1
|
Javid H, Oryani MA, Rezagholinejad N, Hashemzadeh A, Karimi-Shahri M. Unlocking the potential of RGD-conjugated gold nanoparticles: a new frontier in targeted cancer therapy, imaging, and metastasis inhibition. J Mater Chem B 2024; 12:10786-10817. [PMID: 39351647 DOI: 10.1039/d4tb00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In the rapidly evolving field of cancer therapeutics, the potential of gold nanoparticles (AuNPs) conjugated with RGD peptides has emerged as a promising avenue for targeted therapy and imaging. Despite numerous studies demonstrating the effectiveness of RGD-conjugated AuNPs in specifically targeting tumor cells and enhancing radiation therapy (RT), a comprehensive review of these advancements is currently lacking. This review aims to fill this critical gap in the literature. Our analysis reveals that RGD-conjugated AuNPs have shown significant promise in improving the diagnosis and treatment of various types of cancer, including breast cancer. However, the full potential of this technology is yet to be realized. The development of multifunctional nanoplatforms incorporating AuNPs has opened new horizons for targeted therapy, dual-mode imaging, and inhibition of tumor growth and metastasis. This review is of paramount importance as it provides a comprehensive overview of the current state of research in this area, and highlights the areas where further research is needed. It is hoped that this review will inspire further investigations into this promising nanotechnology, ultimately leading to improved cancer diagnosis and therapy. Therefore, the findings presented in this review underscore the potential of AuNPs conjugated with RGD peptides as a revolutionary approach in cancer therapeutics. It is our fervent hope that this review will serve as a catalyst for further research in this exciting field.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
2
|
Zhu Y, Zhang H, Shao R, Wu X, Ding Y, Li Y, Wang W, Li B, Lu P, Ma Z. Comprehensive pan-cancer analysis of KLRB1-CLEC2D pair and identification of small molecule inhibitors to disrupt their interaction. Int Immunopharmacol 2024; 140:112908. [PMID: 39133960 DOI: 10.1016/j.intimp.2024.112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
The interplay between immune checkpoints KLRB1 and CLEC2D is crucial for tumor progression and immune evasion, yet the interaction dynamics are not fully understood. This study aims to elucidate the interaction across various cancers and identify small molecule inhibitors that can disrupt it. We perform a comprehensive pan-cancer analysis of the KLRB1-CLEC2D pair, including mRNA expression patterns, pathological stages, survival outcomes, and single-cell omics, immune infiltration, copy number variations, and DNA methylation profiles. Our findings reveal a consistently higher CLEC2D/KLRB1 ratio in most cancer types compared to normal tissues, and this ratio also increased with advancing pathological stages. Lower KLRB1 expression correlated with higher mortality in most cancers, opposite to CLEC2D. Expression variations were attributed to differential lymphocyte infiltration, CNV, and DNA methylation. Structure-based virtual screening analysis identified compounds including forsythiaside A and RGD peptides as effective inhibitors of the KLRB1-CLEC2D interaction, validated through microscale thermophoresis. This research advances understanding of the KLRB1-CLEC2D interaction within the tumor microenvironment and introduces novel therapeutic strategies to modulate this interaction.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Huajie Zhang
- Department of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ruoyang Shao
- Department of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xintong Wu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yike Ding
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yanzi Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Weiwei Wang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Bingqing Li
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Peiyuan Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| | - Zhongrui Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
3
|
Siow A, Kowalczyk R, Hong J, Harris PWR. Chemical Modifications on the αvβ6 Integrin Targeting A20FMDV2 Peptide: A Review. ChemMedChem 2024; 19:e202400131. [PMID: 38830829 DOI: 10.1002/cmdc.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Integrin proteins have received a significant increase in attention in recent scientific endeavors. The current trend uses the pre-established knowledge that the arginyl-glycyl-aspartic acid (RGD) structural motif present in the A20FMDV2 peptide is highly selective for the integrin class αvβ6 which is overexpressed in many cancer types. This review will provide an extensive overview of the existing literature research to date to the best of our knowledge, highlighting significant improvements and drawbacks of structure-activity relationships (SAR) work undertaken, aiding future research to identify established SAR for an informed design of future A20FMDV2 mimetic inhibitors. Herein, the review aims to collate the existing structural chemical modifications present on A20FMDV2 in the literature to highlight key structural analogues that display more potent biological activity.
Collapse
Affiliation(s)
- Andrew Siow
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Renata Kowalczyk
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Jiwon Hong
- School of Biological Sciences and Surgical and Translational Research Centre, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, School of Biological Sciences and The Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, 23 and 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
4
|
Huang Y, Wang J, Xu Y, Zhang J, Xia N. Signal-On Detection of Caspase-3 with Methylene Blue-Loaded Metal-Organic Frameworks as Signal Reporters. Molecules 2024; 29:3700. [PMID: 39125104 PMCID: PMC11314406 DOI: 10.3390/molecules29153700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we report on an electrochemical method for the signal-on detection of caspase-3 and the evaluation of apoptosis based on the biotinylation reaction and the signal amplification of methylene blue (MB)-loaded metal-organic frameworks (MOFs). Zr-based UiO-66-NH2 MOFs were used as the nanocarriers to load electroactive MB molecules. Recombinant hexahistidine (His6)-tagged streptavidin (rSA) was attached to the MOFs through the coordination interaction between the His6 tag in rSA and the metal ions on the surface of the MOFs. The acetylated peptide substrate Ac-GDEVDGGGPPPPC was immobilized on the gold electrode. In the presence of caspase-3, the peptide was specifically cleaved, leading to the release of the Ac-GDEVD sequence. A N-terminal amine group was generated and then biotinylated in the presence of biotin-NHS. Based on the strong interaction between rSA and biotin, rSA@MOF@MB was captured by the biotinylated peptide-modified electrode, producing a significantly amplified electrochemical signal. Caspase-3 was sensitively determined with a linear range from 0.1 to 25 pg/mL and a limit of detection down to 0.04 pg/mL. Further, the active caspase-3 in apoptosis inducer-treated HeLa cells was further quantified by this method. The proposed signal-on biosensor is compatible with the complex biological samples and shows great potential for apoptosis-related diagnosis and the screening of caspase-targeting drugs.
Collapse
Affiliation(s)
- Yaliang Huang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China (J.Z.)
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiaqiang Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China (J.Z.)
| | - Yirui Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jiwen Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China (J.Z.)
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China (J.Z.)
| |
Collapse
|
5
|
Huang H, Tang Q, Li S, Qin Y, Zhu G. TGFBI: A novel therapeutic target for cancer. Int Immunopharmacol 2024; 134:112180. [PMID: 38733822 DOI: 10.1016/j.intimp.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
TGFBI, an extracellular matrix protein induced by transforming growth factor β, has been found to exhibit aberrant expression in various types of cancer. TGFBI plays a crucial role in tumor cell proliferation, angiogenesis, and apoptosis. It also facilitates invasion and metastasis in various types of cancer, including colon, head and neck squamous, renal, and prostate cancers. TGFBI, a prominent p-EMT marker, strongly correlates with lymph node metastasis. TGFBI demonstrates immunosuppressive effects within the tumor immune microenvironment. Targeted therapy directed at TGFBI shows promise as a potential strategy to combat cancer. Hence, a comprehensive review was conducted to examine the impact of TGFBI on various aspects of tumor biology, including cell proliferation, angiogenesis, invasion, metastasis, apoptosis, and the immune microenvironment. This review also delved into the underlying biochemical mechanisms to enhance our understanding of the research advancements related to TGFBI in the context of tumors.
Collapse
Affiliation(s)
- Huimei Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shisheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuexiang Qin
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
6
|
Castro-Ribeiro ML, Castro VIB, Vieira de Castro J, Pires RA, Reis RL, Costa BM, Ferreira H, Neves NM. The Potential of the Fibronectin Inhibitor Arg-Gly-Asp-Ser in the Development of Therapies for Glioblastoma. Int J Mol Sci 2024; 25:4910. [PMID: 38732135 PMCID: PMC11084566 DOI: 10.3390/ijms25094910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Glioblastoma (GBM) is the most lethal and common malignant primary brain tumor in adults. An important feature that supports GBM aggressiveness is the unique composition of its extracellular matrix (ECM). Particularly, fibronectin plays an important role in cancer cell adhesion, differentiation, proliferation, and chemoresistance. Thus, herein, a hydrogel with mechanical properties compatible with the brain and the ability to disrupt the dynamic and reciprocal interaction between fibronectin and tumor cells was produced. High-molecular-weight hyaluronic acid (HMW-HA) functionalized with the inhibitory fibronectin peptide Arg-Gly-Asp-Ser (RGDS) was used to produce the polymeric matrix. Liposomes encapsulating doxorubicin (DOX) were also included in the hydrogel to kill GBM cells. The resulting hydrogel containing liposomes with therapeutic DOX concentrations presented rheological properties like a healthy brain. In vitro assays demonstrated that unmodified HMW-HA hydrogels only caused GBM cell killing after DOX incorporation. Conversely, RGDS-functionalized hydrogels displayed per se cytotoxicity. As GBM cells produce several proteolytic enzymes capable of disrupting the peptide-HA bond, we selected MMP-2 to illustrate this phenomenon. Therefore, RGDS internalization can induce GBM cell apoptosis. Importantly, RGDS-functionalized hydrogel incorporating DOX efficiently damaged GBM cells without affecting astrocyte viability, proving its safety. Overall, the results demonstrate the potential of the RGDS-functionalized hydrogel to develop safe and effective GBM treatments.
Collapse
Affiliation(s)
- Maria L. Castro-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| | - Vânia I. B. Castro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| | - Joana Vieira de Castro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| | - Ricardo A. Pires
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| | - Bruno M. Costa
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Helena Ferreira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal; (M.L.C.-R.); (V.I.B.C.); (J.V.d.C.); (R.A.P.); (R.L.R.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal;
| |
Collapse
|
7
|
Guo F, Tao X, Wu Y, Dong D, Zhu Y, Shang D, Xiang H. Carfilzomib relieves pancreatitis-initiated pancreatic ductal adenocarcinoma by inhibiting high-temperature requirement protein A1. Cell Death Discov 2024; 10:58. [PMID: 38287020 PMCID: PMC10825157 DOI: 10.1038/s41420-024-01806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
Pancreatitis is a crucial risk factor for pancreatic ductal adenocarcinoma (PDAC), and our previous study had proved high-temperature requirement protein A1 (HTRA1) exacerbates pancreatitis insult; however, the function and mechanism of HTRA1 in pancreatitis-initiated PDAC is still unclear. In the present paper, we clarified the expression of HTRA1 in PDAC using bioinformatics and immunohistochemistry of tissue chip, and found that HTRA1 is significantly upregulated in PDAC. Moreover, the proliferation, migration, invasion and adhesion of PANC-1 and SW1990 cells were promoted by overexpression of HTRA1, but inhibited by knockdown of HTRA1. Meanwhile, we found that HTRA1 arrested PANC-1 and SW1990 cells at G2/M phase. Mechanistically, HTRA1 interacted with CDK1 protein, and CDK1 inhibitor reversed the malignant phenotype of PANC-1 and pancreatitis-initiated PDAC activated by HTRA1 overexpression. Finally, we discovered a small molecule drug that can inhibit HTRA1, carfilzomib, which has been proven to inhibit the biological functions of tumor cells in vitro and intercept the progression of pancreatitis-initiated PDAC in vivo. In conclusion, the activation of HTRA1-CDK1 pathway promotes the malignant phenotype of tumor cells by blocking the cell cycle at the G2/M phase, thereby accelerating pancreatitis-initiated PDAC. Carfilzomib is an innovative candidate drug that can inhibit pancreatitis-initiated PDAC through targeted inhibition of HTRA1.
Collapse
Affiliation(s)
- Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yu Wu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, 116044, China.
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
8
|
Gerencer M, McGuffin LJ. Are the integrin binding motifs within SARS CoV-2 spike protein and MHC class II alleles playing the key role in COVID-19? Front Immunol 2023; 14:1177691. [PMID: 37492575 PMCID: PMC10364474 DOI: 10.3389/fimmu.2023.1177691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 07/27/2023] Open
Abstract
The previous studies on the RGD motif (aa403-405) within the SARS CoV-2 spike (S) protein receptor binding domain (RBD) suggest that the RGD motif binding integrin(s) may play an important role in infection of the host cells. We also discussed the possible role of two other integrin binding motifs that are present in S protein: LDI (aa585-587) and ECD (661-663), the motifs used by some other viruses in the course of infection. The MultiFOLD models for protein structure analysis have shown that the ECD motif is clearly accessible in the S protein, whereas the RGD and LDI motifs are partially accessible. Furthermore, the amino acids that are present in Epstein-Barr virus protein (EBV) gp42 playing very important role in binding to the HLA-DRB1 molecule and in the subsequent immune response evasion, are also present in the S protein heptad repeat-2. Our MultiFOLD model analyses have shown that these amino acids are clearly accessible on the surface in each S protein chain as monomers and in the homotrimer complex and bind to HLA-DRB1 β chain. Therefore, they may have the identical role in SARS CoV-2 immune evasion as in EBV infection. The prediction analyses of the MHC class II binding peptides within the S protein have shown that the RGD motif is present in the core 9-mer peptide IRGDEVRQI within the two HLA-DRB1*03:01 and HLA-DRB3*01.01 strong binding 15-mer peptides suggesting that RGD motif may be the potential immune epitope. Accordingly, infected HLA-DRB1*03:01 or HLA-DRB3*01.01 positive individuals may develop high affinity anti-RGD motif antibodies that react with the RGD motif in the host proteins, like fibrinogen, thrombin or von Willebrand factor, affecting haemostasis or participating in autoimmune disorders.
Collapse
Affiliation(s)
| | - Liam J. McGuffin
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
9
|
He K, Wan T, Wang D, Hu J, Zhou T, Tao W, Wei Z, Lu Q, Zhou R, Tian Z, Flavell RA, Zhu S. Gasdermin D licenses MHCII induction to maintain food tolerance in small intestine. Cell 2023; 186:3033-3048.e20. [PMID: 37327784 DOI: 10.1016/j.cell.2023.05.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/03/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.
Collapse
Affiliation(s)
- Kaixin He
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingting Wan
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Decai Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Ji Hu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingyue Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wanyin Tao
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zheng Wei
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Qiao Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China; School of Data Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
10
|
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int J Pept Res Ther 2023; 29:61. [PMID: 37251528 PMCID: PMC10206374 DOI: 10.1007/s10989-023-10524-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate therapies. Peptide-based drugs as an alternate therapy hold researchers' attention in various therapeutic fields such as neurology, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird's-eye view to researchers aiming to develop peptides with therapeutic applications. Graphical Abstract
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014 India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Simran Preet
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| |
Collapse
|
11
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Biswas A, Ganesan R, Renu K, Dey A, Vellingiri B, El Allali A, Alsamman AM, Zayed H, George Priya Doss C. Evolving strategies and application of proteins and peptide therapeutics in cancer treatment. Biomed Pharmacother 2023; 163:114832. [PMID: 37150032 DOI: 10.1016/j.biopha.2023.114832] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, South Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
12
|
Song Z, Chen R, Wang C, Pan G, Yan A, Xie G, Yang Z, Feng W, Wang Y. Effect and mechanism of Tangzhiqing in improving cardiac function in mice with hyperlipidaemia complicated with myocardial ischaemia. Heliyon 2023; 9:e15645. [PMID: 37159711 PMCID: PMC10163619 DOI: 10.1016/j.heliyon.2023.e15645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Purpose Tangzhiqing formula (TZQ) is a traditional Chinese medicine prescribed to treat lipid metabolism disorders, atherosclerosis, diabetes and diabetic cardiomyopathy. However, some challenges and hurdles remain. TZQ showed promising results in treating diabetes and hyperlipidaemia. However, its effect on and mechanism of action in hyperlipidaemia complicated with myocardial ischaemia (HL-MI) remain unknown. Methods In this study, a network pharmacology-based strategy integrating target prediction was adopted to predict the targets of TZQ relevant to the treatment of HL-MI and to further explore the involved pharmacological mechanisms. Results A total of 104 potential therapeutic targets were obtained, including MMP9, Bcl-2, and Bax, which may be related to the apoptosis and PI3K/AKT signalling pathways. Then, we confirmed these potential targets and pathways with animal experimentation. TZQ reduced lipid levels, increased the expression levels of Bcl-2, decreased Bax, caspase-3 and caspase-9 expression levels, and activated the PI3K/AKT signalling pathway. Conclusion In conclusion, this study provides new insights into the protective mechanisms of TZQ against HL-MI through network pharmacology and pharmacological approaches.
Collapse
Affiliation(s)
- Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Chen
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Caijun Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guiyun Pan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - An Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guinan Xie
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wanying Feng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Corresponding author. Tianjin University of Traditional Chinese Medicine, #10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
13
|
Zhan Y, Zhang R, Guo Y, Cao S, Chen G, Tian B. Recent advances in tumor biomarker detection by lanthanide upconversion nanoparticles. J Mater Chem B 2023; 11:755-771. [PMID: 36606393 DOI: 10.1039/d2tb02017c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early tumor diagnosis could reliably predict the behavior of tumors and significantly reduce their mortality. Due to the response to early cancerous changes at the molecular or cellular level, tumor biomarkers, including small molecules, proteins, nucleic acids, exosomes, and circulating tumor cells, have been employed as powerful tools for early cancer diagnosis. Therefore, exploring new approaches to detect tumor biomarkers has attracted a great deal of research interest. Lanthanide upconversion nanoparticles (UCNPs) provide numerous opportunities for bioanalytical applications. When excited by low-energy near-infrared light, UCNPs exhibit several unique properties, such as large anti-Stoke shifts, sharp emission lines, long luminescence lifetimes, resistance to photobleaching, and the absence of autofluorescence. Based on these excellent properties, UCNPs have demonstrated great sensitivity and selectivity in detecting tumor biomarkers. In this review, an overview of recent advances in tumor biomarker detection using UCNPs has been presented. The key aspects of this review include detection mechanisms, applications in vitro and in vivo, challenges, and perspectives of UCNP-based tumor biomarker detection.
Collapse
Affiliation(s)
- Ying Zhan
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Runchi Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yi Guo
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Bo Tian
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
14
|
Fajloun Z, Legros C, Sabatier JM. COVID-19 and Ehlers-Danlos Syndrome: The Dangers of the Spike Protein of SARS-CoV-2. Infect Disord Drug Targets 2023; 23:e040123212375. [PMID: 36600622 DOI: 10.2174/1871526523666230104145108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Ziad Fajloun
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Christian Legros
- College of Life Sciences, University of Angers, INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, Angers 49000, France
| | - Jean-Marc Sabatier
- College of Life Sciences, Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, Marseille 13385, France
| |
Collapse
|
15
|
Rystsov GK, Lisov AV, Zemskova MY. Polymers of 2,5-Dihydroxybenzoic Acid Induce Formation of Spheroids in Mammalian Cells. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s106816202206019x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
16
|
Parfenova LV, Galimshina ZR, Gil’fanova GU, Alibaeva EI, Danilko KV, Aubakirova VR, Farrakhov RG, Parfenov EV, Valiev RZ. Modeling of Biological Activity of PEO-Coated Titanium Implants with Conjugates of Cyclic RGD Peptide with Amino Acid Bisphosphonates. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8120. [PMID: 36431607 PMCID: PMC9699121 DOI: 10.3390/ma15228120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Titanium is considered to be the most essential metal in the field of implantology. The main factors determining metal biocompatibility, among others, include the morphology and chemical composition of the titanium surface. Therefore, the aim of this work was to develop approaches to control the biological activity of the titanium surface by creating coatings that combine both an inorganic phase with a given morphology and organic molecules containing an integrin-selective peptide that regulate cell adhesion and proliferation. As such, we synthesized new c(RGDfC) derivatives of amino acid bisphosphonates (four examples) with different bisphosphonate anchors and maleimide linkers. These molecules were deposited on a highly developed porous surface obtained via the plasma electrolytic oxidation (PEO) of coarse-grained and nanostructured titanium. In vitro studies demonstrated the increase in the viability degree of mesenchymal stem cells and fibroblasts on the surface of coarse-grained or nanostructured titanium modified with PEO and a c(RGDfC) derivative of ε-aminocaproic acid bisphophonate with an SMCC linker. As a result, the use of conjugates of amino acid bisphosphonates with a cyclic RGD peptide for the modification of PEO-coated titanium opens the ways for the effective control of the biological activity of the metal implant surface.
Collapse
Affiliation(s)
- Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia
| | - Zulfiya R. Galimshina
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia
| | - Guzel U. Gil’fanova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia
| | - Eliza I. Alibaeva
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia
| | - Ksenia V. Danilko
- Central Research Laboratory, Bashkir State Medical University, 3 Lenin Street, 450000 Ufa, Russia
| | - Veta R. Aubakirova
- Department of Electronic Engineering, Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
| | - Ruzil G. Farrakhov
- Department of Electronic Engineering, Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
| | - Evgeny V. Parfenov
- Department of Materials Science and Physics of Metals, Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
| | - Ruslan Z. Valiev
- Department of Materials Science and Physics of Metals, Ufa State Aviation Technical University, 12 Karl Marx Street, 450008 Ufa, Russia
| |
Collapse
|
17
|
Medina JD, Barber GF, Coronel MM, Hunckler MD, Linderman SW, Quizon MJ, Ulker V, Yolcu ES, Shirwan H, García AJ. A hydrogel platform for co-delivery of immunomodulatory proteins for pancreatic islet allografts. J Biomed Mater Res A 2022; 110:1728-1737. [PMID: 35841329 DOI: 10.1002/jbm.a.37429] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/06/2022]
Abstract
Type 1 diabetes (T1D), an autoimmune disorder in which the insulin-producing β-cells in the islets of Langerhans in the pancreas are destroyed, afflicts over 1.6 million Americans. Although pancreatic islet transplantation has shown promise in treating T1D, continuous use of required immunosuppression regimens limits clinical islet transplantation as it poses significant adverse effects on graft recipients and does not achieve consistent long-term graft survival with 50%-70% of recipients maintaining insulin independence at 5 years. T cells play a key role in graft rejection, and rebalancing pathogenic T effector and protective T regulatory cells can regulate autoimmune disorders and transplant rejection. The synergy of the interleukin-2 (IL-2) and Fas immunomodulatory pathways presents an avenue for eliminating the need for systemic immune suppression by exploiting IL-2's role in expanding regulatory T cells and leveraging Fas ligand (FasL) activity on antigen-induced cell death of effector T cells. Herein, we developed a hydrogel platform for co-delivering an analog of IL-2, IL-2D, and FasL-presenting microgels to achieve localized immunotolerance to pancreatic islets by targeting the upregulation of regulatory T cells and effector T cells simultaneously. Although this hydrogel provided for sustained, local delivery of active immunomodulatory proteins, indefinite allograft survival was not achieved. Immune profiling analysis revealed upregulation of target regulatory T cells but also increases in Granzyme B-expressing CD8+ T cells at the graft site. We attribute the failed establishment of allograft survival to these Granzyme B-expressing T cells. This study underscores the delicate balance of immunomodulatory components important for allograft survival - whose outcome can be dependent on timing, duration, modality of delivery, and disease model.
Collapse
Affiliation(s)
- Juan D Medina
- Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Graham F Barber
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Maria M Coronel
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael D Hunckler
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen W Linderman
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Michelle J Quizon
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Vahap Ulker
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Esma S Yolcu
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Child Health and Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Andrés J García
- Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022; 368:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Peptide therapy has started since 1920s with the advent of insulin application, and now it has emerged as a new approach in treatment of diseases including cancer. Using anti-cancer peptides (ACPs) is a promising way of cancer therapy as ACPs are continuing to be approved and arrived at major pharmaceutical markets. Traditional cancer treatments face different problems like intensive adverse effects to patient's body, cell resistance to conventional chemical drugs and in some worse cases the occurrence of cell multidrug resistance (MDR) of cancerous tissues against chemotherapy. On the other hand, there are some benefits conceived for peptides usage in treatment of diseases specifically cancer, as these compounds present favorable characteristics such as smaller size, high activity, low immunogenicity, good biocompatibility in vivo, convenient and rapid way of synthesis, amenable to sequence modification and revision and there is no limitation for the type of cargo they carry. It is possible to achieve an optimum molecular and functional structure of peptides based on previous experience and bank of peptide motif data which may result in novel peptide design. Bioactive peptides are able to form pores in cell membrane and induce necrosis or apoptosis of abnormal cells. Moreover, recent researches have focused on the tumor recognizing peptide motifs with the ability to permeate to cancerous cells with the aim of cancer treatment at earlier stages. In this strategy the most important factors for addressing cancer are choosing peptides with easy accessibility to tumor cell without cytotoxicity effect towards normal cells. The peptides must also meet acceptable pharmacokinetic requirements. In this review, the characteristics of peptides and cancer cells are discussed. The various mechanisms of peptides' action proposed against cancer cells make the next part of discussion. It will be followed by giving information on peptides application, various methods of peptide designing along with introducing various databases. Future aspects of peptides for employing in area of cancer treatment come as conclusion at the end.
Collapse
|
19
|
Bose D, Roy L, Chatterjee S. Peptide therapeutics in the management of metastatic cancers. RSC Adv 2022; 12:21353-21373. [PMID: 35975072 PMCID: PMC9345020 DOI: 10.1039/d2ra02062a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer remains a leading health concern threatening lives of millions of patients worldwide. Peptide-based drugs provide a valuable alternative to chemotherapeutics as they are highly specific, cheap, less toxic and easier to synthesize compared to other drugs. In this review, we have discussed various modes in which peptides are being used to curb cancer. Our review highlights specially the various anti-metastatic peptide-based agents developed by targeting a plethora of cellular factors. Herein we have given a special focus on integrins as targets for peptide drugs, as these molecules play key roles in metastatic progression. The review also discusses use of peptides as anti-cancer vaccines and their efficiency as drug-delivery tools. We hope this work will give the reader a clear idea of the mechanisms of peptide-based anti-cancer therapeutics and encourage the development of superior drugs in the future.
Collapse
Affiliation(s)
- Debopriya Bose
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| | - Laboni Roy
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| | - Subhrangsu Chatterjee
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| |
Collapse
|
20
|
Lei Q, Huang X, Zheng L, Zheng F, Dong J, Chen F, Zeng W. Biosensors for Caspase-3: From chemical methodologies to biomedical applications. Talanta 2022; 240:123198. [PMID: 34998139 DOI: 10.1016/j.talanta.2021.123198] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022]
Abstract
Caspase-3 plays irreplaceable roles in apoptosis and related diseases. An imbalance in the measured levels of Caspase-3 is implicated in irreversible apoptosis. Therefore, the detection of Caspase-3 is of great significance for apoptosis imaging and the evaluation effect of early tumor treatment and other diseases. Herein, advances in the recent innovations of Caspase-3 response fluorescence biosensors, including molecular probes and nanoprobes, are systematically summarized in sections corresponding. The performances of various luminescence probes in Caspase-3 detection are discussed intensively in the design strategy of chemical structure, response mechanism and biological application. Finally, the current challenges and prospects of the design of new Caspase-3 responsive fluorescence probes for apoptosis imaging, or similar molecular event are proposed.
Collapse
Affiliation(s)
- Qian Lei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Lijuan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases Central South University, Changsha, 410013, PR China.
| |
Collapse
|
21
|
Wang J, Wu CS, Hu YZ, Yang L, Zhang XJ, Zhang YA. Plasmablasts induced by chitosan oligosaccharide secrete natural IgM to enhance the humoral immunity in grass carp. Carbohydr Polym 2022; 281:119073. [DOI: 10.1016/j.carbpol.2021.119073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
|
22
|
Effects of Dietary Ferulic Acid Supplementation on Hepatic Injuries in Tianfu Broilers Challenged with Lipopolysaccharide. Toxins (Basel) 2022; 14:toxins14030227. [PMID: 35324724 PMCID: PMC8955363 DOI: 10.3390/toxins14030227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin that can cause an imbalance between the oxidation and antioxidant defense systems and then induces hepatic damages. Ferulic acid (FA) has multiple biological functions including antibacterial and antioxidant activities; however, the effect of FA on lipopolysaccharide-induced hepatic injury remains unknown. The purpose of this study was to investigate the mechanism of action of dietary Ferulic acid against Lipopolysaccharide-induced hepatic injuries in Tianfu broiler chickens. The results showed that supplementation of FA in daily feed increased body weight (BW) and decreased the feed conversion ratio (FCR) in LPS treatment broilers significantly (p < 0.05). Additionally, supplement of FA alleviated histological changes and apoptosis of hepatocytes in LPS treatment broilers. Supplement of FA significantly decreases the activities of ROS. Interestingly, the levels of antioxidant parameters including total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and glutathione (GSH) in LPS group were significantly increased by the FA supplementation (p < 0.05). Nevertheless, administration of LPS to broilers decreased the expressions of Nrf2, NQO1, SOD, GSH-Px, CAT and Bcl-2, whereas it increased the expressions of Bax and Caspase-3 (p < 0.05). Moreover, the expressions of Nrf2, NQO1, SOD, CAT, Bcl-2 were significantly upregulated and Caspase-3 were significantly downregulated in the FL group when compared to LPS group (p < 0.05). In conclusion, supplementation of FA in daily feed improves growth performance and alleviates LPS-induced oxidative stress, histopathologic changes, and apoptosis of hepatocytes in Tianfu broilers.
Collapse
|
23
|
Wu SZ, Lan YY, Chu CY, Wang YK, Lee YP, Chang HY, Huang BM. Arsenic compounds induce apoptosis by activating the MAPK and caspase pathways in FaDu oral squamous carcinoma cells. Int J Oncol 2022; 60:18. [PMID: 35029282 DOI: 10.3892/ijo.2022.5308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 11/06/2022] Open
Abstract
For a number of years, oral cancer has remained in the top ten most common types of cancer, with an incidence rate that is steadily increasing. In total, ~75% oral cancer cases are associated with lifestyle factors, including uncontrolled alcohol consumption, betel and tobacco chewing, and the excessive use of tobacco. Notably, betel chewing is highly associated with oral cancer in Southeast Asia. Arsenic is a key environmental toxicant; however, arsenic trioxide has been used as a medicine for the treatment of acute promyelocytic leukemia, highlighting its anticancer properties. The present study aimed to investigate the role of arsenic compounds in the treatment of cancer, using FaDu oral squamous carcinoma cells treated with sodium arsenite (NaAsO2) and dimethyl arsenic acid (DMA). The results demonstrated that FaDu cells exhibited membrane blebbing phenomena and high levels of apoptosis following treatment with 10 µM NaAsO2 and 1 mM DMA for 24 h. The results of cell viability assay demonstrated that the rate of FaDu cell survival was markedly reduced as the concentration of arsenic compounds increased from 10 to 100 µM NaAsO2, and 1 to 100 mM DMA. Moreover, flow cytometry was carried out to further examine the effects of arsenic compounds on FaDu cell cycle regulation; the results revealed that treatment with NaAsO2 and DMA led to a significant increase in the percentage of FaDu cells in the sub‑G1 and G2/M phases of the cell cycle. An Annexin V/PI double staining assay was subsequently performed to verify the levels of FaDu cell apoptosis following treatment with arsenic compounds. Furthermore, the results of the western blot analyses revealed that the expression levels of caspase‑8, ‑9 and ‑3, and poly ADP‑ribose polymerase, as well the levels of phosphorylated JNK and ERK1/2 were increased following treatment with NaAsO2 and DMA in the FaDu cells. On the whole, the results of the present study revealed that treatment with NaAsO2 and DMA promoted the apoptosis of FaDu oral cancer cells, by activating MAPK pathways, as well as the extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Su-Zhen Wu
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Yu-Yan Lan
- Department of Nursing, Shu‑Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Chiao-Yun Chu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yi-Ping Lee
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan, R.O.C
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| |
Collapse
|
24
|
Komarnicka UK, Pucelik B, Wojtala D, Lesiów MK, Stochel G, Kyzioł A. Evaluation of anticancer activity in vitro of a stable copper(I) complex with phosphine-peptide conjugate. Sci Rep 2021; 11:23943. [PMID: 34907288 PMCID: PMC8671550 DOI: 10.1038/s41598-021-03352-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
[CuI(2,9-dimethyl-1,10-phenanthroline)P(p-OCH3-Ph)2CH2SarcosineGlycine] (1-MPSG), highly stable in physiological media phosphino copper(I) complex—is proposed herein as a viable alternative to anticancer platinum-based drugs. It is noteworthy that, 1-MPSG significantly and selectively reduced cell viability in a 3D spheroidal model of human lung adenocarcinoma (A549), in comparison with non-cancerous HaCaT cells. Confocal microscopy and an ICP-MS analysis showed that 1-MPSG effectively accumulates inside A549 cells with colocalization in mitochondria and nuclei. A precise cytometric analysis revealed a predominance of apoptosis over the other types of cell death. In the case of HaCaT cells, the overall cytotoxicity was significantly lower, indicating the selective activity of 1-MPSG towards cancer cells. Apoptosis also manifested itself in a decrease in mitochondrial membrane potential along with the activation of caspases-3/9. Moreover, the caspase inhibitor (Z-VAD-FMK) pretreatment led to decreased level of apoptosis (more pronouncedly in A549 cells than in non-cancerous HaCaT cells) and further validated the caspases dependence in 1-MPSG-induced apoptosis. Furthermore, the 1-MPSG complex presumably induces the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. It was also observed that the 1-MPSG mediated intracellular ROS alterations in A549 and HaCaT cells. These results, proved by fluorescence spectroscopy, and flow cytometry, suggest that investigated Cu(I) compound may trigger apoptosis also through ROS generation.
Collapse
Affiliation(s)
- Urszula K Komarnicka
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland.
| | - Barbara Pucelik
- Małopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland.
| | - Daria Wojtala
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Monika K Lesiów
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383, Wroclaw, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
25
|
Siepi M, Oliva R, Masino A, Gaglione R, Arciello A, Russo R, Di Maro A, Zanfardino A, Varcamonti M, Petraccone L, Del Vecchio P, Merola M, Pizzo E, Notomista E, Cafaro V. Environment-Sensitive Fluorescent Labelling of Peptides by Luciferin Analogues. Int J Mol Sci 2021; 22:ijms222413312. [PMID: 34948103 PMCID: PMC8706149 DOI: 10.3390/ijms222413312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Environment-sensitive fluorophores are very valuable tools in the study of molecular and cellular processes. When used to label proteins and peptides, they allow for the monitoring of even small variations in the local microenvironment, thus acting as reporters of conformational variations and binding events. Luciferin and aminoluciferin, well known substrates of firefly luciferase, are environment-sensitive fluorophores with unusual and still-unexploited properties. Both fluorophores show strong solvatochromism. Moreover, luciferin fluorescence is influenced by pH and water abundance. These features allow to detect local variations of pH, solvent polarity and local water concentration, even when they occur simultaneously, by analyzing excitation and emission spectra. Here, we describe the characterization of (amino)luciferin-labeled derivatives of four bioactive peptides: the antimicrobial peptides GKY20 and ApoBL, the antitumor peptide p53pAnt and the integrin-binding peptide RGD. The two probes allowed for the study of the interaction of the peptides with model membranes, SDS micelles, lipopolysaccharide micelles and Escherichia coli cells. Kd values and binding stoichiometries for lipopolysaccharide were also determined. Aminoluciferin also proved to be very well-suited to confocal laser scanning microscopy. Overall, the characterization of the labeled peptides demonstrates that luciferin and aminoluciferin are previously neglected environment-sensitive labels with widespread potential applications in the study of proteins and peptides.
Collapse
Affiliation(s)
- Marialuisa Siepi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Antonio Masino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (R.R.); (A.D.M.)
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (R.R.); (A.D.M.)
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (R.O.); (R.G.); (A.A.); (L.P.); (P.D.V.)
| | - Marcello Merola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
- Correspondence:
| | - Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (M.S.); (A.M.); (A.Z.); (M.V.); (M.M.); (E.P.); (V.C.)
| |
Collapse
|
26
|
Geng G, Xiao Y, Shang Y, Zhang Y, Zhu F, Tang L, Peng F, Shen W, Jin Y, Yang Z, Li Q, Chen X. Naphthalenephenylalanine-phenylalanine-glycine-arginine-glycine-aspartic promotes self-assembly of nephron progenitor cells in decellularized scaffolds to construct bioengineered kidneys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112590. [DOI: 10.1016/j.msec.2021.112590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
|
27
|
Kartika ID, Kotani H, Iida Y, Koyanagi A, Tanino R, Harada M. Protective role of cytoplasmic p21Cip1/Waf1 in apoptosis of CDK4/6 inhibitor-induced senescence in breast cancer cells. Cancer Med 2021; 10:8988-8999. [PMID: 34761877 PMCID: PMC8683524 DOI: 10.1002/cam4.4410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
Inhibition of CDK4/6 slows the cell cycle and induces senescence in breast cancer cells. However, senescent cancer cells promote invasion and metastasis. Several drugs reportedly target senescent cells, including ABT‐263 (navitoclax). We examined the effects of the CDK4/6 inhibitor abemaciclib and ABT‐263 on two human breast cancer cell lines. The abemaciclib and ABT‐263 combination additively decreased the viability of MDA‐MB‐231 cells, but not MCF‐7 cells. Also, the combination therapy‐induced caspase‐dependent apoptosis in MDA‐MB‐231 cells. Combination therapy with abemaciclib and ABT‐737, an ABT‐263 analog, significantly suppressed the in vivo growth of MDA‐MB‐231 with transient body‐weight loss. Given that p16Ink4a and p21Cip1/Waf1 are key factors in senescence and that both cell lines were negative for p16, the role of p21 in apoptosis of treated breast cancer cells was investigated. Although abemaciclib increased the cytoplasmic p21 level in both cell lines as a hallmark of senescence, the abemaciclib and ABT‐263 combination decreased it only in MDA‐MB‐231 cells. This decrease of p21 expression was relieved by caspase inhibition, and p21 was colocalized with caspase‐3 in the cytoplasm of MDA‐MB‐231 cells. Alternatively, small interfering RNA‐mediated knockdown of p21 rendered caspase‐3‐negative MCF‐7 cells susceptible to abemaciclib and ABT‐263, as well as TNF‐related apoptosis‐inducing ligand. Furthermore, a clinical database analysis showed that p21high breast cancer patients had a poorer prognosis compared to p21low patients. These results suggest that cytoplasmic p21 plays a protective role in apoptosis of CDK4/6 inhibitor‐induced senescent breast cancer cells.
Collapse
Affiliation(s)
- Irna D Kartika
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan.,Department of Clinical Pathology, Faculty of Medicine, University of Muslim Indonesia, Sulawesi, Indonesia
| | - Hitoshi Kotani
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yuichi Iida
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Akira Koyanagi
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Ryosuke Tanino
- Division of Medical Oncology & Respiratory Medicine, Department of Internal Medicine, Shimane University Faculty of Medicine, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
28
|
Taouis M, Benomar Y. Is resistin the master link between inflammation and inflammation-related chronic diseases? Mol Cell Endocrinol 2021; 533:111341. [PMID: 34082045 DOI: 10.1016/j.mce.2021.111341] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/07/2023]
Abstract
Resistin has been firstly discovered in mice and was identified as an adipose tissue-secreted hormone or adipokine linking obesity and insulin resistance. In humans, resistin has been characterized as a hormone expressed and secreted by Immune cells especially by macrophages, and was linked to many inflammatory responses including inflammation of adipose tissue due to macrophages' infiltration. Human and mouse resistin display sequence and structural similarities and also dissimilarities that could explain their different expression pattern. In mice, strong pieces of evidence clearly associated high resistin plasma levels to obesity and insulin resistance suggesting that resistin could play an important role in the onset and progression of obesity and insulin resistance via resistin-induced inflammation. In humans, the link between resistin and obesity/insulin resistance is still a matter of debate and needs more epidemiological studies. Also, resistin has been linked to other chronic diseases such as cardiovascular diseases and cancers where resistin has been proposed in many studies as a biological marker.
Collapse
Affiliation(s)
- Mohammed Taouis
- Molecular Neuroendocrinology of Food Intake (NMPA), UMR 9197, University of Paris-Saclay, Orsay, France; NMPA, Dept. Development, Evolution and Cell Signaling, Paris-Saclay Institute of Neurosciences (NeuroPSI) CNRS UMR 9197, Orsay, France.
| | - Yacir Benomar
- Molecular Neuroendocrinology of Food Intake (NMPA), UMR 9197, University of Paris-Saclay, Orsay, France; NMPA, Dept. Development, Evolution and Cell Signaling, Paris-Saclay Institute of Neurosciences (NeuroPSI) CNRS UMR 9197, Orsay, France
| |
Collapse
|
29
|
IL32: The multifaceted and unconventional cytokine. Hum Immunol 2021; 82:659-667. [PMID: 34024634 DOI: 10.1016/j.humimm.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Interleukin 32 is a unique intracellular cytokine which affects many cellular and physiological functions like cell death and survival, inflammation and response to pathogens. With numerous transcripts, more than one biologically active isoforms, IL32 drives its effect in diverse cellular functions. A cytokine restricted to higher mammals, it is known to fine tune multiple pathways involved in metabolic processes or infection. It modulates the immune response against diverse pathogens like Leishmania, Mycobacterium and HIV. IL32 has been associated with cancers of inflammatory nature too. It also plays an important role in chronic inflammatory diseases like RA, lung and airway disease like COPD. In this review we have discussed about identification and characterization of this non classical cytokine IL32, its structure and function at gene as well as at protein level, isoforms and their diverse functions. Role of IL32 in multiple diseases and particularly mycobacterial disease has been highlighted here. We have also summarised the genetic variants present in the IL32 gene and it's promoter region. Association of these variants, with cellular phenotype, patho-physiological conditions in different disease have also been discussed here.
Collapse
|
30
|
Goyal R, Jerath G, Akhil R, Chandrasekharan A, Puppala ER, Ponneganti S, Sarma A, Naidu VGM, Santhoshkumar TR, Ramakrishnan V. Geometry encoded functional programming of tumor homing peptides for targeted drug delivery. J Control Release 2021; 333:16-27. [PMID: 33722612 DOI: 10.1016/j.jconrel.2021.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 01/10/2023]
Abstract
Poly-peptide molecules have shown promising applications in drug delivery and tumor targeting. A series of tumor homing peptides were designed by exhaustively sampling low energy geometrical basins of amino acids at specific sites of a peptide molecule to induce a conformational lock. This peptide library was pruned to a limited set of eight molecules, employing electrostatic interactions, docking, and molecular dynamics simulations. These designed and optimized peptides were synthesized and tested on various cell lines, including breast cancer (MDA-MB-231), cervical cancer (HeLa), osteosarcoma (U2-OS), and non-cancerous mammary epithelial cells (MCF-10A) using confocal microscopy and flow cytometry. Peptides show differential uptake in cancerous MDA-MB-231, HeLa, U2-OS, and non-cancerous MCF-10A cells. Confocal imaging verified their ability to penetrate even in 3D tumorospheres of MDA-MB-231 cells. Further, experiments of mitochondrial membrane potential depolarization and Caspase-3 activation confirmed that their cytotoxic effects are by apoptosis. Homing ability of the designed peptides in in vivo system and fluorescence imaging with clinical samples of human origin have further confirmed that the in vitro studies are qualitatively identical and quantitatively comparable in their ability to selectively recognize tumor cells. Overall, we present a roadmap for the functional programming of peptide-based homing and penetrating molecules that can perform selective tumor targeting.
Collapse
Affiliation(s)
- Ruchika Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gaurav Jerath
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - R Akhil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aneesh Chandrasekharan
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Eswara Rao Puppala
- National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781101, Assam, India
| | - Srikanth Ponneganti
- National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781101, Assam, India
| | - Anupam Sarma
- Dr. Bhubaneswar Borooah Cancer Institute, Tata Memorial Centre (Mumbai), Guwahati 781016, Assam, India
| | - V G M Naidu
- National Institute of Pharmaceutical Education and Research Guwahati, Guwahati 781101, Assam, India
| | - T R Santhoshkumar
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
31
|
Bullock G, Atkinson J, Gentile P, Hatton P, Miller C. Osteogenic Peptides and Attachment Methods Determine Tissue Regeneration in Modified Bone Graft Substitutes. J Funct Biomater 2021; 12:22. [PMID: 33807267 PMCID: PMC8103284 DOI: 10.3390/jfb12020022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/01/2023] Open
Abstract
The inclusion of biofunctional molecules with synthetic bone graft substitutes has the potential to enhance tissue regeneration during treatment of traumatic bone injuries. The clinical use of growth factors has though been associated with complications, some serious. The use of smaller, active peptides has the potential to overcome these problems and provide a cost-effective, safe route for the manufacture of enhanced bone graft substitutes. This review considers the design of peptide-enhanced bone graft substitutes, and how peptide selection and attachment method determine clinical efficacy. It was determined that covalent attachment may reduce the known risks associated with growth factor-loaded bone graft substitutes, providing a predictable tissue response and greater clinical efficacy. Peptide choice was found to be critical, but even within recognised families of biologically active peptides, the configurations that appeared to most closely mimic the biological molecules involved in natural bone healing processes were most potent. It was concluded that rational, evidence-based design of peptide-enhanced bone graft substitutes offers a pathway to clinical maturity in this highly promising field.
Collapse
Affiliation(s)
- George Bullock
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| | - Joss Atkinson
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Stephenson Building, Newcastle upon Tyne NE1 7RU, UK;
| | - Paul Hatton
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| | - Cheryl Miller
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK; (G.B.); (J.A.); (C.M.)
| |
Collapse
|
32
|
Brennecke B, Wang Q, Haap W, Grether U, Hu HY, Nazaré M. DOTAM-Based, Targeted, Activatable Fluorescent Probes for the Highly Sensitive and Selective Detection of Cancer Cells. Bioconjug Chem 2021; 32:702-712. [PMID: 33691062 DOI: 10.1021/acs.bioconjchem.0c00699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The utilization of an activatable, substrate-based probe design in combination with a cellular targeting approach has been rarely explored for cancer imaging on a small-molecule basis, although such probes could benefit from advantages of both concepts. Cysteine proteases like cathepsin S are known to be involved in fundamental processes associated with tumor development and progression and thus are valuable cancer markers. We report the development of a combined dual functional DOTAM-based, RGD-targeted internally quenched fluorescent probe that is activated by cathepsin S. The probe exhibits excellent in vitro activation kinetics which can be fully translated to human cancer cell lines. We demonstrate that the targeted, activatable probe is superior to its nontargeted analog, exhibiting improved uptake into ανβ3-integrin expressing human sarcoma cells (HT1080) and significantly higher resultant fluorescence staining. However, profound activation was also found in cancer cells with a lower integrin expression level, whereas in healthy cells almost no probe activation could be observed, highlighting the high selectivity of our probe toward cancer cells. These auspicious results show the outstanding potential of the dual functionality concept combining a substrate-based probe design with a targeting approach, which could form the basis for highly sensitive and selective in vivo imaging probes.
Collapse
Affiliation(s)
- Benjamin Brennecke
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin, 13125 Berlin, Germany
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Wolfgang Haap
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Uwe Grether
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie Berlin, 13125 Berlin, Germany
| |
Collapse
|
33
|
Wang P, Yang H, Liu C, Qiu M, Ma X, Mao Z, Sun Y, Liu Z. Recent advances in the development of activatable multifunctional probes for in vivo imaging of caspase-3. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Fu Q, Liu Z, Bhawal R, Anderson ET, Sherwood RW, Yang Y, Thannhauser T, Schroyen M, Tang X, Zhang H, Zhang S. Comparison of MS 2, synchronous precursor selection MS 3, and real-time search MS 3 methodologies for lung proteomes of hydrogen sulfide treated swine. Anal Bioanal Chem 2020; 413:419-429. [PMID: 33099676 DOI: 10.1007/s00216-020-03009-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023]
Abstract
Tandem mass tags (TMTs) have increasingly become an attractive technique for global proteomics. However, its effectiveness for multiplexed quantitation by traditional tandem mass spectrometry (MS2) suffers from ratio distortion. Synchronous precursor selection (SPS) MS3 has been widely accepted for improved quantitation accuracy, but concurrently decreased proteome coverage. Recently, a Real-Time Search algorithm has been integrated with the SPS MS3 pipeline (RTS MS3) to provide accurate quantitation and improved depth of coverage. In this mechanistic study of the impact of exposure to hydrogen sulfide (H2S) on the respiration of swine, we used TMT-based comparative proteomics of lung tissues from control and H2S-treated subjects as a test case to evaluate traditional MS2, SPS MS3, and RTS MS3 acquisition methods on both the Orbitrap Fusion and Orbitrap Eclipse platforms. Comparison of the results obtained by the MS2 with those of SPS MS3 and RTS MS3 methods suggests that the MS3-driven quantitative strategies provided a more accurate global-scale quantitation; however, only RTS MS3 provided proteomic coverage that rivaled that of traditional MS2 analysis. RTS MS3 not only yields more productive MS3 spectra than SPS MS3 but also appears to focus the analysis more effectively on unique peptides. Furthermore, pathway enrichment analyses of the H2S-altered proteins demonstrated that an additional apoptosis pathway was discovered exclusively by RTS MS3. This finding was verified by RT-qPCR, western blotting, and TUNEL staining experiments. We conclude that RTS MS3 workflow enables simultaneous improvement of quantitative accuracy and proteome coverage over alternative approaches (MS2 and SPS MS3). Graphical abstract.
Collapse
Affiliation(s)
- Qin Fu
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Zhen Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing, 100193, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, Teaching and Research Centre, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Robert W Sherwood
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, 538 Tower Road, Ithaca, NY, 14853, USA
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, 538 Tower Road, Ithaca, NY, 14853, USA
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, Teaching and Research Centre, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
35
|
Lee S, Pham TC, Bae C, Choi Y, Kim YK, Yoon J. Nano theranostics platforms that utilize proteins. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213258] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Vigneswara V, Ahmed Z. The Role of Caspase-2 in Regulating Cell Fate. Cells 2020; 9:cells9051259. [PMID: 32438737 PMCID: PMC7290664 DOI: 10.3390/cells9051259] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life.
Collapse
|
37
|
Darendelioglu E. Neuroprotective Effects of Chrysin on Diclofenac-Induced Apoptosis in SH-SY5Y Cells. Neurochem Res 2020; 45:1064-1071. [PMID: 32040722 DOI: 10.1007/s11064-020-02982-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 01/23/2023]
Abstract
Accumulating evidences demonstrated that Reactive Oxygen Species (ROS) may lead to serious damages to numerous cellular biomolecules, consequently resulting in the development of several neurological diseases. Diclofenac (Dic), the most widely preferred non-steroidal anti-inflammatory drug (NSAID) induces apoptosis by an alteration in function of mitochondria and creation of ROS. Chrysin (Chr) is a naturally active component that is found in numerous plants and bee products and retains strong neuroprotective and antioxidant properties. However its effect of Dic induced injury on SH-SY5Y neuron cells have not been investigated to date. The goal of present research was to study the molecular mechanisms of Chr protection from oxidative injury caused by Dic in SH-SY5Y cells. Dic induced significant toxicity on the cells and this effect was reversed by pre-treatment with Chr. Dic triggered a noteworthy increase in the cellular ROS and Lipid peroxidation (LPO) levels and decrease in Total antioxidant status (TAS) level while pre-treatment with Chr reversed these effects. Dic induction increased the Bax, cytochrome c, cas-3, cas-8 and p53 expression at gene transcription level. Elevated levels of these genes considerably decreased by Chr pre-treatment revealing the defensive effects of Chr. The results obviously presented that exposure of SH-SY5Y with Dic resulted in oxidative stress and apoptosis while pre-treatment of neuron cells with Chr protects the cells against apoptosis triggered by Dic induction.
Collapse
Affiliation(s)
- Ekrem Darendelioglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, Bingol, Turkey.
| |
Collapse
|
38
|
Fan R, Chuan D, Hou H, Chen H, Han B, Zhang X, Zhou L, Tong A, Xu J, Guo G. Development of a hybrid nanocarrier-recognizing tumor vasculature and penetrating the BBB for glioblastoma multi-targeting therapy. NANOSCALE 2019; 11:11285-11304. [PMID: 31165845 DOI: 10.1039/c9nr01320b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The success of glioma chemotherapy is hampered by poor drug penetration ability across the blood-brain barrier (BBB) and low intratumoral drug concentration. Novel tumor-targeted delivery systems are useful in specifically accumulating in the tumor foci and penetrating into the glioma core after entering into the brain. Here we show that a multi-targeting hybrid nanocarrier (Pep-MLHA HNPs) system based on hyaluronic acid (HA)-modified polymer and a functional peptide possesses multi-target capability and stronger penetration ability into the core of three-dimensional tumor spheroids, could migrate efficiently across the BBB in vitro. The intensity of the Pep-MLHA HNPs after transporting across the BBB was 5.2-fold and 5.6-fold higher than that of ML NPs in C6 and U87 cells, respectively. More interestingly, this multi-targeting hybrid system displayed high colloidal stability in PBS solution, and weak negative zeta potential (-1.99 ± 0.655 mV) minimizing nonspecific interactions with plasma proteins and promoting long-term circulation in vivo. Additionally, the multi-targeting hybrid system induced enhanced tumor localization in U87 in situ-bearing nude mice and xenograft-bearing nude mice after systemic administration. Furthermore, docetaxel (DTX)-loaded Pep-MLHA HNPs showed negligible systemic toxicity and enhanced therapeutic efficacy, with significantly improved survival rates in intracranial C6 glioma-bearing rats. The 50% survival rate of DTX/Pep-MLHA HNPs-treated rats (40 days) was significantly longer than that of rats treated with NS (22 days), Taxotere® (25 days), DTX/ML NPs (25 days), DTX/Pep NPs (32 days) and DTX/MLHA NPs (29 days). All the results suggested that the multi-targeting hybrid nanocarrier system is promising for glioma treatment.
Collapse
Affiliation(s)
- Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rubio V, Iragavarapu V, Stawikowski MJ. Synthesis and Characterization of ROSA Dye - A Rhodamine B-type Fluorophore, Suitable for Bioconjugation and Fluorescence Studies in Live Cells. Protein Pept Lett 2019; 26:758-767. [PMID: 31215362 DOI: 10.2174/0929866526666190619110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/02/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Herein we report the multigram-scale synthesis, characterization and application of a rhodamine B-based fluorophore (ROSA) suitable for fluorescent studies in biological applications. This fluorophore is devoid of rhodamine spirolactone formation and furthermore characterized by a high molar extinction coefficient (ϵ=87250 ± 1630 M-1cm-1) and quantum yield (φ) of 0.589 ± 0.070 in water. Reported here is also the application of ROSA towards synthesis of a ROSA-PEG-GRGDS-NH2 fluorescent probe suitable for live cell imaging of αvβ3 integrins for in vitro assays. OBJECTIVES The main objective of this study is to efficiently prepare rhodamine B derivative, devoid of spirolactone formation that would be suitable for bioconjugation and subsequent bioimaging. METHODS Rhodamine B was transformed into rhodamine B succinimide ester (RhoB-OSu) using N-hydroxysuccinimide. RhoB-OSu was further coupled to sarcosine to obtain rhodamine Bsarcosine dye (ROSA) in good yield. The ROSA dye was then coupled to a αvβ3 integrin binding sequence using standard solid-phase conditions. Resulting ROSA-PEG-GRGDS-NH2 probe was used to image integrins on cancer cells. RESULTS The rhodamine B-sarcosine dye (ROSA) was obtained in multigram scale in good total yield of 47%. Unlike rhodamine B, the ROSA dye does not undergo pH-dependent spirolactone/spirolactam formation as compared with rhodamine B-glycine. It is also characterized by excellent quantum yield (φ) of 0.589 ± 0.070 in water and high molar extinction coefficient of 87250 ± 1630 M-1cm-1. ROSA coupling to the RGD-like peptide was proved to be efficient and straightforward. Imaging using standard filters on multimode plate reader and confocal microscope was performed. The αvβ3 integrins present on the surface of live WM-266-4 (melanoma) and MCF- 7 (breast cancer) cells were successfully imaged. CONCLUSION We successfully derivatized rhodamine B to create an inexpensive, stable and convenient to use fluorescent probe. The obtained derivative has excellent photochemical properties and it is suitable for bioconjugation and many imaging applications.
Collapse
Affiliation(s)
- Vicente Rubio
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, United States
| | - Vijaya Iragavarapu
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, United States
| | - Maciej J Stawikowski
- Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, United States
| |
Collapse
|
40
|
Wang C, Yu F, Liu X, Chen S, Wu R, Zhao R, Hu F, Yuan H. Cancer-Specific Therapy by Artificial Modulation of Intracellular Calcium Concentration. Adv Healthc Mater 2019; 8:e1900501. [PMID: 31368208 DOI: 10.1002/adhm.201900501] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/18/2019] [Indexed: 01/16/2023]
Abstract
Calcium (Ca2+ ) hemeostasis is crucial for the normal function of cellular biochemistry. The abnormal frequency of Ca2+ signaling in cancer cells makes them more vulnerable to Ca2+ modulation than normal cells. Here in this study, a novel cancer-specific therapy by artificially triggering Ca2+ overload in cancer cells is proposed. The feasibility of this therapy is illustrated by successful coupling of selective extrusion (Ca2+ ) inhibition effect of Curcumin (Cur) and the effective Ca2+ generating capability of amorphous calcium carbonate (ACC) into a facilely prepared water responsive phospholipid (PL)-ACC hybrid platform (PL/ACC-Cur). The obtained results demonstrate that PL/ACC-Cur can specifically boost the intracellular Ca2+ concentration to cause Ca2+ overload and to trigger mitochondria-related apoptosis in MCF-7 cells while sparing normal hepatocyte (L02), which might be a promising approach for effective cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
- School of Food Science and Pharmaceutical EngineeringNanjing Normal University No. 1 Wenyuan Road Nanjing 210046 China
| | - Fangying Yu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Xuerong Liu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Shaoqing Chen
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Rui Wu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Rui Zhao
- Sir Run Run Shaw HospitalSchool of MedicineZhejiang University No. 3 Qingchun East Road Hangzhou 310016 China
| | - Fuqiang Hu
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| | - Hong Yuan
- College of Pharmaceutical SciencesZhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| |
Collapse
|
41
|
Zhang Y, Wang F, Bao L, Li J, Shi Z, Wang J. Cyclic hydrostatic compress force regulates apoptosis of meniscus fibrochondrocytes via integrin α5β1. Physiol Res 2019; 68:639-649. [DOI: 10.33549/physiolres.934088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Meniscus is a semilunar fibrocartilaginous tissue, serving important roles in load buffering, stability, lubrication, proprioception, and nutrition of the knee joint. The degeneration and damage of meniscus has been proved to be a risk factor of knee osteoarthritis. Mechanical stimulus is a critical factor of the development, maintenance and repair of the meniscus fibrochondrocytes. However, the mechanism of the mechano-transduction process remains elusive. Here we reported that cyclic hydrostatic compress force (CHCF) treatment promotes proliferation and inhibits apoptosis of the isolated primary meniscus fibrochondrocytes (PMFs), via upregulating the expression level of integrin α5β1. Consequently, increased phosphorylated-ERK1/2 and phosphorylated-PI3K, and decreased caspase-3 were detected. These effects of CHCF treatment can be abolished by integrin α5β1 inhibitor or specific siRNA transfection. These data indicate that CHCF regulates apoptosis of PMFs via integrin α5β1-FAK-PI3K/ERK pathway, which may be an important candidate approach during meniscus degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - J. Wang
- Department of orthopedic surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
42
|
|
43
|
Jeyapalina S, Mitchell SJ, Agarwal J, Bachus KN. Biomimetic coatings and negative pressure wound therapy independently limit epithelial downgrowth around percutaneous devices. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:71. [PMID: 31183809 DOI: 10.1007/s10856-019-6272-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Biomimetic material coatings and negative pressure wound therapy (NPWT) have been shown independently to limit the epithelial downgrowth rates in percutaneous devices. It was therefore hypothesized that these techniques, in combination, could further limit the clinically observed epithelial downgrowth around these devices. In this study, we evaluated the efficacy of two biomimetic coatings, collagen and hydroxyapatite (HA), to prevent downgrowth when used with continuous NPWT. Using an established single-stage surgical protocol, collagen (n = 10) and HA (n = 10) coated devices were implanted subdermally on the back of hairless guinea pigs. Five animals from each group were subjected to continuous ~90 mmHg NPWT. Four weeks post-implantation, animals were sacrificed, and the devices and surrounding tissues were harvested, processed, and downgrowth was computed and compared to historical porous titanium coated controls. Data showed a significant reduction in downgrowth in NPWT treated animals (p ≤ 0.05) when compared to the untreated porous titanium controls. HA coated devices, without the NPWT treatment, also showed significantly decreased downgrowth compared to the untreated porous titanium controls.
Collapse
Affiliation(s)
- Sujee Jeyapalina
- Department of Veterans Affairs Medical Center, Orthopaedic Research Laboratory, Salt Lake City, UT, 84148, USA.
- Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA.
| | - Saranne J Mitchell
- Department of Veterans Affairs Medical Center, Orthopaedic Research Laboratory, Salt Lake City, UT, 84148, USA
- Orthopaedic Research Laboratory, University of Utah Orthopaedic Center, Salt Lake City, UT, 84108, USA
- Department of Bioengineering, University of Utah Salt Lake City, Salt Lake City, UT, 84112, USA
| | - Jayant Agarwal
- Division of Plastic Surgery, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Kent N Bachus
- Department of Veterans Affairs Medical Center, Orthopaedic Research Laboratory, Salt Lake City, UT, 84148, USA.
- Orthopaedic Research Laboratory, University of Utah Orthopaedic Center, Salt Lake City, UT, 84108, USA.
- Department of Bioengineering, University of Utah Salt Lake City, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
44
|
Structural studies of plasmin inhibition. Biochem Soc Trans 2019; 47:541-557. [DOI: 10.1042/bst20180211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Plasminogen (Plg) is the zymogen form of the serine protease plasmin (Plm), and it plays a crucial role in fibrinolysis as well as wound healing, immunity, tissue remodeling and inflammation. Binding to the targets via the lysine-binding sites allows for Plg activation by plasminogen activators (PAs) present on the same target. Cellular uptake of fibrin degradation products leads to apoptosis, which represents one of the pathways for cross-talk between fibrinolysis and tissue remodeling. Therapeutic manipulation of Plm activity plays a vital role in the treatments of a range of diseases, whereas Plm inhibitors are used in trauma and surgeries as antifibrinolytic agents. Plm inhibitors are also used in conditions such as angioedema, menorrhagia and melasma. Here, we review the rationale for the further development of new Plm inhibitors, with a particular focus on the structural studies of the active site inhibitors of Plm. We compare the binding mode of different classes of inhibitors and comment on how it relates to their efficacy, as well as possible future developments.
Collapse
|
45
|
The MEK-ERK-MST1 Axis Potentiates the Activation of the Extrinsic Apoptotic Pathway during GDC-0941 Treatment in Jurkat T Cells. Cells 2019; 8:cells8020191. [PMID: 30795621 PMCID: PMC6406719 DOI: 10.3390/cells8020191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023] Open
Abstract
The discrete activation of individual caspases is essential during T-cell development, activation, and apoptosis. Humans carrying nonfunctional caspase-8 and caspase-8 conditional knockout mice exhibit several defects in the progression of naive CD4+ T cells to the effector stage. MST1, a key kinase of the Hippo signaling pathway, is often presented as a substrate of caspases, and its cleavage by caspases potentiates its activity. Several studies have focused on the involvement of MST1 in caspase activation and also reported several defects in the immune system function caused by MST1 deficiency. Here, we show the rapid activation of the MEK-ERK-MST1 axis together with the cleavage and activation of caspase-3, -6, -7, -8, and -9 after PI3K signaling blockade by the selective inhibitor GDC-0941 in Jurkat T cells. We determined the phosphorylation pattern of MST1 using a phosphoproteomic approach and identified two amino acid residues phosphorylated in an ERK-dependent manner after GDC-0941 treatment together with a novel phosphorylation site at S21 residue, which was extensively phosphorylated in an ERK-independent manner during PI3K signaling blockade. Using caspase inhibitors and the inhibition of MST1 expression using siRNA, we identified an exclusive role of the MEK-ERK-MST1 axis in the activation of initiator caspase-8, which in turn activates executive caspase-3/-7 that finally potentiate MST1 proteolytic cleavage. This mechanism forms a positive feed-back loop that amplifies the activation of MST1 together with apoptotic response in Jurkat T cells during PI3K inhibition. Altogether, we propose a novel MEK-ERK-MST1-CASP8-CASP3/7 apoptotic pathway in Jurkat T cells and believe that the regulation of this pathway can open novel possibilities in systemic and cancer therapies.
Collapse
|
46
|
Szekacs I, Farkas E, Gemes BL, Takacs E, Szekacs A, Horvath R. Integrin targeting of glyphosate and its cell adhesion modulation effects on osteoblastic MC3T3-E1 cells revealed by label-free optical biosensing. Sci Rep 2018; 8:17401. [PMID: 30479368 PMCID: PMC6258691 DOI: 10.1038/s41598-018-36081-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
This study is a discovery of interesting and far reaching properties of the world leading herbicide active ingredient glyphosate. Here we demonstrate the cell adhesion-modifying characteristics of glyphosate affecting cellular interactions via Arg-Gly-Asp (RGD)-dependent integrins. This conclusion was supported by the observations that a glyphosate surface coating induced integrin-specific cell adhesion, while glyphosate in solution inhibited cell adhesion on an RGD-displaying surface. A sensitive, real-time, label-free, whole cell approach was used to monitor the cell adhesion kinetic processes with excellent data quality. The half maximal inhibitory concentration (IC50) for glyphosate was determined to be 0.47 ± 0.07% (20.6 mM) in serum-free conditions. A three-dimensional dissociation constant of 0.352 mM was calculated for the binding between RGD-specific integrins in intact MC3T3-E1 cells and soluble glyphosate by measuring its competition for RGD-motifs binding, while the affinity of those RGD-specific integrins to the RGD-motifs was 5.97 µM. The integrin-targeted affinity of glyphosate was proven using competitive binding assays to recombinant receptor αvβ3. The present study shows not only ligand-binding properties of glyphosate, but also illustrates its remarkable biomimetic power in the case of cell adhesion.
Collapse
Affiliation(s)
- Inna Szekacs
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary
| | - Eniko Farkas
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary
- Subdoctoral School of Molecular and Nanotechnologies, Chemical Engineering and Material Science Doctoral School, University of Pannonia, Egyetem u.10, H-8200, Veszprém, Hungary
| | - Borbala Leticia Gemes
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Eszter Takacs
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Andras Szekacs
- Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Herman Ottó u. 15, H-1022, Budapest, Hungary.
| | - Robert Horvath
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary.
| |
Collapse
|
47
|
Liu L, Guo W, Liang XJ. Move to Nano-Arthrology: Targeted Stimuli-Responsive Nanomedicines Combat Adaptive Treatment Tolerance (ATT) of Rheumatoid Arthritis. Biotechnol J 2018; 14:e1800024. [DOI: 10.1002/biot.201800024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Lu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease; The Second Affiliated Hospital; Guangzhou Medical University; Guangzhou 510260 P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
48
|
Debordeaux F, Chansel-Debordeaux L, Pinaquy JB, Fernandez P, Schulz J. What about αvβ3 integrins in molecular imaging in oncology? Nucl Med Biol 2018; 62-63:31-46. [DOI: 10.1016/j.nucmedbio.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
49
|
Selective Cu(I) complex with phosphine-peptide (SarGly) conjugate contra breast cancer: Synthesis, spectroscopic characterization and insight into cytotoxic action. J Inorg Biochem 2018; 186:162-175. [PMID: 29945023 DOI: 10.1016/j.jinorgbio.2018.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022]
Abstract
The main disadvantage of conventional anticancer chemotherapy is the inability to deliver the correct amount of drug directly to cancer. Those molecular delivering systems are very important to destroy cancer cells selectively. Herein we report synthesis of phosphine-peptide conjugate (Ph2PCH2-Sar-Gly-OH, PSG) derived from SarGly (sarcosine-glycine), which can be easily exchanged to other peptide carriers, its oxide (OPh2PCH2-Sar-Gly-OH, OPSG) and the first copper(I) complex ([CuI(dmp)(P(Ph)2CH2-Sar-Gly-OH)], 1-PSG, where dmp stands for 2,9-dimethyl-1,10-phenanthroline). The compounds were characterized by elemental analysis, NMR (1D, 2D), UV-Vis spectroscopy and DFT (Density Functional Theory) methods. PSG and 1-PSG proved to be stable in biological medium in the presence of atmospheric oxygen for several days. The cytotoxicity of the compounds and cisplatin was tested against cancer cell lines: mouse colon carcinoma (CT26; 1-PSGIC50 = 3.12 ± 0.1), human lung adenocarcinoma (A549; 1-PSGIC50 = 2.01 ± 0.2) and human breast adenocarcinoma (MCF7; 1-PSGIC50 = 0.98 ± 0.2) as well as against primary line of human pulmonary fibroblasts (MRC-5; 1-PSGIC50 = 78.56 ± 1.1). Therapeutic index for 1-PSG (MCF7) equals 80. Intracellular accumulation of 1-PSG complex increased with time and was much higher (96%) inside MCF7 cancer cells than in normal MRC5 cells (20%). Attachment of SarGly to cytotoxic copper(I) complex via phosphine motif improved selectivity of copper(I) complex 1-PSG into the cancer cells. Precise mechanistic study revealed that the 1-PSG complex causes apoptotic cells MCF7 death with simultaneous decrease of mitochondrial membrane potential and increase of caspase-9 and -3 activities. Additionally, 1-PSG generated high level of reactive oxygen species that was the reason for oxidative damages to the sugar-phosphate backbone of plasmid DNA.
Collapse
|
50
|
Pro-apoptotic peptides-based cancer therapies: challenges and strategies to enhance therapeutic efficacy. Arch Pharm Res 2018; 41:594-616. [PMID: 29804279 DOI: 10.1007/s12272-018-1038-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/10/2018] [Indexed: 12/30/2022]
Abstract
Cancer is a leading cause of death worldwide. Despite many advances in the field of cancer therapy, an effective cure is yet to be found. As a more potent alternative for the conventional small molecule anti-cancer drugs, pro-apoptotic peptides have emerged as a new class of anticancer agents. By interaction with certain members in the apoptotic pathways, they could effectively kill tumor cells. However, there remain bottleneck challenges for clinical application of these pro-apoptotic peptides in cancer therapy. In this review, we will overview the developed pro-apoptotic peptides and outline the widely adopted molecular-based and nanoparticle-based strategies to enhance their anti-tumor effects.
Collapse
|