1
|
Zidan EF, El-Mezayen NS, Elrewini SH, Afify EA, Ali MA. Memantine/Rosuvastatin Therapy Abrogates Cognitive and Hippocampal Injury in an Experimental Model of Alzheimer's Disease in Rats: Role of TGF-β1/Smad Signaling Pathway and Amyloid-β Clearance. J Neuroimmune Pharmacol 2024; 20:4. [PMID: 39708240 DOI: 10.1007/s11481-024-10159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder of complex pathogenesis and multiple interacting signaling pathways where amyloidal-β protein (Aβ) clearance plays a crucial role in cognitive decline. Herein, the current study investigated the possible modulatory effects of memantine/ rosuvastatin therapy on TGF-β1/p-Smad/p21 signaling pathway and their correlation to the blood brain barrier transporters involved in Aβ-clearance and microRNAs as a novel molecular mechanism in AD treatment. AD was induced by a single intracerebroventricular streptozotocin injection (ICV-STZ, 3 mg/kg) in rats and drug therapy was continued for 28 days after AD induction. Efficacy was monitored by applying a battery of behavioral assessments, as well as biochemical, histopathological, molecular and gene expression techniques. The upregulated TGF-β1-signaling in the untreated rats was found to be highly correlated to transporters and microRNAs governing Aβ-efflux; ABCA1/miRNA-26 and LRP1/miRNA-205 expressions, rather than RAGE/miRNA-185 controlling Aβ-influx; an effect that was opposed by the tested drugs and was found to be correlated with the abolished TGF-β1-signaling as well. Combined memantine/rosuvastatin therapy ameliorated the STZ evoked decreases in escape latency and number of crossovers in the Morris water maze test, % spontaneous alternation in the Y-maze test, and discrimination and recognition indices in the object recognition test. The evoked behavioral responses were directly related to the β-amyloid accumulation and the alteration in its clearance. Additionally, drug treatment increased brain glutathione and decreased malondialdehyde levels. These findings were histopathologically confirmed by a marked reduction of gliosis and restoration of neuronal integrity in the CA1 region of the hippocampus of the AD rats. These findings implicated that the memantine/rosuvastatin combination could offer a new therapeutic potential for AD management by abrogating the TGF-β1/p-Smad2/p21 pathway and regulating Aβ-clearance.
Collapse
Affiliation(s)
- Esraa F Zidan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Nesrine S El-Mezayen
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Safaa H Elrewini
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Mennatallah A Ali
- Department of Pharmacology and Toxicology, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt.
| |
Collapse
|
2
|
Oestreicher S, Bowler DM, Derwent CT, Gaigg SB, Roessner V, Vetter N, Volk T, Beyer N, Ring M. Structural Learning in Autistic and Non-Autistic Children: A Replication and Extension. J Autism Dev Disord 2024:10.1007/s10803-024-06486-0. [PMID: 39269674 DOI: 10.1007/s10803-024-06486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 09/15/2024]
Abstract
The hippocampus is involved in many cognitive domains which are difficult for autistic individuals. Our previous study using a Structural Learning task that has been shown to depend on hippocampal functioning found that structural learning is diminished in autistic adults (Ring et al., 2017). The aim of the present study was to examine whether those results can be replicated in and extended to a sample of autistic and non-autistic children. We tested 43 autistic children and 38 non-autistic children with a subsample of 25 autistic and 28 non-autistic children who were well-matched on IQ. The children took part in a Simple Discrimination task which a simpler form of compound learning, and a Structural Learning task. We expected both groups to perform similarly in Simple Discrimination but reduced performance by the autism group on the Structural Learning task, which is what we found in both the well-matched and the non-matched sample. However, contrary to our prediction and the findings from autistic adults in our previous study, autistic children demonstrated a capacity for Structural Learning and showed an overall better performance in the tasks than was seen in earlier studies. We discuss developmental differences in autism as well as the role of executive functions that may have contributed to better than predicted task performance in this study.
Collapse
Affiliation(s)
- Svenja Oestreicher
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Dermot M Bowler
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Claire T Derwent
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Sebastian B Gaigg
- Autism Research Group, Department of Psychology, City, University of London, London, UK
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nora Vetter
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Medical School Berlin, Department of Psychology, Berlin, Germany
| | - Theresia Volk
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nicole Beyer
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Melanie Ring
- Department of Child and Adolescent Psychiatry, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
3
|
Golden RK, Dilger RN. Determining underlying influences of data variability in the novel object recognition paradigm as used with young pigs. Front Behav Neurosci 2024; 18:1434489. [PMID: 39257566 PMCID: PMC11384571 DOI: 10.3389/fnbeh.2024.1434489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The novel object recognition (NOR) paradigm is a cognitive test that has been used with many species to detect differences in ability. Various iterations of the paradigm have been implemented, making it difficult to compare results both within and across species. Interpretations of the results are equally diverse, threatening the integrity of the paradigm. These inconsistencies have prompted a deeper dive into the variability of the resultant data. For the purposes of this meta-analysis, data originated from 12 studies involving 367 pigs that were subjected to the same NOR paradigm beginning between postnatal days 21 and 24. The main cognitive measure from the NOR paradigm is recognition index (RI), which was the focus of most of the analyses in this meta-analysis. RI was chosen as the main outcome as it determines a pig's preference for novelty, an innate behavior of cognitively intact pigs. A histogram of RI values (range 0 to 1) showed a bimodal distribution skewed to the right, suggesting that the interpretation of positive performance on the task may need to be stricter. Correlational analyses proved that the number of investigations and investigation time with both the novel and familiar objects were the strongest predictors of resultant RI values. Objective data inclusion criteria were then considered to eliminate non-compliant pigs. Results indicated that requiring at least 5 s of investigation over a minimum of 3 investigations with the novel object reduced overall variability for RI with a concomitant increase in the mean. Further analyses showed that pigs preferred to spend more time with and interact more with the novel object across the entire testing trial, especially in the first minute. Together, these findings suggest that future interpretations of NOR should consider applying stricter statistical analyses as well as additional data processing, such as binning, with emphasis on novel object and familiar object investigation. Overall, modifications to the existing iterations of the NOR paradigm are necessary to improve paradigm reliability.
Collapse
Affiliation(s)
- Rebecca K Golden
- Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Ryan N Dilger
- Neuroscience Program, University of Illinois, Urbana, IL, United States
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
4
|
Aykan D, Genc M, Unal G. Environmental enrichment enhances the antidepressant effect of ketamine and ameliorates spatial memory deficits in adult rats. Pharmacol Biochem Behav 2024; 240:173790. [PMID: 38761992 DOI: 10.1016/j.pbb.2024.173790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Ketamine is a rapid-acting antidepressant associated with various cognitive side effects. To mitigate these side effects while enhancing efficacy, it can be co-administered with other antidepressants. In our study, we adopted a similar strategy by combining ketamine with environmental enrichment, a potent sensory-motor paradigm, in adult male Wistar rats. We divided the animals into four groups based on a combination of housing conditions and ketamine versus vehicle injections. The groups included those housed in standard cages or an enriched environment for 50 days, which encompassed a 13-day-long behavioral testing period. Each group received either two doses of ketamine (20 mg/kg, IP) or saline as a vehicle. We tested the animals in the novel object recognition test (NORT), forced swim test (FST), open field test (OFT), elevated plus maze (EPM), and Morris water maze (MWM), which was followed by ex vivo c-Fos immunohistochemistry. We observed that combining environmental enrichment with ketamine led to a synergistic antidepressant effect. Environmental enrichment also ameliorated the spatial memory deficits caused by ketamine in the MWM. There was enhanced neuronal activity in the habenula of the enrichment only group following the probe trial of the MWM. In contrast, no differential activity was observed in enriched animals that received ketamine injections. The present study showed how environmental enrichment can enhance the antidepressant properties of ketamine while reducing some of its side effects, highlighting the potential of combining pharmacological and sensory-motor manipulations in the treatment of mood disorders.
Collapse
Affiliation(s)
- Deren Aykan
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Mert Genc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
5
|
Ravula AR, Murray KE, Rao KVR, Pfister BJ, Citron BA, Chandra N. MCC950 Attenuates Microglial NLRP3-Mediated Chronic Neuroinflammation and Memory Impairment in a Rat Model of Repeated Low-Level Blast Exposure. J Neurotrauma 2024; 41:1450-1468. [PMID: 38269433 DOI: 10.1089/neu.2023.0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Blast-induced traumatic brain injury is typically regarded as a signature medical concern for military personnel who are exposed to explosive devices in active combat zones. However, soldiers as well as law enforcement personnel may be repeatedly exposed to low-level blasts during training sessions with heavy weaponries as part of combat readiness. Service personnel who sustain neurotrauma from repeated low-level blast (rLLB) exposure do not display overt pathological symptoms immediately but rather develop mild symptoms including cognitive impairments, attention deficits, mood changes, irritability, and sleep disturbances over time. Recently, we developed a rat model of rLLB by applying controlled low-level blast pressures (≤ 70 kPa) repeated five times successively to mimic the pressures experienced by service members. Using this model, we assessed anxiety-like symptoms, motor coordination, and short-term memory as a function of time. We also investigated the role of the NLRP3 inflammasome, a complex involved in chronic microglial activation and pro-inflammatory cytokine interleukin (IL)-1β release, in rLLB-induced neuroinflammation. NLRP3 and caspase-1 protein expression, microglial activation, and IL-1β release were examined as factors likely contributing to these neurobehavioral changes. Animals exposed to rLLB displayed acute and chronic short-term memory impairments and chronic anxiety-like symptoms accompanied by increased microglial activation, NLRP3 expression, and IL-1β release. Treatment with MCC950, an NLRP3 inflammasome complex inhibitor, suppressed microglial activation, reduced NLRP3 expression and IL-1β release, and improved short-term memory deficits after rLLB exposure. Collectively, this study demonstrates that rLLB induces chronic neurobehavioral and neuropathological changes by increasing NLRP3 inflammasome protein expression followed by cytokine IL-1β release.
Collapse
Affiliation(s)
- Arun Reddy Ravula
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, New Jersey, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Kathleen E Murray
- Department of Veterans Affairs, Laboratory of Molecular Biology, Research and Development, VA New Jersey Health Care System, East Orange, New Jersey, USA
- Rutgers School of Graduate Studies, Newark, New Jersey, USA
| | - Kakulavarapu V Rama Rao
- Center for Military Psychiatry and Neurosciences, Blast Induced Neurotrauma Group, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Bryan J Pfister
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Bruce A Citron
- Department of Veterans Affairs, Laboratory of Molecular Biology, Research and Development, VA New Jersey Health Care System, East Orange, New Jersey, USA
- Rutgers School of Graduate Studies, Newark, New Jersey, USA
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
6
|
Firdaus Z, Gutti G, Ganeshpurkar A, Kumar A, Krishnamurthy S, Singh SK, Singh TD. Centella asiatica improves memory and executive function in middle-aged rats by controlling oxidative stress and cholinergic transmission. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117888. [PMID: 38336185 DOI: 10.1016/j.jep.2024.117888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Centella asiatica (L.) Urban, is a medicinal herb with rich history of traditional use in Indian subcontinent. This herb has been valued for its diverse range of medicinal properties including memory booster, and also as a folk treatment for skin diseases, wound healing and mild diuretic. AIM OF STUDY Aging is a gradual and continuous process of natural decay in the biological systems, including the brain. This work aims to evaluate the effectiveness of ethanolic extract of Centella asiatica (CAE) on age-associated cognitive impairments in rats, as well as the underlying mechanism. MATERIAL AND METHODS Rats were allocated into five distinct groups of 5 animals each: Young rats (3 months old rats), middle-aged (m-aged) rats (13-14 months old), and the remaining three groups were comprised of m-aged rats treated with different concentrations of CAE, viz., 150, 300, and 450 mg/kg b. w., orally for 42 days. Y-maze, open field, novel object recognition, and elevated plus maze tests were used to assess animal behavior. The malondialdehyde (MDA), superoxide dismutase (SOD), and acetylcholinesterase (AChE) assays; and H&E staining were done in the rat brain to assess the biochemical and structural changes. CAE was also subjected to HPLC analysis, in vitro antioxidant and anti-cholinergic activity. The active compounds of CAE were docked with AChE and BuChE in molecular docking study. RESULTS The results showed that CAE treatment improves behavioral performance; attenuates the age-associated increase in MDA content, SOD, and AChE activity; and reduces neuronal loss. In vitro study showed that CAE has concentration-dependent antioxidant and anti-AChE activity. Furthermore, the presence of Asiatic acid and Madecassic acid in CAE and their good binding with cholinergic enzymes (in silico) also suggest the anticholinergic effect of CAE. CONCLUSION The findings of the current study show that the anticholinergic and antioxidant effects of CAE are attributable to the presence of Asiatic acid and Madecassic acid, which not only provide neuroprotection against age-associated cognitive decline but also reverse it.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gopichand Gutti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi, 221005, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Martínez-Pacheco H, Zepeda RC, Picazo O, Quirarte GL, Roldán-Roldán G. Class I histone deacetylases inhibition reverses memory impairment induced by acute stress in mice. PLoS One 2024; 19:e0302374. [PMID: 38635564 PMCID: PMC11025869 DOI: 10.1371/journal.pone.0302374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
While chronic stress induces learning and memory impairments, acute stress may facilitate or prevent memory consolidation depending on whether it occurs during the learning event or before it, respectively. On the other hand, it has been shown that histone acetylation regulates long-term memory formation. This study aimed to evaluate the effect of two inhibitors of class I histone deacetylases (HDACs), 4-phenylbutyrate (PB) and IN14 (100 mg/kg/day, ip for 2 days), on memory performance in mice exposed to a single 15-min forced swimming stress session. Plasma corticosterone levels were determined 30 minutes after acute swim stress in one group of mice. In another experimental series, independent groups of mice were trained in one of three different memory tasks: Object recognition test, Elevated T maze, and Buried food location test. Subsequently, the hippocampi were removed to perform ELISA assays for histone deacetylase 2 (HDAC2) expression. Acute stress induced an increase in plasma corticosterone levels, as well as hippocampal HDAC2 content, along with an impaired performance in memory tests. Moreover, PB and IN14 treatment prevented memory loss in stressed mice. These findings suggest that HDAC2 is involved in acute stress-induced cognitive impairment. None of the drugs improved memory in non-stressed animals, indicating that HDACs inhibitors are not cognitive boosters, but rather potentially useful drugs for mitigating memory deficits.
Collapse
Affiliation(s)
- Heidy Martínez-Pacheco
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro, México
| | | | - Ofir Picazo
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Gina L. Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Juriquilla, Querétaro, México
| | - Gabriel Roldán-Roldán
- Laboratorio de Neurobiología Conductual, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
8
|
Gubert C, Kong G, Costello C, Adams CD, Masson BA, Qin W, Choo J, Narayana VK, Rogers G, Renoir T, Furness JB, Hannan AJ. Dietary fibre confers therapeutic effects in a preclinical model of Huntington's disease. Brain Behav Immun 2024; 116:404-418. [PMID: 38142919 DOI: 10.1016/j.bbi.2023.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder involving psychiatric, cognitive and motor deficits, as well as peripheral symptoms, including gastrointestinal dysfunction. The R6/1 HD mouse model expresses a mutant human huntingtin transgene and has been shown to provide an accurate disease model. Recent evidence of gut microbiome disruption was shown in preclinical and clinical HD. Therefore, we aimed to assess the potential role of gut microbial modulation in the treatment of HD. The R6/1 HD mice and wild-type littermate controls were randomised to receive diets containing different amounts of fibre: high-fibre (10 % fibre), control (5 % fibre), or zero-fibre (0 % fibre), from 6 to 20 weeks of age. We characterized the onset and progression of motor, cognitive and affective deficits, as well as gastrointestinal function and gut morphological changes. Faeces were collected for gut microbiome profiling using 16S rRNA sequencing, at 14 and 20 weeks of age. When compared to the control diet, high-fibre diet improved the performance of HD mice in behavioral tests of cognitive and affective function, as well as the gastrointestinal function of both HD and wild-type mice. While the diets changed the beta diversity of wild-type mice, no statistical significance was observed at 14 or 20 weeks of age within the HD mice. Analysis of Composition of Microbiomes with Bias Correction (ANCOM-BC) models were performed to evaluate microbiota composition, which identified differences, including a decreased relative abundance of the phyla Actinobacteriota, Campylobacterota and Proteobacteria and an increased relative abundance of the families Bacteroidaceae, Oscillospiraceae and Ruminococcaceae in HD mice when compared to wild-type mice after receiving high-fibre diet. PICRUSt2 revealed that high-fibre diet also decreased potentially pathogenic functional pathways in HD. In conclusion, high-fibre intake was effective in enhancing gastrointestinal function, cognition and affective behaviors in HD mice. These findings indicate that dietary fibre interventions may have therapeutic potential in Huntington's disease to delay clinical onset, and have implications for related disorders exhibiting dysfunction of the gut-brain axis.
Collapse
Affiliation(s)
- Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Geraldine Kong
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia; Peter Doherty Institute of Infection and Immunity, University of Melbourne, Parkville, Victoria 3000, Australia
| | - Callum Costello
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Cameron D Adams
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Bethany A Masson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Wendy Qin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jocelyn Choo
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Vinod K Narayana
- Metabolomics Australia Bio21 Institute and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Geraint Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville 3010, Australia
| | - John B Furness
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville 3010, Australia; Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
9
|
López-Aranda MF, Bach K, Bui R, Phan M, Lu O, Thadani C, Luchetti A, Mandanas R, Herrera I, López-Ávalos MD, Silva AJ. Early Post-Natal Immune Activation Leads to Object Memory Deficits in Female Tsc2+/- Mice: The Importance of Including Both Sexes in Neuroscience Research. Biomedicines 2024; 12:203. [PMID: 38255309 PMCID: PMC10813674 DOI: 10.3390/biomedicines12010203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
There is evidence that viral infections during pre-natal development constitute a risk factor for neuropsychiatric disorders and lead to learning and memory deficits. However, little is known about why viral infections during early post-natal development have a different impact on learning and memory depending on the sex of the subject. We previously showed that early post-natal immune activation induces hippocampal-dependent social memory deficits in a male, but not in a female, mouse model of tuberous sclerosis complex (TSC; Tsc2+/- mice). Here, we explored the impact of a viral-like immune challenge in object memory. We demonstrate that early post-natal immune activation (during the first 2 weeks of life) leads to object memory deficits in female, but not male, mice that are heterozygous for a gene responsible for tuberous sclerosis complex (Tsc2+/- mice), while no effect was observed in wild type (WT) mice. Moreover, we found that the same immune activation in Tsc2+/- adult mice was not able to cause object memory deficits in females, which suggests that the early post-natal development stage constitutes a critical window for the effects of immune challenge on adult memory. Also, our results suggest that mTOR plays a critical role in the observed deficit in object memory in female Tsc2+/- mice. These results, together with previous results published by our laboratory, showing sex-specific memory deficits due to early post-natal immune activation, reinforce the necessity of using both males and females for research studies. This is especially true for studies related to immune activation, since the higher levels of estrogens in females are known to affect inflammation and to provide neuroprotection.
Collapse
Affiliation(s)
- Manuel F. López-Aranda
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, 29590 Málaga, Spain
| | - Karen Bach
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Raymond Bui
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Miranda Phan
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Odilia Lu
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Chirag Thadani
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Rochelle Mandanas
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - Isaiah Herrera
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| | - María Dolores López-Ávalos
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, 29590 Málaga, Spain
| | - Alcino J. Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA (A.J.S.)
| |
Collapse
|
10
|
Orciani C, Do Carmo S, Foret MK, Hall H, Bonomo Q, Lavagna A, Huang C, Cuello AC. Early treatment with an M1 and sigma-1 receptor agonist prevents cognitive decline in a transgenic rat model displaying Alzheimer-like amyloid pathology. Neurobiol Aging 2023; 132:220-232. [PMID: 37864952 DOI: 10.1016/j.neurobiolaging.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 10/23/2023]
Abstract
The application of the selective allosteric M1 muscarinic and sigma-1 receptor agonist, AF710B (aka ANAVEX3-71), has shown to attenuate Alzheimer's disease-like hallmarks in McGill-R-Thy1-APP transgenic rats when administered at advanced pathological stages. It remains unknown whether preventive treatment strategies applying this compound may be equally effective. We tested whether daily oral administration of AF710B (10 µg/kg) in 7-month-old, preplaque, McGill-R-Thy1-APP rats for 7 months, followed by a 4-week washout period, could prevent Alzheimer's disease-like pathological hallmarks. Long-term AF710B treatment prevented the cognitive impairment of McGill-R-Thy1-APP rats. The effect was accompanied by a reduction in the number of amyloid plaques in the hippocampus and the levels of Aβ42 and Aβ40 peptides in the cerebral cortex. AF710B treatment also reduced microglia and astrocyte recruitment toward CA1 hippocampal Aβ-burdened neurons compared to vehicle-treated McGill-R-Thy1-APP rats, also altering the inflammatory cytokines profile. Lastly, AF710B treatment rescued the conversion of brain-derived neurotrophic factor precursor to its mature and biologically active form. Overall, these results suggest preventive and disease-modifying properties of the compound.
Collapse
Affiliation(s)
- Chiara Orciani
- Department of Neurology and Neurosurgery, McGill University, Montreal H3A 2B4, Canada
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Helene Hall
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Quentin Bonomo
- Department of Neurology and Neurosurgery, McGill University, Montreal H3A 2B4, Canada
| | - Agustina Lavagna
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Chunwei Huang
- Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal H3A 2B4, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal H3G 1Y6, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada,; Department of Pharmacology, Oxford University, Oxford, UK.
| |
Collapse
|
11
|
Seyedhosseini Tamijani SM, Beirami E, Ghazvini H, Rafaiee R, Nazeri M, Razavinasab M. A Review on the Disruption of Novel Object Recognition Induced by Methamphetamine. ADDICTION & HEALTH 2023; 15:289-297. [PMID: 38322487 PMCID: PMC10843358 DOI: 10.34172/ahj.2023.1307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/07/2021] [Indexed: 02/08/2024]
Abstract
Background Methamphetamine (MA), is a widely abused synthetic psychostimulant that leads to irreversible brain damage manifested as cognitive impairments in humans and animals. The novel object recognition (NOR) task is a commonly used behavioral assay for the investigation of non-spatial memory in rodents. This test is based on the natural tendency of rodents to spend more time exploring a novel object than a familiar one. NOR test has been used in many studies investigating cognitive deficits caused by MA in rodents. The objective of the present study was to review neurobiological mechanisms that might be responsible for MA-induced NOR alterations. Methods A PubMed search showed 83 publications using novel object recognition and methamphetamine as keywords in the past 10 years. Findings The present study revealed different MA regimens cause recognition memory impairment in rodents. In addition, it was found that the main neurobiological mechanism involved in MA-induced recognition deficits is the dysfunction of monoaminergic systems. Conclusion NOR is a useful test to assess the cognitive functions following MA administration and evaluate the efficacy of new therapeutic agents in MA-addicted individuals.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hamed Ghazvini
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Raheleh Rafaiee
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Nazeri
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Li Z, Chen L, Xu C, Chen Z, Wang Y. Non-invasive sensory neuromodulation in epilepsy: Updates and future perspectives. Neurobiol Dis 2023; 179:106049. [PMID: 36813206 DOI: 10.1016/j.nbd.2023.106049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy, one of the most common neurological disorders, often is not well controlled by current pharmacological and surgical treatments. Sensory neuromodulation, including multi-sensory stimulation, auditory stimulation, olfactory stimulation, is a kind of novel noninvasive mind-body intervention and receives continued attention as complementary safe treatment of epilepsy. In this review, we summarize the recent advances of sensory neuromodulation, including enriched environment therapy, music therapy, olfactory therapy, other mind-body interventions, for the treatment of epilepsy based on the evidence from both clinical and preclinical studies. We also discuss their possible anti-epileptic mechanisms on neural circuit level and propose perspectives on possible research directions for future studies.
Collapse
Affiliation(s)
- Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
13
|
Langer Horvat L, Španić Popovački E, Babić Leko M, Zubčić K, Horvat L, Mustapić M, Hof PR, Šimić G. Anterograde and Retrograde Propagation of Inoculated Human Tau Fibrils and Tau Oligomers in a Non-Transgenic Rat Tauopathy Model. Biomedicines 2023; 11:1004. [PMID: 37189622 PMCID: PMC10135744 DOI: 10.3390/biomedicines11041004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 05/17/2023] Open
Abstract
The tauopathy of Alzheimer's disease (AD) is first observed in the brainstem and entorhinal cortex, spreading trans-synaptically along specific pathways to other brain regions with recognizable patterns. Tau propagation occurs retrogradely and anterogradely (trans-synaptically) along a given pathway and through exosomes and microglial cells. Some aspects of in vivo tau spreading have been replicated in transgenic mice models expressing a mutated human MAPT (tau) gene and in wild-type mice. In this study, we aimed to characterize the propagation of different forms of tau species in non-transgenic 3-4 months old wild-type rats after a single unilateral injection of human tau oligomers and tau fibrils into the medial entorhinal cortex (mEC). We determined whether different variants of the inoculated human tau protein, tau fibrils, and tau oligomers, would induce similar neurofibrillary changes and propagate in an AD-related pattern, and how tau-related pathological changes would correlate with presumed cognitive impairment. We injected human tau fibrils and tau oligomers stereotaxically into the mEC and examined the distribution of tau-related changes at 3 days and 4, 8, and 11 months post-injection using antibodies AT8 and MC1, which reveal early phosphorylation and aberrant conformation of tau, respectively, HT7, anti-synaptophysin, and the Gallyas silver staining method. Human tau oligomers and tau fibrils exhibited some similarities and some differences in their ability to seed and propagate tau-related changes. Both human tau fibrils and tau oligomers rapidly propagated from the mEC anterogradely into the hippocampus and various parts of the neocortex. However, using a human tau-specific HT7 antibody, 3 days post-injection we found inoculated human tau oligomers in the red nucleus, primary motor, and primary somatosensory cortex, a finding not seen in animals inoculated with human tau fibrils. In animals inoculated with human tau fibrils, 3 days post-injection the HT7 antibody showed fibrils in the pontine reticular nucleus, a finding explained only by uptake of human tau fibrils by incoming presynaptic fibers to the mEC and retrograde transport of inoculated human tau fibrils to the brainstem. Rats inoculated with human tau fibrils showed as early as 4 months after inoculation a spread of phosphorylated tau protein at the AT8 epitopes throughout the brain, dramatically faster propagation of neurofibrillary changes than with human tau oligomers. The overall severity of tau protein changes 4, 8, and 11 months after inoculation of human tau oligomers and tau fibrils correlated well with spatial working memory and cognition impairments, as measured by the T-maze spontaneous alternation, novel object recognition, and object location tests. We concluded that this non-trangenic rat model of tauopathy, especially when using human tau fibrils, demonstrates rapidly developing pathologic alterations in neurons, synapses, and identifiable pathways together with cognitive and behavioral changes, through the anterograde and retrograde spreading of neurofibrillary degeneration. Therefore, it represents a promising model for future experimental studies of primary and secondary tauopathies, especially AD.
Collapse
Affiliation(s)
- Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ena Španić Popovački
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Luka Horvat
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Maja Mustapić
- Laboratory of Clinical Investigation, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
14
|
Patil SA, Grossman S, Kenney R, Balcer LJ, Galetta S. Where's the Vision? The Importance of Visual Outcomes in Neurologic Disorders: The 2021 H. Houston Merritt Lecture. Neurology 2023; 100:244-253. [PMID: 36522160 PMCID: PMC9931086 DOI: 10.1212/wnl.0000000000201490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neurologists have long recognized the importance of the visual system in the diagnosis and monitoring of neurologic disorders. This is particularly true because approximately 50% of the brain's pathways subserve afferent and efferent aspects of vision. During the past 30 years, researchers and clinicians have further refined this concept to include investigation of the visual system for patients with specific neurologic diagnoses, including multiple sclerosis (MS), concussion, Parkinson disease (PD), and conditions along the spectrum of Alzheimer disease (AD, mild cognitive impairment, and subjective cognitive decline). This review highlights the visual "toolbox" that has been developed over the past 3 decades and beyond to capture both structural and functional aspects of vision in neurologic disease. Although the efforts to accelerate the emphasis on structure-function relationships in neurologic disorders began with MS during the early 2000s, such investigations have broadened to recognize the need for outcomes of visual pathway structure, function, and quality of life for clinical trials of therapies across the spectrum of neurologic disorders. This review begins with a patient case study highlighting the importance using the most modern technologies for visual pathway assessment, including optical coherence tomography. We emphasize that both structural and functional tools for vision testing can be used in parallel to detect what might otherwise be subclinical events or markers of visual and, perhaps, more global neurologic decline. Such measures will be critical because clinical trials and therapies become more available across the neurologic disease spectrum.
Collapse
Affiliation(s)
- Sachi A Patil
- From the Department of Ophthalmology (S.A.P., L.J.B, S.G.), New York University Grossman School of Medicine, NY; Department of Neurology (S.G., L.J.B., S. Galetta), New York University Grossman School of Medicine, NY; Department of Radiology and Radiological Sciences (R.K.), Vanderbilt University School of Medicine, Nashville, TN; Department of Population Health (L.J.B.), New York University Grossman School of Medicine, NY.
| | - Scott Grossman
- From the Department of Ophthalmology (S.A.P., L.J.B, S.G.), New York University Grossman School of Medicine, NY; Department of Neurology (S.G., L.J.B., S. Galetta), New York University Grossman School of Medicine, NY; Department of Radiology and Radiological Sciences (R.K.), Vanderbilt University School of Medicine, Nashville, TN; Department of Population Health (L.J.B.), New York University Grossman School of Medicine, NY
| | - Rachel Kenney
- From the Department of Ophthalmology (S.A.P., L.J.B, S.G.), New York University Grossman School of Medicine, NY; Department of Neurology (S.G., L.J.B., S. Galetta), New York University Grossman School of Medicine, NY; Department of Radiology and Radiological Sciences (R.K.), Vanderbilt University School of Medicine, Nashville, TN; Department of Population Health (L.J.B.), New York University Grossman School of Medicine, NY
| | - Laura J Balcer
- From the Department of Ophthalmology (S.A.P., L.J.B, S.G.), New York University Grossman School of Medicine, NY; Department of Neurology (S.G., L.J.B., S. Galetta), New York University Grossman School of Medicine, NY; Department of Radiology and Radiological Sciences (R.K.), Vanderbilt University School of Medicine, Nashville, TN; Department of Population Health (L.J.B.), New York University Grossman School of Medicine, NY
| | - Steven Galetta
- From the Department of Ophthalmology (S.A.P., L.J.B, S.G.), New York University Grossman School of Medicine, NY; Department of Neurology (S.G., L.J.B., S. Galetta), New York University Grossman School of Medicine, NY; Department of Radiology and Radiological Sciences (R.K.), Vanderbilt University School of Medicine, Nashville, TN; Department of Population Health (L.J.B.), New York University Grossman School of Medicine, NY
| |
Collapse
|
15
|
Bagri K, Deshmukh R. Vinpocetine restores cognitive and motor functions in Traumatic brain injury challenged rats. Inflammopharmacology 2022; 30:2243-2259. [PMID: 36190686 DOI: 10.1007/s10787-022-01059-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/14/2022] [Indexed: 11/28/2022]
Abstract
Traumatic brain damage is common worldwide and the treatments are not well-defined. Vinpocetine is a synthetic derivative of the vinca alkaloid vincamine and is clinically being used for various brain disorders. Here in the current study, we have investigated the neuroprotective potential of vinpocetine against traumatic brain injury. TBI was induced by the Marmarou weight drop method in rats. Brain damage was evaluated using cognitive and motor functions and the alterations in biomolecules. Injured rats were treated with different doses of vinpocetine (2.5, 5, and 10 mg/kg) for 4 weeks. Traumatic brain injury in rats produced significant deterioration of cognition and motor functions, which was accompanied by increased oxidative stress and significant alterations in brain monoamine levels as compared with the sham control group (p < 0.05). Vinpocetine alleviated TBI-induced oxidative burden, altered neurochemistry, and improved the cognitive and motor functions as compared with that of the TBI control group (p < 0.05). The observed neuroprotective potential of vinpocetine may be due to the observed antioxidant potential and its ability to restore the levels of brain neurochemicals under stressed conditions. The outcomes of the current study may help the repositioning of vinpocetine for preventing or treating traumatic brain injuries.
Collapse
Affiliation(s)
- Kajal Bagri
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India.
| |
Collapse
|
16
|
ATM rules neurodevelopment and glutamatergic transmission in the hippocampus but not in the cortex. Cell Death Dis 2022; 13:616. [PMID: 35842432 PMCID: PMC9288428 DOI: 10.1038/s41419-022-05038-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Interest in the function of ataxia-telangiectasia-mutated protein (ATM) is extensively growing as evidenced by preclinical studies that continuously link ATM with new intracellular pathways. Here, we exploited Atm+/- and Atm-/- mice and demonstrate that cognitive defects are rescued by the delivery of the antidepressant Fluoxetine (Fluox). Fluox increases levels of the chloride intruder NKCC1 exclusively at hippocampal level suggesting an ATM context-specificity. A deeper investigation of synaptic composition unveils increased Gluk-1 and Gluk-5 subunit-containing kainate receptors (KARs) levels in the hippocampus, but not in the cortex, of Atm+/- and Atm-/- mice. Analysis of postsynaptic fractions and confocal studies indicates that KARs are presynaptic while in vitro and ex vivo electrophysiology that are fully active. These changes are (i) linked to KCC2 activity, as the KCC2 blockade in Atm+/- developing neurons results in reduced KARs levels and (ii) developmental regulated. Indeed, the pharmacological inhibition of ATM kinase in adults produces different changes as identified by RNA-seq investigation. Our data display how ATM affects both inhibitory and excitatory neurotransmission, extending its role to a variety of neurological and psychiatric disorders.
Collapse
|
17
|
Regulation of Neuroinflammatory Signaling by PPARγ Agonist in Mouse Model of Diabetes. Int J Mol Sci 2022; 23:ijms23105502. [PMID: 35628311 PMCID: PMC9141386 DOI: 10.3390/ijms23105502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Many relevant studies, as well as clinical practice, confirm that untreated diabetes predisposes the development of neuroinflammation and cognitive impairment. Having regard for the fact that PPARγ are widely distributed in the brain and PPARγ ligands may regulate the inflammatory process, the anti-inflammatory potential of the PPARγ agonist, pioglitazone, was assessed in a mouse model of neuroinflammation related with diabetes. In this regard, the biochemical and molecular indicators of neuroinflammation were determined in the hippocampus and prefrontal cortex of diabetes mice. The levels of cytokines (IL-1β, IL-6, and TNF) and the expression of genes (Tnfrsf1a and Cav1) were measured. In addition, behavioral tests such as the open field test, the hole-board test, and the novel object recognition test were conducted. A 14-day treatment with pioglitazone significantly decreased IL-6 and TNFα levels in the prefrontal cortex and led to the downregulation of Tnfrsf1a expression and the upregulation of Cav1 expression in both brain regions of diabetic mice. Pioglitazone, by targeting neuroinflammatory signaling, improved memory and exploratory activity in behavioral tests. The present study provided a potential theoretical basis and therapeutic target for the treatment of neuroinflammation associated with diabetes. Pioglitazone may provide a promising therapeutic strategy in diabetes patients with muffled of behavioral activity.
Collapse
|
18
|
Stacho M, Manahan-Vaughan D. The Intriguing Contribution of Hippocampal Long-Term Depression to Spatial Learning and Long-Term Memory. Front Behav Neurosci 2022; 16:806356. [PMID: 35548697 PMCID: PMC9084281 DOI: 10.3389/fnbeh.2022.806356] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) comprise the principal cellular mechanisms that fulfill established criteria for the physiological correlates of learning and memory. Traditionally LTP, that increases synaptic weights, has been ascribed a prominent role in learning and memory whereas LTD, that decreases them, has often been relegated to the category of "counterpart to LTP" that serves to prevent saturation of synapses. In contradiction of these assumptions, studies over the last several years have provided functional evidence for distinct roles of LTD in specific aspects of hippocampus-dependent associative learning and information encoding. Furthermore, evidence of the experience-dependent "pruning" of excitatory synapses, the majority of which are located on dendritic spines, by means of LTD has been provided. In addition, reports exist of the temporal and physical restriction of LTP in dendritic compartments by means of LTD. Here, we discuss the role of LTD and LTP in experience-dependent information encoding based on empirical evidence derived from conjoint behavioral and electrophysiological studies conducted in behaving rodents. We pinpoint the close interrelation between structural modifications of dendritic spines and the occurrence of LTP and LTD. We report on findings that support that whereas LTP serves to acquire the general scheme of a spatial representation, LTD enables retention of content details. We argue that LTD contributes to learning by engaging in a functional interplay with LTP, rather than serving as its simple counterpart, or negator. We propose that similar spatial experiences that share elements of neuronal representations can be modified by means of LTD to enable pattern separation. Therewith, LTD plays a crucial role in the disambiguation of similar spatial representations and the prevention of generalization.
Collapse
|
19
|
Burjanadze MA, Dashniani MG, Solomonia RO, Beselia GV, Tsverava L, Lagani V, Chkhikvishvili NC, Naneishvili TL, Kruashvili LB, Chighladze MR. Age-related changes in medial septal cholinergic and GABAergic projection neurons and hippocampal neurotransmitter receptors: relationship with memory impairment. Exp Brain Res 2022; 240:1589-1604. [PMID: 35357523 DOI: 10.1007/s00221-022-06354-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
The hippocampus, which provides cognitive functions, has been shown to become highly vulnerable during aging. One important modulator of the hippocampal neural network is the medial septum (MS). The present study attempts to determine how age-related mnemonic dysfunction is associated with neurochemical changes in the septohippocampal (SH) system, using behavioral and immunochemical experiments performed on young-adult, middle-aged and aged rats. According to these behavioral results, the aged and around 52.8% of middle-aged rats (within the "middle-aged-impaired" sub-group) showed both impaired spatial reference memory in the Morris water maze and habituation in the open field. Immunohistochemical studies revealed a significant decrease in the number of MS choline acetyltransferase immunoreactive cells in the aged and all middle-aged rats, in comparison to the young; however the number of gamma-aminobutyric acid-ergic (GABAergic) parvalbumin immunoreactive cells was higher in middle-aged-impaired and older rats compared to young and middle-aged-unimpaired rats. Western Blot analysis moreover showed a decrease in the level of expression of cholinergic, GABAergic and glutamatergic receptors in the hippocampus of middle-aged-impaired and aged rats in contrast to middle-aged-unimpaired and young rats. The present results demonstrate for the first time that a decrease in the expression level of hippocampal receptors in naturally aged rats with impaired cognitive abilities occurs in parallel with an increase in the number of GABAergic neurons in the MS, and it highlights the particular importance of inhibitory signaling in the SH network for memory function.
Collapse
Affiliation(s)
- Maia A Burjanadze
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia.
| | - Manana G Dashniani
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Revaz O Solomonia
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia.,Institute of Chemical Biology, Ilia State University, 0162, Tbilisi, Georgia
| | - Gela V Beselia
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia.,Department of Physiology and Pharmacology, Petre Shotadze Tbilisi Medical Academy, 0144, Tbilisi, Georgia
| | - Lia Tsverava
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia.,Institute of Chemical Biology, Ilia State University, 0162, Tbilisi, Georgia
| | - Vincenzo Lagani
- Institute of Chemical Biology, Ilia State University, 0162, Tbilisi, Georgia
| | - Nino C Chkhikvishvili
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Temur L Naneishvili
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Lali B Kruashvili
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| | - Mariam R Chighladze
- Department of Behavior and Cognitive Function, I. Beritashvili Center of Experimental Biomedicine, 0160, Tbilisi, Georgia
| |
Collapse
|
20
|
Koomson AE, Kukuia KKE, Amoateng P, Biney RP, Tagoe TA, Mensah JA, Ameyaw EO, Torbi J, Amponsah SK. Extract of Xylopia aethiopica and its Kaurene Diterpene, Xylopic Acid, Improve Learning and Memory in Mice. IBRO Neurosci Rep 2022; 12:249-259. [PMID: 35746979 PMCID: PMC9210480 DOI: 10.1016/j.ibneur.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Awo Efua Koomson
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
- Correspondence to: Department of Medical Pharmacology, University of Ghana Medical School College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Patrick Amoateng
- Department of Pharmacology & Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, P.O Box LG 43, Legon, Accra, Ghana
- Corresponding author.
| | - Robert Peter Biney
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Thomas Amatey Tagoe
- Department of Physiology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Jeffrey Amoako Mensah
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Elvis Ofori Ameyaw
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Joseph Torbi
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, College of Health Sciences, University of Ghana, Korle Bu, Accra, Ghana
| |
Collapse
|
21
|
Oroszi T, Geerts E, de Boer SF, Schoemaker RG, van der Zee EA, Nyakas C. Whole Body Vibration Improves Spatial Memory, Anxiety-Like Behavior, and Motor Performance in Aged Male and Female Rats. Front Aging Neurosci 2022; 13:801828. [PMID: 35126091 PMCID: PMC8815031 DOI: 10.3389/fnagi.2021.801828] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Aging is a progressive process leading to functional decline in many domains. Recent studies have shown that physical exercise (PE) has a positive influence on the progression of age-related functional decline, including motor and brain functions. Whole body vibration (WBV) is a form of passive stimulation by mechanical vibration platforms, which offers an alternative for PE interventions, especially for aged individuals. WBV has been demonstrated to mimic the beneficial effects of PE on the musculoskeletal system, as well on the central nervous system. However, preclinical data with aged rodents are very limited. Hence, the purpose of this experiment was to investigate the effects of a 5-week WBV intervention with an aged animal model on memory functions, anxiety-related behavior, and motor performance. The 18-month old male (N = 14) and female (N = 14) Wistar rats were divided into two groups, namely, vibration and pseudo-vibration. Animals underwent a 5-week WBV intervention protocol with low intensity (frequency of 30 Hz and amplitude of 50–200 μm) stimulation. After 5 weeks, the following cognitive and motor tests were administered: open-field, novel and spatial object recognition, grip-hanging, and balance-beam. WBV-treated rats showed a decrease in their anxiety level in the open field test compared with those in the pseudo-treated controls. In addition, WBV-treated male animals showed significantly increased rearing in the open-field test compared to their pseudo controls. Spatial memory was significantly improved by WBV treatment, whereas WBV had no effect on object memory. Regarding motor performance, both grip strength and motor coordination were improved by WBV treatment. Our results indicate that WBV seems to have comparable beneficial effects on age-related emotional, cognitive, and motor decline as what has been reported for active PE. No striking differences were found between the sexes. As such, these findings further support the idea that WBV could be considered as a useful alternative for PE in case active PE cannot be performed due to physical or mental issues.
Collapse
|
22
|
Sayahi Z, Komaki A, Saidi Jam M, Karimi SA, Raoufi S, Mardani P, Naderishahab M, Sarihi A, Mirnajafi-Zadeh J. Effect of ramosetron, a 5-HT 3 receptor antagonist on the severity of seizures and memory impairment in electrical amygdala kindled rats. J Physiol Sci 2022; 72:1. [PMID: 35034601 PMCID: PMC10717980 DOI: 10.1186/s12576-022-00825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022]
Abstract
The entorhinal cortex (EC) plays a pivotal role in epileptogenesis and seizures. EC expresses high density of serotonergic receptors, especially 5-HT3 receptors. Cognitive impairment is common among people with epilepsy. The present study investigated the role of 5-HT3 receptor on the severity of seizures and learning and memory impairment by electrical kindling of amygdala in rats. The amygdala kindling was conducted in a chronic kindling manner in male Wistar rats. In fully kindled animals, ramosetron (as a potent and selective 5-HT3 receptor antagonist) was microinjected unilaterally (ad doses of 1, 10 or 100 µg/0.5 µl) into the EC 5 min before the novel object recognition (NOR) and Y-maze tests or kindling stimulations. Applying ramosetron at the concentration of 100 μg/0.5 µl (but not at 1 and 10 µg/0.5 µl) reduced afterdischarge (AD) duration and increased stage 4 latency in the kindled rats. Moreover, the obtained data from the NOR test showed that treatment by ramosetron (10 and 100 µg/0.5 µl) increased the discrimination index in the fully kindled animals. Microinjection of ramosetron (10 and 100 µg/0.5 µl) in fully kindled animals reversed the kindling induced changes in the percentage of spontaneous alternation in Y-maze task. The findings demonstrated an anticonvulsant role for a selective 5-HT3 receptor antagonist microinjected into the EC, therefore, suggesting an excitatory role for the EC 5-HT3 receptors in the amygdala kindling model of epilepsy. This anticonvulsive effect was accompanied with a restoring effect on cognitive behavior in NOR and Y-maze tests.
Collapse
Affiliation(s)
- Zeynab Sayahi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Saidi Jam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
| | - Parastoo Mardani
- Department of Biology, Faculty of Sciences, Payame Noor University, Sanandaj, Iran
| | - Marzieh Naderishahab
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 6517838736, Hamadan, Iran.
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, 1411713116, Tehran, Iran.
| |
Collapse
|
23
|
The MICK (Mobile integrated cognitive kit) app: Digital rapid automatized naming for visual assessment across the spectrum of neurological disorders. J Neurol Sci 2022; 434:120150. [PMID: 35038658 DOI: 10.1016/j.jns.2022.120150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Rapid automatized naming (RAN) tasks have been utilized for decades to evaluate neurological conditions. Time scores for the Mobile Universal Lexicon Evaluation System (MULES, rapid picture naming) and Staggered Uneven Number (SUN, rapid number naming) are prolonged (worse) with concussion, mild cognitive impairment, multiple sclerosis and Parkinson's disease. The purpose of this investigation was to compare paper/pencil versions of MULES and SUN with a new digitized format, the MICK app. METHODS Participants (healthy office-based volunteers, professional women's hockey players), completed two trials of the MULES and SUN tests on both platforms (tablet, paper/pencil). The order of presentation of the testing platforms was randomized. Between-platform variability was calculated using the two-way random-effects intraclass correlation coefficient (ICC). RESULTS Among 59 participants (median age 32, range 22-83), no significant differences were observed for comparisons of mean best scores for the paper/pencil versus MICK app platforms, counterbalanced for order of administration (P = 0.45 for MULES, P = 0.50 for SUN, linear regression). ICCs for agreement between the MICK and paper/pencil tests were 0.92 (95% CI 0.86, 0.95) for MULES and 0.94 (95% CI 0.89, 0.96) for SUN, representing excellent levels of agreement. Inter-platform differences did not vary systematically across the range of average best time score for either test. CONCLUSION The MICK app for digital administration of MULES and SUN demonstrates excellent agreement of time scores with paper/pencil testing. The computerized app allows for greater accessibility and scalability in neurological diseases, inclusive of remote monitoring. Sideline testing for sports-related concussion may also benefit from this technology.
Collapse
|
24
|
Sethumadhavan N, Strauch C, Hoang TH, Manahan-Vaughan D. The Perirhinal Cortex Engages in Area and Layer-Specific Encoding of Item Dimensions. Front Behav Neurosci 2022; 15:744669. [PMID: 35058755 PMCID: PMC8763964 DOI: 10.3389/fnbeh.2021.744669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The perirhinal cortex (PRC), subdivided into areas 35 and 36, belongs to the parahippocampal regions that provide polysensory input to the hippocampus. Efferent and afferent connections along its rostro-caudal axis, and of areas 35 and 36, are extremely diverse. Correspondingly functional tasks in which the PRC participates are manifold. The PRC engages, for example, in sensory information processing, object recognition, and attentional processes. It was previously reported that layer II of the caudal area 35 may be critically involved in the encoding of large-scale objects. In the present study we aimed to disambiguate the roles of the different PRC layers, along with areas 35 and 36, and the rostro-caudal compartments of the PRC, in processing information about objects of different dimensions. Here, we compared effects on information encoding triggered by learning about subtle and discretely visible (microscale) object information and overt, highly visible landmark (macroscale) information. To this end, nuclear expression of the immediate early gene Arc was evaluated using fluorescence in situ hybridization. Increased nuclear Arc expression occurred in layers III and V-VI of the middle and caudal parts of area 35 in response to both novel microscale and macroscale object exposure. By contrast, a significant increase in Arc expression occurred in area 36 only in response to microscale objects. These results indicate that area 36 is specifically involved in the encoding of small and less prominently visible items. In contrast, area 35 engages globally (layer III to VI) in the encoding of object information independent of item dimensions.
Collapse
Affiliation(s)
- Nithya Sethumadhavan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christina Strauch
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
| | - Thu-Huong Hoang
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Denise Manahan-Vaughan
| |
Collapse
|
25
|
Heath AM, Brewer M, Yesavage J, McNerney MW. Improved object recognition memory using post-encoding repetitive transcranial magnetic stimulation. Brain Stimul 2022; 15:78-86. [PMID: 34785386 PMCID: PMC10612530 DOI: 10.1016/j.brs.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Brain stimulation is known to affect canonical pathways and proteins involved in memory. However, there are conflicting results on the ability of brain stimulation to improve to memory, which may be due to variations in timing of stimulation. HYPOTHESIS We hypothesized that repetitive transcranial magnetic stimulation (rTMS) given following a learning task and within the time period before retrieval could help improve memory. METHODS We implanted male B6129SF2/J mice (n = 32) with a cranial attachment to secure the rTMS coil so that the mice could be given consistent stimulation to the frontal area whilst freely moving. Mice then underwent the object recognition test sampling phase and given treatment +3, +24, +48 h following the test. Treatment consisted of 10 min 10 Hz rTMS stimulation (TMS, n = 10), sham treatment (SHAM, n = 11) or a control group which did not do the behavior test or receive rTMS (CONTROL n = 11). At +72 h mice were tested for their exploration of the novel vs familiar object. RESULTS At 72-h's, only the mice which received rTMS had greater exploration of the novel object than the familiar object. We further show that promoting synaptic GluR2 and maintaining synaptic connections in the perirhinal cortex and hippocampal CA1 are important for this effect. In addition, we found evidence that these changes were linked to CAMKII and CREB pathways in hippocampal neurons. CONCLUSION By linking the known biological effects of rTMS to memory pathways we provide evidence that rTMS is effective in improving memory when given during the consolidation and maintenance phases.
Collapse
Affiliation(s)
- A M Heath
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA.
| | - M Brewer
- Stanford University, Stanford, CA, 94305, USA
| | - J Yesavage
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA
| | - M W McNerney
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Veterans Affairs, Sierra-Pacific Mental Illness Research Educational and Clinical Center, Palo Alto, CA, 94304, USA
| |
Collapse
|
26
|
Reaction to novelty as a behavioral assay of recognition memory in homing pigeons and Japanese quail. Learn Behav 2021; 50:167-177. [PMID: 34918205 DOI: 10.3758/s13420-021-00499-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2021] [Indexed: 11/08/2022]
Abstract
Spontaneous novelty preference is apparent in a wide array of animals, including mammals, birds, reptiles, and fish. This provides a powerful behavioral assay to assess whether an animal can recognize a diverse array of stimuli in a common paradigm. Surprisingly, no research has been conducted in birds using novelty approach under conditions comparable to the spontaneous object recognition (SOR) protocols that have become standard across other animals. To correct this, the current study adapts a number of SOR protocols commonly used in mammals to characterize novelty approach in Silver King pigeons and Japanese quail. We show that, in general, both quail and pigeons readily approach novel objects or locations when tested using SOR protocols, although pigeons show a neophilic response under some conditions in which quail do not. Neither quail nor pigeons readily approach objects in novel contexts or novel locations. These data show that SOR can be successfully adapted to birds, allowing for more direct comparison between mammals and birds in tasks of shared ecological relevance.
Collapse
|
27
|
Khairinisa MA, Ariyani W, Tsushima Y, Koibuchi N. Effects of Gadolinium Deposits in the Cerebellum: Reviewing the Literature from In Vitro Laboratory Studies to In Vivo Human Investigations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147214. [PMID: 34299664 PMCID: PMC8305034 DOI: 10.3390/ijerph18147214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/30/2022]
Abstract
Gadolinium (Gd)-based contrast agents (GBCAs) are chemicals injected intravenously during magnetic resonance imaging (MRI) to enhance the diagnostic yield. The repeated use of GBCAs can cause their deposition in the brain, including the cerebellum. Such deposition may affect various cell subsets in the brain and consequently cause behavioral alterations due to neurotoxicity. Caution should thus be exercised in using these agents, particularly in patients who are more likely to have repeated enhanced MRIs during their lifespan. Further studies are required to clarify the toxicity of GBCAs, and potential mechanisms causing neurotoxicity have recently been reported. This review introduces the effects of GBCAs in the cerebellum obtained from in vitro and in vivo studies and considers the possible mechanisms of neurotoxicity involved.
Collapse
Affiliation(s)
- Miski Aghnia Khairinisa
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan;
- Program Study of Pharmacy, Faculty of Mathematics and Natural Sciences, Bandung Islamic University, Bandung 40116, Indonesia
| | - Winda Ariyani
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan;
- Research Fellow of Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
- Correspondence: (W.A.); (N.K.)
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan;
- Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan;
- Correspondence: (W.A.); (N.K.)
| |
Collapse
|
28
|
Kuo CW, Chang MY, Liu HH, He XK, Chan SY, Huang YZ, Peng CW, Chang PK, Pan CY, Hsieh TH. Cortical Electrical Stimulation Ameliorates Traumatic Brain Injury-Induced Sensorimotor and Cognitive Deficits in Rats. Front Neural Circuits 2021; 15:693073. [PMID: 34194304 PMCID: PMC8236591 DOI: 10.3389/fncir.2021.693073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 12/28/2022] Open
Abstract
Objective: Individuals with different severities of traumatic brain injury (TBI) often suffer long-lasting motor, sensory, neurological, or cognitive disturbances. To date, no neuromodulation-based therapies have been used to manage the functional deficits associated with TBI. Cortical electrical stimulation (CES) has been increasingly developed for modulating brain plasticity and is considered to have therapeutic potential in TBI. However, the therapeutic value of such a technique for TBI is still unclear. Accordingly, an animal model of this disease would be helpful for mechanistic insight into using CES as a novel treatment approach in TBI. The current study aims to apply a novel CES scheme with a theta-burst stimulation (TBS) protocol to identify the therapeutic potential of CES in a weight drop-induced rat model of TBI. Methods: TBI rats were divided into the sham CES treatment group and CES treatment group. Following early and long-term CES intervention (starting 24 h after TBI, 1 session/day, 5 days/week) in awake TBI animals for a total of 4 weeks, the effects of CES on the modified neurological severity score (mNSS), sensorimotor and cognitive behaviors and neuroinflammatory changes were identified. Results: We found that the 4-week CES intervention significantly alleviated the TBI-induced neurological, sensorimotor, and cognitive deficits in locomotor activity, sensory and recognition memory. Immunohistochemically, we found that CES mitigated the glial fibrillary acidic protein (GFAP) activation in the hippocampus. Conclusion: These findings suggest that CES has significant benefits in alleviating TBI-related symptoms and represents a promising treatment for TBI.
Collapse
Affiliation(s)
- Chi-Wei Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yuan Chang
- Division of Neurosurgery, Department of Surgery, Min-Sheng General Hospital, Taoyuan, Taiwan.,Department of Early Childhood and Family Educare, Chung Chou University of Science and Technology, Yuanlin, Taiwan
| | - Hui-Hua Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Kuo He
- Fifth Hospital of Xiamen, Xiamen, China.,Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shu-Yen Chan
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei, Taiwan.,College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Zu Huang
- Department of Neurology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Pi-Kai Chang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Yuan Pan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
29
|
Abd El-Fatah IM, Abdelrazek HMA, Ibrahim SM, Abdallah DM, El-Abhar HS. Dimethyl fumarate abridged tauo-/amyloidopathy in a D-Galactose/ovariectomy-induced Alzheimer's-like disease: Modulation of AMPK/SIRT-1, AKT/CREB/BDNF, AKT/GSK-3β, adiponectin/Adipo1R, and NF-κB/IL-1β/ROS trajectories. Neurochem Int 2021; 148:105082. [PMID: 34052296 DOI: 10.1016/j.neuint.2021.105082] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/30/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Since the role of estrogen in postmenauposal-associated dementia is still debatable, this issue urges the search for other medications. Dimethyl fumarate (DMF) is a drug used for the treatment of multiple sclerosis and has shown a neuroprotective effect against other neurodegenerative diseases. Accordingly, the present study aimed to evaluate the effect of DMF on an experimental model of Alzheimer disease (AD) using D-galactose (D-Gal) administered to ovariectomized (OVX) rats, resembling a postmenopausal dementia paradigm. Adult 18-month old female Wistar rats were allocated into sham-operated and OVX/D-Gal groups that were either left untreated or treated with DMF for 56 days starting three weeks after sham-operation or ovariectomy. DMF succeeded to ameliorate cognitive (learning/short- and long-term memory) deficits and to enhance the dampened overall activity (NOR, Barnes-/Y-maze tests). These behavioral upturns were associated with increased intact neurons (Nissl stain) and a reduction in OVX/D-Gal-mediated hippocampal CA1 neurodegeneration and astrocyte activation assessed as GFAP immunoreactivity. Mechanistically, DMF suppressed the hippocampal contents of AD-surrogate markers; viz., apolipoprotein (APO)-E1, BACE1, Aβ42, and hyperphosphorylated Tau. Additionally, DMF has augmented the neuroprotective parameters p-AKT, its downstream target CREB and BDNF. Besides, it activated AMPK, and enhanced SIRT-1, as well as antioxidant defenses (SOD, GSH). On the other hand, DMF inhibited the transcription factor NF-κB, IL-1β, adiponectin/adiponectin receptor type (AdipoR)1, GSK-3β, and MDA. Accordingly, in this postmenopausal AD model, DMF treatment by pursuing the adiponectin/AdipoR1, AMPK/SIRT-1, AKT/CREB/BDNF, AKT/GSK-3β, and APO-E1 quartet hampered the associated tauo-/amyloidopathy and NF-κB-mediated oxidative/inflammatory responses to advance insights into its anti-amnesic effect.
Collapse
Affiliation(s)
- Israa M Abd El-Fatah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str, 11562, Cairo, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Sherehan M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str, 11562, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str, 11562, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str, 11562, Cairo, Egypt
| |
Collapse
|
30
|
Landreth K, Simanaviciute U, Fletcher J, Grayson B, Grant RA, Harte MH, Gigg J. Dissociating the effects of distraction and proactive interference on object memory through tests of novelty preference. Brain Neurosci Adv 2021; 5:23982128211003199. [PMID: 35392130 PMCID: PMC8981243 DOI: 10.1177/23982128211003199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 11/16/2022] Open
Abstract
Encoding information into memory is sensitive to distraction while retrieving that memory may be compromised by proactive interference from pre-existing memories. These two debilitating effects are common in neuropsychiatric conditions, but modelling them preclinically to date is slow as it requires prolonged operant training. A step change would be the validation of functionally equivalent but fast, simple, high-throughput tasks based on spontaneous behaviour. Here, we show that spontaneous object preference testing meets these requirements in the subchronic phencyclidine rat model for cognitive impairments associated with schizophrenia. Subchronic phencyclidine rats show clear memory sensitivity to distraction in the standard novel object recognition task. However, due to this, standard novel object recognition task cannot assess proactive interference. Therefore, we compared subchronic phencyclidine performance in standard novel object recognition task to that using the continuous novel object recognition task, which offers minimal distraction, allowing disease-relevant memory deficits to be assessed directly. We first determined that subchronic phencyclidine treatment did not affect whisker movements during object exploration. Subchronic phencyclidine rats exhibited the expected distraction standard novel object recognition task effect but had intact performance on the first continuous novel object recognition task trial, effectively dissociating distraction using two novel object recognition task variants. In remaining continuous novel object recognition task trials, the cumulative discrimination index for subchronic phencyclidine rats was above chance throughout, but, importantly, their detection of object novelty was increasingly impaired relative to controls. We attribute this effect to the accumulation of proactive interference. This is the first demonstration that increased sensitivity to distraction and proactive interference, both key cognitive impairments in schizophrenia, can be dissociated in the subchronic phencyclidine rat using two variants of the same fast, simple, spontaneous object memory paradigm.
Collapse
Affiliation(s)
- K. Landreth
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - U. Simanaviciute
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - J. Fletcher
- Division of Pharmacy, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - B. Grayson
- Division of Pharmacy, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - R. A. Grant
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - M. H. Harte
- Division of Pharmacy, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - J. Gigg
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Ameen-Ali KE, Sivakumaran MH, Eacott MJ, O'Connor AR, Ainge JA, Easton A. Perirhinal cortex and the recognition of relative familiarity. Neurobiol Learn Mem 2021; 182:107439. [PMID: 33862223 DOI: 10.1016/j.nlm.2021.107439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/10/2021] [Accepted: 04/09/2021] [Indexed: 01/11/2023]
Abstract
Spontaneous object recognition (SOR) is a widely used task of recognition memory in rodents which relies on their propensity to explore novel (or relatively novel) objects. Network models typically define perirhinal cortex as a region required for recognition of previously seen objects largely based on findings that lesions or inactivations of this area produce SOR deficits. However, relatively little is understood about the relationship between the activity of cells in the perirhinal cortex that signal novelty and familiarity and the behavioural responses of animals in the SOR task. Previous studies have used objects that are either highly familiar or absolutely novel, but everyday memory is for objects that sit on a spectrum of familiarity which includes objects that have been seen only a few times, or objects that are similar to objects which have been previously experienced. We present two studies that explore cellular activity (through c-fos imaging) within perirhinal cortex of rats performing SOR where the familiarity of objects has been manipulated. Despite robust recognition memory performance, we show no significant changes in perirhinal activity related to the level of familiarity of the objects. Reasons for this lack of familiarity-related modulation in perirhinal cortex activity are discussed. The current findings support emerging evidence that perirhinal responses to novelty are complex and that task demands are critical to the involvement of perirhinal cortex in the control of object recognition memory.
Collapse
Affiliation(s)
- Kamar E Ameen-Ali
- Institute of Neuroscience and Psychology, University of Glasgow, G51 4TF, UK; Department of Psychology, Durham University, DH1 3LE, UK
| | | | - Madeline J Eacott
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK
| | - Akira R O'Connor
- School of Psychology & Neuroscience, University of St Andrews, KY16 9JP, UK
| | - James A Ainge
- School of Psychology & Neuroscience, University of St Andrews, KY16 9JP, UK
| | - Alexander Easton
- Department of Psychology, Durham University, DH1 3LE, UK; Centre for Learning and Memory Processes, Durham University, DH1 3LE, UK
| |
Collapse
|
32
|
Brymer KJ, Kulhaway EY, Howland JG, Caruncho HJ, Kalynchuk LE. Altered acoustic startle, prepulse facilitation, and object recognition memory produced by corticosterone withdrawal in male rats. Behav Brain Res 2021; 408:113291. [PMID: 33836169 DOI: 10.1016/j.bbr.2021.113291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/19/2021] [Accepted: 04/04/2021] [Indexed: 12/30/2022]
Abstract
The symptoms of human depression often include cognitive deficits. However, cognition is not frequently included in the behavioral assessments conducted in preclinical models of depression. For example, it is well known that repeated corticosterone (CORT) injections in rodents produce depression-like behavior as measured by the forced swim test, sucrose preference test, and tail suspension test, but the cognitive impairments produced by repeated CORT have not been thoroughly examined. The purpose of this experiment was to assess the effect of repeated CORT injections on several versions of object recognition memory and modulation of the acoustic startle response by relatively low intensity prepulses, along with the more traditional assessment of depression-like behavior using the forced swim test. Rats received 21 days of CORT (40 mg/kg) or vehicle injections followed by a battery of behavioral tests. Importantly, during behavioral testing CORT treatment did not occur (CORT withdrawal). Corticosterone decreased body weight, increased immobility in the forced swim test, lowered startle amplitudes, and facilitated responding to trials with a short interval (30 ms) between the prepulse and pulse. Corticosterone also impaired both object location and object-in-place recognition memory, while sparing performance on object recognition memory. Collectively, our data suggest that CORT produces selective disruptions in prepulse facilitation, object location, and object-in-place recognition memory, and that these impairments should be considered as part of the phenotype produced by repeated CORT, and perhaps chronic stress.
Collapse
Affiliation(s)
- Kyle J Brymer
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.
| | - Erin Y Kulhaway
- Research Excellence and Innovation, University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
33
|
Balasubramanian N, Sagarkar S, Choudhary AG, Kokare DM, Sakharkar AJ. Epigenetic Blockade of Hippocampal SOD2 Via DNMT3b-Mediated DNA Methylation: Implications in Mild Traumatic Brain Injury-Induced Persistent Oxidative Damage. Mol Neurobiol 2021; 58:1162-1184. [PMID: 33099744 DOI: 10.1007/s12035-020-02166-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022]
Abstract
The recurrent events of mild trauma exacerbate the vulnerability for post-traumatic stress disorder; however, the underlying molecular mechanisms are scarcely known. The repeated mild traumatic brain injury (rMTBI) perturbs redox homeostasis which is primarily managed by superoxide dismutase 2 (SOD2). The current study investigates the role of DNA methylation in SOD2 gene regulation and its involvement in rMTBI-induced persistent neuropathology inflicted by weight drop injury paradigm. The oxidative damage, neurodegenerative indicators, and SOD2 function and its regulation in the hippocampus were analyzed after 48 h and 30 days of rMTBI. The temporal and episodic increase in ROS levels (oxidative stress) heightened 8-hydroxyguanosine levels indicating oxidative damage after rMTBI that was concomitant with decline in SOD2 function. In parallel, occupancy of DNMT3b at SOD2 promoter was higher post 30 days of the first episode of rMTBI causing hypermethylation at SOD2 promoter. This epigenetic silencing of SOD2 promoter was sustained after the second episode of rMTBI causing permanent blockade in SOD2 response. The resultant oxidative stress further culminated into the increasing number of degenerating neurons. The treatment with 5-azacytidine, a pan DNMT inhibitor, normalized DNA methylation levels and revived SOD2 function after the second episode of rMTBI. The release of blockade in SOD2 expression by DNMT inhibition also normalized the post-traumatic oxidative consequences and relieved the neurodegeneration and deficits in learning and memory as measured by novel object recognition test. In conclusion, DNMT3b-mediated DNA methylation plays a critical role in SOD2 gene regulation in the hippocampus, and the perturbations therein post rMTBI are detrimental to redox homeostasis manifesting into neurological consequences.
Collapse
Affiliation(s)
| | - Sneha Sagarkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India
- Department of Zoology, Savitribai Phule Pune University, Pune, 411 007, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Amul J Sakharkar
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
34
|
Akyuz E, Eroglu E. Envisioning the crosstalk between environmental enrichment and epilepsy: A novel perspective. Epilepsy Behav 2021; 115:107660. [PMID: 33328107 DOI: 10.1016/j.yebeh.2020.107660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022]
Abstract
Epilepsies are a diverse group of neurological disorders characterized by an unprovoked seizure and a brain that has an enduring predisposition to seizures. The lack of disease-modifying treatment strategies against the same has led to the exploration of novel treatment strategies that could halt epileptic seizures. In this regard, environmental enrichment (EE) has gained increased attention in recent days. EE modulates the effects of interactions between the genes and the environment on the structure and function of the brain. EE therapy can improve seizure-related symptoms in neurological diseases such as epilepsy. EE therapy can have a significant effect on cognitive disorders such as learning and memory impairments associated with seizures. EE therapy in epileptic hippocampus tissue can improve seizure-related symptoms by inducing enhanced neurogenesis and neuroprotective mechanisms. In this context, the efficiency of EE is regulated in the epilepsy by the brain-derived neurotrophic factor (BDNF)/extracellular signal-regulated kinase (ERK) signaling pathway regulated by extracellular signaling. Herein, we provide experimental evidence supporting the beneficial effects of EE in epileptic seizures and its underlying mechanism.
Collapse
Affiliation(s)
- Enes Akyuz
- Yozgat Bozok University, Medical School, Department of Biophysics, 66100 Yozgat, Turkey.
| | - Ece Eroglu
- Yozgat Bozok University, Medical School, 66100 Yozgat, Turkey.
| |
Collapse
|
35
|
Cortez I, Hernandez CM, Dineley KT. Enhancement of select cognitive domains with rosiglitazone implicates dorsal hippocampus circuitry sensitive to PPARγ agonism in an Alzheimer's mouse model. Brain Behav 2021; 11:e01973. [PMID: 33382528 PMCID: PMC7882162 DOI: 10.1002/brb3.1973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/30/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Several clinical studies have tested the efficacy of insulin-sensitizing drugs for cognitive enhancement in Alzheimer's disease (AD) patients, as type 2 diabetes (T2D) is a well-recognized risk factor for AD. Pilot studies assessing FDA-approved diabetes drugs in subjects with early-stage disease have found cognitive benefit in subjects comorbid for insulin resistance. In AD mouse models with concomitant insulin resistance, we have shown that 4 weeks of RSG can reverse peripheral and central insulin resistance concomitant with rescue of hippocampus-dependent fear learning and memory and hippocampal circuitry deficits in 9-month-old (9MO) Tg2576 mice with no effect in wild-type (WT) mice. Bioinformatics analysis of genomic and proteomic data reveals an intimate link between PPARγ and MAPK/ERK signaling in the hippocampus. We then demonstrated a direct interaction between PPARγ and phospho-ERK in vitro and in vivo during memory consolidation. The translational value of this discovery is evidenced by the positive correlational relationship between human AD postmortem brain levels of pERK-PPARγ nuclear complexes with cognitive reserve. METHODS We tested whether insulin sensitizer therapy could rescue spatial navigation, context discrimination, and object recognition learning and memory in aged wild-type and Tg2576 mice in addition to hippocampus-dependent contextual fear learning and memory, as we have previously reported. RESULTS We found that rosiglitazone treatment improved cognitive domains that predominantly rely upon the dorsal hippocampus rather than those that additionally engage the ventral hippocampus. CONCLUSION These results suggest that insulin sensitizer therapy with rosiglitazone improved age- and AD-related learning and memory deficits in circuit selective ways.
Collapse
Affiliation(s)
- IbDanelo Cortez
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Caterina M Hernandez
- Department of Pharmaceutical Sciences, Appalachian College of Pharmacy, Oakwood, VA, USA
| | - Kelly T Dineley
- Department of Neurology, the University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
36
|
Lee SM, Jin SW, Park SB, Park EH, Lee CH, Lee HW, Lim HY, Yoo SW, Ahn JR, Shin J, Lee SA, Lee I. Goal-directed interaction of stimulus and task demand in the parahippocampal region. Hippocampus 2021; 31:717-736. [PMID: 33394547 PMCID: PMC8359334 DOI: 10.1002/hipo.23295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 11/10/2022]
Abstract
The hippocampus and parahippocampal region are essential for representing episodic memories involving various spatial locations and objects, and for using those memories for future adaptive behavior. The “dual‐stream model” was initially formulated based on anatomical characteristics of the medial temporal lobe, dividing the parahippocampal region into two streams that separately process and relay spatial and nonspatial information to the hippocampus. Despite its significance, the dual‐stream model in its original form cannot explain recent experimental results, and many researchers have recognized the need for a modification of the model. Here, we argue that dividing the parahippocampal region into spatial and nonspatial streams a priori may be too simplistic, particularly in light of ambiguous situations in which a sensory cue alone (e.g., visual scene) may not allow such a definitive categorization. Upon reviewing evidence, including our own, that reveals the importance of goal‐directed behavioral responses in determining the relative involvement of the parahippocampal processing streams, we propose the Goal‐directed Interaction of Stimulus and Task‐demand (GIST) model. In the GIST model, input stimuli such as visual scenes and objects are first processed by both the postrhinal and perirhinal cortices—the postrhinal cortex more heavily involved with visual scenes and perirhinal cortex with objects—with relatively little dependence on behavioral task demand. However, once perceptual ambiguities are resolved and the scenes and objects are identified and recognized, the information is then processed through the medial or lateral entorhinal cortex, depending on whether it is used to fulfill navigational or non‐navigational goals, respectively. As complex sensory stimuli are utilized for both navigational and non‐navigational purposes in an intermixed fashion in naturalistic settings, the hippocampus may be required to then put together these experiences into a coherent map to allow flexible cognitive operations for adaptive behavior to occur.
Collapse
Affiliation(s)
- Su-Min Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Woo Jin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seong-Beom Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Eun-Hye Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Choong-Hee Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Hyun-Woo Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Heung-Yeol Lim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Seung-Woo Yoo
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Jae Rong Ahn
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Jhoseph Shin
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Sang Ah Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
37
|
Nanegrungsunk D, Ragozzino ME, Xu HL, Haselton KJ, Paisansathan C. Subarachnoid hemorrhage in C57BL/6J mice increases motor stereotypies and compulsive-like behaviors. Neurol Res 2020; 43:239-251. [PMID: 33135605 DOI: 10.1080/01616412.2020.1841481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Long-term behavioral, mood, and cognitive deficits affect over 30% of patients with subarachnoid hemorrhage (SAH). The aim of the present study was to examine the neurobehavioral outcomes following endovascular perforation induced SAH in mice. METHODS C57BL/6 J (B6) mice were exposed to endovascular perforation induced SAH or control surgery. Three weeks later, mice received a series of behavioral tests, e.g. motor function, stereotypy, learning, memory, behavioral flexibility, depression and anxiety. The immunohistologic experiment examined neuronalloss in the cortex following SAH. RESULTS SAH mice exhibited increased marble burying and nestlet shredding compared to that of control mice. Although SAH did not affect memory, learning or reversal learning,mice displayed greater overall object exploration in the novel object recognition test, as well as elevated perseveration during probabilistic reversal learning.In the forced swim and open field tests, SAH mice performed comparably to that of control mice. However, SAH mice exhibited an increased frequency in 'jumping' behavior in the open field test. Histological analyses revealed reduced neuron density in the parietal-entorhinal cortices of SAH mice on the injured side compared to that of control mice. DISCUSSION The findings suggest that parietal-entorhinal damage from SAH increases stereotyped motor behaviors and 'compulsive-like' behaviors without affecting cognition (learning and memory) or mood (anxiety and depression). This model can be used to better understand the neuropathophysiology following SAH that contributes to behavioral impairments in survivors with no gross sensory-motor deficits.
Collapse
Affiliation(s)
- Danop Nanegrungsunk
- Department of Anesthesiology, University of Illinois College of Medicine at Chicago , Chicago, IL, USA.,Neuroanesthesia Research Laboratory, University of Illinois College of Medicine , Chicago, IL, USA
| | - Michael E Ragozzino
- Department of Psychologyat the University of Illinois at Chicago , Chicago, IL, USA
| | - Hao-Liang Xu
- Neuroanesthesia Research Laboratory, University of Illinois College of Medicine , Chicago, IL, USA
| | - Kyle J Haselton
- Neuroanesthesia Research Laboratory, University of Illinois College of Medicine , Chicago, IL, USA
| | - Chanannait Paisansathan
- Department of Anesthesiology, University of Illinois College of Medicine at Chicago , Chicago, IL, USA.,Neuroanesthesia Research Laboratory, University of Illinois College of Medicine , Chicago, IL, USA
| |
Collapse
|
38
|
El-Kott AF, Abd-Lateif AEKM, Khalifa HS, Morsy K, Ibrahim EH, Bin-Jumah M, Abdel-Daim MM, Aleya L. Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138832. [PMID: 32353801 DOI: 10.1016/j.scitotenv.2020.138832] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
The neuroprotective effect of Kaempferol against cadmium chloride (CdCl2) -induced neurotoxicity is well reported. The silent information regulator 1 (SIRT1) and poly (ADP-Ribose) polymerase-1 (PARP1) are two related cellular molecules that can negatively affect the activity of each other to promote or inhibit cell survival, respectively. It is still largely unknown if the neurotoxicity of CdCl2 or the neuroprotection of Kaempferol are mediated by modulating SIRT1 and/or PAPR1 activities. In this study, we tested the hypothesis that CdCl2-induced memory deficit and hippocampal damage are associated with downregulation/inhibition of SIRT1 and activation of PAPR1, an effect that can be reversed by co-treatment with Kaempferol. Rats (n = 12/group) were divided into 4 groups as control, control + Kaempferol (50 mg//kg), CdCl2 (0.5 mg/kg), and CdCl2 + Kaempferol. All treatments were administered orally for 30 days daily. As compared to control rats, CdCl2 reduced rat's final body weights (21.8%) and their food intake (30%), induced oxidative stress and apoptosis in their hippocampi, and impaired their short and long-term recognition memory functions. Besides, the hippocampi of CdCl2-treated rats had higher levels of TNF-α (197%), and IL-6 (190%) with a concomitant increase in nuclear activity and levels of NF-κB p65 (721% & 554%). Besides, they showed reduced nuclear activity (53%) and levels (74%) of SIRT1, higher nuclear activity and levels of PARP1 (292% & 138%), increased nuclear levels of p53 (870%), and higher acetylated levels of NF-κB p65 (513%), p53 (644%), PARP1 (696%), and FOXO-2 (149%). All these events were significantly reversed in the CdCl2 + Kaempferol-treated rats. Of note, Kaempferol also increased levels of MnSOD (73.5%), and GSH (40%), protein levels of Bcl-2 (350%), and nuclear activity (67%) and levels (46%) of SIRT1 in the hippocampi of the control rats. In conclusion, Kaempferol ameliorates CdCl2-induced memory deficits and hippocampal oxidative stress, inflammation, and apoptosis by increasing SIRT1 activity and inhibiting PARP1 activity.
Collapse
Affiliation(s)
- Attalla Farag El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damanhour University, Damanhour, Egypt
| | | | - Heba S Khalifa
- Department of Zoology, College of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Cairo University, Cairo, Egypt
| | - Essam H Ibrahim
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo 12611, Egypt
| | - May Bin-Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon Cedex, France.
| |
Collapse
|
39
|
Dahan N, Moehringer N, Hasanaj L, Serrano L, Joseph B, Wu S, Nolan-Kenney R, Rizzo JR, Rucker JC, Galetta SL, Balcer LJ. The SUN test of vision: Investigation in healthy volunteers and comparison to the mobile universal lexicon evaluation system (MULES). J Neurol Sci 2020; 415:116953. [DOI: 10.1016/j.jns.2020.116953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 01/12/2023]
|
40
|
Sequential habituation to space, object and stranger is differentially modulated by glutamatergic, cholinergic and dopaminergic transmission. Behav Pharmacol 2020; 31:652-670. [PMID: 32649364 DOI: 10.1097/fbp.0000000000000573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Novel object and social interaction tasks allow assessments of rodent cognition and social behavior. Here, we combined these tasks and defined unequivocal locations of interest. Our procedure, termed OF-NO-SI, comprised habituation to the open field (OF), novel object (NO) and social interaction (SI) stages. Habituation was measured within- and between-trials (10 minutes each, two per stage). Ambulation emerged as the appropriate proxy during the OF stage, but NO and SI trials were best quantified via direct exploration measures. We pharmacologically validated the paradigm using 5-month old C57BL/6J male mice, treated intraperitoneally with (1) 0.5 mg/kg scopolamine, (2) 0.05 mg/kg MK-801 and (3) 0.05 mg/kg SCH-23390 to block muscarinic (M1), NMDA, and D1 receptors, respectively, or (4) vehicle (distilled water). Activity and gross exploratory behavior were affected by all compounds cf. vehicle: scopolamine and MK-801 cohorts were hyperactive, while SCH-23390 caused hypo-locomotion throughout. Vehicle treated mice showed reliable habituation to all stages for time in interaction zone, directed exploration and number of visits. Exploration was severely impaired by scopolamine. MK-801 mostly affected within-session exploration but also increased exploration of the conspecific compared to the object. Interestingly, even though within-trial habituation was lacking in the SCH-23390 cohort, between-trial habituation was largely intact, despite reduced locomotion. Our data suggest that the OF-NO-SI task is a convenient and robust paradigm to measure habituation to different experimental settings and stimuli. It allows the dissociation of proxies related to activity and non-associative learning/memory, as revealed by distinct pharmacological treatment effects within- vs. between-trials.
Collapse
|
41
|
Bailey ZS, Nilson E, Bates JA, Oyalowo A, Hockey KS, Sajja VSSS, Thorpe C, Rogers H, Dunn B, Frey AS, Billings MJ, Sholar CA, Hermundstad A, Kumar C, VandeVord PJ, Rzigalinski BA. Cerium Oxide Nanoparticles Improve Outcome after In Vitro and In Vivo Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:1452-1462. [PMID: 27733104 PMCID: PMC7249477 DOI: 10.1089/neu.2016.4644] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury results in aberrant free radical generation, which is associated with oxidative stress, secondary injury signaling cascades, mitochondrial dysfunction, and poor functional outcome. Pharmacological targeting of free radicals with antioxidants has been examined as an approach to treatment, but has met with limited success in clinical trials. Conventional antioxidants that are currently available scavenge a single free radical before they are destroyed in the process. Here, we report for the first time that a novel regenerative cerium oxide nanoparticle antioxidant reduces neuronal death and calcium dysregulation after in vitro trauma. Further, using an in vivo model of mild lateral fluid percussion brain injury in the rat, we report that cerium oxide nanoparticles also preserve endogenous antioxidant systems, decrease macromolecular free radical damage, and improve cognitive function. Taken together, our results demonstrate that cerium oxide nanoparticles are a novel nanopharmaceutical with potential for mitigating neuropathological effects of mild traumatic brain injury and modifying the course of recovery.
Collapse
Affiliation(s)
- Zachary S. Bailey
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Eric Nilson
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - John A. Bates
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Adewole Oyalowo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Kevin S. Hockey
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | | | - Chevon Thorpe
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Heidi Rogers
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Bryce Dunn
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Aaron S. Frey
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Marc J. Billings
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Christopher A. Sholar
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Amy Hermundstad
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Challa Kumar
- Integrated Mesoscale Architectures for Sustainable Catalysis, Rowland Institute of Science, Harvard University, Cambridge, Massachusetts, USA
| | - Pamela J. VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Beverly A. Rzigalinski
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| |
Collapse
|
42
|
Mahmud B, Shehu A, Magaji MG. Ameliorative effect of methanol stem extract of Parquetina nigrescens (Afzel) bullock on scopolamine-induced sub-chronic cognitive deficit in mice. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0201/jbcpp-2019-0201.xml. [PMID: 32238605 DOI: 10.1515/jbcpp-2019-0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 01/25/2020] [Indexed: 11/15/2022]
Abstract
Background Parquetina nigrescens (Afzel) Bullock is a commonly used medicinal plant in African traditional medicine. The powdered roots and stems of the plant are taken with pap as a memory enhancer among the Yorubas of southwestern Nigeria. The mechanism by which scopolamine induces cognitive deficit mimics the pathogenesis of neurodegeneration in cognitive impairment. This study therefore, aimed at investigating the effect of the methanol stem extract of P. nigrescens on sub-chronically scopolamine-induced cognitive deficit in mice. Method Phytochemical screening was carried out on the extract using standard protocols. The oral median lethal dose (LD50) was estimated according to the Organisation for Economic Cooperation and Development (OECD) 425 limit test guideline. Doses of 250, 500, and 1000 mg/kg of the extract were used for the study. The elevated plus maze (EPM) and novel object recognition tests (NORT) were used to assess cognitive function. The brain tissue was assayed for the level of malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and acetylcholinesterase (AChE) activity. Results The plant extract contains phenolics, carbohydrates, tannins, saponins, and unsaturated sterols.The extract decreased the transfer latencies on days 7 and 8 against the scopolamine group in EPM and increased the discrimination index decreased by scopolamine in NORT. The methanol stem extract of P. nigrescens significantly (p ≤ 0.01) reduced MDA level; significantly (p ≤ 0.01) increased SOD activity; non-significantly increased GSH activity and the activity of AChE apeared not altered. Conclusion The methanol stem extract of P. nigrescens ameliorated sub-chronically scopolamine-induced cognitive deficit via antioxidant mechanism.
Collapse
Affiliation(s)
- Bukhari Mahmud
- Department of pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria, Phone: 243+ 7031333861
| | - Aishatu Shehu
- Department of pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Garba Magaji
- Department of pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
43
|
Chen CA, Pal R, Yin J, Tao H, Amawi A, Sabo A, Bainbridge MN, Gibbs RA, Zoghbi HY, Schaaf CP. Combination of whole exome sequencing and animal modeling identifies TMPRSS9 as a candidate gene for autism spectrum disorder. Hum Mol Genet 2020; 29:459-470. [PMID: 31943016 PMCID: PMC7015847 DOI: 10.1093/hmg/ddz305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders are associated with some degree of developmental regression in up to 30% of all cases. Rarely, however, is the regression so extreme that a developmentally advanced young child would lose almost all ability to communicate and interact with her surroundings. We applied trio whole exome sequencing to a young woman who experienced extreme developmental regression starting at 2.5 years of age and identified compound heterozygous nonsense mutations in TMPRSS9, which encodes for polyserase-1, a transmembrane serine protease of poorly understood physiological function. Using semiquantitative polymerase chain reaction, we showed that Tmprss9 is expressed in various mouse tissues, including the brain. To study the consequences of TMPRSS9 loss of function on the mammalian brain, we generated a knockout mouse model. Through a battery of behavioral assays, we found that Tmprss9-/- mice showed decreased social interest and social recognition. We observed a borderline recognition memory deficit by novel object recognition in aged Tmprss9-/- female mice, but not in aged Tmprss9-/- male mice or younger adult Tmprss9-/- mice in both sexes. This study provides evidence to suggest that loss of function variants in TMPRSS9 are related to an autism spectrum disorder. However, the identification of more individuals with similar phenotypes and TMPRSS9 loss of function variants is required to establish a robust gene-disease relationship.
Collapse
Affiliation(s)
- Chun-An Chen
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Rituraj Pal
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jiani Yin
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Huifang Tao
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Abdallah Amawi
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Aniko Sabo
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Richard A Gibbs
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Christian P Schaaf
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
44
|
Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, Schmid S. What we can learn from a genetic rodent model about autism. Neurosci Biobehav Rev 2020; 109:29-53. [DOI: 10.1016/j.neubiorev.2019.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
45
|
Hornoiu I, Gigg J, Talmi D. Quantifying how much attention rodents allocate to motivationally-salient objects with a novel object preference test. Behav Brain Res 2019; 380:112389. [PMID: 31783088 DOI: 10.1016/j.bbr.2019.112389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 11/26/2022]
Abstract
The allocation of attention can be modulated by the emotional value of a stimulus. In order to understand the biasing influence of emotion on attention allocation further, we require an animal test of how motivational salience modulates attention. In mice, female odour triggers arousal and elicits emotional responses in males. Here, we determined the extent to which objects labelled with female odour modulated the attention of C57BL/6J male mice. Seven experiments were conducted, using a modified version of the spontaneous Novel Object Recognition task. Attention was operationalised as differential exploration time of identical objects that were labelled with either female mouse odour (O+), a non-social odour, almond odour (Oa) or not labelled with any odour (O-). In some experiments we tested trial unique (novel) objects than never carried an odour (X-). Using this novel object preference test we found that when single objects were presented, as well as when two objects were presented simultaneously (so competed with each other for attention), O+ received preferential attention compared to O-. This result was independent of whether O+ was at a novel or familiar location. When compared with Oa at a novel location, O+ at a familiar location attracted more attention. Compared to X-, O+ received more exploration only when placed at a novel location, but attention to O+ and X- was equivalent when they were placed in a familiar location. These results suggest that C57BL/6J male mice weigh up aspects of odour, object novelty and special novelty for motivational salience, and that, in some instances, female odour elicits more attention (object exploration) compared to other object properties. The findings of this study pave the way to using motivationally-significant odours to modulate the cognitive processes that give rise to differential attention to objects.
Collapse
Affiliation(s)
- Iasmina Hornoiu
- Division of Neuroscience and Experimental Psychology, University of Manchester, UK
| | - John Gigg
- Division of Neuroscience and Experimental Psychology, University of Manchester, UK
| | - Deborah Talmi
- Department of Psychology, University of Cambridge, UK.
| |
Collapse
|
46
|
Wang L, Shi H, Kang Y, Guofeng W. Hippocampal low-frequency stimulation improves cognitive function in pharmacoresistant epileptic rats. Epilepsy Res 2019; 168:106194. [PMID: 31521425 DOI: 10.1016/j.eplepsyres.2019.106194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/05/2019] [Accepted: 08/28/2019] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The aims of the present study were to observe the changes of cognitive function in a pilocarpine-induced rat model of epilepsy, and to investigate the effects of hippocampal low-frequency stimulation (Hip-LFS) on cognitive function in rats with pharmacoresistant epilepsy. METHODS A total of 100 male Sprague Dawley rats were randomly selected to establish an epilepsy model. Rats with successfully induced epilepsy were injected intraperitoneally with phenobarbital and phenytoin for pharmacoresistance selection. The selected pharmacoresistant epileptic (PRE) rats were assigned to a pharmacoresistant control group (PRC group), or a group that received Hip-LFS (LFS group). The same number of rats with pharmacosensitive epilepsy formed the PSC group, and a normal control (NCR) group was included. A novel object recognition (NOR) test, and a Morris water maze (MWM) task were used to assess cognitive function in all groups. RESULTS The epileptic rats showed decreased abilities of learning and memory compared with normal control. The rats in the LFS group displayed significantly shorter escape latency in place navigation, spent longer times in the target quadrant, and traveled longer distances on the platform in the spatial probe test than PRC group. In the NOR test, compared with the PRC group, the discrimination index of the LFS group was significantly increased. Compared with the PRC group, the average frequency and duration of seizures were also decreased in the LFS group. CONCLUSIONS The present pilocarpine-induced rat model of epilepsy showed impaired cognitive function, especially in rats with PRE. The Hip-LFS treatment could effectively improve the cognitive function of rats with PRE.
Collapse
Affiliation(s)
- Likun Wang
- Emergency Department, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, PR China.
| | - Haiyan Shi
- Emergency Department, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, PR China.
| | - Yangting Kang
- Emergency Department, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, PR China.
| | - Wu Guofeng
- Emergency Department, Affiliated Hospital of Guizhou Medical University, Guiyang City, 550004, PR China.
| |
Collapse
|
47
|
Poulter S, Austen JM, Kosaki Y, Dachtler J, Lever C, McGregor A. En route to delineating hippocampal roles in spatial learning. Behav Brain Res 2019; 369:111936. [DOI: 10.1016/j.bbr.2019.111936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 11/30/2022]
|
48
|
Jayachandran M, Linley SB, Schlecht M, Mahler SV, Vertes RP, Allen TA. Prefrontal Pathways Provide Top-Down Control of Memory for Sequences of Events. Cell Rep 2019; 28:640-654.e6. [PMID: 31315044 PMCID: PMC6662648 DOI: 10.1016/j.celrep.2019.06.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/19/2019] [Accepted: 06/14/2019] [Indexed: 11/30/2022] Open
Abstract
We remember our lives as sequences of events, but it is unclear how these memories are controlled during retrieval. In rats, the medial prefrontal cortex (mPFC) is positioned to influence sequence memory through extensive top-down inputs to regions heavily interconnected with the hippocampus, notably the nucleus reuniens of the thalamus (RE) and perirhinal cortex (PER). Here, we used an hM4Di synaptic-silencing approach to test our hypothesis that specific mPFC→RE and mPFC→PER projections regulate sequence memory retrieval. First, we found non-overlapping populations of mPFC cells project to RE and PER. Second, suppressing mPFC activity impaired sequence memory. Third, inhibiting mPFC→RE and mPFC→PER pathways effectively abolished sequence memory. Finally, a sequential lag analysis showed that the mPFC→RE pathway contributes to a working memory retrieval strategy, whereas the mPFC→PER pathway supports a temporal context memory retrieval strategy. These findings demonstrate that mPFC→RE and mPFC→PER pathways serve as top-down mechanisms that control distinct sequence memory retrieval strategies.
Collapse
Affiliation(s)
- Maanasa Jayachandran
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Stephanie B Linley
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Maximilian Schlecht
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Timothy A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
49
|
Sagarkar S, Balasubramanian N, Mishra S, Choudhary AG, Kokare DM, Sakharkar AJ. Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: Implications in learning and memory deficits in rats. Brain Res 2019; 1711:183-192. [DOI: 10.1016/j.brainres.2019.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/25/2022]
|
50
|
Food allergy induces alteration in brain inflammatory status and cognitive impairments. Behav Brain Res 2019; 364:374-382. [DOI: 10.1016/j.bbr.2018.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 01/31/2023]
|