1
|
Mariano M, Rossetti I, Maravita A, Paulesu E, Zapparoli L. Sensory Attenuation Deficit and Auditory Hallucinations in Schizophrenia: A Causal Mechanism or a Risk Factor? Evidence From Meta-Analyses on the N1 Event-Related Potential Component. Biol Psychiatry 2024; 96:207-221. [PMID: 38246250 DOI: 10.1016/j.biopsych.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/06/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Sensory attenuation (SA), the dampened perception of self-generated sensory information, is typically associated with reduced event-related potential signals, such as for the N1 component of auditory event-related potentials. SA, together with efficient monitoring of intentions and actions, should facilitate the distinction between self-generated and externally generated sensory events, thereby optimizing interaction with the world. According to many, SA is deficient in schizophrenia. The question arises whether altered SA reflects a sufficient mechanism to explain positive symptoms such as auditory hallucinations. A systematic association of reduced auditory SA in hallucinating patients would support this hypothesis. METHODS We conducted a series of meta-analyses on 15 studies on auditory SA in which the N1 component of event-related potential-electroencephalogram signals was measured during talking (self-generated sensory signals condition) or when listening to prerecorded vocalizations (externally generated sensory signals condition). RESULTS We found that individuals with schizophrenia did show some auditory SA because their N1 signal was significantly attenuated in talking conditions compared with listening conditions. However, the magnitude of such attenuation was reduced in individuals with schizophrenia compared to healthy control participants. This phenomenon generalizes independently from the stage of the disease, the severity of positive symptoms, and whether patients have auditory hallucinations or not. CONCLUSIONS These findings suggest that reduced SA cannot be a sufficient mechanism for explaining positive symptoms such as auditory hallucinations in schizophrenia. Because reduced SA was also present in participants at risk of schizophrenia, reduced SA may represent a risk factor for the disorder. We discuss the implications of these results for clinical-cognitive models of schizophrenia.
Collapse
Affiliation(s)
- Marika Mariano
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy.
| | - Ileana Rossetti
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Angelo Maravita
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy; IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Laura Zapparoli
- Psychology Department and NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy; IRCCS Orthopedic Institute Galeazzi, Milan, Italy.
| |
Collapse
|
2
|
Walsh K, McGovern DP, Dully J, Kelly SP, O'Connell RG. Prior probability cues bias sensory encoding with increasing task exposure. eLife 2024; 12:RP91135. [PMID: 38564237 PMCID: PMC10987094 DOI: 10.7554/elife.91135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
When observers have prior knowledge about the likely outcome of their perceptual decisions, they exhibit robust behavioural biases in reaction time and choice accuracy. Computational modelling typically attributes these effects to strategic adjustments in the criterion amount of evidence required to commit to a choice alternative - usually implemented by a starting point shift - but recent work suggests that expectations may also fundamentally bias the encoding of the sensory evidence itself. Here, we recorded neural activity with EEG while participants performed a contrast discrimination task with valid, invalid, or neutral probabilistic cues across multiple testing sessions. We measured sensory evidence encoding via contrast-dependent steady-state visual-evoked potentials (SSVEP), while a read-out of criterion adjustments was provided by effector-selective mu-beta band activity over motor cortex. In keeping with prior modelling and neural recording studies, cues evoked substantial biases in motor preparation consistent with criterion adjustments, but we additionally found that the cues produced a significant modulation of the SSVEP during evidence presentation. While motor preparation adjustments were observed in the earliest trials, the sensory-level effects only emerged with extended task exposure. Our results suggest that, in addition to strategic adjustments to the decision process, probabilistic information can also induce subtle biases in the encoding of the evidence itself.
Collapse
Affiliation(s)
- Kevin Walsh
- School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | | | - Jessica Dully
- Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | - Simon P Kelly
- School of Electrical Engineering, University College DublinDublinIreland
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
| | - Redmond G O'Connell
- Trinity College Institute of Neuroscience, Trinity College DublinDublinIreland
- School of Psychology, Trinity College DublinDublinIreland
| |
Collapse
|
3
|
Ward EK, Press C. Sixty years of predictive perception. Cortex 2024; 170:57-63. [PMID: 38104029 DOI: 10.1016/j.cortex.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Affiliation(s)
- Emma K Ward
- School of Psychological Sciences, Birkbeck, University of London, UK.
| | - Clare Press
- School of Psychological Sciences, Birkbeck, University of London, UK; Wellcome Centre for Human Neuroimaging, UCL, UK
| |
Collapse
|
4
|
Job X, Kilteni K. Action does not enhance but attenuates predicted touch. eLife 2023; 12:e90912. [PMID: 38099521 PMCID: PMC10723797 DOI: 10.7554/elife.90912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
Dominant motor control theories propose that the brain predicts and attenuates the somatosensory consequences of actions, referred to as somatosensory attenuation. Support comes from psychophysical and neuroimaging studies showing that touch applied on a passive hand elicits attenuated perceptual and neural responses if it is actively generated by one's other hand, compared to an identical touch from an external origin. However, recent experimental findings have challenged this view by providing psychophysical evidence that the perceived intensity of touch on the passive hand is enhanced if the active hand does not receive touch simultaneously with the passive hand (somatosensory enhancement) and by further attributing attenuation to the double tactile stimulation of the hands upon contact. Here, we directly contrasted the hypotheses of the attenuation and enhancement models regarding how action influences somatosensory perception by manipulating whether the active hand contacts the passive hand. We further assessed somatosensory perception in the absence of any predictive cues in a condition that turned out to be essential for interpreting the experimental findings. In three pre-registered experiments, we demonstrate that action does not enhance the predicted touch (Experiment 1), that the previously reported 'enhancement' effects are driven by the reference condition used (Experiment 2), and that self-generated touch is robustly attenuated regardless of whether the two hands make contact (Experiment 3). Our results provide conclusive evidence that action does not enhance but attenuates predicted touch and prompt a reappraisal of recent experimental findings upon which theoretical frameworks proposing a perceptual enhancement by action prediction are based.
Collapse
Affiliation(s)
- Xavier Job
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Konstantina Kilteni
- Department of Neuroscience, Karolinska InstituteStockholmSweden
- Donders Institute for Brain, Cognition and Behaviour, Radboud UniversityNijmegenNetherlands
| |
Collapse
|
5
|
Fritz C, Zimmermann E. Temporal adaptation of sensory attenuation for self-touch. Exp Brain Res 2023; 241:2333-2344. [PMID: 37606713 PMCID: PMC10471680 DOI: 10.1007/s00221-023-06688-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
The sensory consequences of our actions appear attenuated to us. This effect has been reported for external sensations that are evoked by auditory or visual events and for body-related sensations which are produced by self-touch. In the present study, we investigated the effects of prolonged exposure to a delay between an action and the generated sensation on sensory attenuation for self-touch. Previously, it has been shown that after being presented to a systematic exposure delay, artificially delayed touch can feel more intense and non-delayed touches can appear less intense. Here, we investigated the temporal spread of the temporal recalibration effect. Specifically, we wondered whether this temporal recalibration effect would affect only the delay that was used during exposure trials or if it would also modulate longer test delays. In the first two experiments, we tested three test delays (0, 100 and 400 ms) either in randomized or in blocked order. We found sensory attenuation in all three test intervals but no effect of the exposure delay. In Experiment 3, we replicated the experiment by Kilteni et al. (ELife 8:e42888, 2019. https://doi.org/10.7554/eLife.42888 ) and found evidence for temporal recalibration by exposure delay. Our data show that the temporal selectivity of sensory attenuation of self-touch depends on presenting a singular test delay only. Presenting multiple test delays leads to a temporally broad spread of sensory attenuation.
Collapse
Affiliation(s)
- Clara Fritz
- Institute for Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Eckart Zimmermann
- Institute for Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Harrison AW, Hughes G, Rudman G, Christensen BK, Whitford TJ. Exploring the internal forward model: action-effect prediction and attention in sensorimotor processing. Cereb Cortex 2023:7191713. [PMID: 37288477 DOI: 10.1093/cercor/bhad189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Action-effect predictions are believed to facilitate movement based on its association with sensory objectives and suppress the neurophysiological response to self- versus externally generated stimuli (i.e. sensory attenuation). However, research is needed to explore theorized differences in the use of action-effect prediction based on whether movement is uncued (i.e. volitional) or in response to external cues (i.e. stimulus-driven). While much of the sensory attenuation literature has examined effects involving the auditory N1, evidence is also conflicted regarding this component's sensitivity to action-effect prediction. In this study (n = 64), we explored the influence of action-effect contingency on event-related potentials associated with visually cued and uncued movement, as well as resultant stimuli. Our findings replicate recent evidence demonstrating reduced N1 amplitude for tones produced by stimulus-driven movement. Despite influencing motor preparation, action-effect contingency was not found to affect N1 amplitudes. Instead, we explore electrophysiological markers suggesting that attentional mechanisms may suppress the neurophysiological response to sound produced by stimulus-driven movement. Our findings demonstrate lateralized parieto-occipital activity that coincides with the auditory N1, corresponds to a reduction in its amplitude, and is topographically consistent with documented effects of attentional suppression. These results provide new insights into sensorimotor coordination and potential mechanisms underlying sensory attenuation.
Collapse
Affiliation(s)
- Anthony W Harrison
- School of Psychology, UNSW Sydney, Mathews Building, Library Walk, Kensington NSW 2052, Australia
| | - Gethin Hughes
- Department of Psychology, University Of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Gabriella Rudman
- School of Psychology, UNSW Sydney, Mathews Building, Library Walk, Kensington NSW 2052, Australia
| | - Bruce K Christensen
- Research School of Psychology, Building 39, The Australian National University, Science Rd, Canberra ACT 2601, Australia
| | - Thomas J Whitford
- School of Psychology, UNSW Sydney, Mathews Building, Library Walk, Kensington NSW 2052, Australia
| |
Collapse
|
7
|
Ody E, Straube B, He Y, Kircher T. Perception of self-generated and externally-generated visual stimuli: Evidence from EEG and behavior. Psychophysiology 2023:e14295. [PMID: 36966486 DOI: 10.1111/psyp.14295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/23/2023] [Accepted: 03/04/2023] [Indexed: 03/27/2023]
Abstract
Efference copy-based forward model mechanisms may help us to distinguish between self-generated and externally-generated sensory consequences. Previous studies have shown that self-initiation modulates neural and perceptual responses to identical stimulation. For example, event-related potentials (ERPs) elicited by tones that follow a button press are reduced in amplitude relative to ERPs elicited by passively attended tones. However, previous EEG studies investigating visual stimuli in this context are rare, provide inconclusive results, and lack adequate control conditions with passive movements. Furthermore, although self-initiation is known to modulate behavioral responses, it is not known whether differences in the amplitude of ERPs also reflect differences in perception of sensory outcomes. In this study, we presented to participants visual stimuli consisting of gray discs following either active button presses, or passive button presses, in which an electromagnet moved the participant's finger. Two discs presented visually 500-1250 ms apart followed each button press, and participants judged which of the two was more intense. Early components of the primary visual response (N1 and P2) over the occipital electrodes were suppressed in the active condition. Interestingly, suppression in the intensity judgment task was only correlated with suppression of the visual P2 component. These data support the notion of efference copy-based forward model predictions in the visual sensory modality, but especially later processes (P2) seem to be perceptually relevant. Taken together, the results challenge the assumption that N1 differences reflect perceptual suppression and emphasize the relevance of the P2 ERP component.
Collapse
Affiliation(s)
- Edward Ody
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf Bultmann-Strasse 8, Marburg, 35039, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf Bultmann-Strasse 8, Marburg, 35039, Germany
| | - Yifei He
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf Bultmann-Strasse 8, Marburg, 35039, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf Bultmann-Strasse 8, Marburg, 35039, Germany
| |
Collapse
|
8
|
Thomas ER, Rittershofer K, Press C. Updating perceptual expectations as certainty diminishes. Cognition 2023; 232:105356. [PMID: 36502600 DOI: 10.1016/j.cognition.2022.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Forming expectations about what we are likely to perceive often facilitates perception. We forge such expectations on the basis of strong statistical relationships between events in our environment. However, due to our ever-changing world these relationships often subsequently degrade or even disappear, yet it is unclear how these altered statistics influence perceptual expectations. We examined this question across two studies by training participants in perfect relationships between actions (index or little finger abductions) and outcomes (clockwise or counter-clockwise gratings), before degrading the predictive relationship in a test phase - such that 'expected' events followed actions on 50-75% of trials and 'unexpected' events ensued on the remainder. Perceptual decisions about outcomes were faster and less error prone on expected than unexpected trials when predictive relationships remained high and reduced as the relationship diminished. Drift diffusion modelling indicated that these effects are explained by shifting the starting point in the evidence accumulation process as well as biasing the rate of evidence accumulation - with the former reflecting biases from statistics within the training session and the latter those of the test session. These findings demonstrate how perceptual expectations are updated as statistical certainty diminishes, with interacting influences speculatively dependent upon learning consolidation. We discuss how underlying mechanisms optimise the interaction between learning and perception - allowing our experiences to reflect a nuanced, ever-changing environment.
Collapse
Affiliation(s)
- Emily R Thomas
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; Neuroscience Institute, New York University School of Medicine, 550 1(st) Ave, New York, NY 10016, USA
| | - Kirsten Rittershofer
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.
| | - Clare Press
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square, London WC1N 3AR, UK
| |
Collapse
|
9
|
Press C, Thomas ER, Yon D. Cancelling cancellation? Sensorimotor control, agency, and prediction. Neurosci Biobehav Rev 2023; 145:105012. [PMID: 36565943 DOI: 10.1016/j.neubiorev.2022.105012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
For decades, classic theories of action control and action awareness have been built around the idea that the brain predictively 'cancels' expected action outcomes from perception. However, recent research casts doubt over this basic premise. What do these new findings mean for classic accounts of action? Should we now 'cancel' old data, theories and approaches generated under this idea? In this paper, we argue 'No'. While doubts about predictive cancellation may urge us to fundamentally rethink how predictions shape perception, the wider pyramid using these ideas to explain action control and agentic experiences can remain largely intact. Some adaptive functions assigned to predictive cancellation can be achieved through quasi-predictive processes, that influence perception without actively tracking the probabilistic structure of the environment. Other functions may rely upon truly predictive processes, but not require that these predictions cancel perception. Appreciating the role of these processes may help us to move forward in explaining how agents optimise their interactions with the external world, even if predictive cancellation is cancelled from theory.
Collapse
Affiliation(s)
- Clare Press
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square, London WC1N 3AR, UK.
| | - Emily R Thomas
- Neuroscience Institute, New York University School of Medicine, 550 1st Ave, New York, NY 10016, USA
| | - Daniel Yon
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
10
|
Frost-Karlsson M, Capusan AJ, Perini I, Olausson H, Zetterqvist M, Gustafsson PA, Boehme R. Neural processing of self-touch and other-touch in anorexia nervosa and autism spectrum condition. Neuroimage Clin 2022; 36:103264. [PMID: 36451367 PMCID: PMC9668667 DOI: 10.1016/j.nicl.2022.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The tactile sense plays a crucial role in the development and maintenance of a functional bodily self. The ability to differentiate between self- and nonself-generated touch contributes to the perception of the bodies' boundaries and more generally to self-other-distinction, both of which are thought be altered in anorexia nervosa (AN) and autism spectrum condition (AS). While it has been suggested that AN and AS are characterized by overlapping symptomatology, they might differ regarding body perception and self-other-distinction. METHODS Participants with a diagnosis of AN (n = 25), AS (n = 29), and a comparison group without diagnoses (n = 57) performed a self-other-touch task during functional brain imaging. In the experimental conditions, they stroked their own arm or were stroked on the arm by an experimenter. RESULTS As shown previously, the CG group showed lower activation or deactivation in response to self-touch compared to social touch from someone else. A main group effect was found in areas including somatosensory cortex, frontal and temporal gyri, insula, and subcortical regions. This was driven by increased activations in participants with AN, while participants in the AS group showed mostly comparable activations to the comparison group. CONCLUSIONS AN diagnosis was associated with an increased neural activity in response to both self-touch and social touch. Failure to attenuate self-touch might relate to altered predictions regarding the own body and reduced perception of bodily boundaries. Participants with an AS diagnosis were mostly comparable to the comparison group, potentially indicating unaltered tactile self-other-distinction.
Collapse
Affiliation(s)
- Morgan Frost-Karlsson
- Center for Social and Affective Neuroscience, Linköping University, Department of Biomedical and Clinical Sciences, 58185 Linköping, Sweden
| | - Andrea Johansson Capusan
- Center for Social and Affective Neuroscience, Linköping University, Department of Biomedical and Clinical Sciences, 58185 Linköping, Sweden,Department of Psychiatry in Linköping and Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Irene Perini
- Center for Social and Affective Neuroscience, Linköping University, Department of Biomedical and Clinical Sciences, 58185 Linköping, Sweden,Center for Medical Imaging and Visualization, Linköping University, 58185 Linköping, Sweden
| | - Håkan Olausson
- Center for Social and Affective Neuroscience, Linköping University, Department of Biomedical and Clinical Sciences, 58185 Linköping, Sweden,Department of Clinical Neurophysiology, Linköping University Hospital, 58185 Linköping, Sweden,Center for Medical Imaging and Visualization, Linköping University, 58185 Linköping, Sweden
| | - Maria Zetterqvist
- Center for Social and Affective Neuroscience, Linköping University, Department of Biomedical and Clinical Sciences, 58185 Linköping, Sweden,Department of Child and Adolescent Psychiatry in Linköping and Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Per A. Gustafsson
- Center for Social and Affective Neuroscience, Linköping University, Department of Biomedical and Clinical Sciences, 58185 Linköping, Sweden,Department of Child and Adolescent Psychiatry in Linköping and Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden
| | - Rebecca Boehme
- Center for Social and Affective Neuroscience, Linköping University, Department of Biomedical and Clinical Sciences, 58185 Linköping, Sweden,Center for Medical Imaging and Visualization, Linköping University, 58185 Linköping, Sweden,Corresponding author at: Center for Social and Affective Neuroscience, The Department of Biomedical and Clinical Sciences, Linköping University, S-581 83 Linköping, Sweden.
| |
Collapse
|
11
|
Mokady A, Reggev N. The Role of Predictions, Their Confirmation, and Reward in Maintaining the Self-Concept. Front Hum Neurosci 2022; 16:824085. [PMID: 35399356 PMCID: PMC8987106 DOI: 10.3389/fnhum.2022.824085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
The predictive processing framework posits that people continuously use predictive principles when interacting with, learning from, and interpreting their surroundings. Here, we suggest that the same framework may help explain how people process self-relevant knowledge and maintain a stable and positive self-concept. Specifically, we recast two prominent self-relevant motivations, self-verification and self-enhancement, in predictive processing (PP) terms. We suggest that these self-relevant motivations interact with the self-concept (i.e., priors) to create strong predictions. These predictions, in turn, influence how people interpret information about themselves. In particular, we argue that these strong self-relevant predictions dictate how prediction error, the deviation from the original prediction, is processed. In contrast to many implementations of the PP framework, we suggest that predictions and priors emanating from stable constructs (such as the self-concept) cultivate belief-maintaining, rather than belief-updating, dynamics. Based on recent findings, we also postulate that evidence supporting a predicted model of the self (or interpreted as such) triggers subjective reward responses, potentially reinforcing existing beliefs. Characterizing the role of rewards in self-belief maintenance and reframing self-relevant motivations and rewards in predictive processing terms offers novel insights into how the self is maintained in neurotypical adults, as well as in pathological populations, potentially pointing to therapeutic implications.
Collapse
Affiliation(s)
- Aviv Mokady
- Department of Psychology, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Niv Reggev
- Department of Psychology, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| |
Collapse
|
12
|
Schlichting N, Kartashova T, Wiesing M, Zimmermann E. Temporal perturbations cause movement-context independent but modality specific sensorimotor adaptation. J Vis 2022; 22:18. [PMID: 35201280 PMCID: PMC8883149 DOI: 10.1167/jov.22.2.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Complex, goal-directed and time-critical movements require the processing of temporal features in sensory information as well as the fine-tuned temporal interplay of several effectors. Temporal estimates used to produce such behavior may thus be obtained through perceptual or motor processes. To disentangle the two options, we tested whether adaptation to a temporal perturbation in an interval reproduction task transfers to interval reproduction tasks with varying sensory information (visual appearance of targets, modality, and virtual reality [VR] environment or real-world) or varying movement types (continuous arm movements or brief clicking movements). Halfway through the experiments we introduced a temporal perturbation, such that continuous pointing movements were artificially slowed down in VR, causing participants to adapt their behavior to sustain performance. In four experiments, we found that sensorimotor adaptation to temporal perturbations is independent of environment context and movement type, but modality specific. Our findings suggest that motor errors induced by temporal sensorimotor adaptation affect the modality specific perceptual processing of temporal estimates.
Collapse
Affiliation(s)
- Nadine Schlichting
- Institute for Experimental Psychology, Heinrich-Heine-University Düsseldorf, Germany.,
| | - Tatiana Kartashova
- Institute for Experimental Psychology, Heinrich-Heine-University Düsseldorf, Germany.,
| | - Michael Wiesing
- Institute for Experimental Psychology, Heinrich-Heine-University Düsseldorf, Germany.,
| | - Eckart Zimmermann
- Institute for Experimental Psychology, Heinrich-Heine-University Düsseldorf, Germany.,
| |
Collapse
|
13
|
Dijkstra N, Kok P, Fleming SM. Imagery adds stimulus-specific sensory evidence to perceptual detection. J Vis 2022; 22:11. [PMID: 35175306 PMCID: PMC8857619 DOI: 10.1167/jov.22.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Internally generated imagery and externally triggered perception rely on overlapping sensory processes. This overlap poses a challenge for perceptual reality monitoring: determining whether sensory signals reflect reality or imagination. In this study, we used psychophysics to investigate how imagery and perception interact to determine visual experience. Participants were instructed to detect oriented gratings that gradually appeared in noise while simultaneously either imagining the same grating, a grating perpendicular to the to-be-detected grating, or nothing. We found that, compared to both incongruent imagery and no imagery, congruent imagery caused a leftward shift of the psychometric function relating stimulus contrast to perceptual threshold. We discuss how this effect can best be explained by a model in which imagery adds sensory signal to the perceptual input, thereby increasing the visibility of perceived stimuli. These results suggest that, in contrast to changes in sensory signals caused by self-generated movement, the brain does not discount the influence of self-generated sensory signals on perception.
Collapse
Affiliation(s)
- Nadine Dijkstra
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK.,
| | - Peter Kok
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK.,
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK.,Max Planck UCL Centre for Computational Psychiatry and Aging Research, University College London, London, UK.,Department of Experimental Psychology, University College London, London, UK.,
| |
Collapse
|
14
|
Abstract
It is widely believed that predicted tactile action outcomes are perceptually attenuated. The present experiments determined whether predictive mechanisms necessarily generate attenuation or, instead, can enhance perception-as typically observed in sensory cognition domains outside of action. We manipulated probabilistic expectations in a paradigm often used to demonstrate tactile attenuation. Adult participants produced actions and subsequently rated the intensity of forces on a static finger. Experiment 1 confirmed previous findings that action outcomes are perceived less intensely than passive stimulation but demonstrated more intense perception when active finger stimulation was removed. Experiments 2 and 3 manipulated prediction explicitly and found that expected touch during action is perceived more intensely than unexpected touch. Computational modeling suggested that expectations increase the gain afforded to expected tactile signals. These findings challenge a central tenet of prominent motor control theories and demonstrate that sensorimotor predictions do not exhibit a qualitatively distinct influence on tactile perception.
Collapse
Affiliation(s)
- Emily R Thomas
- Department of Psychological Sciences, Birkbeck, University of London
| | - Daniel Yon
- Department of Psychological Sciences, Birkbeck, University of London.,Department of Psychology, Goldsmiths, University of London
| | - Floris P de Lange
- Donders Institute for Brain, Cognition and Behaviour, Radboud University
| | - Clare Press
- Department of Psychological Sciences, Birkbeck, University of London
| |
Collapse
|
15
|
Paraskevoudi N, SanMiguel I. Self-generation and sound intensity interactively modulate perceptual bias, but not perceptual sensitivity. Sci Rep 2021; 11:17103. [PMID: 34429453 PMCID: PMC8385100 DOI: 10.1038/s41598-021-96346-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
The ability to distinguish self-generated stimuli from those caused by external sources is critical for all behaving organisms. Although many studies point to a sensory attenuation of self-generated stimuli, recent evidence suggests that motor actions can result in either attenuated or enhanced perceptual processing depending on the environmental context (i.e., stimulus intensity). The present study employed 2-AFC sound detection and loudness discrimination tasks to test whether sound source (self- or externally-generated) and stimulus intensity (supra- or near-threshold) interactively modulate detection ability and loudness perception. Self-generation did not affect detection and discrimination sensitivity (i.e., detection thresholds and Just Noticeable Difference, respectively). However, in the discrimination task, we observed a significant interaction between self-generation and intensity on perceptual bias (i.e. Point of Subjective Equality). Supra-threshold self-generated sounds were perceived softer than externally-generated ones, while at near-threshold intensities self-generated sounds were perceived louder than externally-generated ones. Our findings provide empirical support to recent theories on how predictions and signal intensity modulate perceptual processing, pointing to interactive effects of intensity and self-generation that seem to be driven by a biased estimate of perceived loudness, rather by changes in detection and discrimination sensitivity.
Collapse
Affiliation(s)
- Nadia Paraskevoudi
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, P. Vall d'Hebron 171, 08035, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Iria SanMiguel
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, P. Vall d'Hebron 171, 08035, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, Barcelona, Spain. .,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.
| |
Collapse
|
16
|
Dijkstra N, Mazor M, Kok P, Fleming S. Mistaking imagination for reality: Congruent mental imagery leads to more liberal perceptual detection. Cognition 2021; 212:104719. [PMID: 33878636 PMCID: PMC8164160 DOI: 10.1016/j.cognition.2021.104719] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 10/25/2022]
Abstract
Visual experiences can be triggered externally, by signals coming from the outside world during perception; or internally, by signals from memory during mental imagery. Imagery and perception activate similar neural codes in sensory areas, suggesting that they might sometimes be confused. In the current study, we investigated whether imagery influences perception by instructing participants to imagine gratings while externally detecting these same gratings at threshold. In a series of three experiments, we showed that imagery led to a more liberal criterion for reporting stimulus presence, and that this effect was both independent of expectation and stimulus-specific. Furthermore, participants with more vivid imagery were generally more likely to report the presence of external stimuli, independent of condition. The results can be explained as either a low-level sensory or a high-level decision-making effect. We discuss that the most likely explanation is that during imagery, internally generated sensory signals are sometimes confused for perception and suggest how the underlying mechanisms can be further characterized in future research. Our findings show that imagery and perception interact and emphasize that internally and externally generated signals are combined in complex ways to determine conscious perception.
Collapse
Affiliation(s)
- Nadine Dijkstra
- Wellcome Centre for Human Neuroimaging, University College London, United Kingdom.
| | - Matan Mazor
- Wellcome Centre for Human Neuroimaging, University College London, United Kingdom
| | - Peter Kok
- Wellcome Centre for Human Neuroimaging, University College London, United Kingdom
| | - Stephen Fleming
- Wellcome Centre for Human Neuroimaging, University College London, United Kingdom; Max Planck UCL Centre for Computational Psychiatry and Aging Research, University College London, United Kingdom; Department of Experimental Psychology, University College London, United Kingdom
| |
Collapse
|
17
|
Feuerriegel D, Vogels R, Kovács G. Evaluating the evidence for expectation suppression in the visual system. Neurosci Biobehav Rev 2021; 126:368-381. [PMID: 33836212 DOI: 10.1016/j.neubiorev.2021.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/16/2021] [Accepted: 04/02/2021] [Indexed: 01/25/2023]
Abstract
Reports of expectation suppression have shaped the development of influential predictive coding-based theories of visual perception. However recent work has highlighted confounding factors that may mimic or inflate expectation suppression effects. In this review, we describe four confounds that are prevalent across experiments that tested for expectation suppression: effects of surprise, attention, stimulus repetition and adaptation, and stimulus novelty. With these confounds in mind we then critically review the evidence for expectation suppression across probabilistic cueing, statistical learning, oddball, action-outcome learning and apparent motion designs. We found evidence for expectation suppression within a specific subset of statistical learning designs that involved weeks of sequence learning prior to neural activity measurement. Across other experimental contexts, whereby stimulus appearance probabilities were learned within one or two testing sessions, there was inconsistent evidence for genuine expectation suppression. We discuss how an absence of expectation suppression could inform models of predictive processing, repetition suppression and perceptual decision-making. We also provide suggestions for designing experiments that may better test for expectation suppression in future work.
Collapse
Affiliation(s)
- Daniel Feuerriegel
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia.
| | - Rufin Vogels
- Laboratorium voor Neuro- en Psychofysiologie, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Gyula Kovács
- Institute of Psychology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
18
|
Skora LI, Seth AK, Scott RB. Sensorimotor predictions shape reported conscious visual experience in a breaking continuous flash suppression task. Neurosci Conscious 2021; 2021:niab003. [PMID: 33763234 PMCID: PMC7970722 DOI: 10.1093/nc/niab003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/12/2022] Open
Abstract
Accounts of predictive processing propose that conscious experience is influenced not only by passive predictions about the world, but also by predictions encompassing how the world changes in relation to our actions-that is, on predictions about sensorimotor contingencies. We tested whether valid sensorimotor predictions, in particular learned associations between stimuli and actions, shape reports about conscious visual experience. Two experiments used instrumental conditioning to build sensorimotor predictions linking different stimuli with distinct actions. Conditioning was followed by a breaking continuous flash suppression task, measuring the speed of reported breakthrough for different pairings between the stimuli and prepared actions, comparing those congruent and incongruent with the trained sensorimotor predictions. In Experiment 1, counterbalancing of the response actions within the breaking continuous flash suppression task was achieved by repeating the same action within each block but having them differ across the two blocks. Experiment 2 sought to increase the predictive salience of the actions by avoiding the repetition within blocks. In Experiment 1, breakthrough times were numerically shorter for congruent than incongruent pairings, but Bayesian analysis supported the null hypothesis of no influence from the sensorimotor predictions. In Experiment 2, reported conscious perception was significantly faster for congruent than for incongruent pairings. A meta-analytic Bayes factor combining the two experiments confirmed this effect. Altogether, we provide evidence for a key implication of the action-oriented predictive processing approach to conscious perception, namely that sensorimotor predictions shape our conscious experience of the world.
Collapse
Affiliation(s)
- Lina I Skora
- School of Psychology, University of Sussex, Pevensey Building, Falmer, Brighton BN1 9RH, UK
- Sackler Centre for Consciousness Science, University of Sussex, Falmer, Brighton, Brighton BN1 9RH, UK
| | - Anil K Seth
- Sackler Centre for Consciousness Science, University of Sussex, Falmer, Brighton, Brighton BN1 9RH, UK
- School of Engineering and Informatics, University of Sussex, Falmer, Brighton, Brighton BN1 9RH, UK
- Canadian Institute for Advanced Research, Program on Brain, Mind and Consciousness, 661 University Ave, Toronto, ON M5G 1M1, Canada
| | - Ryan B Scott
- School of Psychology, University of Sussex, Pevensey Building, Falmer, Brighton BN1 9RH, UK
- Sackler Centre for Consciousness Science, University of Sussex, Falmer, Brighton, Brighton BN1 9RH, UK
| |
Collapse
|
19
|
Stevens RH, Galloway TL. Parsing Neurodynamic Information Streams to Estimate the Frequency, Magnitude and Duration of Team Uncertainty. Front Syst Neurosci 2021; 15:606823. [PMID: 33597850 PMCID: PMC7882625 DOI: 10.3389/fnsys.2021.606823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022] Open
Abstract
Neurodynamic organizations are information-based abstractions, expressed in bits, of the structure of long duration EEG amplitude levels. Neurodynamic information (NI, the variable of neurodynamic organization) is thought to continually accumulate as EEG amplitudes cycle through periods of persistent activation and deactivation in response to the activities and uncertainties of teamwork. Here we show that (1) Neurodynamic information levels were a better predictor of uncertainty and novice and expert behaviors than were the EEG power levels from which NI was derived. (2) Spatial and temporal parsing of team NI from experienced submarine navigation and healthcare teams showed that it was composed of discrete peaks with durations up to 20–60 s, and identified the involvement of activated delta waves when precise motor control was needed. (3) The relationship between NI and EEG power was complex varying by brain regions, EEG frequencies, and global vs. local brain interactions. The presence of an organizational system of information that parallels the amplitude of EEG rhythms is important as it provides a greatly reduced data dimension while retaining the essential system features, i.e., linkages to higher scale behaviors that span temporal and spatial scales of teamwork. In this way the combinatorial explosion of EEG rhythmic variables at micro levels become compressed into an intermediate system of information and organization which links to macro-scale team and team member behaviors. These studies provide an avenue for understanding how complex organizations arise from the dynamics of underlying micro-scale variables. The study also has practical implications for how micro-scale variables might be better represented, both conceptually and in terms of parsimony, for training machines to recognize human behaviors that span scales of teams.
Collapse
Affiliation(s)
- Ronald H Stevens
- University of California Los Angeles (UCLA) School of Medicine, Brain Research Institute, Culver City, CA, United States.,The Learning Chameleon, Inc., Culver City, CA, United States
| | | |
Collapse
|
20
|
Schmitter CV, Steinsträter O, Kircher T, van Kemenade BM, Straube B. Commonalities and differences in predictive neural processing of discrete vs continuous action feedback. Neuroimage 2021; 229:117745. [PMID: 33454410 DOI: 10.1016/j.neuroimage.2021.117745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 11/16/2022] Open
Abstract
Sensory action consequences are highly predictable and thus engage less neural resources compared to externally generated sensory events. While this has frequently been observed to lead to attenuated perceptual sensitivity and suppression of activity in sensory cortices, some studies conversely reported enhanced perceptual sensitivity for action consequences. These divergent findings might be explained by the type of action feedback, i.e., discrete outcomes vs. continuous feedback. Therefore, in the present study we investigated the impact of discrete and continuous action feedback on perceptual and neural processing during action feedback monitoring. During fMRI data acquisition, participants detected temporal delays (0-417 ms) between actively or passively generated wrist movements and visual feedback that was either continuously provided during the movement or that appeared as a discrete outcome. Both feedback types resulted in (1) a neural suppression effect (active<passive) in a largely shared network including bilateral visual and somatosensory cortices, cerebellum and temporoparietal areas. Yet, compared to discrete outcomes, (2) processing continuous feedback led to stronger suppression in right superior temporal gyrus (STG), Heschl´s gyrus, and insula suggesting specific suppression of features linked to continuous feedback. Furthermore, (3) BOLD suppression in visual cortex for discrete outcomes was specifically related to perceptual enhancement. Together, these findings indicate that neural representations of discrete and continuous action feedback are similarly suppressed but might depend on different predictive mechanisms, where reduced activation in visual cortex reflects facilitation specifically for discrete outcomes, and predictive processing in STG, Heschl´s gyrus, and insula is particularly relevant for continuous feedback.
Collapse
Affiliation(s)
- Christina V Schmitter
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| | - Olaf Steinsträter
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany; Core Facility Brain Imaging, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany.
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| | - Bianca M van Kemenade
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany.
| |
Collapse
|
21
|
Pyasik M, Ronga I, Burin D, Salatino A, Sarasso P, Garbarini F, Ricci R, Pia L. I'm a believer: Illusory self-generated touch elicits sensory attenuation and somatosensory evoked potentials similar to the real self-touch. Neuroimage 2021; 229:117727. [PMID: 33434613 DOI: 10.1016/j.neuroimage.2021.117727] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Sensory attenuation (i.e., the phenomenon whereby self-produced sensations are perceived as less intense compared to externally occurring ones) is among the neurocognitive processes that help distinguishing ourselves from others. It is thought to be rooted in the motor system (e.g., related to motor intention and prediction), while the role of body awareness, which necessarily accompanies any voluntary movement, in this phenomenon is largely unknown. To fill this gap, here we compared the perceived intensity, somatosensory evoked potentials, and alpha-band desynchronization for self-generated, other-generated, and embodied-fake-hand-generated somatosensory stimuli. We showed that sensory attenuation triggered by the own hand and by the embodied fake hand had the same behavioral and neurophysiological signatures (reduced subjective intensity, reduced of N140 and P200 SEP components and post-stimulus alpha-band desynchronization). Therefore, signals subserving body ownership influenced attenuation of somatosensory stimuli, possibly in a postdictive manner. This indicates that body ownership is crucial for distinguishing the source of the perceived sensations.
Collapse
Affiliation(s)
- Maria Pyasik
- SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, Department of Psychology, University of Turin, 10123 Turin, Italy; NPSY-Lab.VR, Department of Human Sciences, University of Verona, 37129 Verona, Italy
| | - Irene Ronga
- MANIBUS - Movement ANd body In Behavioral and physiological neUroScience research group, Department of Psychology, University of Turin, 10123 Turin, Italy
| | - Dalila Burin
- IDAC - Institute of Development, Aging and Cancer, SARC - Smart-Aging Research Center, Kawashima Laboratory, Tohoku University, Sendai, Japan
| | - Adriana Salatino
- SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, Department of Psychology, University of Turin, 10123 Turin, Italy
| | - Pietro Sarasso
- SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, Department of Psychology, University of Turin, 10123 Turin, Italy
| | - Francesca Garbarini
- MANIBUS - Movement ANd body In Behavioral and physiological neUroScience research group, Department of Psychology, University of Turin, 10123 Turin, Italy
| | - Raffaella Ricci
- SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, Department of Psychology, University of Turin, 10123 Turin, Italy; NIT (Neuroscience Institute of Turin), 10123 Turin, Italy
| | - Lorenzo Pia
- SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, Department of Psychology, University of Turin, 10123 Turin, Italy; NIT (Neuroscience Institute of Turin), 10123 Turin, Italy.
| |
Collapse
|
22
|
Feuerriegel D, Blom T, Hogendoorn H. Predictive activation of sensory representations as a source of evidence in perceptual decision-making. Cortex 2020; 136:140-146. [PMID: 33461733 DOI: 10.1016/j.cortex.2020.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/15/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022]
Abstract
Our brains can represent expected future states of our sensory environment. Recent work has shown that, when we expect a specific stimulus to appear at a specific time, we can predictively generate neural representations of that stimulus even before it is physically presented. These observations raise two exciting questions: Are pre-activated sensory representations used for perceptual decision-making? And, do we transiently perceive an expected stimulus that does not actually appear? To address these questions, we propose that pre-activated neural representations provide sensory evidence that is used for perceptual decision-making. This can be understood within the framework of the Diffusion Decision Model as an early accumulation of decision evidence in favour of the expected percept. Our proposal makes novel predictions relating to expectation effects on neural markers of decision evidence accumulation, and also provides an explanation for why we sometimes perceive stimuli that are expected, but do not appear.
Collapse
Affiliation(s)
- Daniel Feuerriegel
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia.
| | - Tessel Blom
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| | - Hinze Hogendoorn
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia
| |
Collapse
|
23
|
Yon D, Bunce C, Press C. Illusions of control without delusions of grandeur. Cognition 2020; 205:104429. [PMID: 32949908 PMCID: PMC7684464 DOI: 10.1016/j.cognition.2020.104429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022]
Abstract
We frequently experience feelings of agency over events we do not objectively influence - so-called 'illusions of control'. These illusions have prompted widespread claims that we can be insensitive to objective relationships between actions and outcomes, and instead rely on grandiose beliefs about our abilities. However, these illusory biases could instead arise if we are highly sensitive to action-outcome correlations, but attribute agency when such correlations emerge simply by chance. We motion-tracked participants while they made agency judgements about a cursor that could be yoked to their actions or follow an independent trajectory. A combination of signal detection analysis, reverse correlation methods and computational modelling indeed demonstrated that 'illusions' of control could emerge solely from sensitivity to spurious action-outcome correlations. Counterintuitively, this suggests that illusions of control could arise because agents have excellent insight into the relationships between actions and outcomes in a world where causal relationships are not perfectly deterministic.
Collapse
Affiliation(s)
- Daniel Yon
- Department of Psychology, Goldsmiths, University of London, UK; Department of Psychological Sciences, Birkbeck, University of London, UK.
| | - Carl Bunce
- Department of Psychological Sciences, Birkbeck, University of London, UK
| | - Clare Press
- Department of Psychological Sciences, Birkbeck, University of London, UK
| |
Collapse
|
24
|
Limanowski J, Litvak V, Friston K. Cortical beta oscillations reflect the contextual gating of visual action feedback. Neuroimage 2020; 222:117267. [PMID: 32818621 PMCID: PMC7779369 DOI: 10.1016/j.neuroimage.2020.117267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 11/26/2022] Open
Abstract
We decouple seen and felt hand postures during action via virtual reality. Vision of the hand is either task-relevant or a distractor. Task-relevance of vision is reflected by in- or decreases of occipital beta power. DCM suggests underlying changes in cortical (visual) excitability. Occipital beta may indicate the contextual gating of visual action feedback.
In sensorimotor integration, the brain needs to decide how its predictions should accommodate novel evidence by ‘gating’ sensory data depending on the current context. Here, we examined the oscillatory correlates of this process by recording magnetoencephalography (MEG) data during a new task requiring action under intersensory conflict. We used virtual reality to decouple visual (virtual) and proprioceptive (real) hand postures during a task in which the phase of grasping movements tracked a target (in either modality). Thus, we rendered visual information either task-relevant or a (to-be-ignored) distractor. Under visuo-proprioceptive incongruence, occipital beta power decreased (relative to congruence) when vision was task-relevant but increased when it had to be ignored. Dynamic causal modeling (DCM) revealed that this interaction was best explained by diametrical, task-dependent changes in visual gain. These results suggest a crucial role for beta oscillations in the contextual gating (i.e., gain or precision control) of visual vs proprioceptive action feedback, depending on current behavioral demands.
Collapse
Affiliation(s)
- Jakub Limanowski
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, United Kingdom; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany.
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|