1
|
Karuntu JS, Almushattat H, Nguyen XTA, Plomp AS, Wanders RJA, Hoyng CB, van Schooneveld MJ, Schalij-Delfos NE, Brands MM, Leroy BP, van Karnebeek CDM, Bergen AA, van Genderen MM, Boon CJF. Syndromic Retinitis Pigmentosa. Prog Retin Eye Res 2024:101324. [PMID: 39733931 DOI: 10.1016/j.preteyeres.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/31/2024]
Abstract
Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives. Given the diverse clinical and genetic landscape of syndromic RP, the diagnosis may be challenging. However, an accurate and timely diagnosis is essential for optimal clinical management, prognostication, and potential treatment. Broadly, the syndromes associated with RP can be categorized into ciliopathies, inherited metabolic disorders, mitochondrial disorders, and miscellaneous syndromes. Among the ciliopathies associated with RP, Usher syndrome and Bardet-Biedl syndrome are the most well-known. Less common ciliopathies include Cohen syndrome, Joubert syndrome, cranioectodermal dysplasia, asphyxiating thoracic dystrophy, Mainzer-Saldino syndrome, and RHYNS syndrome. Several inherited metabolic disorders can present with RP including Zellweger spectrum disorders, adult Refsum disease, α-methylacyl-CoA racemase deficiency, certain mucopolysaccharidoses, ataxia with vitamin E deficiency, abetalipoproteinemia, several neuronal ceroid lipofuscinoses, mevalonic aciduria, PKAN/HARP syndrome, PHARC syndrome, and methylmalonic acidaemia with homocystinuria type cobalamin (cbl) C disease. Due to the mitochondria's essential role in supplying continuous energy to the retina, disruption of mitochondrial function can lead to RP, as seen in Kearns-Sayre syndrome, NARP syndrome, primary coenzyme Q10 deficiency, SSBP1-associated disease, and long chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Lastly, Cockayne syndrome and PERCHING syndrome can present with RP, but they do not fit the abovementioned hierarchy and are thus categorized as 'Miscellaneous'. Several first-in-human clinical trials are underway or in preparation for some of these syndromic forms of RP.
Collapse
Affiliation(s)
- Jessica S Karuntu
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hind Almushattat
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xuan-Thanh-An Nguyen
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands
| | - Ronald J A Wanders
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mary J van Schooneveld
- Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marion M Brands
- Amsterdam Reproduction & Development Institute, Amsterdam, the Netherlands; Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
| | - Bart P Leroy
- Department of Ophthalmology & Center for Medical Genetics, Ghent University, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Clara D M van Karnebeek
- Department of Paediatrics, Division of Metabolic Diseases, Amsterdam UMC location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arthur A Bergen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria M van Genderen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Diagnostic Center for Complex Visual Disorders, Zeist, the Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Fu Y, Land M, Cui R, Kavlashvili T, Kim M, Lieber T, Ryu KW, DeBitetto E, Masilionis I, Saha R, Takizawa M, Baker D, Tigano M, Reznik E, Sharma R, Chaligne R, Thompson CB, Pe'er D, Sfeir A. Engineering mtDNA Deletions by Reconstituting End-Joining in Human Mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618543. [PMID: 39463974 PMCID: PMC11507875 DOI: 10.1101/2024.10.15.618543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Recent breakthroughs in the genetic manipulation of mitochondrial DNA (mtDNA) have enabled the precise introduction of base substitutions and the effective removal of genomes carrying harmful mutations. However, the reconstitution of mtDNA deletions responsible for severe mitochondrial myopathies and age-related diseases has not yet been achieved in human cells. Here, we developed a method to engineer specific mtDNA deletions in human cells by co-expressing end-joining (EJ) machinery and targeted endonucleases. As a proof-of-concept, we used mito-EJ and mito-ScaI to generate a panel of clonal cell lines harboring a ∼3.5 kb mtDNA deletion with the full spectrum of heteroplasmy. Investigating these isogenic cells revealed a critical threshold of ∼75% deleted genomes, beyond which cells exhibited depletion of OXPHOS proteins, severe metabolic disruption, and impaired growth in galactose-containing media. Single-cell multiomic analysis revealed two distinct patterns of nuclear gene deregulation in response to mtDNA deletion accumulation; one triggered at the deletion threshold and another progressively responding to increasing heteroplasmy. In summary, the co-expression of mito-EJ and programable nucleases provides a powerful tool to model disease-associated mtDNA deletions in different cell types. Establishing a panel of cell lines with a large-scale deletion at varying levels of heteroplasmy is a valuable resource for understanding the impact of mtDNA deletions on diseases and guiding the development of potential therapeutic strategies. Highlights Combining prokaryotic end-joining with targeted endonucleases generates specific mtDNA deletions in human cellsEngineering a panel of cell lines with a large-scale deletion that spans the full spectrum of heteroplasmy75% heteroplasmy is the threshold that triggers mitochondrial and cellular dysfunctionTwo distinct nuclear transcriptional programs in response to mtDNA deletions: threshold-triggered and heteroplasmy-sensing.
Collapse
|
3
|
Sleigh JN, Mattedi F, Richter S, Annuario E, Ng K, Steinmark IE, Ivanova I, Darabán IL, Joshi PP, Rhymes ER, Awale S, Yahioglu G, Mitchell JC, Suhling K, Schiavo G, Vagnoni A. Age-specific and compartment-dependent changes in mitochondrial homeostasis and cytoplasmic viscosity in mouse peripheral neurons. Aging Cell 2024; 23:e14250. [PMID: 38881280 PMCID: PMC11464114 DOI: 10.1111/acel.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Mitochondria are dynamic bioenergetic hubs that become compromised with age. In neurons, declining mitochondrial axonal transport has been associated with reduced cellular health. However, it is still unclear to what extent the decline of mitochondrial transport and function observed during ageing are coupled, and if somal and axonal mitochondria display compartment-specific features that make them more susceptible to the ageing process. It is also not known whether the biophysical state of the cytoplasm, thought to affect many cellular functions, changes with age to impact mitochondrial trafficking and homeostasis. Focusing on the mouse peripheral nervous system, we show that age-dependent decline in mitochondrial trafficking is accompanied by reduction of mitochondrial membrane potential and intramitochondrial viscosity, but not calcium buffering, in both somal and axonal mitochondria. Intriguingly, we observe a specific increase in cytoplasmic viscosity in the neuronal cell body, where mitochondria are most polarised, which correlates with decreased cytoplasmic diffusiveness. Increasing cytoplasmic crowding in the somatic compartment of DRG neurons grown in microfluidic chambers reduces mitochondrial axonal trafficking, suggesting a mechanistic link between the regulation of cytoplasmic viscosity and mitochondrial dynamics. Our work provides a reference for studying the relationship between neuronal mitochondrial homeostasis and the viscoelasticity of the cytoplasm in a compartment-dependent manner during ageing.
Collapse
Affiliation(s)
- James N. Sleigh
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
- UK Dementia Research Institute, University College LondonLondonUK
| | - Francesca Mattedi
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Present address:
Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Sandy Richter
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Present address:
Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Emily Annuario
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Kristal Ng
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | | | | | - István L. Darabán
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Parth P. Joshi
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- Present address:
Sunderland Medical School, University of SunderlandSunderlandUK
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
- UK Dementia Research Institute, University College LondonLondonUK
| | - Shirwa Awale
- Department of PhysicsKing's College LondonLondonUK
| | - Gokhan Yahioglu
- Antikor Biopharma Ltd, Stevenage Bioscience CatalystStevenageUK
| | - Jacqueline C. Mitchell
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | | | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease CentreUCL Queen Square Institute of Neurology, University College LondonLondonUK
- UK Dementia Research Institute, University College LondonLondonUK
| | - Alessio Vagnoni
- Department of Basic and Clinical NeurosciencesMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
- MIA‐PortugalMultidisciplinary Institute of Ageing, University of CoimbraCoimbraPortugal
| |
Collapse
|
4
|
Balderas E, Lee SHJ, Rai NK, Mollinedo DM, Duron HE, Chaudhuri D. Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease. Physiology (Bethesda) 2024; 39:0. [PMID: 38713090 PMCID: PMC11460536 DOI: 10.1152/physiol.00014.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Oxidative phosphorylation is regulated by mitochondrial calcium (Ca2+) in health and disease. In physiological states, Ca2+ enters via the mitochondrial Ca2+ uniporter and rapidly enhances NADH and ATP production. However, maintaining Ca2+ homeostasis is critical: insufficient Ca2+ impairs stress adaptation, and Ca2+ overload can trigger cell death. In this review, we delve into recent insights further defining the relationship between mitochondrial Ca2+ dynamics and oxidative phosphorylation. Our focus is on how such regulation affects cardiac function in health and disease, including heart failure, ischemia-reperfusion, arrhythmias, catecholaminergic polymorphic ventricular tachycardia, mitochondrial cardiomyopathies, Barth syndrome, and Friedreich's ataxia. Several themes emerge from recent data. First, mitochondrial Ca2+ regulation is critical for fuel substrate selection, metabolite import, and matching of ATP supply to demand. Second, mitochondrial Ca2+ regulates both the production and response to reactive oxygen species (ROS), and the balance between its pro- and antioxidant effects is key to how it contributes to physiological and pathological states. Third, Ca2+ exerts localized effects on the electron transport chain (ETC), not through traditional allosteric mechanisms but rather indirectly. These effects hinge on specific transporters, such as the uniporter or the Na+/Ca2+ exchanger, and may not be noticeable acutely, contributing differently to phenotypes depending on whether Ca2+ transporters are acutely or chronically modified. Perturbations in these novel relationships during disease states may either serve as compensatory mechanisms or exacerbate impairments in oxidative phosphorylation. Consequently, targeting mitochondrial Ca2+ holds promise as a therapeutic strategy for a variety of cardiac diseases characterized by contractile failure or arrhythmias.
Collapse
Affiliation(s)
- Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Sandra H J Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Neeraj K Rai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - David M Mollinedo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Hannah E Duron
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, Biochemistry, Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
5
|
Di Leo V, Bernardino Gomes TM, Vincent AE. Interactions of mitochondrial and skeletal muscle biology in mitochondrial myopathy. Biochem J 2023; 480:1767-1789. [PMID: 37965929 PMCID: PMC10657187 DOI: 10.1042/bcj20220233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle and the way muscle fibres adapt to this dysfunction is important to understand disease mechanisms and to develop therapeutic interventions. Furthermore, interactions between mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have important implications for normal muscle function and physiology. In this review, we will try to give an overview of what is known to date about these interactions including metabolic remodelling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell structure and function. Each of these topics is at a different stage of understanding, with some being well researched and understood, and others in their infancy. Furthermore, some of what we know comes from disease models. Whilst some findings are confirmed in humans, where this is not yet the case, we must be cautious in interpreting findings in the context of human muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown and give a perspective on the future direction of research in this area.
Collapse
Affiliation(s)
- Valeria Di Leo
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
| | - Tiago M. Bernardino Gomes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, U.K
| | - Amy E. Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, U.K
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, U.K
| |
Collapse
|
6
|
Lee SH, Duron HE, Chaudhuri D. Beyond the TCA cycle: new insights into mitochondrial calcium regulation of oxidative phosphorylation. Biochem Soc Trans 2023; 51:1661-1673. [PMID: 37641565 PMCID: PMC10508640 DOI: 10.1042/bst20230012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
While mitochondria oxidative phosphorylation is broadly regulated, the impact of mitochondrial Ca2+ on substrate flux under both physiological and pathological conditions is increasingly being recognized. Under physiologic conditions, mitochondrial Ca2+ enters through the mitochondrial Ca2+ uniporter and boosts ATP production. However, maintaining Ca2+ homeostasis is crucial as too little Ca2+ inhibits adaptation to stress and Ca2+ overload can trigger cell death. In this review, we discuss new insights obtained over the past several years expanding the relationship between mitochondrial Ca2+ and oxidative phosphorylation, with most data obtained from heart, liver, or skeletal muscle. Two new themes are emerging. First, beyond boosting ATP synthesis, Ca2+ appears to be a critical determinant of fuel substrate choice between glucose and fatty acids. Second, Ca2+ exerts local effects on the electron transport chain indirectly, not via traditional allosteric mechanisms. These depend critically on the transporters involved, such as the uniporter or the Na+-Ca2+ exchanger. Alteration of these new relationships during disease can be either compensatory or harmful and suggest that targeting mitochondrial Ca2+ may be of therapeutic benefit during diseases featuring impairments in oxidative phosphorylation.
Collapse
Affiliation(s)
- Sandra H. Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | - Hannah E. Duron
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, Biochemistry, Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Dong H, Tsai SY. Mitochondrial Properties in Skeletal Muscle Fiber. Cells 2023; 12:2183. [PMID: 37681915 PMCID: PMC10486962 DOI: 10.3390/cells12172183] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria are the primary source of energy production and are implicated in a wide range of biological processes in most eukaryotic cells. Skeletal muscle heavily relies on mitochondria for energy supplements. In addition to being a powerhouse, mitochondria evoke many functions in skeletal muscle, including regulating calcium and reactive oxygen species levels. A healthy mitochondria population is necessary for the preservation of skeletal muscle homeostasis, while mitochondria dysregulation is linked to numerous myopathies. In this review, we summarize the recent studies on mitochondria function and quality control in skeletal muscle, focusing mainly on in vivo studies of rodents and human subjects. With an emphasis on the interplay between mitochondrial functions concerning the muscle fiber type-specific phenotypes, we also discuss the effect of aging and exercise on the remodeling of skeletal muscle and mitochondria properties.
Collapse
Affiliation(s)
- Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
8
|
Sakai E, Imaizumi T, Suzuki R, Taracena-Gándara M, Fujimoto T, Sakurai F, Mizuguchi H. miR-27b targets MAIP1 to mediate lipid accumulation in cultured human and mouse hepatic cells. Commun Biol 2023; 6:669. [PMID: 37355744 PMCID: PMC10290684 DOI: 10.1038/s42003-023-05049-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Non-alcoholic liver disease (NAFLD) is a condition caused by excessive fat accumulation in the liver and developed via multiple pathways. miR-27b has been suggested to play crucial roles in the development of NAFLD, assuming via targeting genes involved in lipid catabolism and anabolism. However, other pathways regulated by miR-27b are largely unknown. Here we show that lipid accumulation was induced in miR-27b-transfected human and mouse hepatic cells and that knockdowns of three miR-27b-target genes, β-1,4-galactosyltransferase 3 (B4GALT3), matrix AAA peptidase interacting protein 1 (MAIP1) and PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2), induced lipid accumulation. We also show that B4GALT3 and MAIP1 were direct targets of miR-27b and overexpression of MAIP1 ameliorated miR-27b-induced lipid accumulation. In addition, we show that hepatic Maip1 expression declined in mice fed a high-fat diet, suggesting the involvement of decreased Maip1 expression in the condition of fatty liver. Overall, we identified MAIP1/miR-27b axis as a mediator of hepatic lipid accumulation, a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Eiko Sakai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsutomu Imaizumi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ruruka Suzuki
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Marcos Taracena-Gándara
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiki Fujimoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka, 567-0085, Japan.
- Global Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
9
|
Walters GC, Usachev YM. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Front Cell Dev Biol 2023; 11:1094356. [PMID: 36760367 PMCID: PMC9902777 DOI: 10.3389/fcell.2023.1094356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+) buffering, and apoptotic signaling. In neurons, Ca2+ buffering is particularly important as it helps to shape Ca2+ signals and to regulate numerous Ca2+-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca2+ uniporter (MCU) and other molecular components of mitochondrial Ca2+ transport has provided insight into the roles that mitochondrial Ca2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca2+-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Grant C. Walters
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Yuriy M. Usachev
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
10
|
Sollazzo M, De Luise M, Lemma S, Bressi L, Iorio M, Miglietta S, Milioni S, Kurelac I, Iommarini L, Gasparre G, Porcelli AM. Respiratory Complex I dysfunction in cancer: from a maze of cellular adaptive responses to potential therapeutic strategies. FEBS J 2022; 289:8003-8019. [PMID: 34606156 PMCID: PMC10078660 DOI: 10.1111/febs.16218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 01/14/2023]
Abstract
Mitochondria act as key organelles in cellular bioenergetics and biosynthetic processes producing signals that regulate different molecular networks for proliferation and cell death. This ability is also preserved in pathologic contexts such as tumorigenesis, during which bioenergetic changes and metabolic reprogramming confer flexibility favoring cancer cell survival in a hostile microenvironment. Although different studies epitomize mitochondrial dysfunction as a protumorigenic hit, genetic ablation or pharmacological inhibition of respiratory complex I causing a severe impairment is associated with a low-proliferative phenotype. In this scenario, it must be considered that despite the initial delay in growth, cancer cells may become able to resume proliferation exploiting molecular mechanisms to overcome growth arrest. Here, we highlight the current knowledge on molecular responses activated by complex I-defective cancer cells to bypass physiological control systems and to re-adapt their fitness during microenvironment changes. Such adaptive mechanisms could reveal possible novel molecular players in synthetic lethality with complex I impairment, thus providing new synergistic strategies for mitochondrial-based anticancer therapy.
Collapse
Affiliation(s)
- Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Monica De Luise
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Silvia Lemma
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Licia Bressi
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Iorio
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Stefano Miglietta
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Sara Milioni
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,Centro di Studio e Ricerca sulle Neoplasie (CSR) Ginecologiche, Alma Mater Studiorum-University of Bologna, Bologna, Italy.,Interdepartmental Center for Industrial Research (CIRI) Life Sciences and Technologies for Health, Alma Mater Studiorum-University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
11
|
Xu XX, Shi RX, Fu Y, Wang JL, Tong X, Zhang SQ, Wang N, Li MX, Tong Y, Wang W, He M, Liu BY, Chen GL, Guo F. Neuronal nitric oxide synthase/reactive oxygen species pathway is involved in apoptosis and pyroptosis in epilepsy. Neural Regen Res 2022; 18:1277-1285. [PMID: 36453412 PMCID: PMC9838157 DOI: 10.4103/1673-5374.357906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Dysfunction of neuronal nitric oxide synthase contributes to neurotoxicity, which triggers cell death in various neuropathological diseases, including epilepsy. Studies have shown that inhibition of neuronal nitric oxide synthase activity increases the epilepsy threshold, that is, has an anticonvulsant effect. However, the exact role and potential mechanism of neuronal nitric oxide synthase in seizures are still unclear. In this study, we performed RNA sequencing, functional enrichment analysis, and weighted gene coexpression network analysis of the hippocampus of tremor rats, a rat model of genetic epilepsy. We found damaged hippocampal mitochondria and abnormal succinate dehydrogenase level and Na+-K+-ATPase activity. In addition, we used a pilocarpine-induced N2a cell model to mimic epileptic injury. After application of neuronal nitric oxide synthase inhibitor 7-nitroindazole, changes in malondialdehyde, lactate dehydrogenase and superoxide dismutase, which are associated with oxidative stress, were reversed, and the increase in reactive oxygen species level was reversed by 7-nitroindazole or reactive oxygen species inhibitor N-acetylcysteine. Application of 7-nitroindazole or N-acetylcysteine downregulated the expression of caspase-3 and cytochrome c and reversed the apoptosis of epileptic cells. Furthermore, 7-nitroindazole or N-acetylcysteine downregulated the abnormally high expression of NLRP3, gasdermin-D, interleukin-1β and interleukin-18. This indicated that 7-nitroindazole and N-acetylcysteine each reversed epileptic cell death. Taken together, our findings suggest that the neuronal nitric oxide synthase/reactive oxygen species pathway is involved in pyroptosis of epileptic cells, and inhibiting neuronal nitric oxide synthase activity or its induced oxidative stress may play a neuroprotective role in epilepsy.
Collapse
Affiliation(s)
- Xiao-Xue Xu
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China,Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Rui-Xue Shi
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Yu Fu
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Jia-Lu Wang
- Department of Neurology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xin Tong
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Shi-Qi Zhang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Mei-Xuan Li
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Yu Tong
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Miao He
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China
| | - Bing-Yang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China,Correspondence to: Feng Guo, ; Gui-Lan Chen, ; Bing-Yang Liu, .
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan Province, China,Correspondence to: Feng Guo, ; Gui-Lan Chen, ; Bing-Yang Liu, .
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, Liaoning Province, China,Correspondence to: Feng Guo, ; Gui-Lan Chen, ; Bing-Yang Liu, .
| |
Collapse
|
12
|
Capristo M, Del Dotto V, Tropeano CV, Fiorini C, Caporali L, La Morgia C, Valentino ML, Montopoli M, Carelli V, Maresca A. Rapamycin rescues mitochondrial dysfunction in cells carrying the m.8344A > G mutation in the mitochondrial tRNA Lys. Mol Med 2022; 28:90. [PMID: 35922766 PMCID: PMC9347137 DOI: 10.1186/s10020-022-00519-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Myoclonus, Epilepsy and Ragged-Red-Fibers (MERRF) is a mitochondrial encephalomyopathy due to heteroplasmic mutations in mitochondrial DNA (mtDNA) most frequently affecting the tRNALys gene at position m.8344A > G. Defective tRNALys severely impairs mitochondrial protein synthesis and respiratory chain when a high percentage of mutant heteroplasmy crosses the threshold for full-blown clinical phenotype. Therapy is currently limited to symptomatic management of myoclonic epilepsy, and supportive measures to counteract muscle weakness with co-factors/supplements. Methods We tested two therapeutic strategies to rescue mitochondrial function in cybrids and fibroblasts carrying different loads of the m.8344A > G mutation. The first strategy was aimed at inducing mitochondrial biogenesis directly, over-expressing the master regulator PGC-1α, or indirectly, through the treatment with nicotinic acid, a NAD+ precursor. The second was aimed at stimulating the removal of damaged mitochondria through prolonged rapamycin treatment. Results The first approach slightly increased mitochondrial protein expression and respiration in the wild type and intermediate-mutation load cells, but was ineffective in high-mutation load cell lines. This suggests that induction of mitochondrial biogenesis may not be sufficient to rescue mitochondrial dysfunction in MERRF cells with high-mutation load. The second approach, when administered chronically (4 weeks), induced a slight increase of mitochondrial respiration in fibroblasts with high-mutation load, and a significant improvement in fibroblasts with intermediate-mutation load, rescuing completely the bioenergetics defect. This effect was mediated by increased mitochondrial biogenesis, possibly related to the rapamycin-induced inhibition of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and the consequent activation of the Transcription Factor EB (TFEB). Conclusions Overall, our results point to rapamycin-based therapy as a promising therapeutic option for MERRF. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00519-z.
Collapse
Affiliation(s)
- Mariantonietta Capristo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Valentina Del Dotto
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Concetta Valentina Tropeano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy.,Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Altura 3, 40139, Bologna, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Largo Meneghetti 2, 3513, Padova, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy. .,Department of Biomedical and NeuroMotor Sciences, University of Bologna, via Altura 3, 40139, Bologna, Italy.
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
13
|
Stamerra CA, Di Giosia P, Giorgini P, Ferri C, Sukhorukov VN, Sahebkar A. Mitochondrial Dysfunction and Cardiovascular Disease: Pathophysiology and Emerging Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9530007. [PMID: 35958017 PMCID: PMC9363184 DOI: 10.1155/2022/9530007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
Mitochondria ensure the supply of cellular energy through the production of ATP via oxidative phosphorylation. The alteration of this process, called mitochondrial dysfunction, leads to a reduction in ATP and an increase in the production of reactive oxygen species (ROS). Mitochondrial dysfunction can be caused by mitochondrial/nuclear DNA mutations, or it can be secondary to pathological conditions such as cardiovascular disease, aging, and environmental stress. The use of therapies aimed at the prevention/correction of mitochondrial dysfunction, in the context of the specific treatment of cardiovascular diseases, is a topic of growing interest. In this context, the data are conflicting since preclinical studies are numerous, but there are no large randomized studies.
Collapse
Affiliation(s)
- Cosimo Andrea Stamerra
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6, San Salvatore Hospital, Via Vetoio, Coppito 67100 L'Aquila, Italy
- Department of Internal Medicine, Mazzoni Hospital, Ascoli Piceno, Italy
| | - Paolo Di Giosia
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6, San Salvatore Hospital, Via Vetoio, Coppito 67100 L'Aquila, Italy
- Department of Internal Medicine, Mazzoni Hospital, Ascoli Piceno, Italy
| | - Paolo Giorgini
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6, San Salvatore Hospital, Via Vetoio, Coppito 67100 L'Aquila, Italy
| | - Claudio Ferri
- University of L'Aquila, Department of Life, Health and Environmental Sciences, Building Delta 6, San Salvatore Hospital, Via Vetoio, Coppito 67100 L'Aquila, Italy
| | - Vasily N. Sukhorukov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Mitochondrial calcium uniporter stabilization preserves energetic homeostasis during Complex I impairment. Nat Commun 2022; 13:2769. [PMID: 35589699 PMCID: PMC9120069 DOI: 10.1038/s41467-022-30236-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Calcium entering mitochondria potently stimulates ATP synthesis. Increases in calcium preserve energy synthesis in cardiomyopathies caused by mitochondrial dysfunction, and occur due to enhanced activity of the mitochondrial calcium uniporter channel. The signaling mechanism that mediates this compensatory increase remains unknown. Here, we find that increases in the uniporter are due to impairment in Complex I of the electron transport chain. In normal physiology, Complex I promotes uniporter degradation via an interaction with the uniporter pore-forming subunit, a process we term Complex I-induced protein turnover. When Complex I dysfunction ensues, contact with the uniporter is inhibited, preventing degradation, and leading to a build-up in functional channels. Preventing uniporter activity leads to early demise in Complex I-deficient animals. Conversely, enhancing uniporter stability rescues survival and function in Complex I deficiency. Taken together, our data identify a fundamental pathway producing compensatory increases in calcium influx during Complex I impairment.
Collapse
|
15
|
Elstner M, Olszewski K, Prokisch H, Klopstock T, Murgia M. Multi-Omics Approach to Mitochondrial DNA Damage in Human Muscle Fibers. Int J Mol Sci 2021; 22:ijms222011080. [PMID: 34681740 PMCID: PMC8537949 DOI: 10.3390/ijms222011080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype.
Collapse
Affiliation(s)
- Matthias Elstner
- Department of Neurology, Technical University Munich, 81675 Munich, Germany;
| | - Konrad Olszewski
- Center for Addictive Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8001 Zurich, Switzerland;
| | - Holger Prokisch
- Institute of Human Genetics, Technical University Munich, 81675 Munich, Germany;
- Institute of Neurogenomics, Helmholtz Zentrum Munich, 85764 Neuherberg, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University of Munich, 80336 Munich, Germany;
- German Center for Neurodegenerative Diseases (DZNE), 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81675 Munich, Germany
| | - Marta Murgia
- Department of Proteomics a Signal Transduction, Max Planck Institute of Biochemistry, 82352 Martinsried, Germany
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
16
|
Wu AJ, Tong BCK, Huang AS, Li M, Cheung KH. Mitochondrial Calcium Signaling as a Therapeutic Target for Alzheimer's Disease. Curr Alzheimer Res 2021; 17:329-343. [PMID: 31820698 DOI: 10.2174/1567205016666191210091302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/17/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022]
Abstract
Mitochondria absorb calcium (Ca2+) at the expense of the electrochemical gradient generated during respiration. The influx of Ca2+ into the mitochondrial matrix helps maintain metabolic function and results in increased cytosolic Ca2+ during intracellular Ca2+ signaling. Mitochondrial Ca2+ homeostasis is tightly regulated by proteins located in the inner and outer mitochondrial membranes and by the cross-talk with endoplasmic reticulum Ca2+ signals. Increasing evidence indicates that mitochondrial Ca2+ overload is a pathological phenotype associated with Alzheimer's Disease (AD). As intracellular Ca2+ dysregulation can be observed before the appearance of typical pathological hallmarks of AD, it is believed that mitochondrial Ca2+ overload may also play an important role in AD etiology. The high mitochondrial Ca2+ uptake can easily compromise neuronal functions and exacerbate AD progression by impairing mitochondrial respiration, increasing reactive oxygen species formation and inducing apoptosis. Additionally, mitochondrial Ca2+ overload can damage mitochondrial recycling via mitophagy. This review will discuss the molecular players involved in mitochondrial Ca2+ dysregulation and the pharmacotherapies that target this dysregulation. As most of the current AD therapeutics are based on amyloidopathy, tauopathy, and the cholinergic hypothesis, they achieve only symptomatic relief. Thus, determining how to reestablish mitochondrial Ca2+ homeostasis may aid in the development of novel AD therapeutic interventions.
Collapse
Affiliation(s)
- Aston J Wu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Benjamin C-K Tong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Alexis S Huang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| |
Collapse
|
17
|
Huang J, Xian B, Peng Y, Zeng B, Li W, Li Z, Xie Y, Zhao M, Zhang H, Zhou M, Yu H, Wu P, Liu X, Huang B. Migration of pre-induced human peripheral blood mononuclear cells from the transplanted to contralateral eye in mice. Stem Cell Res Ther 2021; 12:168. [PMID: 33691753 PMCID: PMC7945672 DOI: 10.1186/s13287-021-02180-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background Retina diseases may lead to blindness as they often afflict both eyes. Stem cell transplantation into the affected eye(s) is a promising therapeutic strategy for certain retinal diseases. Human peripheral blood mononuclear cells (hPBMCs) are a good source of stem cells, but it is unclear whether pre-induced hPBMCs can migrate from the injected eye to the contralateral eye for bilateral treatment. We examine the possibility of bilateral cell transplantation from unilateral cell injection. Methods One hundred and sixty-one 3-month-old retinal degeneration 1 (rd1) mice were divided randomly into 3 groups: an untreated group (n = 45), a control group receiving serum-free Dulbecco’s modified Eagle’s medium (DMEM) injection into the right subretina (n = 45), and a treatment group receiving injection of pre-induced hPBMCs into the right subretina (n = 71). Both eyes were examined by full-field electroretinogram (ERG), immunofluorescence, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) at 1 and 3 months post-injection. Results At both 1 and 3 months post-injection, labeled pre-induced hPBMCs were observed in the retinal inner nuclear layer of the contralateral (left untreated) eye as well as the treated eye as evidenced by immunofluorescence staining for a human antigen. Flow cytometry of fluorescently label cells and qRT-PCR of hPBMCs genes confirmed that transplanted hPBMCs migrated from the treated to the contralateral untreated eye and remained viable for up to 3 months. Further, full-field ERG showed clear light-evoked a and b waves in both treated and untreated eyes at 3 months post-transplantation. Labeled pre-induced hPBMCs were also observed in the contralateral optic nerve but not in the blood circulation, suggesting migration via the optic chiasm. Conclusion It may be possible to treat binocular eye diseases by unilateral stem cell injection. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02180-5.
Collapse
Affiliation(s)
- Jianfa Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Bikun Xian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.,The Second People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Yuting Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.,Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Baozhu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhiquan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yaojue Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Hening Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Minyi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Huan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Peixin Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Bing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
18
|
Functional Nutrients for Epilepsy. Nutrients 2019; 11:nu11061309. [PMID: 31185666 PMCID: PMC6628163 DOI: 10.3390/nu11061309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a common neurological disorder of which seizures are a core symptom. Approximately one third of epileptic patients are resistant to antiepileptic drugs and therefore require alternative therapeutic options. Dietary and nutritional supplements can in some cases replace drugs, but with the exception of ketogenic diets, there are no officially recommended dietary considerations for patients with epilepsy. In this review we summarize a selection of nutritional suggestions that have proved beneficial in treating different types of epilepsy. We describe the types of seizures and epilepsy and follow this with an introduction to basic molecular mechanisms. We then examine several functional nutrients for which there is clinical evidence of therapeutic efficacy in reducing seizures or epilepsy-associated sudden death. We also discuss experimental results that demonstrate possible molecular mechanisms elicited by the administration of various nutrients. The availability of multiple dietary and nutritional candidates that show favorable outcomes in animals implies that assessing the clinical potential of these substances will improve translational medicine, ultimately benefitting epilepsy patients.
Collapse
|
19
|
Oyarzabal A, Marin-Valencia I. Synaptic energy metabolism and neuronal excitability, in sickness and health. J Inherit Metab Dis 2019; 42:220-236. [PMID: 30734319 DOI: 10.1002/jimd.12071] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 01/06/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
Most of the energy produced in the brain is dedicated to supporting synaptic transmission. Glucose is the main fuel, providing energy and carbon skeletons to the cells that execute and support synaptic function: neurons and astrocytes, respectively. It is unclear, however, how glucose is provided to and used by these cells under different levels of synaptic activity. It is even more unclear how diseases that impair glucose uptake and oxidation in the brain alter metabolism in neurons and astrocytes, disrupt synaptic activity, and cause neurological dysfunction, of which seizures are one of the most common clinical manifestations. Poor mechanistic understanding of diseases involving synaptic energy metabolism has prevented the expansion of therapeutic options, which, in most cases, are limited to symptomatic treatments. To shed light on the intersections between metabolism, synaptic transmission, and neuronal excitability, we briefly review current knowledge of compartmentalized metabolism in neurons and astrocytes, the biochemical pathways that fuel synaptic transmission at resting and active states, and the mechanisms by which disorders of brain glucose metabolism disrupt neuronal excitability and synaptic function and cause neurological disease in the form of epilepsy.
Collapse
Affiliation(s)
- Alfonso Oyarzabal
- Synaptic Metabolism Laboratory, Department of Neurology, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Isaac Marin-Valencia
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York
| |
Collapse
|
20
|
Kovac S, Preza E, Houlden H, Walker MC, Abramov AY. Impaired Bioenergetics in Mutant Mitochondrial DNA Determines Cell Fate During Seizure-Like Activity. Mol Neurobiol 2018; 56:321-334. [PMID: 29704197 DOI: 10.1007/s12035-018-1078-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022]
Abstract
Mutations in genes affecting mitochondrial proteins are increasingly recognised in patients with epilepsy, but the factors determining cell fate during seizure activity in these mutations remain unknown. Fluorescent dye imaging techniques were applied to fibroblast cell lines from patients suffering from common mitochondrial mutations and to age-matched controls. Using live cell imaging techniques in fibroblasts, we show that fibroblasts with mutations in the mitochondrial genome had reduced mitochondrial membrane potential and NADH pools and higher redox indices, indicative of respiratory chain dysfunction. Increasing concentrations of ferutinin, a Ca2+ ionophore, led to oscillatory Ca2+ signals in fibroblasts resembling dynamic Ca2+ changes that occur during seizure-like activity. Co-monitoring of mitochondrial membrane potential (ΔΨm) changes induced by ferutinin showed accelerated membrane depolarisation and cell collapse in fibroblasts with mutations in the mitochondrial genome when compared to controls. Ca2+ flash photolysis using caged Ca2+ confirmed impaired Ca2+ handling in fibroblasts with mitochondrial mutations. Findings indicate that intracellular Ca2+ levels cannot be compensated during periods of hyperexcitability, leading to Ca2+ overload and subsequent cell death in mitochondrial diseases.
Collapse
Affiliation(s)
- Stjepana Kovac
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK.
- Department of Neurology, University of Muenster, Muenster, Germany.
| | | | - Henry Houlden
- Department of Molecular Neuroscience, UCL, London, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
21
|
Pearson-Smith JN, Patel M. Metabolic Dysfunction and Oxidative Stress in Epilepsy. Int J Mol Sci 2017; 18:ijms18112365. [PMID: 29117123 PMCID: PMC5713334 DOI: 10.3390/ijms18112365] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/17/2023] Open
Abstract
The epilepsies are a heterogeneous group of disorders characterized by the propensity to experience spontaneous recurrent seizures. Epilepsies can be genetic or acquired, and the underlying mechanisms of seizure initiation, seizure propagation, and comorbid conditions are incompletely understood. Metabolic changes including the production of reactive species are known to result from prolonged seizures and may also contribute to epilepsy development. In this review, we focus on the evidence that metabolic and redox disruption is both cause and consequence of epileptic seizures. Additionally, we discuss the promise of targeting redox processes as a therapeutic option in epilepsy.
Collapse
Affiliation(s)
- Jennifer N Pearson-Smith
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Mitochondrial retrograde signaling connects respiratory capacity to thermogenic gene expression. Sci Rep 2017; 7:2013. [PMID: 28515438 PMCID: PMC5435730 DOI: 10.1038/s41598-017-01879-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/06/2017] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial respiration plays a crucial role in determining the metabolic state of brown adipose tissue (BAT), due to its direct roles in thermogenesis, as well as through additional mechanisms. Here, we show that respiration-dependent retrograde signaling from mitochondria to nucleus contributes to genetic and metabolic reprogramming of BAT. In mouse BAT, ablation of LRPPRC (LRP130), a potent regulator of mitochondrial transcription and respiratory capacity, triggers down-regulation of thermogenic genes, promoting a storage phenotype in BAT. This retrograde regulation functions by inhibiting the recruitment of PPARγ to the regulatory elements of thermogenic genes. Reducing cytosolic Ca2+ reverses the attenuation of thermogenic genes in brown adipocytes with impaired respiratory capacity, while induction of cytosolic Ca2+ is sufficient to attenuate thermogenic gene expression, indicating that cytosolic Ca2+ mediates mitochondria-nucleus crosstalk. Our findings suggest respiratory capacity governs thermogenic gene expression and BAT function via mitochondria-nucleus communication, which in turn leads to either a thermogenic or storage mode.
Collapse
|
23
|
Das PN, Pedruzzi G, Bairagi N, Chatterjee S. Coupling calcium dynamics and mitochondrial bioenergetic: an in silico study to simulate cardiomyocyte dysfunction. MOLECULAR BIOSYSTEMS 2016; 12:806-17. [PMID: 26742687 DOI: 10.1039/c5mb00872g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coupling of intracellular Ca(2+) dynamics with mitochondrial bioenergetic is crucial for the functioning of cardiomyocytes both in healthy and disease conditions. The pathophysiological signature of the Cardiomyocyte Dysfunction (CD) is commonly related to decreased ATP production due to mitochondrial functional impairment and to an increased mitochondrial calcium content ([Ca(2+)]m). These features advanced the therapeutic approaches which aim to reduce [Ca(2+)]m. But whether [Ca(2+)]m overload is the pathological trigger for CD or a physiological consequence, remained controversial. We addressed this issue in silico and showed that [Ca(2+)]m might not directly cause CD. Through model parameter recalibration, we demonstrated how mitochondria cope up with functionally impaired processes and consequently accumulate calcium. A strong coupling of the [Ca(2+)]m oscillations with the ATP synthesis rate ensures robust calcium cycling and avoids CD. We suggested a cardioprotective role of the mitochondrial calcium uniporter and predicted that a mitochondrial sodium calcium exchanger could be a potential therapeutic target to restore the normal functioning of the cardiomyocyte.
Collapse
Affiliation(s)
- Phonindra Nath Das
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Gabriele Pedruzzi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Nandadulal Bairagi
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata-700032, India
| | - Samrat Chatterjee
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, Faridabad-121001, India.
| |
Collapse
|
24
|
McKenzie M, Duchen MR. Impaired Cellular Bioenergetics Causes Mitochondrial Calcium Handling Defects in MT-ND5 Mutant Cybrids. PLoS One 2016; 11:e0154371. [PMID: 27110715 PMCID: PMC4844100 DOI: 10.1371/journal.pone.0154371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/12/2016] [Indexed: 11/18/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) can cause mitochondrial disease, a group of metabolic disorders that affect both children and adults. Interestingly, individual mtDNA mutations can cause very different clinical symptoms, however the factors that determine these phenotypes remain obscure. Defects in mitochondrial oxidative phosphorylation can disrupt cell signaling pathways, which may shape these disease phenotypes. In particular, mitochondria participate closely in cellular calcium signaling, with profound impact on cell function. Here, we examined the effects of a homoplasmic m.13565C>T mutation in MT-ND5 on cellular calcium handling using transmitochondrial cybrids (ND5 mutant cybrids). We found that the oxidation of NADH and mitochondrial membrane potential (Δψm) were significantly reduced in ND5 mutant cybrids. These metabolic defects were associated with a significant decrease in calcium uptake by ND5 mutant mitochondria in response to a calcium transient. Inhibition of glycolysis with 2-deoxy-D-glucose did not affect cytosolic calcium levels in control cybrids, but caused an increase in cytosolic calcium in ND5 mutant cybrids. This suggests that glycolytically-generated ATP is required not only to maintain Δψm in ND5 mutant mitochondria but is also critical for regulating cellular calcium homeostasis. We conclude that the m.13565C>T mutation in MT-ND5 causes defects in both mitochondrial oxidative metabolism and mitochondrial calcium sequestration. This disruption of mitochondrial calcium handling, which leads to defects in cellular calcium homeostasis, may be an important contributor to mitochondrial disease pathogenesis.
Collapse
Affiliation(s)
- Matthew McKenzie
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Melbourne, Victoria 3168, Australia
- The Department of Molecular and Translational Science, Monash University, Clayton, Melbourne, Victoria 3168, Australia
- * E-mail:
| | - Michael R. Duchen
- Department of Physiology, University College London, Gower St, London, UK WC1E6BT
| |
Collapse
|
25
|
Cruz-Bermúdez A, Vicente-Blanco RJ, Hernández-Sierra R, Montero M, Alvarez J, González Manrique M, Blázquez A, Martín MA, Ayuso C, Garesse R, Fernández-Moreno MA. Functional Characterization of Three Concomitant MtDNA LHON Mutations Shows No Synergistic Effect on Mitochondrial Activity. PLoS One 2016; 11:e0146816. [PMID: 26784702 PMCID: PMC4718627 DOI: 10.1371/journal.pone.0146816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
The presence of more than one non-severe pathogenic mutation in the same mitochondrial DNA (mtDNA) molecule is very rare. Moreover, it is unclear whether their co-occurrence results in an additive impact on mitochondrial function relative to single mutation effects. Here we describe the first example of a mtDNA molecule harboring three Leber's hereditary optic neuropathy (LHON)-associated mutations (m.11778G>A, m.14484T>C, m.11253T>C) and the analysis of its genetic, biochemical and molecular characterization in transmitochondrial cells (cybrids). Extensive characterization of cybrid cell lines harboring either the 3 mutations or the single classic m.11778G>A and m.14484T>C mutations revealed no differences in mitochondrial function, demonstrating the absence of a synergistic effect in this model system. These molecular results are in agreement with the ophthalmological characteristics found in the triple mutant patient, which were similar to those carrying single mtDNA LHON mutations.
Collapse
Affiliation(s)
- Alberto Cruz-Bermúdez
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ramiro J. Vicente-Blanco
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rosana Hernández-Sierra
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Mayte Montero
- Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | - Javier Alvarez
- Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
| | | | - Alberto Blázquez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Miguel Angel Martín
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, IIS-Fundacion Jimenez Diaz University Hospital (IIS-FJD, UAM), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rafael Garesse
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail: (RG); (MAF-M)
| | - Miguel A. Fernández-Moreno
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC and Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain, and Centro de Investigacion Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail: (RG); (MAF-M)
| |
Collapse
|
26
|
Reduced mitochondrial Ca(2+) transients stimulate autophagy in human fibroblasts carrying the 13514A>G mutation of the ND5 subunit of NADH dehydrogenase. Cell Death Differ 2015. [PMID: 26206091 DOI: 10.1038/cdd.2015.84] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial disorders are a group of pathologies characterized by impairment of mitochondrial function mainly due to defects of the respiratory chain and consequent organellar energetics. This affects organs and tissues that require an efficient energy supply, such as brain and skeletal muscle. They are caused by mutations in both nuclear- and mitochondrial DNA (mtDNA)-encoded genes and their clinical manifestations show a great heterogeneity in terms of age of onset and severity, suggesting that patient-specific features are key determinants of the pathogenic process. In order to correlate the genetic defect to the clinical phenotype, we used a cell culture model consisting of fibroblasts derived from patients with different mutations in the mtDNA-encoded ND5 complex I subunit and with different severities of the illness. Interestingly, we found that cells from patients with the 13514A>G mutation, who manifested a relatively late onset and slower progression of the disease, display an increased autophagic flux when compared with fibroblasts from other patients or healthy donors. We characterized their mitochondrial phenotype by investigating organelle turnover, morphology, membrane potential and Ca(2+) homeostasis, demonstrating that mitochondrial quality control through mitophagy is upregulated in 13514A>G cells. This is due to a specific downregulation of mitochondrial Ca(2+) uptake that causes the stimulation of the autophagic machinery through the AMPK signaling axis. Genetic and pharmacological manipulation of mitochondrial Ca(2+) homeostasis can revert this phenotype, but concurrently decreases cell viability. This indicates that the higher mitochondrial turnover in complex I deficient cells with this specific mutation is a pro-survival compensatory mechanism that could contribute to the mild clinical phenotype of this patient.
Collapse
|
27
|
Patergnani S, Baldassari F, De Marchi E, Karkucinska-Wieckowska A, Wieckowski MR, Pinton P. Methods to monitor and compare mitochondrial and glycolytic ATP production. Methods Enzymol 2015; 542:313-32. [PMID: 24862273 DOI: 10.1016/b978-0-12-416618-9.00016-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ATP is commonly considered as the main energy unit of the cell and participates in a variety of cellular processes. Thus, intracellular ATP concentrations rapidly vary in response to a wide variety of stimuli, including nutrients, hormones, cytotoxic agents, and hypoxia. Such alterations not necessarily affect cytosolic and mitochondrial ATP to similar extents. From an oncological perspective, this is particularly relevant in the course of tumor progression as well as in the response of cancer cells to therapy. In normal cells, mitochondrial oxidative phosphorylation (OXPHOS) is the predominant source of ATP. Conversely, many cancer cells exhibit an increased flux through glycolysis irrespective of oxygen tension. Assessing the relative contribution of glycolysis and OXPHOS to intracellular ATP production is fundamental not only for obtaining further insights into the peculiarities and complexities of oncometabolism but also for developing therapeutic and diagnostic tools. Several techniques have been developed to measure intracellular ATP levels including enzymatic methods based on hexokinase, glucose-6-phosphate dehydrogenase, and firefly luciferase. Here, we summarize conventional methods for measuring intracellular ATP levels and we provide a detailed protocol based on cytosol- and mitochondrion-targeted variants of firefly luciferase to determine the relative contribution of glycolysis and OXPHOS to ATP synthesis.
Collapse
Affiliation(s)
- Simone Patergnani
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Ferrara, Italy
| | - Federica Baldassari
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Ferrara, Italy
| | - Elena De Marchi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Ferrara, Italy
| | | | - Mariusz R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Ferrara, Italy.
| |
Collapse
|
28
|
Paupe V, Prudent J, Dassa EP, Rendon OZ, Shoubridge EA. CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. Cell Metab 2015; 21:109-16. [PMID: 25565209 DOI: 10.1016/j.cmet.2014.12.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/30/2014] [Accepted: 12/11/2014] [Indexed: 01/08/2023]
Abstract
Mitochondrial calcium is an important modulator of cellular metabolism. CCDC90A was reported to be a regulator of the mitochondrial calcium uniporter (MCU) complex, a selective channel that controls mitochondrial calcium uptake, and hence was renamed MCUR1. Here we show that suppression of CCDC90A in human fibroblasts produces a specific cytochrome c oxidase (COX) assembly defect, resulting in decreased mitochondrial membrane potential and reduced mitochondrial calcium uptake capacity. Fibroblasts from patients with COX assembly defects due to mutations in TACO1 or COX10 also showed reduced mitochondrial membrane potential and impaired calcium uptake capacity, both of which were rescued by expression of the respective wild-type cDNAs. Deletion of fmp32, a homolog of CCDC90A in Saccharomyces cerevisiae, an organism that lacks an MCU, also produces a COX deficiency, demonstrating that the function of CCDC90A is evolutionarily conserved. We conclude that CCDC90A plays a role in COX assembly and does not directly regulate MCU.
Collapse
Affiliation(s)
- Vincent Paupe
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada
| | - Julien Prudent
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada; Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC H3A 2B4, Canada
| | - Emmanuel P Dassa
- University of Paris-Sud, CNRS, UMR 8621, Institute of Genetics and Microbiology, Orsay, France
| | - Olga Zurita Rendon
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada
| | - Eric A Shoubridge
- Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
29
|
Chen Z, Qi Y, French S, Zhang G, Covian Garcia R, Balaban R, Xu H. Genetic mosaic analysis of a deleterious mitochondrial DNA mutation in Drosophila reveals novel aspects of mitochondrial regulation and function. Mol Biol Cell 2014; 26:674-84. [PMID: 25501370 PMCID: PMC4325838 DOI: 10.1091/mbc.e14-11-1513] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A lethal mtDNA mutation affecting COX is fully rescued by AOX. The mutant genome level remains constant in the somatic tissues along the aging process in heteroplasmic flies. A genetic scheme creates tissue-specific heteroplasmy in otherwise heteroplasmic background and reveals that Ca2+ mishandling contributes to the neurodegeneration. Various human diseases are associated with mitochondrial DNA (mtDNA) mutations, but heteroplasmy—the coexistence of mutant and wild-type mtDNA—complicates their study. We previously isolated a temperature-lethal mtDNA mutation in Drosophila, mt:CoIT300I, which affects the cytochrome c oxidase subunit I (CoI) locus. In the present study, we found that the decrease in cytochrome c oxidase (COX) activity was ascribable to a temperature-dependent destabilization of cytochrome a heme. Consistently, the viability of homoplasmic flies at 29°C was fully restored by expressing an alternative oxidase, which specifically bypasses the cytochrome chains. Heteroplasmic flies are fully viable and were used to explore the age-related and tissue-specific phenotypes of mt:CoIT300I. The proportion of mt:CoIT300I genome remained constant in somatic tissues along the aging process, suggesting a lack of quality control mechanism to remove defective mitochondria containing a deleterious mtDNA mutation. Using a genetic scheme that expresses a mitochondrially targeted restriction enzyme to induce tissue-specific homoplasmy in heteroplasmic flies, we found that mt:CoIT300I homoplasmy in the eye caused severe neurodegeneration at 29°C. Degeneration was suppressed by improving mitochondrial Ca2+ uptake, suggesting that Ca2+ mishandling contributed to mt:CoIT300I pathogenesis. Our results demonstrate a novel approach for Drosophila mtDNA genetics and its application in modeling mtDNA diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Laboratory of Molecular Genetics, National Institutes of Health, Bethesda, MD 20892
| | - Yun Qi
- Laboratory of Molecular Genetics, National Institutes of Health, Bethesda, MD 20892
| | - Stephanie French
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Guofeng Zhang
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Raúl Covian Garcia
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Robert Balaban
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892
| | - Hong Xu
- Laboratory of Molecular Genetics, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
30
|
Scarpelli M, Todeschini A, Rinaldi F, Rota S, Padovani A, Filosto M. Strategies for treating mitochondrial disorders: an update. Mol Genet Metab 2014; 113:253-60. [PMID: 25458518 DOI: 10.1016/j.ymgme.2014.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are a heterogeneous group of disorders resulting from primary dysfunction of the respiratory chain due to both nuclear and mitochondrial DNA mutations. The wide heterogeneity of biochemical dysfunctions and pathogenic mechanisms typical of this group of diseases has hindered therapy trials; therefore, available treatment options remain limited. Therapeutic strategies aimed at increasing mitochondrial functions (by enhancing biogenesis and electron transport chain function), improving the removal of reactive oxygen species and noxious metabolites, modulating aberrant calcium homeostasis and repopulating mitochondrial DNA could potentially restore the respiratory chain dysfunction. The challenge that lies ahead is the translation of some promising laboratory results into safe and effective therapies for patients. In this review we briefly update and discuss the most feasible therapeutic approaches for mitochondrial diseases.
Collapse
Affiliation(s)
- Mauro Scarpelli
- Section of Neurology, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Alice Todeschini
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Fabrizio Rinaldi
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Silvia Rota
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Alessandro Padovani
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy
| | - Massimiliano Filosto
- Clinical Neurology, Section for Neuromuscular Diseases and Neuropathies, University Hospital "Spedali Civili", Brescia, Italy.
| |
Collapse
|
31
|
Murgia M, Rizzuto R. Molecular diversity and pleiotropic role of the mitochondrial calcium uniporter. Cell Calcium 2014; 58:11-7. [PMID: 26048007 DOI: 10.1016/j.ceca.2014.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 11/28/2022]
Abstract
The long awaited molecular identification of the mitochondrial calcium uniporter (MCU) in 2011 has opened an exciting phase in the study of mitochondrial calcium homeostasis. On the one hand, MCU proved to be the core of a complex signaling system, composed of a channel moiety (MCU itself and the related MCUb protein) and a family of essential regulators (the MICUs, MCUR, EMRE). On the other hand, the availability of molecular information and tools opened the possibility of directly altering mitochondrial calcium homeostasis in cell cultures or intact organisms, thus obtaining new insight into its role in physiological and pathological events. We will review here these exciting advancements, summarizing the current knowledge of the molecular composition of the MCU complex and of its role in shaping mitochondrial and cytosolic [Ca(2+)] signals.
Collapse
Affiliation(s)
- Marta Murgia
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padua, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences and CNR Neuroscience Institute, University of Padua, Padua, Italy.
| |
Collapse
|
32
|
Approaches to imaging unfolded secretory protein stress in living cells. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2014; 1:27-39. [PMID: 25419521 DOI: 10.2478/ersc-2014-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The endoplasmic reticulum (ER) is the point of entry of proteins into the secretory pathway. Nascent peptides interact with the ER quality control machinery that ensures correct folding of the nascent proteins. Failure to properly fold proteins can lead to loss of protein function and cytotoxic aggregation of misfolded proteins that can lead to cell death. To cope with increases in the ER unfolded secretory protein burden, cells have evolved the Unfolded Protein Response (UPR). The UPR is the primary signaling pathway that monitors the state of the ER folding environment. When the unfolded protein burden overwhelms the capacity of the ER quality control machinery, a state termed ER stress, sensor proteins detect accumulation of misfolded peptides and trigger the UPR transcriptional response. The UPR, which is conserved from yeast to mammals, consists of an ensemble of complex signaling pathways that aims at adapting the ER to the new misfolded protein load. To determine how different factors impact the ER folding environment, various tools and assays have been developed. In this review, we discuss recent advances in live cell imaging reporters and model systems that enable researchers to monitor changes in the unfolded secretory protein burden and activation of the UPR and its associated signaling pathways.
Collapse
|
33
|
Abstract
Stemming from the pioneering studies of bioenergetics in the 1950s, 1960s, and 1970s, mitochondria have become ingrained in the collective psyche of scientists as the "powerhouses" of the cell. While this remains a worthy moniker, more recent efforts have revealed that these organelles are home to a vast array of metabolic and signaling processes and possess a proteomic landscape that is both highly varied and largely uncharted. As mitochondrial dysfunction is increasingly being implicated in a spectrum of human diseases, it is imperative that we construct a more complete framework of these organelles by systematically defining the functions of their component parts. Powerful new approaches in biochemistry and systems biology are helping to fill in the gaps.
Collapse
Affiliation(s)
- David J. Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
34
|
Wu SB, Wu YT, Wu TP, Wei YH. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim Biophys Acta Gen Subj 2013; 1840:1331-44. [PMID: 24513455 DOI: 10.1016/j.bbagen.2013.10.034] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/06/2013] [Accepted: 10/22/2013] [Indexed: 02/09/2023]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) mutations are an important cause of mitochondrial diseases, for which there is no effective treatment due to complex pathophysiology. It has been suggested that mitochondrial dysfunction-elicited reactive oxygen species (ROS) plays a vital role in the pathogenesis of mitochondrial diseases, and the expression levels of several clusters of genes are altered in response to the elevated oxidative stress. Recently, we reported that glycolysis in affected cells with mitochondrial dysfunction is upregulated by AMP-activated protein kinase (AMPK), and such an adaptive response of metabolic reprogramming plays an important role in the pathophysiology of mitochondrial diseases. SCOPE OF REVIEW We summarize recent findings regarding the role of AMPK-mediated signaling pathways that are involved in: (1) metabolic reprogramming, (2) alteration of cellular redox status and antioxidant enzyme expression, (3) mitochondrial biogenesis, and (4) autophagy, a master regulator of mitochondrial quality control in skin fibroblasts from patients with mitochondrial diseases. MAJOR CONCLUSION Induction of adaptive responses via AMPK-PFK2, AMPK-FOXO3a, AMPK-PGC-1α, and AMPK-mTOR signaling pathways, respectively is modulated for the survival of human cells under oxidative stress induced by mitochondrial dysfunction. We suggest that AMPK may be a potential target for the development of therapeutic agents for the treatment of mitochondrial diseases. GENERAL SIGNIFICANCE Elucidation of the adaptive mechanism involved in AMPK activation cascades would lead us to gain a deeper insight into the crosstalk between mitochondria and the nucleus in affected tissue cells from patients with mitochondrial diseases. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Shi-Bei Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Ting Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Tsung-Pu Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yau-Huei Wei
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan.
| |
Collapse
|
35
|
Patron M, Raffaello A, Granatiero V, Tosatto A, Merli G, De Stefani D, Wright L, Pallafacchina G, Terrin A, Mammucari C, Rizzuto R. The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J Biol Chem 2013; 288:10750-8. [PMID: 23400777 DOI: 10.1074/jbc.r112.420752] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The direct measurement of mitochondrial [Ca(2+)] with highly specific probes demonstrated that major swings in organellar [Ca(2+)] parallel the changes occurring in the cytosol and regulate processes as diverse as aerobic metabolism and cell death by necrosis and apoptosis. Despite great biological relevance, insight was limited by the complete lack of molecular understanding. The situation has changed, and new perspectives have emerged following the very recent identification of the mitochondrial Ca(2+) uniporter, the channel allowing rapid Ca(2+) accumulation across the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Maria Patron
- Department of Biomedical Sciences, University of Padua and the Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 35131 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Acute creatine administration improves mitochondrial membrane potential and protects against pentylenetetrazol-induced seizures. Amino Acids 2012; 44:857-68. [DOI: 10.1007/s00726-012-1408-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 09/24/2012] [Indexed: 11/26/2022]
|
38
|
Abstract
During the past two decades calcium (Ca(2+)) accumulation in energized mitochondria has emerged as a biological process of utmost physiological relevance. Mitochondrial Ca(2+) uptake was shown to control intracellular Ca(2+) signalling, cell metabolism, cell survival and other cell-type specific functions by buffering cytosolic Ca(2+) levels and regulating mitochondrial effectors. Recently, the identity of mitochondrial Ca(2+) transporters has been revealed, opening new perspectives for investigation and molecular intervention.
Collapse
|
39
|
Pizzo P, Drago I, Filadi R, Pozzan T. Mitochondrial Ca²⁺ homeostasis: mechanism, role, and tissue specificities. Pflugers Arch 2012; 464:3-17. [PMID: 22706634 DOI: 10.1007/s00424-012-1122-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 05/29/2012] [Indexed: 12/18/2022]
Abstract
Mitochondria from every tissue are quite similar in their capability to accumulate Ca²⁺ in a process that depends on the electrical potential across the inner membrane; it is catalyzed by a gated channel (named mitochondrial Ca²⁺ uniporter), the molecular identity of which has only recently been unraveled. The release of accumulated Ca²⁺ in mitochondria from different tissues is, on the contrary, quite variable, both in terms of speed and mechanism: a Na⁺-dependent efflux in excitable cells (catalyzed by NCLX) and a H⁺/Ca²⁺ exchanger in other cells. The efficacy of mitochondrial Ca²⁺ uptake in living cells is strictly dependent on the topological arrangement of the organelles with respect to the source of Ca²⁺ flowing into the cytoplasm, i.e., plasma membrane or intracellular channels. In turn, the structural and functional relationships between mitochondria and other cellular membranes are dictated by the specific architecture of different cells. Mitochondria not only modulate the amplitude and the kinetics of local and bulk cytoplasmic Ca²⁺ changes but also depend on the Ca²⁺ signal for their own functionality, in particular for their capacity to produce ATP. In this review, we summarize the processes involved in mitochondrial Ca²⁺ handling and its integration in cell physiology, highlighting the main common characteristics as well as key differences, in different tissues.
Collapse
Affiliation(s)
- Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | | | | |
Collapse
|
40
|
Casarin A, Giorgi G, Pertegato V, Siviero R, Cerqua C, Doimo M, Basso G, Sacconi S, Cassina M, Rizzuto R, Brosel S, M Davidson M, Dimauro S, Schon EA, Clementi M, Trevisson E, Salviati L. Copper and bezafibrate cooperate to rescue cytochrome c oxidase deficiency in cells of patients with SCO2 mutations. Orphanet J Rare Dis 2012; 7:21. [PMID: 22515166 PMCID: PMC3445839 DOI: 10.1186/1750-1172-7-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in SCO2 cause cytochrome c oxidase deficiency (COX) and a fatal infantile cardioencephalomyopathy. SCO2 encodes a protein involved in COX copper metabolism; supplementation with copper salts rescues the defect in patients' cells. Bezafibrate (BZF), an approved hypolipidemic agent, ameliorates the COX deficiency in mice with mutations in COX10, another COX-assembly gene. METHODS We have investigated the effect of BZF and copper in cells with SCO2 mutations using spectrophotometric methods to analyse respiratory chain activities and a luciferase assay to measure ATP production.. RESULTS Individual mitochondrial enzymes displayed different responses to BZF. COX activity increased by about 40% above basal levels (both in controls and patients), with SCO2 cells reaching 75-80% COX activity compared to untreated controls. The increase in COX was paralleled by an increase in ATP production. The effect was dose-dependent: it was negligible with 100 μM BZF, and peaked at 400 μM BZF. Higher BZF concentrations were associated with a relative decline of COX activity, indicating that the therapeutic range of this drug is very narrow. Combined treatment with 100 μM CuCl2 and 200 μM BZF (which are only marginally effective when administered individually) achieved complete rescue of COX activity in SCO2 cells. CONCLUSIONS These data are crucial to design therapeutic trials for this otherwise fatal disorder. The additive effect of copper and BZF will allow to employ lower doses of each drug and to reduce their potential toxic effects. The exact mechanism of action of BZF remains to be determined.
Collapse
Affiliation(s)
- Alberto Casarin
- Clinical Genetics Unit, Dept of Pediatrics, University of Padova, Via Giustiniani 3, Padova 35128, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Szczepanowska J, Malinska D, Wieckowski MR, Duszynski J. Effect of mtDNA point mutations on cellular bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1740-6. [PMID: 22406627 DOI: 10.1016/j.bbabio.2012.02.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
This overview discusses the results of research on the effects of most frequent mtDNA point mutations on cellular bioenergetics. Thirteen proteins coded by mtDNA are crucial for oxidative phosphorylation, 11 of them constitute key components of the respiratory chain complexes I, III and IV and 2 of mitochondrial ATP synthase. Moreover, pathogenic point mutations in mitochondrial tRNAs and rRNAs generate abnormal synthesis of the mtDNA coded proteins. Thus, pathogenic point mutations in mtDNA usually disturb the level of key parameter of the oxidative phosphorylation, i.e. the electric potential on the inner mitochondrial membrane (Δψ), and in a consequence calcium signalling and mitochondrial dynamics in the cell. Mitochondrial generation of reactive oxygen species is also modified in the mutated cells. The results obtained with cultured cells and describing biochemical consequences of mtDNA point mutations are full of contradictions. Still they help elucidate the biochemical basis of pathologies and provide a valuable tool for finding remedies in the future. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Joanna Szczepanowska
- Department of Biochemsitry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
42
|
Calì T, Ottolini D, Brini M. Mitochondrial Ca(2+) as a key regulator of mitochondrial activities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:53-73. [PMID: 22399418 DOI: 10.1007/978-94-007-2869-1_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mitochondria play a central role in cell biology, not only as producers of ATP but also as regulators of the Ca(2+) signal. The translocation by respiratory chain protein complexes of H(+) across the ion-impermeable inner membrane generates a very large H(+) electrochemical gradient that can be employed not only by the H(+) ATPase to run the endoergonic reaction of ADP phosphorylation, but also to accumulate cations into the matrix. Mitochondria can rapidly take up Ca(2+) through an electrogenic pathway, the uniporter, that acts to equilibrate Ca(2+) with its electrochemical gradient, and thus accumulates the cation into the matrix, and they can release it through two exchangers (with H(+) and Na(+), mostly expressed in non-excitable and excitable cells, respectively), that utilize the electrochemical gradient of the monovalent cations to prevent the attainment of electrical equilibrium.The uniporter, due to its low Ca(2+) affinity, demands high local Ca(2+) concentrations to work. In different cell systems these high Ca(2+) concentration microdomains are generated, upon cell stimulation, in proximity of the plasma membrane and the sarco/endoplasmic reticulum Ca(2+) channels.Recent work has revealed the central role of mitochondria in signal transduction pathways: evidence is accumulating that, by taking up Ca(2+), they not only modulate mitochondrial activities but also tune the cytosolic Ca(2+) signals and their related functions. This review analyses recent developments in the area of mitochondrial Ca(2+) signalling and attempts to summarize cell physiology aspects of the mitochondrial Ca(2+) transport machinery.
Collapse
Affiliation(s)
- Tito Calì
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | | | | |
Collapse
|
43
|
Prasad C, Rupar T, Prasad AN. Pyruvate dehydrogenase deficiency and epilepsy. Brain Dev 2011; 33:856-65. [PMID: 21908116 DOI: 10.1016/j.braindev.2011.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
The pyruvate dehydrogenase complex (PDHc) is a mitochondrial matrix multienzyme complex that provides the link between glycolysis and the tricarboxylic acid (TCA) cycle by catalyzing the conversion of pyruvate into acetyl-CoA. PDHc deficiency is one of the commoner metabolic disorders of lactic acidosis presenting with neurological phenotypes that vary with age and gender. In this mini-review, we postulate mechanisms of epilepsy in the setting of PDHc deficiency using two illustrative cases (one with pyruvate dehydrogenase complex E1-alpha polypeptide (PDHA1) deficiency and the second one with pyruvate dehydrogenase complex E1-beta subunit (PDHB) deficiency (a rare subtype of PDHc deficiency)) and a selected review of published case series. PDHc plays a critical role in the pathway of carbohydrate metabolism and energy production. In severe deficiency states the resulting energy deficit impacts on brain development in utero resulting in structural brain anomalies and epilepsy. Milder deficiency states present with variable manifestations that include cognitive delay, ataxia, and seizures. Epileptogenesis in PDHc deficiency is linked to energy failure, development of structural brain anomalies and abnormal neurotransmitter metabolism. The use of the ketogenic diet bypasses the metabolic block, by providing a direct source of acetyl-CoA, leading to amelioration of some symptoms. Genetic counseling is essential as PDHA1 deficiency (commonest defect) is X-linked although females can be affected due to unfavorable lyonization, while PDHB and PDH phosphatase (PDP) deficiencies (much rarer defects) are of autosomal recessive inheritance. Research is in progress for looking into animal models to better understand pathogenesis and management of this challenging disorder.
Collapse
Affiliation(s)
- Chitra Prasad
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
44
|
Rommelaere G, Michel S, Malaisse J, Charlier S, Arnould T, Renard P. Hypersensitivity of A8344G MERRF mutated cybrid cells to staurosporine-induced cell death is mediated by calcium-dependent activation of calpains. Int J Biochem Cell Biol 2011; 44:139-49. [PMID: 22037425 DOI: 10.1016/j.biocel.2011.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/13/2011] [Accepted: 10/16/2011] [Indexed: 11/18/2022]
Abstract
Mutations in the mitochondrial DNA can lead to the development of mitochondrial diseases such as Myoclonic Epilepsy with Ragged Red Fibers (MERRF) or Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS). We first show that human 143B-derived cybrid cells harboring either the A8344G (MERRF) or the A3243G (MELAS) mutation, are more prone to undergo apoptosis then their wild-type counterpart, when challenged with various apoptotic inducers such as staurosporine, etoposide and TRAIL. In addition, investigating the mechanisms underlying A8344G cybrid cells hypersensitivity to staurosporine-induced cell death, we found that staurosporine treatment activates caspases independently of cytochrome c release in both wild-type and mutated cells. Caspases are activated, at least partly, through the activation of calcium-dependent calpain proteases, a pathway that is more strongly activated in mutated cybrid cells than in wild-type cells exposed to staurosporine. These results suggest that calcium homeostasis perturbation induced by mitochondrial dysfunction could predispose cells to apoptosis, a process that could take part into the progressive cell degeneration observed in MERRF syndrome, and more generally in mitochondrial diseases.
Collapse
Affiliation(s)
- Guillaume Rommelaere
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (NAmur Research Institute for Life Sciences), University of Namur (FUNDP), Namur, Belgium
| | | | | | | | | | | |
Collapse
|
45
|
Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Suski JM, Wieckowski MR, Pinton P. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 2011; 12:77-85. [PMID: 21798374 PMCID: PMC3281195 DOI: 10.1016/j.mito.2011.07.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 06/10/2011] [Accepted: 07/11/2011] [Indexed: 11/28/2022]
Abstract
Mitochondria are crucial in different intracellular pathways of signal transduction. Mitochondria are capable of decoding a variety of extracellular stimuli into markedly different intracellular actions, ranging from energy production to cell death. The fine modulation of mitochondrial calcium (Ca2+) homeostasis plays a fundamental role in many of the processes involving this organelle. When mitochondrial Ca2+ homeostasis is compromised, different pathological conditions can occur, depending on the cell type involved. Recent data have shed light on the molecular identity of the main proteins involved in the handling of mitochondrial Ca2+ traffic, opening fascinating and ambitious new avenues for mitochondria-based pharmacological strategies.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Angela Bononi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elena De Marchi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sonia Missiroli
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Federica Poletti
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Jan M. Suski
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Paolo Pinton
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Corresponding author at: Department of Experimental and Diagnostic Medicine, Section of General Pathology, Via Borsari, 46 44100 Ferrara, Italy.
| |
Collapse
|
46
|
Roestenberg P, Manjeri GR, Valsecchi F, Smeitink JAM, Willems PHGM, Koopman WJH. Pharmacological targeting of mitochondrial complex I deficiency: the cellular level and beyond. Mitochondrion 2011; 12:57-65. [PMID: 21757032 DOI: 10.1016/j.mito.2011.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/20/2011] [Accepted: 06/25/2011] [Indexed: 12/20/2022]
Abstract
Complex I (CI) represents a major entry point of electrons in the mitochondrial electron transport chain (ETC). It consists of 45 different subunits, encoded by the mitochondrial (mtDNA) and nuclear DNA (nDNA). In humans, mutations in nDNA-encoded subunits cause severe neurodegenerative disorders like Leigh Syndrome with onset in early childhood. The pathophysiological mechanism of these disorders is still poorly understood. Here we summarize the current knowledge concerning the consequences of nDNA-encoded CI mutations in patient-derived cells, present mouse models for human CI deficiency, and discuss potential treatment strategies for CI deficiency.
Collapse
Affiliation(s)
- Peggy Roestenberg
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
47
|
Effect of selenite on basic mitochondrial function in human osteosarcoma cells with chronic mitochondrial stress. Mitochondrion 2011; 12:149-55. [PMID: 21742063 DOI: 10.1016/j.mito.2011.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/20/2011] [Accepted: 06/24/2011] [Indexed: 11/22/2022]
Abstract
Mitochondrial chronic stress that originates from defective mitochondria is implicated in a growing list of human diseases. To enhance understanding of pathophysiology of chronic mitochondrial dysfunction we investigated human osteosarcoma cells with 2 types of chronic stress: corresponding to the mutation in ATP synthase subunit 6 encoded by mtDNA (NARP syndrome-mild stress) and to a total lack of mtDNA (Rho0 cells-heavy stress). We previously found that selenium influenced mitochondrial stress response and lowered ROS production. Therefore, in this study effect of selenite on other mitochondrial parameters was investigated. We showed that presence of selenium improved survival of starved cells, modified organization of mitochondrial network in NARP cybrids and decreased cytosolic calcium level in NARP and Rho0 cells. Selenium did not affect mitochondrial membrane potential, ATP level, activity of ATP synthase and activity of complex II of the respiratory chain.
Collapse
|
48
|
Liu S, Lee YF, Chou S, Uno H, Li G, Brookes P, Massett MP, Wu Q, Chen LM, Chang C. Mice lacking TR4 nuclear receptor develop mitochondrial myopathy with deficiency in complex I. Mol Endocrinol 2011; 25:1301-10. [PMID: 21622535 DOI: 10.1210/me.2010-0455] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The estimated incidence of mitochondrial diseases in humans is approximately 1:5000 to 1:10,000, whereas the molecular mechanisms for more than 50% of human mitochondrial disease cases still remain unclear. Here we report that mice lacking testicular nuclear receptor 4 (TR4(-/-)) suffered mitochondrial myopathy, and histological examination of TR4(-/-) soleus muscle revealed abnormal mitochondrial accumulation. In addition, increased serum lactate levels, decreased mitochondrial ATP production, and decreased electron transport chain complex I activity were found in TR4(-/-) mice. Restoration of TR4 into TR4(-/-) myoblasts rescued mitochondrial ATP generation capacity and complex I activity. Further real-time PCR quantification and promoter studies found TR4 could modulate complex I activity via transcriptionally regulating the complex I assembly factor NDUFAF1, and restoration of NDUFAF1 level in TR4(-/-) myoblasts increased mitochondrial ATP generation capacity and complex I activity. Together, these results suggest that TR4 plays vital roles in mitochondrial function, which may help us to better understand the pathogenesis of mitochondrial myopathy, and targeting TR4 via its ligands/activators may allow us to develop better therapeutic approaches.
Collapse
Affiliation(s)
- Su Liu
- Department of Pathology, University of Rochester, Medical Center, Rochester, New York 14646, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mammucari C, Patron M, Granatiero V, Rizzuto R. Molecules and roles of mitochondrial calcium signaling. Biofactors 2011; 37:219-27. [PMID: 21674643 DOI: 10.1002/biof.160] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 01/06/2023]
Abstract
Mitochondrial Ca(2+) homeostasis is an important component of the calcium-mediated cellular response to extracellular stimuli. It controls key organelle functions, such as aerobic metabolism and the induction of apoptotic cell death, and shapes the spatiotemporal pattern of the cytosolic [Ca(2+)] increase. We here summarize both the main roles of Ca(2+) signals within mitochondria and the emerging molecular information that is starting to unravel the composition of the signaling apparatus and reveal potential pharmacological targets in this process of utmost pathophysiological relevance.
Collapse
Affiliation(s)
- Cristina Mammucari
- Department of Biomedical Sciences, University of Padova, Neuroscience Institute of the National Research Council, Italy
| | | | | | | |
Collapse
|
50
|
Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:730-43. [PMID: 20691744 DOI: 10.1016/j.pnpbp.2010.07.030] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 07/02/2010] [Accepted: 07/28/2010] [Indexed: 12/22/2022]
Abstract
For many years, a deficiency of monoamines including serotonin has been the prevailing hypothesis on depression, yet research has failed to confirm consistent relations between brain serotonin and depression. High degrees of overlapping comorbidities and common drug efficacies suggest that depression is one of a family of related conditions sometimes referred to as the "affective spectrum disorders", and variably including migraine, irritable bowel syndrome, chronic fatigue syndrome, fibromyalgia and generalized anxiety disorder, among many others. Herein, we present data from many different experimental modalities that strongly suggest components of mitochondrial dysfunction and inflammation in the pathogenesis of depression and other affective spectrum disorders. The three concepts of monoamines, energy metabolism and inflammatory pathways are inter-related in many complex manners. For example, the major categories of drugs used to treat depression have been demonstrated to exert effects on mitochondria and inflammation, as well as on monoamines. Furthermore, commonly-used mitochondrial-targeted treatments exert effects on mitochondria and inflammation, and are increasingly being shown to demonstrate efficacy in the affective spectrum disorders. We propose that interactions among monoamines, mitochondrial dysfunction and inflammation can inspire explanatory, rather than mere descriptive, models of these disorders.
Collapse
|