany
| | - Anke Haberkamp
- Clinical Psychology and Psychotherapy, Philipps-University Marburg Marburg, Germany
| | - Thomas Beblo
- Research Department, Evangelic Hospital Bielefeld (EvKB) Bielefeld, Germany
| | - Bernd Gallhofer
- Cognitive Neuroscience at Centre for Psychiatry, Justus-Liebig-University Giessen Giessen, Germany
| | - Martin Driessen
- Research Department, Evangelic Hospital Bielefeld (EvKB) Bielefeld, Germany
| | - Gebhard Sammer
- Cognitive Neuroscience at Centre for Psychiatry, Justus-Liebig-University Giessen Giessen, Germany ; Bender Institute of Neuroimaging, Justus-Liebig-University Giessen Giessen, Germany
| |
Collapse
|
37
|
Di X, Rypma B, Biswal BB. Correspondence of executive function related functional and anatomical alterations in aging brain. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:41-50. [PMID: 24036319 PMCID: PMC3870052 DOI: 10.1016/j.pnpbp.2013.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/19/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022]
Abstract
Neurocognitive aging studies have focused on age-related changes in neural activity or neural structure but few studies have focused on relationships between the two. The present study quantitatively reviewed 24 studies of age-related changes in fMRI activation across a broad spectrum of executive function tasks using activation likelihood estimation (ALE) and 22 separate studies of age-related changes in gray matter using voxel-based morphometry (VBM). Conjunction analyses between functional and structural alteration maps were constructed. Overlaps were only observed in the conjunction of dorsolateral prefrontal cortex (DLPFC) gray matter reduction and functional hyperactivation but not hypoactivation. It was not evident that the conjunctions between gray matter and activation were related to task performance. Theoretical implications of these results are discussed.
Collapse
Affiliation(s)
- Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07101, USA.
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07101, USA
| |
Collapse
|
38
|
Bennett IJ, Rivera HG, Rypma B. Isolating age-group differences in working memory load-related neural activity: assessing the contribution of working memory capacity using a partial-trial fMRI method. Neuroimage 2013; 72:20-32. [PMID: 23357076 DOI: 10.1016/j.neuroimage.2013.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/13/2013] [Accepted: 01/20/2013] [Indexed: 10/27/2022] Open
Abstract
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results.
Collapse
Affiliation(s)
- Ilana J Bennett
- School of Behavioral and Brain Sciences, University of Texas at Dallas, TX 75235, USA.
| | | | | |
Collapse
|
39
|
Cognitive and Neural Mechanisms of Probabilistic Category Learning*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2012; 12:241-68. [PMID: 22282036 DOI: 10.3758/s13415-011-0083-5] [Citation(s) in RCA: 1056] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Classic cognitive theory conceptualizes executive functions as involving multiple specific domains, including initiation, inhibition, working memory, flexibility, planning, and vigilance. Lesion and neuroimaging experiments over the past two decades have suggested that both common and unique processes contribute to executive functions during higher cognition. It has been suggested that a superordinate fronto-cingulo-parietal network supporting cognitive control may also underlie a range of distinct executive functions. To test this hypothesis in the largest sample to date, we used quantitative meta-analytic methods to analyze 193 functional neuroimaging studies of 2,832 healthy individuals, ages 18-60, in which performance on executive function measures was contrasted with an active control condition. A common pattern of activation was observed in the prefrontal, dorsal anterior cingulate, and parietal cortices across executive function domains, supporting the idea that executive functions are supported by a superordinate cognitive control network. However, domain-specific analyses showed some variation in the recruitment of anterior prefrontal cortex, anterior and midcingulate regions, and unique subcortical regions such as the basal ganglia and cerebellum. These results are consistent with the existence of a superordinate cognitive control network in the brain, involving dorsolateral prefrontal, anterior cingulate, and parietal cortices, that supports a broad range of executive functions.
Collapse
|
41
|
Endrass T, Schreiber M, Kathmann N. Speeding up older adults: Age-effects on error processing in speed and accuracy conditions. Biol Psychol 2012; 89:426-32. [DOI: 10.1016/j.biopsycho.2011.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/25/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
|
42
|
Schreiber M, Endrass T, Weigand A, Kathmann N. Age Effects on Adjustments of Performance Monitoring to Task Difficulty. J PSYCHOPHYSIOL 2012. [DOI: 10.1027/0269-8803/a000077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Performance monitoring which is a core component of the executive functions has been found to be altered in older adults. Specifically, older adults showed smaller amplitudes of the error-related negativity (Ne/ERN) but increased amplitudes of the correct-related negativity (Nc/CRN), and a lack of adjustment to stimulus-response compatibility. The present study used a visual size discrimination task with two difficulty levels to further examine age-related alterations of the adaptation to actual task demands. Older adults showed a cautious response strategy with slower but more accurate responses than younger adults. Both age groups showed post-error slowing. Misperception of errors in the difficult condition was larger in older adults. In contrast to older adults, Ne/ERN amplitudes decreased and Nc/CRN amplitudes increased from the easy to the difficult condition in younger adults. This may indicate that adjustment to task difficulty was reduced in the older age group. It is concluded that conscious perception of errors and adaptation of the automatic performance monitoring to changing task demands are affected by age.
Collapse
|
43
|
Turner GR, Spreng RN. Executive functions and neurocognitive aging: dissociable patterns of brain activity. Neurobiol Aging 2011; 33:826.e1-13. [PMID: 21791362 DOI: 10.1016/j.neurobiolaging.2011.06.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/24/2011] [Accepted: 06/06/2011] [Indexed: 11/24/2022]
Abstract
Studies of neurocognitive aging report altered patterns of brain activity in older versus younger adults performing executive function tasks. We review the extant literature, using activation likelihood estimation meta-analytic methods, to compare age-related differences in the pattern of brain activity across studies examining 2 categories of tasks associated with executive control processing: working memory and inhibition. In a direct contrast of young and older adult activations, older adults engaged bilateral regions of dorsolateral prefrontal cortex as well as supplementary motor cortex and left inferior parietal lobule during working memory. In contrast, age-related changes during inhibitory control were observed in right inferior frontal gyrus and presupplementary motor area. Additionally, when we examined task-related differences within each age group we observed the predicted pattern of differentiated neural response in the younger subjects: lateral prefrontal cortex activity associated with working memory versus right anterior insula/frontal opercular activity associated with inhibition. This separation was largely maintained in older subjects. These data provide the first quantitative meta-analytic evidence that age-related patterns of functional brain change during executive functioning depend on the specific control process being challenged.
Collapse
Affiliation(s)
- Gary R Turner
- Heart and Stroke Foundation Centre for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | | |
Collapse
|
44
|
Abstract
Everyday activities break down into parts and subparts, and appreciating this hierarchical structure is an important component of understanding. In two experiments we found age differences in the ability to perceive hierarchical structure in continuous activity. In both experiments, younger and older adults segmented movies of everyday activities into large and small meaningful events. Older adults' segmentation deviated more from group norms than did younger adults' segmentation, and older adults' segmentation was less hierarchically organized than that of younger adults. Older adults performed less well than younger adults on event memory tasks. In some cases, measures of event segmentation discriminated between those older adults with better and worse memory. These results suggest that the hierarchical encoding of ongoing activity declines with age, and that such encoding may be important for memory.
Collapse
|
45
|
Schreiber M, Pietschmann M, Kathmann N, Endrass T. ERP correlates of performance monitoring in elderly. Brain Cogn 2011; 76:131-9. [DOI: 10.1016/j.bandc.2011.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 11/27/2022]
|
46
|
Wang J, Przybyla A, Wuebbenhorst K, Haaland KY, Sainburg RL. Aging reduces asymmetries in interlimb transfer of visuomotor adaptation. Exp Brain Res 2011; 210:283-90. [PMID: 21424842 DOI: 10.1007/s00221-011-2631-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/07/2011] [Indexed: 11/27/2022]
Abstract
Hemispheric asymmetry reduction in older adults (HAROLD) has been reported in previous imaging studies that employed not only cognitive, but also motor tasks. However, whether age-related reductions in asymmetry of hemispheric activations affect the symmetry of motor behavior in older adults remains largely untested. We now examine the effect of aging on lateralization of motor adaptation and transfer by investigating adaptation to novel visuomotor transformations in both old and young age groups. We have previously reported substantial asymmetries in interlimb transfer of learning these transformations in young adults, and attributed these asymmetries in transfer to hemispheric lateralization for motor control, as detailed by our dynamic dominance hypothesis. Based on the HAROLD model, we reasoned that older adults should recruit more symmetrical hemispheric activity, and thus show more symmetrical transfer of adaptation across the arms. Half of the subjects in each age group first adapted to a rotated visual display with the left arm, then with the right arm; and the other half in the reversed order. Naïve performance with one arm and the same-arm performance following opposite arm adaptation were compared to determine the extent of transfer in each age group. Our results showed that interlimb transfer of initial direction information only occurred from the nondominant to dominant arm in young adults, whereas it occurred in both directions in older adults. Our findings clearly indicate substantially reduced asymmetry in visuomotor adaptation in older adults, and suggest that this reduced motor asymmetry might be related to diminished hemispheric lateralization for motor control.
Collapse
Affiliation(s)
- Jinsung Wang
- Department of Human Movement Sciences, The University of Wisconsin, Milwaukee, WI 53201, USA.
| | | | | | | | | |
Collapse
|
47
|
Motes MA, Biswal BB, Rypma B. Age-Dependent Relationships between Prefrontal Cortex Activation and Processing Efficiency. Cogn Neurosci 2011; 2:1-10. [PMID: 22792129 PMCID: PMC3392652 DOI: 10.1080/17588928.2010.512974] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
fMRI was used in the present study to examine the neural basis for age-related differences in processing efficiency, particularly targeting prefrontal cortex (PFC). During scanning, older and younger participants completed a processing efficiency task in which they determined on each trial whether a symbol-number pair appeared in a simultaneously presented array of nine symbol-number pairs. Estimates of task-related BOLD signal-change were obtained for each participant. These estimates were then correlated with the participants' performance on the task. For younger participants, BOLD signal-change within PFC decreased with better performance, but for older participants, BOLD signal-change within PFC increased with better performance. The results support the hypothesis that the availability and use of PFC resources mediates age-related changes in processing efficiency.
Collapse
Affiliation(s)
- Michael A Motes
- School of Behavioral & Brain Sciences, University of Texas at Dallas
| | | | | |
Collapse
|
48
|
Medaglia JD, Ramanathan DM, Venkatesan UM, Hillary FG. The challenge of non-ergodicity in network neuroscience. NETWORK (BRISTOL, ENGLAND) 2011; 22:148-153. [PMID: 22149675 DOI: 10.3109/09638237.2011.639604] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ergodicity can be assumed when the structure of data is consistent across individuals and time. Neural network approaches do not frequently test for ergodicity in data which holds important consequences for data integration and intepretation. To demonstrate this problem, we present several network models in healthy and clinical samples where there exists considerable heterogeneity across individuals. We offer suggestions for the analysis, interpretation, and reporting of neural network data. The goal is to arrive at an understanding of the sources of non-ergodicity and approaches for valid network modeling in neuroscience.
Collapse
Affiliation(s)
- John D Medaglia
- Department of Psychology, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
49
|
Mayhew SD, Li S, Storrar JK, Tsvetanov KA, Kourtzi Z. Learning Shapes the Representation of Visual Categories in the Aging Human Brain. J Cogn Neurosci 2010; 22:2899-912. [PMID: 20044888 DOI: 10.1162/jocn.2010.21415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The ability to make categorical decisions and interpret sensory experiences is critical for survival and interactions across the lifespan. However, little is known about the human brain mechanisms that mediate the learning and representation of visual categories in aging. Here we combine behavioral measurements and fMRI measurements to investigate the neural processes that mediate flexible category learning in the aging human brain. Our findings show that training changes the decision criterion (i.e., categorical boundary) that young and older observers use for making categorical judgments. Comparing the behavioral choices of human observers with those of a pattern classifier based upon multivoxel fMRI signals, we demonstrate learning-dependent changes in similar cortical areas for young and older adults. In particular, we show that neural signals in occipito-temporal and posterior parietal regions change through learning to reflect the perceived visual categories. Information in these areas about the perceived visual categories is preserved in aging, whereas information content is compromised in more anterior parietal and frontal circuits. Thus, these findings provide novel evidence for flexible category learning in aging that shapes the neural representations of visual categories to reflect the observers' behavioral judgments.
Collapse
|
50
|
The nature of processing speed deficits in traumatic brain injury: is less brain more? Brain Imaging Behav 2010; 4:141-54. [PMID: 20502993 DOI: 10.1007/s11682-010-9094-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The cognitive constructs working memory (WM) and processing speed are fundamental components to general intellectual functioning in humans and highly susceptible to disruption following neurological insult. Much of the work to date examining speeded working memory deficits in clinical samples using functional imaging has demonstrated recruitment of network areas including prefrontal cortex (PFC) and anterior cingulate cortex (ACC). What remains unclear is the nature of this neural recruitment. The goal of this study was to isolate the neural networks distinct from those evident in healthy adults and to determine if reaction time (RT) reliably predicts observable between-group differences. The current data indicate that much of the neural recruitment in TBI during a speeded visual scanning task is positively correlated with RT. These data indicate that recruitment in PFC during tasks of rapid information processing are at least partially attributable to normal recruitment of PFC support resources during slowed task processing.
Collapse
|