1
|
Boikov SI, Karelina TV, Sibarov DA, Antonov SM. Selective inhibitor of sodium-calcium exchanger, SEA0400, affects NMDA receptor currents and abolishes their calcium-dependent block by tricyclic antidepressants. Front Pharmacol 2024; 15:1432718. [PMID: 39156114 PMCID: PMC11327140 DOI: 10.3389/fphar.2024.1432718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The open-channel block of N-methyl-D-aspartate receptors (NMDARs) and their calcium-dependent desensitization (CDD) represent conventional mechanisms of glutamatergic synapse regulation. In neurotrauma, neurodegeneration, and neuropathic pain the clinical benefits of cure with memantine, ketamine, Mg2+, and some tricyclic antidepressants are often attributed to NMDAR open-channel block, while possible involvement of NMDAR CDD in the therapy is not well established. Here the effects of selective high-affinity sodium-calcium exchanger (NCX) isoform 1 inhibitor, SEA0400, on NMDA-activated whole-cell currents and their block by amitriptyline, desipramine and clomipramine recorded by patch-clamp technique in cortical neurons of primary culture were studied. We demonstrated that in the presence of extracellular Ca2+, 50 nM SEA0400 caused a reversible decrease of the steady-state amplitude of NMDAR currents, whereas loading neurons with BAPTA or the removal of extracellular Ca2+ abolished the effect. The decrease did not exceed 30% of the amplitude and did not depend on membrane voltage. The external Mg2+ block and 50 nM SEA0400 inhibition of currents were additive, suggesting their independent modes of action. In the presence of Ca2+ SEA0400 speeded up the decay of NMDAR currents to the steady state determined by CDD. The measured IC50 value of 27 nM for SEA0400-induced inhibition coincides with that for NCX1. Presumably, SEA0400 effects are induced by an enhancement of NMDAR CDD through the inhibition of Ca2+ extrusion by NCX1. SEA0400, in addition, at nanomolar concentrations could interfere with Ca2+-dependent effect of tricyclic antidepressants. In the presence of 50 nM SEA0400, the IC50s for NMDAR inhibition by amitriptyline and desipramine increased by about 20 folds, as the Ca2+-dependent NMDAR inhibition disappeared. This observation highlights NCX1 involvement in amitriptyline and desipramine effects on NMDARs and unmasks competitive relationships between SEA0400 and these antidepressants. Neither amitriptyline nor desipramine could affect NCX3. The open-channel block of NMDARs by these substances was not affected by SEA0400. In agreement, SEA0400 did not change the IC50 for clomipramine, which acts as a pure NMDAR open-channel blocker. Thus, NCX seems to represent a promising molecular target to treat neurological disorders, because of the ability to modulate NMDARs by decreasing the open probability through the enhancement of their CDD.
Collapse
Affiliation(s)
| | | | | | - Sergei M. Antonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Turcu AL, Companys-Alemany J, Phillips MB, Patel DS, Griñán-Ferré C, Loza MI, Brea JM, Pérez B, Soto D, Sureda FX, Kurnikova MG, Johnson JW, Pallàs M, Vázquez S. Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer's disease. Eur J Med Chem 2022; 236:114354. [PMID: 35453065 PMCID: PMC9106868 DOI: 10.1016/j.ejmech.2022.114354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022]
Abstract
Currently, of the few accessible symptomatic therapies for Alzheimer's disease (AD), memantine is the only N-methyl-d-aspartate receptor (NMDAR) blocker approved by the FDA. This work further explores a series of memantine analogs featuring a benzohomoadamantane scaffold. Most of the newly synthesized compounds block NMDARs in the micromolar range, but with lower potency than previously reported hit IIc, results that were supported by molecular dynamics simulations. Subsequently, electrophysiological studies with the more potent compounds allowed classification of IIc, a low micromolar, uncompetitive, voltage-dependent, NMDAR blocker, as a memantine-like compound. The excellent in vitro DMPK properties of IIc made it a promising candidate for in vivo studies in Caenorhabditis elegans (C. elegans) and in the 5XFAD mouse model of AD. Administration of IIc or memantine improved locomotion and rescues chemotaxis behavior in C. elegans. Furthermore, both compounds enhanced working memory in 5XFAD mice and modified NMDAR and CREB signaling, which may prevent synaptic dysfunction and modulate neurodegenerative progression.
Collapse
Affiliation(s)
- Andreea L Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain; Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036, Barcelona, Spain
| | - Júlia Companys-Alemany
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences (NeuroUB), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Matthew B Phillips
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Dhilon S Patel
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Christian Griñán-Ferré
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences (NeuroUB), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - M Isabel Loza
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, Edificio CIMUS, Av. Barcelona, S/N, E, 15706, Santiago de Compostela, Spain
| | - José M Brea
- Innopharma Screening Platform, Biofarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, Edificio CIMUS, Av. Barcelona, S/N, E, 15706, Santiago de Compostela, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics and Toxicology, Autonomous University of Barcelona, E-08193, Bellaterra, Spain
| | - David Soto
- Neurophysiology Laboratory, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08036, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Francesc X Sureda
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./ St. Llorenç 21, 43201, Reus, Tarragona, Spain
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Neurosciences (NeuroUB), Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
3
|
Stepanenko YD, Sibarov DA, Shestakova NN, Antonov SM. Tricyclic Antidepressant Structure-Related Alterations in Calcium-Dependent Inhibition and Open-Channel Block of NMDA Receptors. Front Pharmacol 2022; 12:815368. [PMID: 35237149 PMCID: PMC8882908 DOI: 10.3389/fphar.2021.815368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are an essential target for the analgetic action of tricyclic antidepressants (TCAs). Their therapeutic blood concentrations achieve 0.5–1.5 μM, which, however, are insufficient to cause in vitro the open-channel block known as the only effect of TCAs on NMDARs. Whereas structures of amitriptyline (ATL), desipramine (DES), and clomipramine (CLO) are rather similar these compounds manifest different therapeutic profiles and side effects. To study structure-activity relationships of DES and CLO on NMDARs, we measured IC50s as a function of extracellular calcium ([Ca2+]) and membrane voltage (Vm) of NMDAR currents recorded in cortical neurons. Here two components of TCA action on NMDARs are described, which could be characterized as the Ca2+-dependent inhibition and the open-channel block. DES demonstrated a profound Ca2+-dependent inhibition of NMDARs, while the CLO effect was weak. DES IC50 exhibited an e-fold change with a [Ca2+] shift of 0.59 mM, which is consistent with ATL. The Ca2+ dependence of NMDAR inhibition by DES disappeared in BAPTA loaded neurons, suggesting that Ca2+ acts from the inside. Since CLO differs from DES and ATL by the presence of Cl-atom in the structure, most likely, this is the atom which is responsible for the loss of pronounced [Ca2+] dependence. As for the NMDAR open-channel block, both DES and CLO were about 5-folds more potent than ATL due to their slow rates of dissociation either from open and closed states. DES demonstrated stronger Vm-dependence than CLO, suggesting a deeper location of the DES binding site within the ion pore. Because DES and CLO differ from ATL by the nitrogen-containing tricycle, presumably this moiety of the molecules determines their high-affinity binding with the NMDAR channel, while the aliphatic chain mono-methyl amino-group of DES allows a deep permeation in the channel. Thus, different structure-activity relationships of the Ca2+-dependent inhibition and Vm-dependent open-channel block of NMDARs by DES and CLO suggest that these processes are independent and most likely may represent an action on different molecular targets. The proposed model of TCA action on NMDARs predicts well the experimental values of IC50s at physiological [Ca2+] and within a wide range of Vms.
Collapse
|
4
|
Phillips MB, Nigam A, Johnson JW. Interplay between Gating and Block of Ligand-Gated Ion Channels. Brain Sci 2020; 10:brainsci10120928. [PMID: 33271923 PMCID: PMC7760600 DOI: 10.3390/brainsci10120928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 02/03/2023] Open
Abstract
Drugs that inhibit ion channel function by binding in the channel and preventing current flow, known as channel blockers, can be used as powerful tools for analysis of channel properties. Channel blockers are used to probe both the sophisticated structure and basic biophysical properties of ion channels. Gating, the mechanism that controls the opening and closing of ion channels, can be profoundly influenced by channel blocking drugs. Channel block and gating are reciprocally connected; gating controls access of channel blockers to their binding sites, and channel-blocking drugs can have profound and diverse effects on the rates of gating transitions and on the stability of channel open and closed states. This review synthesizes knowledge of the inherent intertwining of block and gating of excitatory ligand-gated ion channels, with a focus on the utility of channel blockers as analytic probes of ionotropic glutamate receptor channel function.
Collapse
Affiliation(s)
- Matthew B. Phillips
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.P.); (A.N.)
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aparna Nigam
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.P.); (A.N.)
| | - Jon W. Johnson
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (M.B.P.); (A.N.)
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-(412)-624-4295
| |
Collapse
|
5
|
Dual action of amitriptyline on NMDA receptors: enhancement of Ca-dependent desensitization and trapping channel block. Sci Rep 2019; 9:19454. [PMID: 31857688 PMCID: PMC6923474 DOI: 10.1038/s41598-019-56072-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
Although the tricyclic antidepressant amitriptyline (ATL) is widely used in the clinic, the mechanism underlying its high therapeutic efficacy against neuropathic pain remains unclear. NMDA receptors (NMDARs) represent a target for ATL and are involved in sensitization of neuropathic pain. Here we describe two actions of ATL on NMDARs: 1) enhancement of Ca2+-dependent desensitization and 2) trapping channel block. Inhibition of NMDARs by ATL was found to be dependent upon external Ca2+ concentration ([Ca2+]) in a voltage-independent manner, with an IC50 of 0.72 μM in 4 mM [Ca2+]. The ATL IC50 value increased exponentially with decreasing [Ca2+], with an e-fold change observed per 0.69 mM decrease in [Ca2+]. Loading neurons with BAPTA abolished Ca2+-dependent inhibition, suggesting that Ca2+ affects NMDARs from the cytosol. Since there is one known Ca2+-dependent process in gating of NMDARs, we conclude that ATL most likely promotes Ca2+-dependent desensitization. We also found ATL to be a trapping open-channel blocker of NMDARs with an IC50 of 220 µM at 0 mV. An e-fold change in ATL IC50 was observed to occur with a voltage shift of 50 mV in 0.25 mM [Ca2+]. Thus, we disclose here a robust dependence of ATL potency on extracellular [Ca2+], and demonstrate that ATL bound in the NMDAR pore can be trapped by closure of the channel.
Collapse
|
6
|
Leiva R, Phillips MB, Turcu AL, Gratacòs-Batlle E, León-García L, Sureda FX, Soto D, Johnson JW, Vázquez S. Pharmacological and Electrophysiological Characterization of Novel NMDA Receptor Antagonists. ACS Chem Neurosci 2018; 9:2722-2730. [PMID: 29767953 DOI: 10.1021/acschemneuro.8b00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This work reports the synthesis and pharmacological and electrophysiological evaluation of new N-methyl-d-aspartic acid receptor (NMDAR) channel blocking antagonists featuring polycyclic scaffolds. Changes in the chemical structure modulate the potency and voltage dependence of inhibition. Two of the new antagonists display properties comparable to those of memantine, a clinically approved NMDAR antagonist.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Matthew B. Phillips
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andreea L. Turcu
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Esther Gratacòs-Batlle
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Lara León-García
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | - Francesc X. Sureda
- Pharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C./St. Llorenç 21, 43201 Reus, Tarragona, Spain
| | - David Soto
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School Universitat de Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, and Institut of Neurosciences, 08036 Barcelona, Spain
| | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l’Alimentació i Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| |
Collapse
|
7
|
Sibarov DA, Poguzhelskaya EE, Antonov SM. Downregulation of calcium-dependent NMDA receptor desensitization by sodium-calcium exchangers: a role of membrane cholesterol. BMC Neurosci 2018; 19:73. [PMID: 30419823 PMCID: PMC6233507 DOI: 10.1186/s12868-018-0475-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The plasma membrane Na+/Ca2+-exchanger (NCX) has recently been shown to regulate Ca2+-dependent N-methyl-D-aspartate receptor (NMDAR) desensitization, suggesting a tight interaction of NCXs and NMDARs in lipid nanoclasters or "rafts". To evaluate possible role of this interaction we studied effects of Li+ on NMDA-elicited whole-cell currents and Ca2+ responses of rat cortical neurons in vitro before and after cholesterol extraction by methyl-β-cyclodextrin (MβCD). RESULTS Substitution Li+ for Na+ in the external solution caused a concentration-dependent decrease of steady-state NMDAR currents from 440 ± 71 pA to 111 ± 29 pA in 140 mM Na+ and 140 mM Li+, respectively. The Li+ inhibition of NMDAR currents disappeared in the absence of Ca2+ in the external solution (Ca2+-free), suggesting that Li+ enhanced Ca2+-dependent NMDAR desensitization. Whereas the cholesterol extraction with MβCD induced a decrease of NMDAR currents to 136 ± 32 pA in 140 mM Na+ and 46 ± 15 pA in 140 mM Li+, the IC50 values for the Li+ inhibition were similar (about 44 mM Li+) before and after this procedure. In the Ca2+-free Na+ solution the steady-state NMDAR currents after the cholesterol extraction were 47 ± 6% of control values. Apparently this amplitude decrease was not Ca2+-dependent. In the Na+ solution containing 1 mM Ca2+ the Ca2+-dependent NMDAR desensitization was greater when cholesterol was extracted. Obviously, this procedure promoted its development. In agreement, Li+ and KB-R7943, an inhibitor of NCX, both considerably reduced NMDA-activated Ca2+ responses. The cholesterol extraction itself caused a decrease of NMDA-activated Ca2+ responses and, in addition, abolished the effects of Li+ and KB-R7943. The cholesterol loading into the plasma membrane caused a recovery of the KB-R7943 effects. CONCLUSIONS Taken together our data suggest that NCXs downregulate the Ca2+-dependent NMDAR desensitization. Most likely, this is determined by a tight functional interaction of NCX and NMDAR molecules because of their co-localization in membrane lipid rafts. The destruction of these rafts is accompanied by an enhancement of NMDAR desensitization and a loss of NCX-selective agent effects on NMDARs.
Collapse
Affiliation(s)
- Dmitry A. Sibarov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44 Saint-Petersburg, Russia
| | - Ekaterina E. Poguzhelskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44 Saint-Petersburg, Russia
| | - Sergei M. Antonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44 Saint-Petersburg, Russia
| |
Collapse
|
8
|
High sensitivity of cerebellar neurons to homocysteine is determined by expression of GluN2C and GluN2D subunits of NMDA receptors. Biochem Biophys Res Commun 2018; 506:648-652. [PMID: 30454701 DOI: 10.1016/j.bbrc.2018.10.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 10/28/2022]
Abstract
Homocysteine (HCY) induced neurotoxicity largely depends on interaction of this endogenous amino acid with glutamate NMDA receptors (NMDARs). This receptor type is composed by GluN1 and different GluN2 (A, B, C or D) subunits. However, the receptor activity of HCY in brain regions which differ in relative contribution of GluN2 subunits was not tested so far. In the current study, we explored the action of HCY on cerebellar neurons which natively express GluN2C and GluN2D subunits of NMDARs and compared this with the action of HCY on cortical neurons which are mainly composed by GluN2A and GluN2B subunits. To validate obtained results, we also studied the responses to HCY in recombinant GluN1/2C and GluN1/2D NMDARs expressed in HEK293T cells. Responses to HCY were compared to membrane currents evoked by glutamate or by the specific agonist NMDA. First, we found that on HEK cells expressing GluN1/2C or GluN1/2D NMDARs, HCY was full agonist producing membrane currents similar in amplitude to currents induced by glutamate. The EC50 values for these particular receptor subtype activation were 80 μM and 31 μM, respectively. Then, we found that HCY similarly to NMDA, evoked large slightly desensitizing membrane currents in native NMDARs of cerebellar and cortical neurons. In cortical neurons, the ratio of the respective currents (IHCY/INMDA) was 0.16 and did not significantly change during in vitro maturation. In sharp contrast, in cerebellar neurons, the ratio of currents evoked by HCY and NMDA was dramatically increased from 0.31 to 0.72 from 7 to 21 day in culture. We show that least 75% of HCY-induced currents in cerebellum were mediated by GluN2C- or GluN2D-containing NMDARs. Thus, our data revealed a large population of cerebellar NMDA receptors highly sensitive to HCY which suggest potential vulnerability of this brain region to pathological conditions associated with enhanced levels of this neurotoxic amino acid.
Collapse
|
9
|
Sibarov DA, Abushik PA, Giniatullin R, Antonov SM. GluN2A Subunit-Containing NMDA Receptors Are the Preferential Neuronal Targets of Homocysteine. Front Cell Neurosci 2016; 10:246. [PMID: 27847466 PMCID: PMC5088185 DOI: 10.3389/fncel.2016.00246] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/07/2016] [Indexed: 12/30/2022] Open
Abstract
Homocysteine (HCY) is an endogenous redox active amino acid, best known as contributor to various neurodegenerative disorders. Although it is known that HCY can activate NMDA receptors (NMDARs), the mechanisms of its action on receptors composed of different NMDA receptor subunits remains almost unknown. In this study, using imaging and patch clamp technique in cultured cortical neurons and heterologous expression in HEK293T cells we tested the agonist activity of HCY on NMDARs composed of GluN1 and GluN2A subunits (GluN1/2A receptors) and GluN1 and GluN2B subunits (GluN1/2B receptors). We demonstrate that the time courses of Ca2+ transients and membrane currents activated by HCY and NMDA in cortical neurons are drastically different. Application of HCY to cortical neurons induced responses, which in contrast to currents induced by NMDA (both in the presence of glycine) considerably decreased to steady state of small amplitude. In contrast to NMDA, HCY-activated currents at steady state were resistant to the selective GluN2B subunit inhibitor ifenprodil. In calcium-free external solution the decrease of NMDA evoked currents was abolished, suggesting the Ca2+-dependent NMDAR desensitization. Under these conditions HCY evoked currents still declined almost to the baseline suggesting Ca2+-independent desensitization. In HEK293T cells HCY activated NMDARs of GluN1/2A and GluN1/2B subunit compositions with EC50s of 9.7 ± 1.8 and 61.8 ± 8.9 μM, respectively. Recombinant GluN1/2A receptors, however, did not desensitize by HCY, whereas GluN1/2B receptors were almost fully desensitized by HCY. Thus, HCY is a high affinity agonist of NMDARs preferring the GluN1/2A subunit composition. Our data suggest that HCY induced native NMDAR currents in neurons are mainly mediated by the "synaptic type" GluN1/2A NMDARs. This implies that in hyperhomocysteinemia, a disorder with enlarged level of HCY in plasma, HCY may persistently contribute to post-synaptic responses mediated by GluN2A-containing NMDA receptors. On the other hand, HCY toxicity may be limited by desensitization typical for HCY-induced activation of GluN2B-containing extrasynaptic receptors. Our findings, therefore, provide an evidence for the physiological relevance of endogenous HCY, which may represent an effective endogenous modulator of the central excitatory neurotransmission.
Collapse
Affiliation(s)
- Dmitry A Sibarov
- Laboratory of Comparative Neurophysiology, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint-Petersburg, Russia
| | - Polina A Abushik
- Laboratory of Comparative Neurophysiology, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint-Petersburg, Russia
| | - Rashid Giniatullin
- Department of Neurobiology, University of Eastern FinlandKuopio, Finland; Laboratory of Neurobiology, Kazan Federal UniversityKazan, Russia
| | - Sergei M Antonov
- Laboratory of Comparative Neurophysiology, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences Saint-Petersburg, Russia
| |
Collapse
|
10
|
Skatchkov SN, Antonov SM, Eaton MJ. Glia and glial polyamines. Role in brain function in health and disease. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2016. [DOI: 10.1134/s1990747816010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Sibarov DA, Abushik PA, Poguzhelskaya EE, Bolshakov KV, Antonov SM. Inhibition of Plasma Membrane Na/Ca-Exchanger by KB-R7943 or Lithium Reveals Its Role in Ca-Dependent N-methyl-d-aspartate Receptor Inactivation. J Pharmacol Exp Ther 2015; 355:484-95. [PMID: 26391160 DOI: 10.1124/jpet.115.227173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/18/2015] [Indexed: 01/09/2023] Open
Abstract
To evaluate the possible role of the plasma membrane Na(+)/Ca(2+)-exchanger (NCX) in regulation of N-methyl-d-aspartate (NMDA) receptors (NMDARs), we studied effects of 2-[2-[4-(4-nitrobenzyloxy) phenyl]ethyl]isothiourea methanesulfonate (KB-R7943; KBR) and lithium (inhibitors of NCX) on NMDA-elicited whole-cell currents using the patch-clamp technique on rat cortical neurons and human embryonic kidney 293T cells expressing recombinant NMDARs. KBR inhibited NMDAR currents in a voltage-independent manner with similar potency for receptors of GluN1/2A and GluN1/2B subunit compositions that excludes open-channel block and GluN2B-selective inhibition. The inhibition by KBR depended on glycine (Gly) concentration. At 30 μM NMDA, the KBR IC50 values were 5.3 ± 0.1 and 41.2 ± 8.8 μM for 1 and 300 μM Gly, respectively. Simultaneous application of NMDA + KBR in the absence of Gly induced robust inward NMDAR currents that peaked and then rapidly decreased. KBR, therefore, is an agonist (EC50 is 1.18 ± 0.16 µM) of the GluN1 subunit coagonist binding sites. The decrease of NMDA-elicited currents in the presence of KBR was abolished in Ca(2+)-free solution and was not observed in the presence of extracellular Ca(2+) on 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-loaded neurons, suggesting that Ca(2+) affects NMDARs from the cytosol. In agreement, the substitution of Li(+) for extracellular Na(+) caused a considerable decrease of NMDAR currents, which was not observed in the absence of extracellular Ca(2+). Most likely, the accumulation of intracellular Ca(2+) is caused by the inhibition of Ca(2+) extrusion via NCX. Thus, KBR and Li(+) provoke Ca(2+)-dependent receptor inactivation due to the disruption of Ca(2+) extrusion by the NCX. The data reveal the role of NCX in regulation of Ca(2+)-dependent inactivation of NMDARs.
Collapse
Affiliation(s)
- Dmitry A Sibarov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Polina A Abushik
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina E Poguzhelskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Konstantin V Bolshakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergei M Antonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
12
|
Abstract
This review focuses on the roles of glia and polyamines (PAs) in brain function and dysfunction, highlighting how PAs are one of the principal differences between glia and neurons. The novel role of PAs, such as putrescine, spermidine, and spermine and their precursors and derivatives, is discussed. However, PAs have not yet been a focus of much glial research. They affect many neuronal and glial receptors, channels, and transporters. They are therefore key elements in the development of many diseases and syndromes, thus forming the rationale for PA-focused and glia-focused therapy for these conditions.
Collapse
Affiliation(s)
- Serguei N Skatchkov
- Department of Biochemistry, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA; Department of Physiology, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA.
| | - Michel A Woodbury-Fariña
- Department of Psychiatry, University of Puerto Rico School of Medicine, 307 Calle Eleonor Roosevelt, San Juan, PR 00918-2720, USA
| | - Misty Eaton
- Department of Biochemistry, School of Medicine, Universidad, Central del Caribe, PO Box 60-327, Bayamón, PR 00960-6032, USA
| |
Collapse
|
13
|
Abstract
Glutamate receptors are ligand-gated ion channels that mediate fast excitatory synaptic transmission throughout the central nervous system. Functional receptors are homo- or heteromeric tetramers with each subunit contributing a re-entrant pore loop that dips into the membrane from the cytoplasmic side. The pore loops form a narrow constriction near their apex with a wide vestibule toward the cytoplasm and an aqueous central cavity facing the extracellular solution. This article focuses on the pore region, reviewing how structural differences among glutamate receptor subtypes determine their distinct functional properties.
Collapse
Affiliation(s)
- James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
14
|
Santangelo Freel RM, Ogden KK, Strong KL, Khatri A, Chepiga KM, Jensen HS, Traynelis SF, Liotta DC. Synthesis and structure activity relationship of tetrahydroisoquinoline-based potentiators of GluN2C and GluN2D containing N-methyl-D-aspartate receptors. J Med Chem 2013; 56:5351-81. [PMID: 23627311 DOI: 10.1021/jm400177t] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We describe here the synthesis and evaluation of a series of tetrahydroisoquinolines that show subunit-selective potentiation of NMDA receptors containing the GluN2C or GluN2D subunits. Bischler-Napieralski conditions were employed in the key step for the conversion of acyclic amides to the corresponding tetrahydroisoquinoline-containing analogs. Compounds were evaluated using both two-electrode voltage clamp recordings from Xenopus laevis oocytes and imaging of mammalian BHK cells loaded with Ca(2+)-sensitive dyes. The most potent analogues had EC50 values of 300 nM and showed over 2-fold potentiation of the response to maximally effective concentrations of glutamate and glycine but had no effect on responses from NMDA receptors containing the GluN2A or GluN2B subunits AMPA, kainate, and GABA or glycine receptors or a variety of other potential targets. These compounds represent a potent class of small molecule subunit-selective potentiators of NMDA receptors.
Collapse
Affiliation(s)
- Rose M Santangelo Freel
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abushik PA, Sibarov DA, Eaton MJ, Skatchkov SN, Antonov SM. Kainate-induced calcium overload of cortical neurons in vitro: Dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain. Cell Calcium 2013; 54:95-104. [PMID: 23721822 DOI: 10.1016/j.ceca.2013.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 01/03/2023]
Abstract
Whereas kainate (KA)-induced neurodegeneration has been intensively investigated, the contribution of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in neuronal Ca2+ overload ([Ca2+]i) is still controversial. Using Ca2+ imaging and patch-clamp techniques, we found different types of Ca2+ entry in cultured rat cortical neurons. The presence of Ca2+ in the extracellular solution was required to generate the [Ca2+]i responses to 30 μM N-methyl-d-aspartate (NMDA) or KA. The dynamics of NMDA-induced [Ca2+]i responses were fast, while KA-induced responses developed slower reaching high [Ca2+]i. Ifenprodil, a specific inhibitor of the GluN2B subunit of NMDARs, reduced NMDA-induced [Ca2+]i responses suggesting expression of GluN1/GluN2B receptors. Using IEM-1460, a selective blocker of Ca(2+)-permeable GluA2-subunit lacking AMPARs, we found three neuronal responses to KA: (i) IEM-1460 resistant neurons which are similar to pyramidal neurons expressing Ca(2+)-impermeable GluA2-rich AMPARs; (ii) Neurons exhibiting nearly complete block of both KA-induced currents and [Ca2+]i signals by IEM-1460 may represent interneurons expressing GluA2-lacking AMPARs and (iii) neurons with moderate sensitivity to IEM-1460. Ouabain at 1 nM prevented the neuronal Ca2+ overload induced by KA. The data suggest, that cultured rat cortical neurons maintain functional phenotypes of the adult brain cortex, and demonstrate the key contribution of the Na/K-ATPase in neuroprotection against KA excitotoxicity.
Collapse
Affiliation(s)
- Polina A Abushik
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| | | | | | | | | |
Collapse
|
16
|
Mechanistic and structural determinants of NMDA receptor voltage-dependent gating and slow Mg2+ unblock. J Neurosci 2013; 33:4140-50. [PMID: 23447622 DOI: 10.1523/jneurosci.3712-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptor (NMDAR)-mediated currents depend on membrane depolarization to relieve powerful voltage-dependent NMDAR channel block by external magnesium (Mg(o)(2+)). Mg(o)(2+) unblock from native NMDARs exhibits a fast component that is consistent with rapid Mg(o)(2+) -unbinding kinetics and also a slower, millisecond time scale component (slow Mg(o)(2+) unblock). In recombinant NMDARs, slow Mg(o)(2+) unblock is prominent in GluN1/2A (an NMDAR subtype composed of GluN1 and GluN2A subunits) and GluN1/2B receptors, with slower kinetics observed for GluN1/2B receptors, but absent from GluN1/2C and GluN1/2D receptors. Slow Mg(o)(2+) unblock from GluN1/2B receptors results from inherent voltage-dependent gating, which increases channel open probability with depolarization. Here we examine the mechanisms responsible for NMDAR subtype dependence of slow Mg(o)(2+) unblock. We demonstrate that slow Mg(o)(2+) unblock from GluN1/2A receptors, like GluN1/2B receptors, results from inherent voltage-dependent gating. Surprisingly, GluN1/2A and GluN1/2B receptors exhibited equal inherent voltage dependence; faster Mg(o)(2+) unblock from GluN1/2A receptors can be explained by voltage-independent differences in gating kinetics. To investigate the absence of slow Mg(o)(2+) unblock in GluN1/2C and GluN1/2D receptors, we examined the GluN2 S/L site, a site responsible for several NMDAR subtype-dependent channel properties. Mutating the GluN2 S/L site of GluN2A subunits from serine (found in GluN2A and GluN2B subunits) to leucine (found in GluN2C and GluN2D) greatly diminished both voltage-dependent gating and slow Mg(o)(2+) unblock. Therefore, the residue at the GluN2 S/L site governs the expression of both slow Mg(o)(2+) unblock and inherent voltage dependence.
Collapse
|
17
|
Linsenbardt AJ, Chisari M, Yu A, Shu HJ, Zorumski CF, Mennerick S. Noncompetitive, voltage-dependent NMDA receptor antagonism by hydrophobic anions. Mol Pharmacol 2012; 83:354-66. [PMID: 23144238 DOI: 10.1124/mol.112.081794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NMDA receptor (NMDAR) antagonists are dissociative anesthetics, drugs of abuse, and are of therapeutic interest in neurodegeneration and neuropsychiatric disease. Many well-known NMDAR antagonists are positively charged, voltage-dependent channel blockers. We recently showed that the hydrophobic anion dipicrylamine (DPA) negatively regulates GABA(A) receptor function by a mechanism indistinguishable from that of sulfated neurosteroids. Because sulfated neurosteroids also modulate NMDARs, here we examined the effects of DPA on NMDAR function. In rat hippocampal neurons DPA inhibited currents gated by 300 µM NMDA with an IC(50) of 2.3 µM. Neither onset nor offset of antagonism exhibited dependence on channel activation but exhibited a noncompetitive profile. DPA antagonism was independent of NMDAR subunit composition and was similar at extrasynaptic and total receptor populations. Surprisingly, similar to cationic channel blockers but unlike sulfated neurosteroids, DPA antagonism was voltage dependent. Onset and offset of DPA antagonism were nearly 10-fold faster than DPA-induced increases in membrane capacitance, suggesting that membrane interactions do not directly explain antagonism. Furthermore, voltage dependence did not derive from association of DPA with a site on NMDARs directly accessible to the outer membrane leaflet, assessed by DPA translocation experiments. Consistent with the expected lack of channel block, DPA antagonism did not interact with permeant ions. Therefore, we speculate that voltage dependence may arise from interactions of DPA with the inherent voltage dependence of channel gating. Overall, we conclude that DPA noncompetitively inhibits NMDA-induced current by a novel voltage-dependent mechanism and represents a new class of anionic NMDAR antagonists.
Collapse
Affiliation(s)
- Andrew J Linsenbardt
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
18
|
α-Tocopherol at nanomolar concentration protects PC12 cells from hydrogen peroxide-induced death and modulates protein kinase activities. Int J Mol Sci 2012; 13:11543-11568. [PMID: 23109870 PMCID: PMC3472762 DOI: 10.3390/ijms130911543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/23/2012] [Accepted: 09/04/2012] [Indexed: 12/14/2022] Open
Abstract
The aim of this work was to compare protective and anti-apoptotic effects of α-tocopherol at nanomolar and micromolar concentrations against 0.2 mM H(2)O(2)-induced toxicity in the PC12 neuronal cell line and to reveal protein kinases that contribute to α-tocopherol protective action. The protection by 100 nM α-tocopherol against H(2)O(2)-induced PC12 cell death was pronounced if the time of pre-incubation with α-tocopherol was 3-18 h. For the first time, the protective effect of α-tocopherol was shown to depend on its concentration in the nanomolar range (1 nM < 10 nM < 100 nM), if the pre-incubation time was 18 h. Nanomolar and micromolar α-tocopherol decreased the number of PC12 cells in late apoptosis induced by H(2)O(2) to the same extent if pre-incubation time was 18 h. Immunoblotting data showed that α-tocopherol markedly diminished the time of maximal activation of extracellular signal-regulated kinase 1/2 (ERK 1/2) and protein kinase B (Akt)-induced in PC12 cells by H(2)O(2). Inhibitors of MEK 1/2, PI 3-kinase and protein kinase C (PKC) diminished the protective effect of α-tocopherol against H(2)O(2)-initiated toxicity if the pre-incubation time was long. The modulation of ERK 1/2, Akt and PKC activities appears to participate in the protection by α-tocopherol against H(2)O(2)-induced death of PC12 cells. The data obtained suggest that inhibition by α-tocopherol in late stage ERK 1/2 and Akt activation induced by H(2)O(2) in PC12 cells makes contribution to its protective effect, while total inhibition of these enzymes is not protective.
Collapse
|
19
|
Sibarov DA, Bolshakov AE, Abushik PA, Krivoi II, Antonov SM. Na+,K+-ATPase Functionally Interacts with the Plasma Membrane Na+,Ca2+ Exchanger to Prevent Ca2+ Overload and Neuronal Apoptosis in Excitotoxic Stress. J Pharmacol Exp Ther 2012; 343:596-607. [DOI: 10.1124/jpet.112.198341] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
20
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2622] [Impact Index Per Article: 187.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang YC, Lee CH, Kuo CC. Ionic flow enhances low-affinity binding: a revised mechanistic view into Mg2+ block of NMDA receptors. J Physiol 2009; 588:633-50. [PMID: 20026615 DOI: 10.1113/jphysiol.2009.178913] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) channel is one of the major excitatory amino acid receptors in the mammalian brain. Since external Mg(2+) blocks the channel in an apparently voltage-dependent fashion, this ligand-gated channel displays intriguing voltage-dependent control of Na(+) and Ca(2+) permeability and thus plays an important role in synaptic physiology. We found that the essential features of Mg(2+) block could not be solely envisaged by binding of a charged blocker in the membrane electric field. Instead, the blocking effect of Mg(2+) is critically regulated by, and quantitatively correlated with, the relative tendency of outward and inward ionic fluxes. The 'intrinsic' affinity of Mg(2+) to the binding sites, however, is low (in the millimolar range) in the absence of net ionic flow at 0 mV. Besides, extracellular and intracellular Mg(2+) blocks the channel at distinct sites of electrical distances 0.7 and 0.95 from the outside, respectively. The two sites are separated by a high energy barrier for the movement of Mg(2+) (but not Na(+) or the other ions), and functionally speaking, each could accommodate 1.1 and 0.8 coexisting permeating ions, respectively. Mg(2+) block of the ionic flow thus is greatly facilitated by the flux-coupling effect or the ionic flow (the preponderant direction of permeant ion movement) per se, as if the poorly permeable Mg(2+) is 'pushed' against a high energy barrier by the otherwise permeating ions. Extracellular and intracellular Mg(2+) block then is in essence 'use dependent', more strongly inhibiting both Na(+) and Ca(2+) fluxes with stronger tendencies of influx and efflux, respectively. In conclusion, although permeant ions themselves could compete with Mg(2+), the flow or the tendency of movement of the permeant ions may actually enhance rather than interfere with Mg(2+) block, making the unique current-voltage relationship of NMDAR and the molecular basis of many important neurobiological phenomena.
Collapse
Affiliation(s)
- Ya-Chin Yang
- Department of Life Science, Chang-Gung University, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
22
|
Abstract
Ligand-gated ion channels are an important class of signalling protein that depend on small chemical neurotransmitters such as acetylcholine, l-glutamate, glycine and gamma-aminobutyrate for activation. Although numerous in number, neurotransmitter substances have always been thought to drive the receptor complex into the open state in much the same way and not rely substantially on other factors. However, recent work on kainate-type (KAR) ionotropic glutamate receptors (iGluRs) has identified an exception to this rule. Here, the activation process fails to occur unless external monovalent anions and cations are present. This absolute requirement of ions singles out KARs from all other ligand-gated ion channels, including closely related AMPA- and NMDA-type iGluR family members. The uniqueness of ion-dependent gating has earmarked this feature of KARs as a putative target for the development of selective ligands; a prospect all the more compelling with the recent elucidation of distinct anion and cation binding pockets. Despite these advances, much remains to be resolved. For example, it is still not clear how ion effects on KARs impacts glutamatergic transmission. I conclude by speculating that further analysis of ion-dependent gating may provide clues into how functionally diverse iGluRs families emerged by evolution. Consequently, ion-dependent gating of KARs looks set to continue to be a subject of topical inquiry well into the future.
Collapse
Affiliation(s)
- Derek Bowie
- Department of Pharmacology & Therapeutics, McIntyre Medical Sciences Building, McGill University, Montreal, Québec, Canada H3A 1Y6.
| |
Collapse
|
23
|
Apoptosis and the Receptor Specificity of Its Mechanisms During the Neurotoxic Action of Glutamate. ACTA ACUST UNITED AC 2009; 39:353-62. [DOI: 10.1007/s11055-009-9141-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Indexed: 10/20/2022]
|
24
|
Abstract
The NMDA receptor opens in response to binding of NMDA and glycine. However, it remains unclear where and how gating of the NMDA receptor pore is accomplished. We show that different point mutations between S645 and I655 (thus including the highly conserved SYTANLAAF motif) of M3c in NR2B lead to constitutively open channels. The current through these constitutively open channels are readily blocked by external Mg2+ and MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate]. Also, the open-channel blocker MK-801 can no longer be trapped in these channels when NMDA and glycine are washed off. Moreover, M3c residues at or below A651(NR2B, A7 in SYTANLAAF) react with external methanethiosulfonate (MTS) reagents approximately 500 to 1000-fold faster in the presence than in the absence of agonists NMDA and glycine. In fact, the MTS modification rate shows exactly the same NMDA concentration dependence as channel activation. In contrast, those residues external to A651 are always modified with similar kinetics whether NMDA and glycine are present or not. Interestingly, MTS modification of A651C(NR2B) holds the channel constitutively open. Mutations of A651(NR2B) into arginine, tryptophan, or phenylalanine, and similar mutations of the corresponding A652 in NR1 also lead to constitutively open channels. Double-mutant cycle analysis further shows that the effects of A652(NR1) and A651(NR2B) mutations are evidently non-additive (i.e., cooperative) if mutated into residues with large side chains or with compensatory charges [e.g., A652E(NR1)+A651R(NR2B)]. The side chain of A7 thus plays a determinant role in the intersubunit distance at this level, which is directly responsible for the activation gate and activation-deactivation gating of the NMDA receptor.
Collapse
|
25
|
Sobolevsky AI. Insights into structure and function of ionotropic glutamate receptor channels: Starting from channel block. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2007. [DOI: 10.1134/s1990747807010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Mironova EV, Evstratova AA, Antonov SM. A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J Neurosci Methods 2007; 163:1-8. [PMID: 17395268 DOI: 10.1016/j.jneumeth.2007.02.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 01/10/2023]
Abstract
An automated fluorescence method for the detection of neuronal cell death by necrosis and apoptosis with sequential acridine orange (AO) and ethidium bromide (EB) staining using confocal microscopy is described. Since cell nuclei during apoptosis become acidic, AO staining was utilized to distinguish live neurons from neurons undergoing apoptosis, using the AO property to shift its fluorescence from green at normal pH toward brilliant orange-red in the process of acidification. Further EB application labels nuclei of necrotic neurons in red. Sequential treatment by AO and EB can be employed as an express vitality test to count fractions of live and dead cell via apoptosis and necrosis, respectively. An algorithm of automatic quantification of cell types is based on the image correlation analysis. Our conclusion is validated by experiments with the vital dye trypan blue and the pharmacological study of receptor subtypes involved in the excitotoxicity. The approach described here, therefore, offers an express, easy, sensitive and reproducible method by which necrosis and apoptosis can be recognized and quantified in a population of living neurons. Because this assay does not require any preliminary tissue treatment, fixation or dissociation in a cell suspension its utility is likely to be extended for measuring cell viability and cytotoxicity on a variety of living preparations (tissues, brain slices and cell cultures).
Collapse
Affiliation(s)
- Elena V Mironova
- Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, Torez pr. 44, Saint-Petersburg 194223, Russia
| | | | | |
Collapse
|
27
|
Dravid SM, Erreger K, Yuan H, Nicholson K, Le P, Lyuboslavsky P, Almonte A, Murray E, Mosely C, Barber J, French A, Balster R, Murray TF, Traynelis SF. Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block. J Physiol 2007; 581:107-28. [PMID: 17303642 PMCID: PMC2075223 DOI: 10.1113/jphysiol.2006.124958] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have compared the potencies of structurally distinct channel blockers at recombinant NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptors. The IC50 values varied with stereochemistry and subunit composition, suggesting that it may be possible to design subunit-selective channel blockers. For dizocilpine (MK-801), the differential potency of MK-801 stereoisomers determined at recombinant NMDA receptors was confirmed at native receptors in vitro and in vivo. Since the proton sensor is tightly linked both structurally and functionally to channel gating, we examined whether blocking molecules that interact in the channel pore with the gating machinery can differentially sense protonation of the receptor. Blockers capable of remaining trapped in the pore during agonist unbinding showed the strongest dependence on extracellular pH, appearing more potent at acidic pH values that promote channel closure. Determination of pK(a) values for channel blockers suggests that the ionization of ketamine but not of other blockers can influence its pH-dependent potency. Kinetic modelling and single channel studies suggest that the pH-dependent block of NR1/NR2A by (-)MK-801 but not (+)MK-801 reflects an increase in the MK-801 association rate even though protons reduce channel open probability and thus MK-801 access to its binding site. Allosteric modulators that alter pH sensitivity alter the potency of MK-801, supporting the interpretation that the pH sensitivity of MK-801 binding reflects the changes at the proton sensor rather than a secondary effect of pH. These data suggest a tight coupling between the proton sensor and the ion channel gate as well as unique subunit-specific mechanisms of channel block.
Collapse
Affiliation(s)
- Shashank M Dravid
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Centre, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mironova EV, Lukina AA, Brovtsyna NB, Krivchenko AI, Antonov SM. The glutamate receptor types determining concentrational dependence of its neurotoxic effect on rat cerebral cortex neurons. J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s002209300606007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Abstract
Voltage-dependent channel block by external Mg2+ (Mg2+(o)) of NMDA receptors is an essential determinant of synaptic function. The resulting Mg2+(o) inhibition of NMDA responses depends strongly on receptor subunit composition: NR1/2A and NR1/2B receptors are more strongly inhibited by Mg2+(o) than are NR1/2C or NR1/2D receptors. Previous work showed that permeant ions have profound effects on Mg2+(o) block of NMDA receptors composed of NR1, NR2A, and NR2B subunits. Whether permeant ions affect Mg2+(o) inhibition of NR1/2C or NR1/2D receptors is unknown. We investigated the effects of permeant ions on Mg2+(o) block of NR1/2D receptors by integrating results from whole-cell recordings, single-channel recordings, and kinetic modeling. Lowering internal [Cs+] caused a voltage-dependent decrease in the Mg2+(o) IC50 and in the apparent Mg2+(o) unblocking rate, and increase in the apparent Mg2+(o) blocking rate (k(+,app)) of NR1/2D receptors. Lowering external [Na+] caused modest voltage-dependent changes in the Mg2+(o) IC50 and k(+,app). These data can be explained by a kinetic model in which occupation of either of two external permeant ion binding sites prevents Mg2+(o) entry into the channel. Occupation of an internal permeant ion binding site prevents Mg2+(o) permeation and accelerates Mg2+(o) unblock to the external solution. We conclude that variations in permeant ion site properties shape the NR2 subunit dependence of Mg2+(o) block. Furthermore, the external channel entrance varies little among NMDA receptor subtypes. Differences in the Mg2+(o) blocking site, and particularly in the selectivity filter and internal channel entrance, are principally responsible for the subunit dependence of Mg2+(o) block.
Collapse
Affiliation(s)
- Anqi Qian
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jon W. Johnson
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
30
|
Blanpied TA, Clarke RJ, Johnson JW. Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J Neurosci 2006; 25:3312-22. [PMID: 15800186 PMCID: PMC6724906 DOI: 10.1523/jneurosci.4262-04.2005] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The channel of NMDA receptors is blocked by a wide variety of drugs. NMDA receptor channel blockers include drugs of abuse that induce psychotic behavior, such as phencyclidine, and drugs with wide therapeutic utility, such as amantadine and memantine. We describe here the molecular mechanism of amantadine inhibition. In contrast to most other described channel-blocking molecules, amantadine causes the channel gate of NMDA receptors to close more quickly. Our results confirm that amantadine binding inhibits current flow through NMDA receptor channels but show that its main inhibitory action at pharmaceutically relevant concentrations results from stabilization of closed states of the channel. The surprising variation in the clinical utility of NMDA channel blockers may in part derive from their diverse effects on channel gating.
Collapse
Affiliation(s)
- Thomas A Blanpied
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
31
|
Antonov SM, Brovtsyna NB, Mironova EV. The mechanism of allosteric interaction of cytoplasmic and extracellular Cl- in the glial glycine transporter (hGlyTlb). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2005; 402:163-6. [PMID: 16121932 DOI: 10.1007/s10630-005-0076-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S M Antonov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr Morisa Toreza 44, St. Petersburg, 194223 Russia
| | | | | |
Collapse
|
32
|
Yuan H, Erreger K, Dravid SM, Traynelis SF. Conserved Structural and Functional Control of N-Methyl-d-aspartate Receptor Gating by Transmembrane Domain M3. J Biol Chem 2005; 280:29708-16. [PMID: 15970596 DOI: 10.1074/jbc.m414215200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular events controlling glutamate receptor ion channel gating are complex. The movement of transmembrane domain M3 within N-methyl-d-aspartate (NMDA) receptor subunits has been suggested to be one structural determinant linking agonist binding to channel gating. Here we report that covalent modification of NR1-A652C or the analogous mutation in NR2A, -2B, -2C, or -2D by methanethiosulfonate ethylammonium (MT-SEA) occurs only in the presence of glutamate and glycine, and that modification potentiates recombinant NMDA receptor currents. The modified channels remain open even after removing glutamate and glycine from the external solution. The degree of potentiation depends on the identity of the NR2 subunit (NR2A < NR2B < NR2C,D) inversely correlating with previous measurements of channel open probability. MTSEA-induced modification of channels is associated with increased glutamate potency, increased mean single-channel open time, and slightly decreased channel conductance. Modified channels are insensitive to the competitive antagonists D-2-amino-5-phosphonovaleric acid (APV) and 7-Cl-kynurenic acid, as well as allosteric modulators of gating (extracellular protons and Zn(2+)). However, channels remain fully sensitive to Mg(2+) blockade and partially sensitive to pore block by (+)MK-801, (-)MK-801, ketamine, memantine, amantadine, and dextrorphan. The partial sensitivity to (+)MK-801 may reflect its ability to stimulate agonist unbinding from MT-SEA-modified receptors. In summary, these data suggest that the SYTANLAAF motif within M3 is a conserved and critical determinant of channel gating in all NMDA receptors.
Collapse
Affiliation(s)
- Hongjie Yuan
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia 30322-3090, USA
| | | | | | | |
Collapse
|
33
|
Chen HSV, Lipton SA. Pharmacological Implications of Two Distinct Mechanisms of Interaction of Memantine withN-Methyl-d-aspartate-Gated Channels. J Pharmacol Exp Ther 2005; 314:961-71. [PMID: 15901795 DOI: 10.1124/jpet.105.085142] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unlike other N-methyl-D-aspartate receptor (NMDAR) antagonists, clinical trials have shown that memantine is clinically tolerated and effective in the treatment of Alzheimer's disease. The mechanism for memantine tolerability, however, remains contentious but may be partly explained by its uncompetitive antagonism. The specific site of memantine block in the NMDAR channel interacts with magnesium and is assumed to be at or near a narrow constriction representing the channel selectivity filter. A second, very low-affinity site of memantine action has also been reported. Here, using mutational analysis and substituted cysteine accessibility methods on recombinant NR1/NR2A NMDARs expressed in Xenopus oocytes, we precisely localize both the specific and second memantine-blocking sites. Intriguingly, memantine interacts with its specific blocking site in the same fashion as intracellular rather than extracellular Mg(2+). Thus, the N-site asparagine (N) in the M2 region of the NR1 subunit represents the dominant site for uncompetitive antagonism by memantine. The N and N + 1 site asparagines in NR2A produce strong electrostatic interactions with memantine. In contrast, the second (superficial) memantine-blocking site, located at the extracellular vestibule of the channel, appears to be nonspecific and overlaps the site occupied by the nonspecific pore blocker hexamethonium. Residues in the post-M3 segment of the NR1 subunit are not directly involved in memantine binding. The distinct patterns of interaction and the relative degree of affinity of memantine for these two binding sites contribute to the drug's excellent pharmacological profile of clinical tolerability. In the future, these parameters should be considered in searching for improved neuroprotective agents in this class.
Collapse
|
34
|
Kashiwagi K, Tanaka I, Tamura M, Sugiyama H, Okawara T, Otsuka M, Sabado TN, Williams K, Igarashi K. Anthraquinone Polyamines: Novel Channel Blockers to StudyN-Methyl-d-Aspartate Receptors. J Pharmacol Exp Ther 2004; 309:884-93. [PMID: 14764657 DOI: 10.1124/jpet.103.062042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of various anthraquinone polyamines (AQP) were studied at recombinant N-methyl-d-aspartate (NMDA) receptors expressed in Xenopus laevis oocytes. The AQP derivatives had different numbers of methylene groups between the NH(2) (or NH) groups in their spermidine-like tail. Thus, we termed these derivatives AQ33, AQ34, etc. All AQP derivatives inhibited responses of NR1/NR2 receptors in oocytes voltage-clamped at -70 mV, with IC(50) values between 4 and 22 microM. The block was strongly voltage-dependent. AQ34 and AQ33b inhibited responses of NR1/NR2 receptors but did not inhibit responses of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors expressed from GluR1 or GluR2(Q), indicating that AQ34 and AQ33b are preferential NMDA antagonists. Results of experiments using mutant NR1 and NR2 subunits identified residues that influence block by AQ34 and AQ33b. These residues are located in the outer vestibule at the selectivity filter/narrowest constriction of the channel and in the inner vestibule below the level of the selectivity filter. The results with mutant NR1 and NR2 subunits are consistent with the idea that NR1(Asn616) and NR2B(Asn616), but not NR2B(Asn615), make the narrowest constriction of NMDA channel.
Collapse
Affiliation(s)
- Keiko Kashiwagi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sobolevsky AI, Yelshansky MV, Wollmuth LP. The Outer Pore of the Glutamate Receptor Channel Has 2-Fold Rotational Symmetry. Neuron 2004; 41:367-78. [PMID: 14766176 DOI: 10.1016/s0896-6273(04)00008-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 12/12/2003] [Accepted: 12/29/2003] [Indexed: 11/30/2022]
Abstract
The ligand binding domain of glutamate receptors (GluRs) has 2-fold rotational symmetry. The structure including the symmetry of the GluR ion channel remains undefined. Here we used substituted cysteines in the pore-lining M3 segment of the AMPAR GluR-A subunit and various cysteine-reactive agents to study the structure of the channel during gating. We find that cysteines substituted at A+6, located in the highly conserved SYTANLAAF motif, are grouped in pairs consistent with a 2-fold symmetry in the extracellular part of the pore. To account for this symmetry and crosslinking, we propose that the M3 segments in two neighboring GluR subunits are kinked within SYTANLAAF in opposite directions relative to the central axis of the pore. Our results extend the 2-fold rotational symmetry from the ligand binding domain to at minimum the extracellular part of the channel and suggest a model of gating movements in GluR pore-forming domains.
Collapse
Affiliation(s)
- Alexander I Sobolevsky
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | | | | |
Collapse
|
36
|
Abstract
Functional N-methyl-D-aspartate receptors (NMDARs) are heteromultimers formed by NR1 and NR2 subunits. The M3 segment, as contributed by NR1, forms the core of the extracellular vestibule, including binding sites for channel blockers, and represents a critical molecular link between ligand binding and channel opening. Taking advantage of the substituted cysteine accessibility method along with channel block and multivalent coordination, we studied the contribution of the M3 segment in NR2C to the extracellular vestibule. We find that the M3 segment in NR2C, like that in NR1, contributes to the core of the extracellular vestibule. However, the M3 segments from the two subunits are staggered relative to each other in the vertical axis of the channel. Compared to NR1, homologous positions in NR2C, including those in the highly conserved SYTANLAAF motif, are located about four amino acids more externally. The staggering of subunits may represent a key structural feature underlying the distinct functional properties of NMDARs.
Collapse
Affiliation(s)
- Alexander I Sobolevsky
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA.
| | | | | |
Collapse
|
37
|
Abstract
Glutamate receptors specifically activated by N-methyl-D-aspartate (NMDA receptors) are ion channels that play multiple fundamental roles in the physiology of vertebrate nervous systems. The mechanisms that control the opening and closing, or gating, of the channel of NMDA receptors are among the most basic determinants of receptor function, and yet are not well understood. Here we consider current understanding of the link between agonist binding and NMDA receptor channel gating, of the conformational changes that occur during gating, and of the location of the channel gate. Information is drawn from studies of NMDA receptors themselves, of other types of glutamate receptors, and of more distantly related potassium channels.
Collapse
Affiliation(s)
- Anqi Qian
- Department of Neuroscience, University of Pittsburgh, 446 Crawford Hall, 15260, Pittsburgh, PA, USA
| | | |
Collapse
|
38
|
Abstract
NMDA receptor currents desensitize in an agonist-dependent manner when either the glutamate or glycine agonist is subsaturating. This may result from a conformational change in the NMDA receptor protein that lowers glutamate and glycine binding site affinity induced by co-agonist binding, channel opening, or ion permeation. We have used whole-cell voltage clamp of cultured hippocampal neurons with agonist paired-pulse protocols to demonstrate that glutamate and glycine dissociate 7.9- and 6.8-fold slower in the absence of their respective co-agonists than when their co-agonists are present. Paired-pulse and desensitization protocols were used to show that co-agonist binding and channel opening are sufficient to cause a reduction in glycine affinity, but extracellular sodium or magnesium binding was required in addition to conformational changes leading to channel opening to reduce glutamate binding-site affinity. Use of cesium or potassium as the major extracellular cation prevented the reduction of glutamate affinity. In addition, the use of choline-, sodium-, or cesium-based intracellular solutions did not alter desensitization characteristics, indicating that the site responsible for reduction of glutamate affinity is not in the intracellular domain. The fact that the reduction of glutamate affinity is dependent on certain small extracellular cations whereas the reduction of glycine affinity is insensitive to such cations indicates that conformational changes induced by the binding of glutamate are not completely paralleled by the conformational changes induced by glycine. Although glutamate and glycine are essential co-agonists, these data suggest that they have differential roles in the process of NMDA receptor activation.
Collapse
|
39
|
Sasaki YF, Rothe T, Premkumar LS, Das S, Cui J, Talantova MV, Wong HK, Gong X, Chan SF, Zhang D, Nakanishi N, Sucher NJ, Lipton SA. Characterization and comparison of the NR3A subunit of the NMDA receptor in recombinant systems and primary cortical neurons. J Neurophysiol 2002; 87:2052-63. [PMID: 11929923 DOI: 10.1152/jn.00531.2001] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we cloned and began to characterize a new N-methyl-D-aspartate receptor (NMDAR) subunit, NR3A. Here we extend our earlier findings by showing that recombinantly expressed NR3A in COS cells is biochemically associated with both NR1 and NR2 subunits. In the oocyte or HEK 293 cell expression systems, co-injection of NR3A with NR1/NR2 subunits acts in a dominant-interfering manner, resulting in a decrease in NMDAR unitary conductance, decrease in Ca(2+) permeability, decrease in Mg(2+) sensitivity, and slight increase in mean open time compared with NR1/NR2 channels. The smaller unitary conductance channel has also been observed in primary cortical neurons cultured from wild-type rodent on postnatal day 8 (P8) and similarly found to be relatively insensitive to Mg(2+) block. Consistent with these findings, whole cell NMDA-evoked currents are larger in NR3A-deficient mice compared with wild-type mice, and this effect follows a developmental pattern similar to that of NR3A protein expression on Western blots, with peak expression at P8. Finally, a new longer splice variant of NR3A has been cloned and found to be expressed in rodent cortical neurons by single-cell RT-PCR and in situ hybridization.
Collapse
Affiliation(s)
- Yasnory F Sasaki
- Center for Neuroscience and Aging, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bowie D. External anions and cations distinguish between AMPA and kainate receptor gating mechanisms. J Physiol 2002; 539:725-33. [PMID: 11897844 PMCID: PMC2290172 DOI: 10.1113/jphysiol.2001.013407] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2001] [Accepted: 12/13/2001] [Indexed: 12/20/2022] Open
Abstract
Experiments were designed to examine if ion-flow through alpha-amino-3-hydroxy-5-methyl-isoxazolepropionic acid (AMPA) or kainate receptors interferes with protein structures associated with the gating machinery. Gating was studied using ultra-fast drug perfusion of outside-out patches containing rat GluR-A or GluR6 subunits excised from transfected human embryonic kidney cells. Deactivation rates of GluR6 kainate receptors observed following brief L-glutamate (10 mM Glu, 1 ms) applications differed by two to threefold in high (405 mM symmetrical Na(+), tau(decay) = 2.7 ms at -100 mV) and low ionic strength (55 mM, tau(decay) = 1.1 ms) solutions. In comparison, GluR-A AMPA receptors were much less sensitive. Ion effects on GluR6 receptors did not reflect surface potential screening or ion-agonist competition at the agonist-binding site since deactivation rates were slower in high ionic strength solutions. Moreover, the apparent agonist affinity did not decrease with increasing ionic strength (e.g. 55 mM, EC(50) = 110 microM vs. 405 mM, EC(50) = 61 microM). GluR6 responses were strongly dependent on ions present on the external, but not the internal, side of the plasma membrane. Decay kinetics was regulated by the type of ion present suggesting that the chemical nature of the solution, not its ionic strength, governed channel behaviour. Both external anions and cations modulated the amplitude and decay kinetics of GluR6 responses in a concomitant manner. AMPA receptor responses recorded in identical ionic conditions did not exhibit this behaviour. These results identify a novel mechanism that distinguishes AMPA and kainate receptors. External ions regulate the gating machinery of kainate receptors through an allosteric mechanism that involves both anions and cations.
Collapse
Affiliation(s)
- Derek Bowie
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
Sobolevskii AI, Khodorov BI. Blocker studies of the functional architecture of the NMDA receptor channel. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2002; 32:157-71. [PMID: 11942695 DOI: 10.1023/a:1013927409034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Blockade of ion channels passing through the NMDA receptors of isolated rat hippocampus pyramidal neurons with tetraalkylammonium compounds, 9-aminoacridine, and Mg2+ was studied using patch-clamp methods in the whole-cell configuration. Currents through NMDA channels were evoked by application of 100 microM aspartate in magnesium-free medium containing glycine (3 microM) to neurons. Analysis of the kinetics, charge transfer, and relationships between the extent of suppression of stationary currents on the one hand and membrane potential, agonist concentration, and blocker concentration on the other showed that blockers had different effects on the closing, desensitization, and agonist dissociation of NMDA channels. The size of the blocker was found to be the decisive factor determining its action on the gating functions of NMDA channels: larger blockers prevented closure and/or desensitization of the channel; smaller blockers only had partial effects on these processes, while the smallest blockers had no effect at all. These experiments showed that the apparent affinity of the blocker for the channel (1/IC50) depended not only on the microscopic equilibrium dissociation constant (Kd), but also on the number of blocker binding sites, their mutual influences, and, of particular importance, the interaction of the blocker with the gating structures of the channel. These data led us to propose hypotheses relating to the geometry of the NMDA channel and the structure of its gating mechanism. The channel diameter at the level of activated gates was estimated to be 11 A.
Collapse
Affiliation(s)
- A I Sobolevskii
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow
| | | |
Collapse
|
42
|
Vissel B, Krupp JJ, Heinemann SF, Westbrook GL. Intracellular domains of NR2 alter calcium-dependent inactivation of N-methyl-D-aspartate receptors. Mol Pharmacol 2002; 61:595-605. [PMID: 11854440 DOI: 10.1124/mol.61.3.595] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
At central excitatory synapses, the transient elevation of intracellular calcium reduces N-methyl-D-aspartate (NMDA) receptor activity. Such 'calcium-dependent inactivation' is mediated by interactions of calcium/calmodulin and alpha-actinin with the C terminus of NMDA receptor 1 (NR1) subunit. However, inactivation is also NR2-subunit specific, because it occurs in NR2A- but not NR2C-containing receptors. We examined the molecular basis for NR2-subunit specificity using chimeric and mutated NMDA receptor subunits expressed in HEK293 cells. We report that the intracellular loop immediately distal to the pore-forming P-loop M2 (M2-3 loop), as well as a short region in the C terminus, are involved in NR2-subunit specificity. Within the M2-3 loop, substitution of residue 619 in NR2A (valine) for the corresponding NR2C residue (isoleucine) reduced inactivation without affecting calcium permeability of the channel. In contrast, a Q620E mutation in NR2A reduced the relative calcium permeability without altering inactivation. Mutation of three serine/threonine residues in the M2-3 loop also reduced inactivation, as did substitution of the intracellular C terminus of NR2A for NR2C. We speculate that the M2-3 loop of NR2 modulates calcium-dependent inactivation by interacting with the NR1 C terminus, a region known to be essential for inactivation.
Collapse
Affiliation(s)
- Bryce Vissel
- Molecular Neurobiology Laboratory, the Salk Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
43
|
Sobolevsky AI, Beck C, Wollmuth LP. Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating. Neuron 2002; 33:75-85. [PMID: 11779481 DOI: 10.1016/s0896-6273(01)00560-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many N-methyl-D-aspartate receptor (NMDAR) channel blockers that have therapeutic potential can be trapped in the closed state. Using a combination of the substituted cysteine accessibility method and open channel blockers, we found that the M3 segment forms the core of the extracellular vestibule, including a deep site for trapping blockers. The M3 segment, as well as more superficial parts of the extracellular vestibule, undergo extensive remodeling during channel closure, but do not define the activation gate, which is located deeper in the pore. Rather, the pore walls lining the extracellular vestibule constrict during channel closure. This movement is essential for coupling ligand binding to activation gate opening and accounts for the different mechanisms of open channel block, including trapping.
Collapse
Affiliation(s)
- Alexander I Sobolevsky
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA.
| | | | | |
Collapse
|
44
|
Jatzke C, Watanabe J, Wollmuth LP. Voltage and concentration dependence of Ca(2+) permeability in recombinant glutamate receptor subtypes. J Physiol 2002; 538:25-39. [PMID: 11773314 PMCID: PMC2290011 DOI: 10.1113/jphysiol.2001.012897] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The channels associated with glutamate receptor (GluR) subtypes, namely N-methyl-D-aspartate receptors (NMDARs), and Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) and kainate receptors (KARs), are to varying degrees permeable to Ca(2+). To compare the mechanism of Ca(2+) influx, we measured Ca(2+) permeability relative to that of Na(+) (P(Ca)/P(Na)) using fractional Ca(2+) currents (P(f)) and reversal potential measurements over a wide voltage and Ca(2+) concentration range in recombinant NMDAR NR1-NR2A, AMPAR GluR-A(Q) and KAR GluR-6(Q) channels. For NR1-NR2A channels, P(Ca)/P(Na) derived from P(f) measurements was voltage independent but showed a weak concentration dependence. A stronger concentration dependence was found when P(Ca)/P(Na) was derived from changes in reversal potentials on going from a Na(+) reference solution to a solution with Ca(2+) as the only permeant ion ('biionic' condition). In contrast, P(Ca)/P(Na) was concentration independent when derived from changes in reversal potentials on going from a Na(+) reference solution to the same solution with added Ca(2+) ('high monovalent' condition). For GluR-A(Q) channels, P(Ca)/P(Na) derived from all three approaches was concentration independent, and for the reversal potential-based approaches were of comparable magnitude. Their most distinctive property was that P(Ca)/P(Na) derived from P(f) measurements was strongly voltage dependent. For GluR-6(Q) channels, P(Ca)/P(Na) derived from P(f) measurements was weakly voltage dependent. On the other hand, P(Ca)/P(Na) derived from all three approaches was the most strongly concentration dependent of any GluR subtype and, except for low Ca(2+) concentrations, the values were of comparable magnitude. Thus, the three Ca(2+)-permeable GluR subtypes showed unique patterns of Ca(2+) permeability, indicating that distinct biophysical and molecular events underlie Ca(2+) influx in each subtype.
Collapse
Affiliation(s)
- Claudia Jatzke
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794-5230, USA
| | | | | |
Collapse
|
45
|
Qian A, Antonov SM, Johnson JW. Modulation by permeant ions of Mg(2+) inhibition of NMDA-activated whole-cell currents in rat cortical neurons. J Physiol 2002; 538:65-77. [PMID: 11773317 PMCID: PMC2290035 DOI: 10.1113/jphysiol.2001.012685] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Whole-cell N-methyl-D-aspartate (NMDA)-activated currents were recorded from cultured rat cortical neurons. We report here a powerful effect of changing permeant ion concentrations on the voltage-dependent inhibition by external Mg(2+) (Mg(2+)(o)) of these currents. Internal Cs(+) (Cs(+)(i)) affected Mg(2+)(o) inhibition of the NMDA-activated currents in a voltage-dependent manner. A decrease in Cs(+)(i) concentration ([Cs(+)](i)) from 125 to 8 mM reduced Mg(2+)(o) IC(50) by 1.4-fold at -105 mV and by 11.5-fold at -15 mV. A decrease in external Na(+) (Na(+)(o)) concentration ([Na(+)](o)) also reduced Mg(2+)(o) IC(50). This effect was voltage independent. A decrease in [Na(+)](o) from 140 to 70 mM reduced Mg(2+)(o) IC(50) by 1.4-fold at -105 mV and by 1.6-fold at -15 mV. Varying external Ca(2+) (Ca(2+)(o)) concentrations ([Ca(2+)](o)) from 0.1 to 1 mM did not affect Mg(2+)(o) inhibition, even though changing [Ca(2+)](o) in the same range strongly influenced the magnitude of NMDA-activated currents in the absence of Mg(2+)(o). However, increasing [Ca(2+)](o) to higher concentrations (2-20 mM) greatly increased Mg(2+)(o) IC(50) at hyperpolarized voltages. These data are consistent with a model in which Na(+)(i) and Cs(+)(i) modulate Mg(2+)(o) inhibition of NMDA-activated currents by occupying external permeant ion binding sites. The Mg(2+)(o) IC(50) values reported here are similar to Mg(2+)(o) K(D) values calculated from previous single-channel measurements of Mg(2+)(o) blocking kinetics. This similarity implies that Mg(2+)(o) does not affect gating while blocking the channel.
Collapse
Affiliation(s)
- Anqi Qian
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
46
|
Green GM, Gibb AJ. Characterization of the single-channel properties of NMDA receptors in laminae I and II of the dorsal horn of neonatal rat spinal cord. Eur J Neurosci 2001; 14:1590-602. [PMID: 11860454 DOI: 10.1046/j.0953-816x.2001.01790.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The single-channel properties of native NMDA receptors in laminae I and II of the dorsal horn of the neonatal rat spinal cord were studied using outside-out patch-clamp techniques. These receptors were found to have several features that distinguish them from native NMDA receptors elsewhere in the CNS. Single-channel currents activated by NMDA (100 nm) and glycine (10 microm) exhibited five distinct amplitude components with slope-conductance values of 19.9 +/- 0.8, 32.9 +/- 0.6, 42.2 +/- 1.1, 53.0 +/- 1.0 and 68.7 +/- 1.5 pS. Direct transitions were observed between all conductance levels but transitions between 69-pS openings and 20-, 33- and 42-pS openings were rare. There was no significant difference in the frequency of direct transitions from 42- to 20-pS compared to 20- to 42-pS transitions. The Kb (0 mV) for Mg2+ was 89 microm. The Mg2+ unblocking rate constant was similar to other reported values. However, the Mg2+ blocking rate constant was larger than other reported values, suggesting an unusually high sensitivity to Mg2+. The NR2B subunit-selective antagonist, ifenprodil, had no significant effect on overall channel activity but significantly decreased the mean open time of 53-pS openings. These results suggest neonatal laminae I and II NMDA receptors are not simply composed of NR1 and NR2B subunits or NR1 and NR2D subunits. It is possible that these properties are due to an as yet uninvestigated combination of two NR2 subunits with the NR1 subunit or a combination of NR3A, NR2 and NR1 subunits.
Collapse
Affiliation(s)
- G M Green
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
47
|
Li-Smerin Y, Levitan ES, Johnson JW. Free intracellular Mg(2+) concentration and inhibition of NMDA responses in cultured rat neurons. J Physiol 2001; 533:729-43. [PMID: 11410630 PMCID: PMC2278664 DOI: 10.1111/j.1469-7793.2001.t01-1-00729.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Intracellular Mg(2+) (Mg(2+)(i)) blocks single-channel currents and modulates the gating kinetics of NMDA receptors. However, previous data suggested that Mg(2+)(i) inhibits whole-cell current less effectively than predicted from excised-patch measurements. We examined the basis of this discrepancy by testing three hypothetical explanations. 2. To test the first hypothesis, that control of free Mg(2+)(i) concentration ([Mg(2+)](i)) during whole-cell recording was inadequate, we measured [Mg(2+)](i) using mag-indo-1 microfluorometry. The [Mg(2+)](i) measured in cultured neurons during whole-cell recording was similar to the pipette [Mg(2+)] measured in vitro, suggesting that [Mg(2+)](i) was adequately controlled. 3. To test the second hypothesis, that open-channel block by Mg(2+)(i) was modified by patch excision, we characterised the effects of Mg(2+)(i) using cell-attached recordings. We found the affinity and voltage dependence of open-channel block by Mg(2+)(i) similar in cell-attached and outside-out patches. Thus, the difference between Mg(2+)(i) inhibition of whole-cell and of patch currents cannot be attributed to a difference in Mg(2+)(i) block of single-channel current. 4. The third hypothesis tested was that the effect of Mg(2+)(i) on channel gating was modified by patch excision. Results of cell-attached recording and modelling of whole-cell data suggest that the Mg(2+)(i)-induced stabilisation of the channel open state is four times weaker after patch excision than in intact cells. This differential effect of Mg(2+)(i) on channel gating explains why Mg(2+)(i) inhibits whole-cell NMDA responses less effectively than patch responses.
Collapse
Affiliation(s)
- Y Li-Smerin
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
48
|
Abstract
The effect of extracellular and intracellular Na(+) on the single-channel kinetics of Mg(2+) block was studied in recombinant NR1-NR2B NMDA receptor channels. Na(+) prevents Mg(2+) access to its blocking site by occupying two sites in the external portion of the permeation pathway. The occupancy of these sites by intracellular, but not extracellular, Na(+) is voltage-dependent. In the absence of competing ions, Mg(2+) binds rapidly (>10(8) M(-1)s(-1), with no membrane potential) to a site that is located 0.60 through the electric field from the extracellular surface. Occupancy of one of the external sites by Na(+) may be sufficient to prevent Mg(2+) dissociation from the channel back to the extracellular compartment. With no membrane potential; and in the absence of competing ions, the Mg(2+) dissociation rate constant is >10 times greater than the Mg(2+) permeation rate constant, and the Mg(2+) equilibrium dissociation constant is approximately 12 microM. Physiological concentrations of extracellular Na(+) reduce the Mg(2+) association rate constant approximately 40-fold but, because of the "lock-in" effect, reduce the Mg(2+) equilibrium dissociation constant only approximately 18-fold.
Collapse
Affiliation(s)
- Yongling Zhu
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214
| | - Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214
| |
Collapse
|
49
|
Abstract
The single-channel kinetics of extracellular Mg(2+) block was used to probe K(+) binding sites in the permeation pathway of rat recombinant NR1/NR2B NMDA receptor channels. K(+) binds to three sites: two that are external and one that is internal to the site of Mg(2+) block. The internal site is approximately 0.84 through the electric field from the extracellular surface. The equilibrium dissociation constant for this site for K(+) is 304 mM at 0 mV and with Mg(2+) in the pore. The occupancy of any one of the three sites by K(+) effectively prevents the association of extracellular Mg(2+). Occupancy of the internal site also prevents Mg(2+) permeation and increases (by approximately sevenfold) the rate constant for Mg(2+) dissociation back to the extracellular solution. Under physiological intracellular ionic conditions and at -60 mV, there is approximately 1,400-fold apparent decrease in the affinity of the channel for extracellular Mg(2+) and approximately 2-fold enhancement of the apparent voltage dependence of Mg(2+) block caused by the voltage dependence of K(+) occupancy of the external and internal sites.
Collapse
Affiliation(s)
- Yongling Zhu
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214
| | - Anthony Auerbach
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214
| |
Collapse
|
50
|
Senn W, Markram H, Tsodyks M. An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neural Comput 2001; 13:35-67. [PMID: 11177427 DOI: 10.1162/089976601300014628] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The precise times of occurrence of individual pre- and postsynaptic action potentials are known to play a key role in the modification of synaptic efficacy. Based on stimulation protocols of two synaptically connected neurons, we infer an algorithm that reproduces the experimental data by modifying the probability of vesicle discharge as a function of the relative timing of spikes in the pre- and postsynaptic neurons. The primary feature of this algorithm is an asymmetry with respect to the direction of synaptic modification depending on whether the presynaptic spikes precede or follow the postsynaptic spike. Specifically, if the presynaptic spike occurs up to 50 ms before the postsynaptic spike, the probability of vesicle discharge is upregulated, while the probability of vesicle discharge is downregulated if the presynaptic spike occurs up to 50 ms after the postsynaptic spike. When neurons fire irregularly with Poisson spike trains at constant mean firing rates, the probability of vesicle discharge converges toward a characteristic value determined by the pre- and postsynaptic firing rates. On the other hand, if the mean rates of the Poisson spike trains slowly change with time, our algorithm predicts modifications in the probability of release that generalize Hebbian and Bienenstock-Cooper-Munro rules. We conclude that the proposed spike-based synaptic learning algorithm provides a general framework for regulating neurotransmitter release probability.
Collapse
Affiliation(s)
- W Senn
- Department of Neurobiology, Weizmann Institute, Rehovot, Israel
| | | | | |
Collapse
|