1
|
Toskov V, Werner D, Furlan I, Erlacher M, Friedrich C, Schulz A, Reimann C, Madadi-Sanjani O, Radner M, Benckendorff J, Schwarz-Furlan S, Beier R, Ehl S, Strahm B, Yoshimi A. Aplastic Anemia as a Rare Manifestation of SAP Deficiency. Pediatr Blood Cancer 2025; 72:e31625. [PMID: 39994840 DOI: 10.1002/pbc.31625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Affiliation(s)
- Vasil Toskov
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Children's Hospital, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Damaris Werner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ingrid Furlan
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Miriam Erlacher
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Children's Hospital, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Carsten Friedrich
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children's Hospital, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Reimann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Martin Radner
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Stephan Schwarz-Furlan
- Institute of Pathology, Klinikum Kaufbeuren-Ravensburg, Kaufbeuren, Germany
- Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Rita Beier
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Strahm
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Children's Hospital, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ayami Yoshimi
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Children's Hospital, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Kratz CP. Re-envisioning genetic predisposition to childhood and adolescent cancers. Nat Rev Cancer 2025; 25:109-128. [PMID: 39627375 DOI: 10.1038/s41568-024-00775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 01/31/2025]
Abstract
Although cancer is rare in children and adolescents, it remains a leading cause of death within this age range, and genetic predisposition is the main known risk factor. Since the discovery of retinoblastoma-predisposing RB1 pathogenic germline variants in 1985, several additional high-penetrance cancer predisposition genes (CPGs) have been identified. Although few clinically recognizable genetic conditions display moderate cancer phenotypes, burden testing has revealed low-to-moderate penetrance CPGs. In addition to germline pathogenic variants in CPGs, postzygotic somatic mosaic CPG pathogenic variants acquired during embryonic development are increasingly recognized as factors that predispose children and adolescents to malignancies. Genome-wide association studies of various childhood and adolescent cancer types have identified some common low-risk cancer susceptibility alleles. Although the clinical utility of polygenic risk scores is currently limited in children and adolescents, polygenic risk scores developed for adults can predict subsequent cancer risks in childhood and adolescent cancer survivors. In this Review, I describe our current knowledge of genetic predisposition to childhood and adolescent cancers. Survival rates in children and adolescents with cancer and CPGs are often poor, necessitating better integration of genomic testing into clinical care to improve cancer prevention, surveillance and therapies.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Sun Y, Chou J, Dong K, Gygi SP, Gewurz BE. Insights into the Absence of Lymphoma Despite Fulminant Epstein-Barr Virus Infection in Patients with XIAP Deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633616. [PMID: 39868266 PMCID: PMC11761029 DOI: 10.1101/2025.01.17.633616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
X-linked Lymphoproliferative Syndromes (XLP), which arise from mutations in the SH2D1A or XIAP genes, are characterized by the inability to control Epstein-Barr Virus (EBV) infection. While primary EBV infection triggers severe diseases in each, lymphomas occur at high rates with XLP-1 but not with XLP-2. Why XLP-2 patients are apparently protected from EBV-driven lymphomagenesis, in contrast to all other described congenital conditions that result in heightened susceptibility to EBV, remains a key open question. To gain insights, we cross-compared newly EBV infected versus immune stimulated B-cells from XLP-2 patients or upon XIAP CRISPR knockout, relative to healthy controls. XIAP perturbation impeded outgrowth of newly EBV-infected primary human B-cells, though had no impact on proliferation of B-cells stimulated by CD40 ligand and interleukin-21 or upon established EBV-immortalized lymphoblastoid cell lines (LCLs). B-cells from XLP-2 patients or in which XIAP was depleted by CRISPR editing exhibited a markedly lower EBV transformation efficiency than healthy control B-cells. Mechanistically, nascent EBV infection activated p53-mediated apoptosis signaling, whose effects on transforming B-cell death were counteracted by XIAP. In the absence of XIAP, EBV infection triggered high rates of apoptosis, not seen with CD40L/IL-21 stimulation. Moreover, inflammatory cytokines are present at high levels in XLP-2 patient serum with fulminant EBV infection, which heightened apoptosis induction in newly EBV-infected cells. These findings highlight the crucial role of XIAP in supporting early stages of EBV-driven B-cell immortalization and provide insights into the absence of EBV+ lymphoma in XLP-2 patients.
Collapse
Affiliation(s)
- Yizhe Sun
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Janet Chou
- Division of Immunology, Department of Pediatrics Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Kevin Dong
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions for Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Xu J, Wang Y, Zhang Y, Zhai T, Li Z, Zhong D, Cao B, Cui X. A case of adult-onset X-linked lymphoproliferative disease mimicking pulmonary infection. BMC Infect Dis 2024; 24:1399. [PMID: 39696021 DOI: 10.1186/s12879-024-10281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
X-linked lymphoproliferative disease (XLP) is a rare primary immunodeficiency with susceptibility and vulnerability to Epstein-Barr virus (EBV) infection. Most patients were diagnosed in early childhood and do not survive into adulthood. Here we reported an adult-onset XLP patient presenting with fever, dyspnea, and pulmonary nodules, mimicking respiratory infection at disease onset. Diagnosis was made based on whole-exon sequencing and pedigree analysis. Chest CT showed bilateral nodular lesions partially responsive to steroid therapy. The symptoms were managed with high-dose steroid, together with broad-spectrum anti-infective treatment for mixed secondary opportunistic infections. Pathology studies revealed non-Langerhans histiocytosis and T cell infiltration in lungs. Our case highlights the importance of genetic sequencing in managing young patients with unexplained infection and potential immuno-deficiency. We also added to the understanding of XLP by carrying detailed investigation into the pulmonary lesions.
Collapse
Affiliation(s)
- Jiuyang Xu
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, 100029, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Yan Wang
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, 100029, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Tianshu Zhai
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, 100029, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Zhenling Li
- Department of Hematology, China-Japan Friendship Hospital, Beijing, China
| | - Dingrong Zhong
- Department of Pathology, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Bin Cao
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, 100029, China
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing, 100029, China
| | - Xiaojing Cui
- National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, China-Japan Friendship Hospital, Beijing, 100029, China.
- National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, China.
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, No.2 East Yinghua Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
5
|
Ayoub PG, Gensheimer J, Lathrop L, Juett C, Quintos J, Tam K, Reid J, Ma F, Tam C, McAuley GE, Brown D, Wu X, Zhang R, Bradford K, Hollis RP, Crooks GM, Kohn DB. Lentiviral vectors for precise expression to treat X-linked lymphoproliferative disease. Mol Ther Methods Clin Dev 2024; 32:101323. [PMID: 39309261 PMCID: PMC11415656 DOI: 10.1016/j.omtm.2024.101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/15/2024] [Indexed: 09/25/2024]
Abstract
X-linked lymphoproliferative disease (XLP1) results from SH2D1A gene mutations affecting the SLAM-associated protein (SAP). A regulated lentiviral vector (LV), XLP-SMART LV, designed to express SAP at therapeutic levels in T, NK, and NKT cells, is crucial for effective gene therapy. We experimentally identified 34 genomic regulatory elements of the SH2D1A gene and designed XLP-SMART LVs to emulate the lineage and stage-specific control of SAP. We screened them for their on-target enhancer activity in T, NK, and NKT cells and their off-target enhancer activity in B cell and myeloid populations. In combination, three enhancer elements increased SAP promoter expression up to 4-fold in on-target populations in vitro. NSG-Tg(Hu-IL15) xenograft studies with XLP-SMART LVs demonstrated up to 7-fold greater expression in on-target cells over a control EFS-LV, with no off-target expression. The XLP-SMART LVs exhibited stage-specific T and NK cell expression in peripheral blood, bone marrow, spleen, and thymic tissues (mimicking expression patterns of SAP). Transduction of XLP1 patient CD8+ T cells or BM CD34+ cells with XLP-SMART LVs restored restimulation-induced cell death and NK cytotoxicity to wild-type levels, respectively. These data demonstrate that it is feasible to create a lineage and stage-specific LV to restore the XLP1 phenotype by gene therapy.
Collapse
Affiliation(s)
- Paul G. Ayoub
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julia Gensheimer
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lindsay Lathrop
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Colin Juett
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Quintos
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin Tam
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jack Reid
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Curtis Tam
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Grace E. McAuley
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Devin Brown
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaomeng Wu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ruixue Zhang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathryn Bradford
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roger P. Hollis
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M. Crooks
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli & Edythe Broad Center for Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B. Kohn
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli & Edythe Broad Center for Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Li B, Chen W, Cai X, Hai Y, Pang Q, Xiang W, Zhang Z. Case report: Non-EBV associated cerebral vasculitis and cerebral hemorrhage in X-linked lymphoproliferative disease. Front Immunol 2024; 15:1381472. [PMID: 38726008 PMCID: PMC11079196 DOI: 10.3389/fimmu.2024.1381472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
X-linked lymphoproliferative disease (XLP) is a rare genetic disorder characterized by immune dysregulation. The three most common clinical phenotypes are EBV-associated infectious mononucleosis (FIM), abnormal gammaglobulinemia, and lymphoma. We present a rare case of XLP1 with neurovasculitis, which is non-EBV-related and involves multiple systems, a condition rarely seen in children. The patient initially presented with an unsteady gait, which progressively evolved into language and consciousness disorders. Additionally, CT scans revealed multiple nodules in the lungs. Subsequent genetic testing and brain tissue biopsy confirmed the diagnosis: XLP1-related cerebral vasculitis and cerebral hemorrhage. Tragically, during the diagnostic process, the child experienced a sudden cerebral hemorrhage and herniation, ultimately resulting in fatality. This case offers a comprehensive insight into XLP1-related cerebral vasculitis and cerebral hemorrhage, underscoring the significance of early diagnosis and prompt treatment, while also imparting valuable clinical experience and lessons to the medical community.
Collapse
Affiliation(s)
- Bangtao Li
- Hainan Women and Children’s Medical Center, Pediatric Hospital, Fudan University, Haikou, China
| | - Weiming Chen
- Children’s Hospital of Fudan University, National Center for Children’s Medicine, Shanghai, China
| | - Xiaodi Cai
- Children’s Hospital of Fudan University, National Center for Children’s Medicine, Shanghai, China
| | - Yuanping Hai
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University, The First People’s Hospital of Shunde, Foshan, China
| | - Qiming Pang
- Hainan Women and Children’s Medical Center, Pediatric Hospital, Fudan University, Haikou, China
| | - Wei Xiang
- Hainan Women and Children’s Medical Center, Pediatric Hospital, Fudan University, Haikou, China
- Key Laboratory of Tropical Diseases Prevention and Control, National Health Care Commission, Hainan Medical University, Haikou, China
| | - Zhengzheng Zhang
- Children’s Hospital of Fudan University, National Center for Children’s Medicine, Shanghai, China
| |
Collapse
|
8
|
Zeng T, Spence JP, Mostafavi H, Pritchard JK. Bayesian estimation of gene constraint from an evolutionary model with gene features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.19.541520. [PMID: 37292653 PMCID: PMC10245655 DOI: 10.1101/2023.05.19.541520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Measures of selective constraint on genes have been used for many applications including clinical interpretation of rare coding variants, disease gene discovery, and studies of genome evolution. However, widely-used metrics are severely underpowered at detecting constraint for the shortest ∼25% of genes, potentially causing important pathogenic mutations to be overlooked. We developed a framework combining a population genetics model with machine learning on gene features to enable accurate inference of an interpretable constraint metric, shet. Our estimates outperform existing metrics for prioritizing genes important for cell essentiality, human disease, and other phenotypes, especially for short genes. Our new estimates of selective constraint should have wide utility for characterizing genes relevant to human disease. Finally, our inference framework, GeneBayes, provides a flexible platform that can improve estimation of many gene-level properties, such as rare variant burden or gene expression differences.
Collapse
Affiliation(s)
- Tony Zeng
- Department of Genetics, Stanford University, Stanford CA
| | | | | | - Jonathan K. Pritchard
- Department of Genetics, Stanford University, Stanford CA
- Department of Biology, Stanford University, Stanford CA
| |
Collapse
|
9
|
Kľoc D, Kurhajec S, Huniadi M, Sýkora J, Guman T, Šarišský M. SLAM Family Receptors in B Cell Chronic Lymphoproliferative Disorders. Int J Mol Sci 2024; 25:4014. [PMID: 38612827 PMCID: PMC11012012 DOI: 10.3390/ijms25074014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) receptor family (SLAMF) consists of nine glycoproteins that belong to the CD2 superfamily of immunoglobulin (Ig) domain-containing molecules. SLAMF receptors modulate the differentiation and activation of a wide range of immune cells. Individual SLAMF receptors are expressed on the surface of hematopoietic stem cells, hematopoietic progenitor cells, B cells, T cells, NK cells, NKT cells, monocytes, macrophages, dendritic cells, neutrophils, and platelets. The expression of SLAMF receptors was studied during normal B cell maturation. Several SLAMF receptors were also detected in cancer cell lines of B-lymphoid origin and in pathological B cells from patients with B cell chronic lymphoproliferative disorders (B-CLPD), the most frequent hematological malignancies in adults. This review summarizes current knowledge on the expression of SLAMF receptors and their adaptor proteins SAP and EAT-2 in B-CLPD. Several SLAMF receptors could be regarded as potential diagnostic and differential diagnostic markers, prognostic factors, and targets for the development of novel drugs for patients with B-CLPD.
Collapse
Affiliation(s)
- Dominik Kľoc
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.K.); (M.H.)
| | - Slavomír Kurhajec
- Department of Pharmaceutical Technology, Pharmacognosy, and Botany, University of Veterinary Medicine and Pharmacy, Komenského 73, 04181 Košice, Slovakia;
| | - Mykhailo Huniadi
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.K.); (M.H.)
| | - Ján Sýkora
- Department of Haematology and Oncohaematology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice and Louis Pasteur University Hospital Košice, Trieda SNP 1, 04011 Košice, Slovakia; (J.S.); (T.G.)
| | - Tomáš Guman
- Department of Haematology and Oncohaematology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice and Louis Pasteur University Hospital Košice, Trieda SNP 1, 04011 Košice, Slovakia; (J.S.); (T.G.)
| | - Marek Šarišský
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.K.); (M.H.)
| |
Collapse
|
10
|
Cheng YHH, Bohaczuk SC, Stergachis AB. Functional categorization of gene regulatory variants that cause Mendelian conditions. Hum Genet 2024; 143:559-605. [PMID: 38436667 PMCID: PMC11078748 DOI: 10.1007/s00439-023-02639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
Much of our current understanding of rare human diseases is driven by coding genetic variants. However, non-coding genetic variants play a pivotal role in numerous rare human diseases, resulting in diverse functional impacts ranging from altered gene regulation, splicing, and/or transcript stability. With the increasing use of genome sequencing in clinical practice, it is paramount to have a clear framework for understanding how non-coding genetic variants cause disease. To this end, we have synthesized the literature on hundreds of non-coding genetic variants that cause rare Mendelian conditions via the disruption of gene regulatory patterns and propose a functional classification system. Specifically, we have adapted the functional classification framework used for coding variants (i.e., loss-of-function, gain-of-function, and dominant-negative) to account for features unique to non-coding gene regulatory variants. We identify that non-coding gene regulatory variants can be split into three distinct categories by functional impact: (1) non-modular loss-of-expression (LOE) variants; (2) modular loss-of-expression (mLOE) variants; and (3) gain-of-ectopic-expression (GOE) variants. Whereas LOE variants have a direct corollary with coding loss-of-function variants, mLOE and GOE variants represent disease mechanisms that are largely unique to non-coding variants. These functional classifications aim to provide a unified terminology for categorizing the functional impact of non-coding variants that disrupt gene regulatory patterns in Mendelian conditions.
Collapse
Affiliation(s)
- Y H Hank Cheng
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Stephanie C Bohaczuk
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
11
|
Marsh RA. Salvage Therapy and Allogeneic Hematopoietic Cell Transplantation for the Severe Cytokine Storm Syndrome of Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:611-622. [PMID: 39117843 DOI: 10.1007/978-3-031-59815-9_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) can be considered as a severe cytokine storm syndrome disorder. HLH typically manifests as a life-threatening inflammatory syndrome characterized by fevers, cytopenias, hepatosplenomegaly, and various other accompanying manifestations such as coagulopathy, hepatitis or liver failure, seizures or altered mental status, and even multi-organ failure. Standard up-front treatments do not always bring HLH into remission or maintain adequate response, and salvage or alternative therapies are often needed. For patients with genetic diseases that cause HLH, curative allogeneic hematopoietic cell transplantation is usually offered to prevent future episodes of life-threatening HLH. Here, we will discuss the options and approaches for salvage therapy and hematopoietic cell transplantation for patients with HLH.
Collapse
Affiliation(s)
- Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Sekine T, Galgano D, Casoni GP, Meeths M, Cron RQ, Bryceson YT. CD8 + T Cell Biology in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:129-144. [PMID: 39117812 DOI: 10.1007/978-3-031-59815-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giovanna P Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
13
|
Verbist K, Nichols KE. Cytokine Storm Syndromes Associated with Epstein-Barr Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:227-248. [PMID: 39117818 DOI: 10.1007/978-3-031-59815-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous and predominantly B cell tropic virus. One of the most common viruses to infect humans, EBV, is best known as the causative agent of infectious mononucleosis (IM). Although most people experience asymptomatic infection, EBV is a potent immune stimulus and as such it elicits robust proliferation and activation of the B-lymphocytes it infects as well as the immune cells that respond to infection. In certain individuals, such as those with inherited or acquired defects affecting the immune system, failure to properly control EBV leads to the accumulation of EBV-infected B cells and EBV-reactive immune cells, which together contribute to the development of often life-threatening cytokine storm syndromes (CSS). Here, we review the normal immune response to EBV and discuss several CSS associated with EBV, such as chronic active EBV infection, hemophagocytic lymphohistiocytosis, and post-transplant lymphoproliferative disorder. Given the critical role for cytokines in driving inflammation and contributing to disease pathogenesis, we also discuss how targeting specific cytokines provides a rational and potentially less toxic treatment for EBV-driven CSS.
Collapse
Affiliation(s)
- Katherine Verbist
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
14
|
Karageorgos S, Platt AS, Bassiri H. Genetics of Primary Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:75-101. [PMID: 39117809 DOI: 10.1007/978-3-031-59815-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna S Platt
- Roberts Individualized Medical Genetics Center and Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Program and Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Grom AA. Genetics of Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:121-126. [PMID: 39117811 DOI: 10.1007/978-3-031-59815-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Macrophage activation syndrome (MAS) is a life-threatening episode of hyperinflammation driven by excessive activation and expansion of T cells (mainly CD8) and hemophagocytic macrophages producing proinflammatory cytokines. MAS has been reported in association with almost every rheumatic disease, but it is by far most common in systemic juvenile idiopathic arthritis (SJIA). Clinically, MAS is similar to familial or primary hemophagocytic lymphohistiocytosis (pHLH), a group of rare autosomal recessive disorders linked to various genetic defects all affecting the perforin-mediated cytolytic pathway employed by NK cells and cytotoxic CD8 T lymphocytes. Decreased cytolytic activity in pHLH patients leads to prolonged survival of target cells associated with increased production of proinflammatory cytokines that overstimulate macrophages. The resulting cytokine storm is believed to be responsible for the frequently fatal multiorgan system failure seen in MAS. Whole exome sequencing as well as targeted sequencing of pHLH-associated genes in patients with SJIA-associated MAS demonstrated increased "burden" of rare protein-altering variants affecting the cytolytic pathway compared to healthy controls, suggesting that as in pHLH, genetic variability in the cytolytic pathway contributes to MAS predisposition. Functional studies of some of the novel variants have shown that even in a heterozygous state, their presence partially reduces cytolytic activity that may lead to increased cytokine production.
Collapse
Affiliation(s)
- Alexei A Grom
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
16
|
Henter JI, von Bahr Greenwood T. Etoposide Therapy of Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:525-551. [PMID: 39117837 DOI: 10.1007/978-3-031-59815-9_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Etoposide has revolutionized the treatment of primary as well as secondary hemophagocytic lymphohistiocytosis (HLH), and it is, together with corticosteroids, the most widely used therapy for HLH. In the early 1980s, long-term survival in primary HLH was <5% but with the etoposide-/dexamethasone-based protocols HLH-94 and HLH-2004, in combination with stem cell transplantation, 5-year survival increased dramatically to around 60% in primary HLH, and based on analyses from the HLH-2004 study, there is likely room for further improvement. Biologically, etoposide administration results in potent selective deletion of activated T cells as well as efficient suppression of inflammatory cytokine production. Moreover, etoposide has also been reported to promote programmed cell death (apoptosis) rather than proinflammatory lytic cell death (pyroptosis), conceivably ameliorating subsequent systemic inflammation, i.e., a treatment very suitable for cytokine storm syndromes (CSS). The combination of etoposide and corticosteroids may also be beneficial in cases of severe or refractory secondary HLH (sHLH) with imminent organ failure, such as infection-associated HLH caused by Epstein-Barr virus (EBV) or malignancy-triggered HLH. In CSS associated with rheumatic diseases (macrophage activation syndrome, MAS or MAS-HLH), etoposide is currently used as second- or third-line therapy. Recent studies suggest that etoposide perhaps should be part of an aggressive therapeutic intervention for patients with severe refractory or relapsing MAS, in particular if there is CNS involvement. Importantly, awareness of sHLH must be further increased since treatment of sHLH is often delayed, thereby missing the window of opportunity for a timely, effective, and potentially life-saving HLH-directed treatment.
Collapse
Affiliation(s)
- Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Stockholm, Sweden.
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
17
|
Pan-Hammarström Q, Casanova JL. Human genetic and immunological determinants of SARS-CoV-2 and Epstein-Barr virus diseases in childhood: Insightful contrasts. J Intern Med 2023; 294:127-144. [PMID: 36906905 DOI: 10.1111/joim.13628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is growing evidence to suggest that severe disease in children infected with common viruses that are typically benign in other children can result from inborn errors of immunity or their phenocopies. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cytolytic respiratory RNA virus, can lead to acute hypoxemic COVID-19 pneumonia in children with inborn errors of type I interferon (IFN) immunity or autoantibodies against IFNs. These patients do not appear to be prone to severe disease during infection with Epstein-Barr virus (EBV), a leukocyte-tropic DNA virus that can establish latency. By contrast, various forms of severe EBV disease, ranging from acute hemophagocytosis to chronic or long-term illnesses, such as agammaglobulinemia and lymphoma, can manifest in children with inborn errors disrupting specific molecular bridges involved in the control of EBV-infected B cells by cytotoxic T cells. The patients with these disorders do not seem to be prone to severe COVID-19 pneumonia. These experiments of nature reveal surprising levels of redundancy of two different arms of immunity, with type I IFN being essential for host defense against SARS-CoV-2 in respiratory epithelial cells, and certain surface molecules on cytotoxic T cells essential for host defense against EBV in B lymphocytes.
Collapse
Affiliation(s)
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
18
|
Hines MR, Knight TE, McNerney KO, Leick MB, Jain T, Ahmed S, Frigault MJ, Hill JA, Jain MD, Johnson WT, Lin Y, Mahadeo KM, Maron GM, Marsh RA, Neelapu SS, Nikiforow S, Ombrello AK, Shah NN, Talleur AC, Turicek D, Vatsayan A, Wong SW, Maus MV, Komanduri KV, Berliner N, Henter JI, Perales MA, Frey NV, Teachey DT, Frank MJ, Shah NN. Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome. Transplant Cell Ther 2023; 29:438.e1-438.e16. [PMID: 36906275 PMCID: PMC10330221 DOI: 10.1016/j.jtct.2023.03.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
T cell-mediated hyperinflammatory responses, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), are now well-established toxicities of chimeric antigen receptor (CAR) T cell therapy. As the field of CAR T cells advances, however, there is increasing recognition that hemophagocytic lymphohistiocytosis (HLH)-like toxicities following CAR T cell infusion are occurring broadly across patient populations and CAR T cell constructs. Importantly, these HLH-like toxicities are often not as directly associated with CRS and/or its severity as initially described. This emergent toxicity, however ill-defined, is associated with life-threatening complications, creating an urgent need for improved identification and optimal management. With the goal of improving patient outcomes and formulating a framework to characterize and study this HLH-like syndrome, we established an American Society for Transplantation and Cellular Therapy panel composed of experts in primary and secondary HLH, pediatric and adult HLH, infectious disease, rheumatology and hematology, oncology, and cellular therapy. Through this effort, we provide an overview of the underlying biology of classical primary and secondary HLH, explore its relationship with similar manifestations following CAR T cell infusions, and propose the term "immune effector cell-associated HLH-like syndrome (IEC-HS)" to describe this emergent toxicity. We also delineate a framework for identifying IEC-HS and put forward a grading schema that can be used to assess severity and facilitate cross-trial comparisons. Additionally, given the critical need to optimize outcomes for patients experiencing IEC-HS, we provide insight into potential treatment approaches and strategies to optimize supportive care and delineate alternate etiologies that should be considered in a patient presenting with IEC-HS. By collectively defining IEC-HS as a hyperinflammatory toxicity, we can now embark on further study of the pathophysiology underlying this toxicity profile and make strides toward a more comprehensive assessment and treatment approach.
Collapse
Affiliation(s)
- Melissa R Hines
- Department of Pediatric Medicine, Division of Critical Care, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tristan E Knight
- Pediatric Hematology and Oncology, Seattle Children's Hospital and the University of Washington School of Medicine, Seattle, Washington
| | - Kevin O McNerney
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Mark B Leick
- Cellular Immunotherapy Program and Blood and Marrow Transplant Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Tania Jain
- Division of Hematological Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Sairah Ahmed
- Departments of Lymphoma and Myeloma and Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew J Frigault
- Cellular Immunotherapy Program and Blood and Marrow Transplant Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Joshua A Hill
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | | | - William T Johnson
- Department of Medicine, Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yi Lin
- Division Hematology-Oncology and Blood and Marrow Transplantation Program, Mayo Clinic, Rochester, Minnesota
| | - Kris M Mahadeo
- Pediatric Transplantation and Cellular Therapy, Duke University, Durham, North Carolina
| | - Gabriela M Maron
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, and Department of Pediatrics, University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee
| | - Rebecca A Marsh
- University of Cincinnati, and Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sattva S Neelapu
- Departments of Lymphoma and Myeloma and Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah Nikiforow
- Division of Hematologic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Nirav N Shah
- Bone Marrow Transplant and Cellular Therapy Program, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee and Department of Pediatrics, University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee
| | - David Turicek
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anant Vatsayan
- Division of Blood and Marrow Transplantation, Children's National Health System, Washington, District of Columbia
| | - Sandy W Wong
- UCSF Health Division of Hematology and Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Marcela V Maus
- Cellular Immunotherapy Program and Blood and Marrow Transplant Program, Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Krishna V Komanduri
- UCSF Health Division of Hematology and Oncology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | | | - Jan-Inge Henter
- Division of Pediatric Oncology and Surgery, Department of Women's and Children's Health, Karolinska Institute, and Department of Paediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Noelle V Frey
- Division of Hematology-Oncology, Abramson Cancer Center and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David T Teachey
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew J Frank
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
19
|
Gray PE, David C. Inborn Errors of Immunity and Autoimmune Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1602-1622. [PMID: 37119983 DOI: 10.1016/j.jaip.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Autoimmunity may be a manifestation of inborn errors of immunity, specifically as part of the subgroup of primary immunodeficiency known as primary immune regulatory disorders. However, although making a single gene diagnosis can have important implications for prognosis and management, picking patients to screen can be difficult, against a background of a high prevalence of autoimmune disease in the population. This review compares the genetics of common polygenic and rare monogenic autoimmunity, and explores the molecular mechanisms, phenotypes, and inheritance of autoimmunity associated with primary immune regulatory disorders, highlighting the emerging importance of gain-of-function and non-germline somatic mutations. A novel framework for identifying rare monogenic cases of common diseases in children is presented, highlighting important clinical and immunologic features that favor single gene disease and guides clinicians in selecting appropriate patients for genomic screening. In addition, there will be a review of autoimmunity in non-genetically defined primary immunodeficiency such as common variable immunodeficiency, and of instances where primary autoimmunity can result in clinical phenocopies of inborn errors of immunity.
Collapse
Affiliation(s)
- Paul Edgar Gray
- Sydney Children's Hospital, Randwick, NSW, Australia; Western Sydney University, Penrith, NSW, Australia.
| | - Clementine David
- Sydney Children's Hospital, Randwick, NSW, Australia; The School of Women's & Children's Health, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
20
|
Rietdijk S, Keszei M, Castro W, Terhorst C, Abadía-Molina AC. Characterization of Ly108-H1 Signaling Reveals Ly108-3 Expression and Additional Strain-Specific Differences in Lupus Prone Mice. Int J Mol Sci 2023; 24:5024. [PMID: 36902453 PMCID: PMC10003074 DOI: 10.3390/ijms24055024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Ly108 (SLAMF6) is a homophilic cell surface molecule that binds SLAM-associated protein (SAP), an intracellular adapter protein that modulates humoral immune responses. Furthermore, Ly108 is crucial for the development of natural killer T (NKT) cells and CTL cytotoxicity. Significant attention has been paid towards expression and function of Ly108 since multiple isoforms were identified, i.e., Ly108-1, Ly108-2, Ly108-3, and Ly108-H1, some of which are differentially expressed in several mouse strains. Surprisingly, Ly108-H1 appeared to protect against disease in a congenic mouse model of Lupus. Here, we use cell lines to further define Ly108-H1 function in comparison with other isoforms. We show that Ly108-H1 inhibits IL-2 production while having little effect upon cell death. With a refined method, we could detect phosphorylation of Ly108-H1 and show that SAP binding is retained. We propose that Ly108-H1 may regulate signaling at two levels by retaining the capability to bind its extracellular as well as intracellular ligands, possibly inhibiting downstream pathways. In addition, we detected Ly108-3 in primary cells and show that this isoform is also differentially expressed between mouse strains. The presence of additional binding motifs and a non-synonymous SNP in Ly108-3 further extends the diversity between murine strains. This work highlights the importance of isoform awareness, as inherent homology can present a challenge when interpreting mRNA and protein expression data, especially as alternatively splicing potentially affects function.
Collapse
Affiliation(s)
- Svend Rietdijk
- Unidad de Inmunología, IBIMER, CIBM, Universidad de Granada, 18016 Granada, Spain
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Gastroenterology and Hepatology, OLVG Hospital, 1091 AC Amsterdam, The Netherlands
| | - Marton Keszei
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wilson Castro
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ana C. Abadía-Molina
- Unidad de Inmunología, IBIMER, CIBM, Universidad de Granada, 18016 Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| |
Collapse
|
21
|
Zhong L, Krummenacher C, Zhang W, Hong J, Feng Q, Chen Y, Zhao Q, Zeng MS, Zeng YX, Xu M, Zhang X. Urgency and necessity of Epstein-Barr virus prophylactic vaccines. NPJ Vaccines 2022; 7:159. [PMID: 36494369 PMCID: PMC9734748 DOI: 10.1038/s41541-022-00587-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV), a γ-herpesvirus, is the first identified oncogenic virus, which establishes permanent infection in humans. EBV causes infectious mononucleosis and is also tightly linked to many malignant diseases. Various vaccine formulations underwent testing in different animals or in humans. However, none of them was able to prevent EBV infection and no vaccine has been approved to date. Current efforts focus on antigen selection, combination, and design to improve the efficacy of vaccines. EBV glycoproteins such as gH/gL, gp42, and gB show excellent immunogenicity in preclinical studies compared to the previously favored gp350 antigen. Combinations of multiple EBV proteins in various vaccine designs become more attractive approaches considering the complex life cycle and complicated infection mechanisms of EBV. Besides, rationally designed vaccines such as virus-like particles (VLPs) and protein scaffold-based vaccines elicited more potent immune responses than soluble antigens. In addition, humanized mice, rabbits, as well as nonhuman primates that can be infected by EBV significantly aid vaccine development. Innovative vaccine design approaches, including polymer-based nanoparticles, the development of effective adjuvants, and antibody-guided vaccine design, will further enhance the immunogenicity of vaccine candidates. In this review, we will summarize (i) the disease burden caused by EBV and the necessity of developing an EBV vaccine; (ii) previous EBV vaccine studies and available animal models; (iii) future trends of EBV vaccines, including activation of cellular immune responses, novel immunogen design, heterologous prime-boost approach, induction of mucosal immunity, application of nanoparticle delivery system, and modern adjuvant development.
Collapse
Affiliation(s)
- Ling Zhong
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Claude Krummenacher
- grid.262671.60000 0000 8828 4546Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ USA
| | - Wanlin Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Junping Hong
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian PR China
| | - Qisheng Feng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Yixin Chen
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian PR China
| | - Qinjian Zhao
- grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Mu-Sheng Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Yi-Xin Zeng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Miao Xu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China
| | - Xiao Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong PR China ,grid.203458.80000 0000 8653 0555College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
22
|
Li L, Konigsberg IR, Bhargava M, Liu S, MacPhail K, Mayer A, Davidson EJ, Liao SY, Lei Z, Mroz PM, Fingerlin TE, Yang IV, Maier LA. Multiomic Signatures of Chronic Beryllium Disease Bronchoalveolar Lavage Cells Relate to T-Cell Function and Innate Immunity. Am J Respir Cell Mol Biol 2022; 67:632-640. [PMID: 35972918 PMCID: PMC9743181 DOI: 10.1165/rcmb.2022-0077oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic beryllium disease (CBD) is a Th1 granulomatous lung disease preceded by sensitization to beryllium (BeS). We profiled the methylome, transcriptome, and selected proteins in the lung to identify molecular signatures and networks associated with BeS and CBD. BAL cell DNA and RNA were profiled using microarrays from CBD (n = 30), BeS (n = 30), and control subjects (n = 12). BAL fluid proteins were measured using Olink Immune Response Panel proteins from CBD (n = 22) and BeS (n = 22) subjects. Linear models identified features associated with CBD, adjusting for covariation and batch effects. Multiomic integration methods identified correlated features between datasets. We identified 1,546 differentially expressed genes in CBD versus control subjects and 204 in CBD versus BeS. Of the 101 shared transcripts, 24 have significant cis relationships between gene expression and DNA methylation, assessed using expression quantitative trait methylation analysis, including genes not previously identified in CBD. A multiomic model of top DNA methylation and gene expression features demonstrated that the first component separated CBD from other samples and the second component separated control subjects from remaining samples. The top features on component one were enriched for T-lymphocyte function, and the top features on component two were enriched for innate immune signaling. We identified six differentially abundant proteins in CBD versus BeS, with two (SIT1 and SH2D1A) selected as important RNA features in the multiomic model. Our integrated analysis of DNA methylation, gene expression, and proteins in the lung identified multiomic signatures of CBD that differentiated it from BeS and control subjects.
Collapse
Affiliation(s)
- Li Li
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
- Division of Pulmonary and Critical Care Sciences
| | - Iain R. Konigsberg
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, School of Medicine
| | - Maneesh Bhargava
- Pulmonary, Allergy, Critical Care and Sleep, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Sucai Liu
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
| | - Kristyn MacPhail
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
| | - Annyce Mayer
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
- Department of Environmental and Occupational Health
| | - Elizabeth J. Davidson
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, School of Medicine
| | - Shu-Yi Liao
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
- Division of Pulmonary and Critical Care Sciences
- Department of Environmental and Occupational Health
| | - Zhe Lei
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
| | - Peggy M. Mroz
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
| | - Tasha E. Fingerlin
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
- Department of Biostatistics and Bioinformatics, and
| | - Ivana V. Yang
- Division of Pulmonary and Critical Care Sciences
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, School of Medicine
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | - Lisa A. Maier
- Division of Environmental and Occupational Health Sciences, Department of Medicine, and
- Division of Pulmonary and Critical Care Sciences
- Department of Environmental and Occupational Health
| |
Collapse
|
23
|
Allosteric inhibition of SHP2 rescues functional T-cell abnormalities in SAP deficiency. J Allergy Clin Immunol 2022; 150:1507-1516.e7. [PMID: 35839843 DOI: 10.1016/j.jaci.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency arising from SH2D1A mutations leading to loss of SLAM-associated protein (SAP). SAP is an intracellular adaptor protein that binds to SLAM family receptors and is expressed in specific lymphoid lineages. In T cells, SAP relays activatory signals from the T-cell receptor but in its absence SH2 containing protein tyrosine phosphase-1 (SHP1), SH2 containing protein tyrosine phosphase-2 (SHP2), and SH2 containing inositol 5'-phosphatase proteins (SHIP) induce T-cell inhibitory signals leading to abnormal T-cell responses. This results in severe clinical manifestations including immune dysregulation, dysgammaglobulinemia, lymphoma, and hemophagocytic lymphohistiocytosis. Current treatment relies on supportive therapies including immunoglobulin replacement and symptom-directed therapy, with hematopoietic stem cell transplant offering the only curative option. OBJECTIVES As most XLP symptoms are due to defective T-cell function, this study investigated whether inhibition of SHP2 can restore cellular function in the absence of SAP. METHODS Healthy donor and XLP patient T cells were activated with anti-CD3/CD28 in T-cell media supplemented with a SHP2 inhibitor (RMC-4550 in vitro for 24 hours) and functional assays were performed to assess follicular TH (TFH) cell function, CD8 cytotoxicity, and sensitivity to restimulation-induced cell death. Additionally, SAP-deficient (SAPy/-) mice were treated with RMC-4550 before T-cell mediated challenge with 4-hydroxy-3-nitrophenylacetly conjugated chicken gammaglobulin and subsequent assessment of humoral immunity analyzing TFH cell population, germinal center formation, and antigen-dependent immunoglobulin secretion. RESULTS This study shows that the use of RMC-4550 restores T-cell function in XLP patient cells and a SAPy/- model, demonstrating restoration of TFH cell function through immunoglobulin and cytokine secretion analysis alongside rescue of cytotoxicity and restimulation-induced cell death. CONCLUSIONS These data suggest that SHP2 inhibitors could offer a novel and effective targeted treatment approach for patients with XLP.
Collapse
|
24
|
Paolino J, Berliner N, Degar B. Hemophagocytic lymphohistiocytosis as an etiology of bone marrow failure. Front Oncol 2022; 12:1016318. [PMID: 36387094 PMCID: PMC9647152 DOI: 10.3389/fonc.2022.1016318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of multiorgan system dysfunction that is caused by hypercytokinemia and persistent activation of cytotoxic T lymphocytes and macrophages. A nearly ubiquitous finding and a diagnostic criterion of HLH is the presence of cytopenias in ≥ 2 cell lines. The mechanism of cytopenias in HLH is multifactorial but appears to be predominantly driven by suppression of hematopoiesis by pro-inflammatory cytokines and, to some extent, by consumptive hemophagocytosis. Recognition of cytopenias as a manifestation of HLH is an important consideration for patients with bone marrow failure of unclear etiology.
Collapse
Affiliation(s)
- Jonathan Paolino
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Nancy Berliner
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Degar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,*Correspondence: Barbara Degar,
| |
Collapse
|
25
|
Wang Y, Wang Y, Lu W, Tao L, Xiao Y, Zhou Y, He X, Zhang Y, Li L. Potential pathogenic mechanism of type 1 X-linked lymphoproliferative syndrome caused by a mutation of SH2D1A gene in an infant: A case report. Medicine (Baltimore) 2022; 101:e30951. [PMID: 36254040 PMCID: PMC9575725 DOI: 10.1097/md.0000000000030951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND X-linked lymphoproliferative syndrome (XLP) is a rare X-linked recessive inborn errors of immunity. The pathogenesis of XLP might be related to phophatidylinositol-3-kinase (PI3K)-associated pathways but insight details remain unclear. This study was to study an infant XLP-1 case caused by a mutation in SH2D1A gene, investigate the structural and functional alteration of mutant SAP protein, and explore the potential role of PI3K-associated pathways in the progression of XLP-1. METHODS The proband's condition was monitored by laboratory and imagological examinations. Whole exome sequencing and Sanger sequencing were performed to detect the genetic disorder. Bioinformatics tools including PolyPhen-2, SWISS-MODEL and SWISS-PDB Viewer were used to predict the pathogenicity and estimate structural change of mutant protein. Flow cytometry was used to investigate expression of SAP and PI3K-associated proteins. RESULTS The proband was diagnosed with XLP-1 caused by a hemizygous mutation c.96G > T in SH2D1A gene resulting in a missense substitution of Arginine to Serine at the site of amino acid 32 (p.R32S). The mutant protein contained a hydrogen bond turnover at the site of mutation and was predicted to be highly pathogenic. Expression of SH2D1A encoded protein SAP was downregulated in proband. The PI3K-AKT-mTOR signaling pathway was fully activated in XLP-1 patients, but it was inactive or only partially activated in healthy people or HLH patients. CONCLUSIONS The mutation c.96G > T in SH2D1A gene caused structural and functional changes in the SAP protein, resulting in XLP-1. The PI3K-AKT-mTOR signaling pathway may play a role in XLP-1 pathogenesis.
Collapse
Affiliation(s)
- Yanchun Wang
- Second Department of Infectious Disease, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Yan Wang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics, Yunnan Province Clinical Research Center for Children’s Health and Disease. Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Weimin Lu
- Second Department of Infectious Disease, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Lvyan Tao
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics, Yunnan Province Clinical Research Center for Children’s Health and Disease. Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Yang Xiao
- Department of Otorhinolaryngology Head and Neck surgery, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Yuantao Zhou
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics, Yunnan Province Clinical Research Center for Children’s Health and Disease. Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Xiaoli He
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics, Yunnan Province Clinical Research Center for Children’s Health and Disease. Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Yu Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics, Yunnan Province Clinical Research Center for Children’s Health and Disease. Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics, Yunnan Province Clinical Research Center for Children’s Health and Disease. Kunming Children’s Hospital, Kunming, Yunnan, China
- * Correspondence: Li Li, Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics, Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Hospital, Kunming 650228, Yunnan, China (e-mail: )
| |
Collapse
|
26
|
Ochiai S, Hayakawa I, Ohashi E, Hamano S, Miyata Y, Sakuma H, Hogetsu K, Gocho Y, Ogura M, Uchiyama T, Abe Y. Fatal X-linked lymphoproliferative disease type 1-associated limbic encephalitis with positive anti-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antibody. Brain Dev 2022; 44:630-634. [PMID: 35778314 DOI: 10.1016/j.braindev.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND X-linked lymphoproliferative disease type 1 (XLP1) is a rare monogenic immune dysregulation disorder caused by a deficiency of a signaling lymphocyte activation molecule-associated protein (SAP). While many patients with XLP1 present with fatal hemophagocytic lymphohistiocytosis upon Epstein Barr virus (EBV) infection, a small fraction present with limbic encephalitis in the absence of EBV infection. It is poorly understood why SAP deficiency may cause limbic encephalitis in XLP1. CASE A 12-year-old boy presented with seizures, changes in personality, memory loss, and cognitive deficits during treatment for interstitial pneumonia. A diagnosis of limbic encephalitis was made. Despite treatment against CD8+ T cell-mediated autoimmunity with intravenous methylprednisolone, dexamethasone, intravenous immunoglobulin, plasma exchange, cyclosporine, weekly etoposide, mycophenolate mofetil, and adalimumab, encephalitis progressed until the patient died after one month of treatment intitiation. Post-mortem genetic testing revealed a de novo SH2D1A truncating mutation. Tests for EBV infection were negative. Initial spinal fluid revealed markedly elevated protein levels, mild pleocytosis, and elevation of two chemokines (C-X-C motif chemokine ligand [CXCL] 10 and CXCL 13). Moreover, initial spinal fluid was tested positive for anti-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) autoantibody. DISCUSSION In XLP1-associated limbic encephalitis, anti-AMPAR autoantibody production by the dysregulated immune system due to SAP deficiency might be a pathogenic mechanism of central nervous system manifestations. In addition to the standard treatment for XLP1, targeted treatment against B-cell-mediated immunity might be indicated for patients with XLP1-associated limbic encephalitis.
Collapse
Affiliation(s)
- Satoru Ochiai
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan; Department of Pediatrics, Teikyo University, Tokyo, Japan
| | - Itaru Hayakawa
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan; Department of Pediatrics, University of Tokyo, Tokyo, Japan.
| | - Eri Ohashi
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Sho Hamano
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Yohane Miyata
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroshi Sakuma
- Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan
| | - Keita Hogetsu
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoshihiro Gocho
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masao Ogura
- Department of Nephrology, National Center for Child Health and Development, Tokyo, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Yuichi Abe
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
27
|
Casanova JL, Abel L. From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell 2022; 185:3086-3103. [PMID: 35985287 PMCID: PMC9386946 DOI: 10.1016/j.cell.2022.07.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022]
Abstract
The immense interindividual clinical variability during any infection is a long-standing enigma. Inborn errors of IFN-γ and IFN-α/β immunity underlying rare infections with weakly virulent mycobacteria and seasonal influenza virus have inspired studies of two common infections: tuberculosis and COVID-19. A TYK2 genotype impairing IFN-γ production accounts for about 1% of tuberculosis cases, and autoantibodies neutralizing IFN-α/β account for about 15% of critical COVID-19 cases. The discovery of inborn errors and mechanisms underlying rare infections drove the identification of common monogenic or autoimmune determinants of related common infections. This "rare-to-common" genetic and mechanistic approach to infectious diseases may be of heuristic value.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France; Howard Hughes Medical Institute, New York, NY, USA.
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
28
|
Barmettler S, Sharapova SO, Milota T, Greif PA, Magg T, Hauck F. Genomics Driving Diagnosis and Treatment of Inborn Errors of Immunity With Cancer Predisposition. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1725-1736.e2. [PMID: 35364342 DOI: 10.1016/j.jaip.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Inborn errors of immunity (IEI) are genetically and clinically heterogeneous disorders that, in addition to infection susceptibility and immune dysregulation, can have an enhanced cancer predisposition. The increasing availability of upfront next-generation sequencing diagnostics in immunology and oncology have uncovered substantial overlap of germline and somatic genetic conditions that can result in immunodeficiency and cancer. However, broad application of unbiased genetics in these neighboring disciplines still needs to be deployed, and joined therapeutic strategies guided by germline and somatic genetic risk factors are lacking. We illustrate the current difficulties encountered in clinical practice, summarize the historical development of pathophysiological concepts of cancer predisposition, and review select genetic, molecular, and cellular mechanisms of well-defined and illustrative disease entities such as DNA repair defects, combined immunodeficiencies with Epstein-Barr virus susceptibility, autoimmune lymphoproliferative syndromes, regulatory T-cell disorders, and defects in cell intrinsic immunity. We review genetic variants that, when present in the germline, cause IEI with cancer predisposition but, when arising as somatic variants, behave as oncogenes and cause specific cancer entities. We finally give examples of small molecular compounds that are developed and studied to target genetically defined cancers but might also proof useful to treat IEI.
Collapse
Affiliation(s)
- Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy, & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine, Charles University Hospital and Motol University Hospital, Prague, Czechia
| | - Philipp A Greif
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Thomas Magg
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
29
|
Wu L, Yang F, Wang J, Yang F, Liang M, Yang H. Exon skipping caused by a complex structural variation in SH2D1A resulted in X-linked lymphoproliferative syndrome type 1. Mol Genet Genomic Med 2022; 10:e1873. [PMID: 35092357 PMCID: PMC8922962 DOI: 10.1002/mgg3.1873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background X‐linked lymphoproliferative syndrome type 1 (XLP1) is a rare primary immunodeficiency disorder characterized by severe immune dysregulation often after viral infection. It is caused by hemizygous mutations in the X‐linked SH2D1A gene. People with XLP1 have complex and variable phenotype manifestations as EBV‐driven severe or fulminant mononucleosis, hemophagocytic lymphohistiocytosis (EBV‐HLH), dysgammaglobulinemia, and B‐cell lymphoma. Methods Immunological analyses, clinical laboratory testing, and whole exome sequencing (WES) were performed to help the disease diagnosis for the patient with severe immune dysregulation. Routine and extended WES analysis pipelines were applied to explore candidates. A complex genomic structural variation in SH2D1A was detected and verified by Inverse‐PCR, Gap‐PCR, and RT‐PCR. Results Here we reported that a five‐year‐old male patient manifested with EBV‐HLH, recurrent infection by severe immune dysregulation, and successfully managed with HSCT. He finally established precise disease diagnosis as XLP1 caused by a complex genomic structural variation in SH2D1A (NC_000023.11:g. [124,350,560_124365777del; 124,365,777_124365917inv; 124,365,911_124365916del]). The mother and grandmother of the proband were confirmed to be carriers. The complex variant resulted in the exon 2 skipping and was predicted to generate a prematurely truncated protein. Conclusion The complex structural variant combined with paracentric inversion and large size deletions was first reported in XLP1 cases. It is considered to be pathogenic based on the truncation of the mRNA sequence and cosegregation with the disease in three‐generation pedigree analysis. This finding has expanded the known XLP‐related mutation spectrum in Chinese patients and indicated remarkable effects on the early diagnosis and therapeutic implication using proper molecular testing techniques.
Collapse
Affiliation(s)
- Liwen Wu
- Department of Neurology, Hunan Children 's Hospital, Changsha, P.R. China
| | | | | | | | | | - Haiyan Yang
- Department of Neurology, Hunan Children 's Hospital, Changsha, P.R. China
| |
Collapse
|
30
|
Münz C. Co-Stimulatory Molecules during Immune Control of Epstein Barr Virus Infection. Biomolecules 2021; 12:biom12010038. [PMID: 35053187 PMCID: PMC8774114 DOI: 10.3390/biom12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/17/2023] Open
Abstract
The Epstein Barr virus (EBV) is one of the prominent human tumor viruses, and it is efficiently immune-controlled in most virus carriers. Cytotoxic lymphocytes strongly expand during symptomatic primary EBV infection and in preclinical in vivo models of this tumor virus infection. In these models and patients with primary immunodeficiencies, antibody blockade or deficiencies in certain molecular pathways lead to EBV-associated pathologies. In addition to T, NK, and NKT cell development, as well as their cytotoxic machinery, a set of co-stimulatory and co-inhibitory molecules was found to be required for EBV-specific immune control. The role of CD27/CD70, 4-1BB, SLAMs, NKG2D, CD16A/CD2, CTLA-4, and PD-1 will be discussed in this review. Some of these have just been recently identified as crucial for EBV-specific immune control, and for others, their important functions during protection were characterized in in vivo models of EBV infection and its immune control. These insights into the phenotype of cytotoxic lymphocytes that mediate the near-perfect immune control of EBV-associated malignancies might also guide immunotherapies against other tumors in the future.
Collapse
Affiliation(s)
- Christian Münz
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zurich, Switzerland
| |
Collapse
|
31
|
Staels F, Collignon T, Betrains A, Gerbaux M, Willemsen M, Humblet-Baron S, Liston A, Vanderschueren S, Schrijvers R. Monogenic Adult-Onset Inborn Errors of Immunity. Front Immunol 2021; 12:753978. [PMID: 34867986 PMCID: PMC8635491 DOI: 10.3389/fimmu.2021.753978] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022] Open
Abstract
Inborn errors of immunity (IEI) are a heterogenous group of disorders driven by genetic defects that functionally impact the development and/or function of the innate and/or adaptive immune system. The majority of these disorders are thought to have polygenic background. However, the use of next-generation sequencing in patients with IEI has led to an increasing identification of monogenic causes, unravelling the exact pathophysiology of the disease and allowing the development of more targeted treatments. Monogenic IEI are not only seen in a pediatric population but also in adulthood, either due to the lack of awareness preventing childhood diagnosis or due to a delayed onset where (epi)genetic or environmental factors can play a role. In this review, we discuss the mechanisms accounting for adult-onset presentations and provide an overview of monogenic causes associated with adult-onset IEI.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | | | - Albrecht Betrains
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Vlaams Instituut voor Biotechnologie - Katholieke Universiteit (VIB-KU) Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Steven Vanderschueren
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disease, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Meeths M, Bryceson YT. Genetics and pathophysiology of haemophagocytic lymphohistiocytosis. Acta Paediatr 2021; 110:2903-2911. [PMID: 34192386 DOI: 10.1111/apa.16013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Haemophagocytic lymphohistiocytosis (HLH) represents a life-threatening hyperinflammatory syndrome. Familial studies have established autosomal and X-linked recessive causes of HLH, highlighting a pivotal role for lymphocyte cytotoxicity in the control of certain virus infections and immunoregulation. Recently, a more complex etiological framework has emerged, linking HLH predisposition to variants in genes required for metabolism or immunity to intracellular pathogens. We review genetic predisposition to HLH and discuss how molecular insights have provided fundamental knowledge of the immune system as well as detailed pathophysiological understanding of hyperinflammatory diseases, highlighting new treatment strategies.
Collapse
Affiliation(s)
- Marie Meeths
- Childhood Cancer Research Unit Department of Women’s and Children’s Health Karolinska Institutet Stockholm Sweden
- Theme of Children’s Health Karolinska University Hospital Stockholm Sweden
| | - Yenan T. Bryceson
- Centre for Hematology and Regenerative Medicine Department of Medicine Karolinska Institute Stockholm Sweden
- Division of Clinical Immunology and Transfusion Medicine Karolinska University Hospital Stockholm Sweden
- Broegelmann Research Laboratory Department of Clinical Sciences University of Bergen Bergen Norway
| |
Collapse
|
33
|
Reguraman N, Hassani A, Philip P, Khan G. Uncovering early events in primary Epstein-Barr virus infection using a rabbit model. Sci Rep 2021; 11:21220. [PMID: 34707156 PMCID: PMC8551192 DOI: 10.1038/s41598-021-00668-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpesvirus implicated in the pathogenesis of several malignant and non-malignant conditions. However, a number of fundamental aspects about the biology of EBV and the mechanism(s) by which this virus induces pathology remain unknown. One major obstacle has been the lack of a suitable animal model for EBV infection. In this study, using our recently established rabbit model of EBV infection, we examined the early events following primary EBV infection. We show that, both immunocompetent and immunosuppressed animals were readily susceptible to EBV infection. However, immunosuppressed animals showed marked splenomegaly and widespread infection. Following EBV infection, the virus primarily targeted naïve IgM+, CD20+, CD21+ and CD79a+ B cells. Infected cells expressed varying sets of viral latent/lytic gene products. Notably, co-expression of latent and lytic proteins in the same cell was not observed. Infected cells in type 0/1 latency (EBERs+), were small and proliferating (Ki67+). By contrast, cells in type 2/3 latency (LMP1+), were large, non-proliferating (Ki-67-) and p53+. Although infected B-cells were widely present in splenic follicles, they did not express germinal center marker, BCL-6. Taken together, this study shows for the first time, some of the early events following primary EBV infection.
Collapse
Affiliation(s)
- Narendran Reguraman
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Asma Hassani
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Pretty Philip
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Tawam Hospital Campus, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
34
|
Bąbol-Pokora K, Wołowiec M, Popko K, Jaworowska A, Bryceson YT, Tesi B, Henter JI, Młynarski W, Badowska W, Balwierz W, Drabko K, Kałwak K, Maciejka-Kembłowska L, Pieczonka A, Sobol-Milejska G, Kołtan S, Malinowska I. Molecular Genetics Diversity of Primary Hemophagocytic Lymphohistiocytosis among Polish Pediatric Patients. Arch Immunol Ther Exp (Warsz) 2021; 69:31. [PMID: 34677667 PMCID: PMC8536594 DOI: 10.1007/s00005-021-00635-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/10/2021] [Indexed: 06/12/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a clinical syndrome of life-threatening inflammation caused by an excessive, prolonged and ineffective immune response. An increasing number of HLH cases is recognized in Poland, but the genetic causes of familial HLH (FHL) have not been reported. We investigated the molecular genetics and associated outcomes of pediatric patients who met HLH criteria. We studied 54 patients with HLH, 36 of whom received genetic studies. Twenty-five patients were subjected to direct sequencing of the PRF1, UNC13D, STX11, XIAP and SH2D1A genes. Additionally, 11 patients were subjected to targeted next-generation sequencing. In our study group, 17 patients (31%) were diagnosed with primary HLH, with bi-allelic FHL variants identified in 13 (36%) patients whereas hemizygous changes were identified in 4 patients with X-linked lymphoproliferative diseases. In addition, one patient was diagnosed with X-linked immunodeficiency with magnesium defect, Epstein–Barr virus infection and neoplasia due to a hemizygous MAGT1 variant; another newborn was diagnosed with auto-inflammatory syndrome caused by MVK variants. The majority (65%) of FHL patients carried UNC13D pathogenic variants, whereas PRF1 variants occurred in two patients. Novel variants in UNC13D, PRF1 and XIAP were detected. Epstein–Barr virus was the most common trigger noted in 23 (65%) of the patients with secondary HLH. In three patients with secondary HLH, heterozygous variants of FHL genes were found. Overall survival for the entire study group was 74% with a median of 3.6 years of follow-up. Our results highlight the diversity of molecular causes of primary HLH in Poland.
Collapse
Affiliation(s)
- Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Magdalena Wołowiec
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Żwirki i Wigury 63A, 02-091, Warsaw, Poland
| | - Katarzyna Popko
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Jaworowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Yenan T Bryceson
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bianca Tesi
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jan-Inge Henter
- Department of Medicine, Centre for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wanda Badowska
- Division of Pediatric Hematology and Oncology, Children Hospital, Olsztyn, Poland
| | - Walentyna Balwierz
- Department of Pediatrics Oncology and Hematology, University Children's Hospital, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Kałwak
- Department of Pediatric Stem Cell Transplantation, Hematology and Oncology, Medical University, Wroclaw, Poland
| | | | - Anna Pieczonka
- Department of Pediatric Oncology, Hematology and Transplantology, University of Medical Sciences, Poznan, Poland
| | - Grażyna Sobol-Milejska
- Department of Pediatrics, Hematology and Oncology, Medical University of Silesia, Silesia, Poland
| | - Sylwia Kołtan
- Department of Pediatrics, Hematology and Oncology, Nicolaus Copernicus University, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Iwona Malinowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Warsaw, Żwirki i Wigury 63A, 02-091, Warsaw, Poland.
| | | |
Collapse
|
35
|
McClain KL, Bigenwald C, Collin M, Haroche J, Marsh RA, Merad M, Picarsic J, Ribeiro KB, Allen CE. Histiocytic disorders. Nat Rev Dis Primers 2021; 7:73. [PMID: 34620874 PMCID: PMC10031765 DOI: 10.1038/s41572-021-00307-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/18/2022]
Abstract
The historic term 'histiocytosis' meaning 'tissue cell' is used as a unifying concept for diseases characterized by pathogenic myeloid cells that share histological features with macrophages or dendritic cells. These cells may arise from the embryonic yolk sac, fetal liver or postnatal bone marrow. Prior classification schemes align disease designation with terminal phenotype: for example, Langerhans cell histiocytosis (LCH) shares CD207+ antigen with physiological epidermal Langerhans cells. LCH, Erdheim-Chester disease (ECD), juvenile xanthogranuloma (JXG) and Rosai-Dorfman disease (RDD) are all characterized by pathological ERK activation driven by activating somatic mutations in MAPK pathway genes. The title of this Primer (Histiocytic disorders) was chosen to differentiate the above diseases from Langerhans cell sarcoma and malignant histiocytosis, which are hyperproliferative lesions typical of cancer. By comparison LCH, ECD, RDD and JXG share some features of malignant cells including activating MAPK pathway mutations, but are not hyperproliferative. 'Inflammatory myeloproliferative neoplasm' may be a more precise nomenclature. By contrast, haemophagocytic lymphohistiocytosis is associated with macrophage activation and extreme inflammation, and represents a syndrome of immune dysregulation. These diseases affect children and adults in varying proportions depending on which of the entities is involved.
Collapse
Affiliation(s)
- Kenneth L McClain
- Texas Children's Cancer Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA.
| | - Camille Bigenwald
- Department of Oncological Sciences and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Collin
- Human Dendritic Cell Lab, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Julien Haroche
- Department of Internal Medicine, Institut E3M French Reference Centre for Histiocytosis, Pitié-Salpȇtrière Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, and University of Cincinnati, Cincinnati, OH, USA
| | - Miriam Merad
- Department of Oncological Sciences and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Picarsic
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karina B Ribeiro
- Faculdade de Ciȇncias Médicas da Santa Casa de São Paulo, Department of Collective Health, São Paulo, Brazil
| | - Carl E Allen
- Texas Children's Cancer Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
36
|
Lino CNR, Ghosh S. Epstein-Barr Virus in Inborn Immunodeficiency-More Than Infection. Cancers (Basel) 2021; 13:cancers13194752. [PMID: 34638238 PMCID: PMC8507541 DOI: 10.3390/cancers13194752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Epstein–Barr Virus (EBV) is a common virus that is readily controlled by a healthy immune system and rarely causes serious problems in infected people. However, patients with certain genetic defects of their immune system might have difficulties controlling EBV and often develop severe and life-threatening conditions, such as severe inflammation and malignancies. In this review, we provide a summary of inherited immune diseases that lead to a high susceptibility to EBV infection and discuss how this infection is associated with cancer development. Abstract Epstein–Barr Virus (EBV) is a ubiquitous virus affecting more than 90% of the world’s population. Upon infection, it establishes latency in B cells. It is a rather benign virus for immune-competent individuals, in whom infections usually go unnoticed. Nevertheless, EBV has been extensively associated with tumorigenesis. Patients suffering from certain inborn errors of immunity are at high risk of developing malignancies, while infection in the majority of immune-competent individuals does not seem to lead to immune dysregulation. Herein, we discuss how inborn mutations in TNFRSF9, CD27, CD70, CORO1A, CTPS1, ITK, MAGT1, RASGRP1, STK4, CARMIL2, SH2D1A, and XIAP affect the development, differentiation, and function of key factors involved in the immunity against EBV, leading to increased susceptibility to lymphoproliferative disease and lymphoma.
Collapse
Affiliation(s)
| | - Sujal Ghosh
- Correspondence: ; Tel.: +49-211-811-6224; Fax: +49-211-811-6191
| |
Collapse
|
37
|
Song AY, Kim H, Kim JM, Hwang SH, Ko DH, Kim HS. Bispecific Antibody Designed for Targeted NK Cell Activation and Functional Assessment for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42370-42381. [PMID: 34486371 DOI: 10.1021/acsami.1c08986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Natural killer (NK) cells serve as key innate effectors and their activity has been considered a prognostic biomarker in diverse human diseases. Currently, NK cell functional assays have several problems primarily related to adequate preparation, labeling, or treatment of target cells, which are cumbersome and often hamper consistent sensitivity for NK cells. Here, bispecific antibodies (BsAb's) targeting NKG2D and 2B4 receptors, whose combination mounts selective cytotoxicity and IFN-γ production of NK cells, are developed as acellular, consistent, and easy-to-use strategies for assessing NK cell functions. These NK cell activator BsAb's (NKABs) are constructed in symmetric dual bivalent formats with different interdomain spacings [immunoglobulin G (IgG)-single-chain variable fragment (scFv) and dual-variable domain (DVD)-Ig] and kappa constant (Cκ)-scFv format linking two scFv's with a Cκ domain. These NKABs are specific and superior to a combination of monospecific antibodies for NK cell activation. NKAB elicits both direct cytotoxicity and IFN-γ production via integration of NKG2D and 2B4 signals. Moreover, stimulation with NKAB IgG-scFv and Cκ-scFv reveals defective NK cell functions in X-linked lymphoproliferative disease involving 2B4 dysfunction in NK cells and multiple myeloma in peripheral blood mononuclear cells and whole blood, respectively. Hence, this work provides a proof of concept that NKAB facilitates the reliable and comprehensive measurement of NK cell function in clinical settings for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- Ah-Young Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hyori Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jung Min Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Dae-Hyun Ko
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Stem Cell Immunomodulation Research Center (SCIRC), University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
38
|
Human inborn errors of immunity to oncogenic viruses. Curr Opin Immunol 2021; 72:277-285. [PMID: 34364035 DOI: 10.1016/j.coi.2021.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022]
Abstract
Oncoviruses are viruses that can cause tumors. Seven viruses are currently recognized as oncogenic in humans: Epstein Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV, also known as HHV8), human papillomaviruses (HPVs), hepatitis B virus (HBV), hepatitis C virus (HCV), human T-lymphotropic virus-1 (HTLV-1), and Merkel cell polyomavirus (MCPyV). The clinical phenotypes resulting from infection with these oncoviruses range from asymptomatic infection to invasive cancers. Patients with inborn errors of immunity (IEI) are prone to the development of infectious diseases caused by a narrow or broad spectrum of pathogens, including oncoviruses in some cases. Studies of patients with IEI have deepened our understanding of the non-redundant mechanisms underlying the control of EBV, HHV8 and HPV infections. The human genetic factors conferring predisposition to oncogenic HBV, HCV, HTLV-1 and MCPyV manifestations remain elusive. We briefly review here what is currently known about the IEI conferring predisposition to severe infection with oncoviruses.
Collapse
|
39
|
Jaufmann J, Franke FC, Sperlich A, Blumendeller C, Kloos I, Schneider B, Sasaki D, Janssen KP, Beer-Hammer S. The emerging and diverse roles of the SLy/SASH1-protein family in health and disease-Overview of three multifunctional proteins. FASEB J 2021; 35:e21470. [PMID: 33710696 DOI: 10.1096/fj.202002495r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Intracellular adaptor proteins are indispensable for the transduction of receptor-derived signals, as they recruit and connect essential downstream effectors. The SLy/SASH1-adaptor family comprises three highly homologous proteins, all of them sharing conserved structural motifs. The initial characterization of the first member SLy1/SASH3 (SH3 protein expressed in lymphocytes 1) in 2001 was rapidly followed by identification of SLy2/HACS1 (hematopoietic adaptor containing SH3 and SAM domains 1) and SASH1/SLy3 (SAM and SH3 domain containing 1). Based on their pronounced sequence similarity, they were subsequently classified as one family of intracellular scaffold proteins. Despite their obvious homology, the three SLy/SASH1-members fundamentally differ with regard to their expression and function in intracellular signaling. On the contrary, growing evidence clearly demonstrates an important role of all three proteins in human health and disease. In this review, we systematically summarize what is known about the SLy/SASH1-adaptors in the field of molecular cell biology and immunology. To this end, we recapitulate current research about SLy1/SASH3, SLy2/HACS1, and SASH1/SLy3, with an emphasis on their similarities and differences.
Collapse
Affiliation(s)
- Jennifer Jaufmann
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Fabian Christoph Franke
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Sperlich
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Carolin Blumendeller
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Isabel Kloos
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Barbara Schneider
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Daisuke Sasaki
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,Medical SC New Technology Strategy Office, General Research Institute, Nitto Boseki, Co., Ltd, Tokyo, Japan
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
40
|
Münz C. Immune Escape by Non-coding RNAs of the Epstein Barr Virus. Front Microbiol 2021; 12:657387. [PMID: 34234755 PMCID: PMC8257079 DOI: 10.3389/fmicb.2021.657387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 01/20/2023] Open
Abstract
Epstein Barr virus (EBV) is one of the most successful pathogens of humans, persistently colonizing more than 95% of the adult human population. At the same time EBV encodes oncogenes that can readily transform human B cells in culture and threaten healthy virus carriers with lymphomagenesis. Cytotoxic lymphocytes have been identified in experimental models and by primary immunodeficiencies as the main protective immune compartments controlling EBV. EBV has reached a stalemate with these cytotoxic T and innate lymphocytes to ensure persistence in most infected humans. Recent evidence suggests that the non-coding RNAs of the virus contribute to viral immune escape to prevent immune eradication. This knowledge might be used in the future to attenuate EBV for vaccine development against this human tumor virus that was discovered more than 55 years ago.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Natural Killer Cell Responses during Human γ-Herpesvirus Infections. Vaccines (Basel) 2021; 9:vaccines9060655. [PMID: 34203904 PMCID: PMC8232711 DOI: 10.3390/vaccines9060655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Herpesviruses are main sculptors of natural killer (NK) cell repertoires. While the β-herpesvirus human cytomegalovirus (CMV) drives the accumulation of adaptive NKG2C-positive NK cells, the human γ-herpesvirus Epstein–Barr virus (EBV) expands early differentiated NKG2A-positive NK cells. While adaptive NK cells support adaptive immunity by antibody-dependent cellular cytotoxicity, NKG2A-positive NK cells seem to preferentially target lytic EBV replicating B cells. The importance of this restriction of EBV replication during γ-herpesvirus pathogenesis will be discussed. Furthermore, the modification of EBV-driven NK cell expansion by coinfections, including by the other human γ-herpesvirus Kaposi sarcoma-associated herpesvirus (KSHV), will be summarized.
Collapse
|
42
|
Diacylglycerol Kinase alpha in X Linked Lymphoproliferative Disease Type 1. Int J Mol Sci 2021; 22:ijms22115816. [PMID: 34072296 PMCID: PMC8198409 DOI: 10.3390/ijms22115816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
Diacylglycerol kinases are intracellular enzymes that control the balance between the secondary messengers diacylglycerol and phosphatidic acid. DGKα and DGKζ are the prominent isoforms that restrain the intensity of T cell receptor signalling by metabolizing PLCγ generated diacylglycerol. Thus, their activity must be tightly controlled to grant cellular homeostasis and refine immune responses. DGKα is specifically inhibited by strong T cell activating signals to allow for full diacylglycerol signalling which mediates T cell response. In X-linked lymphoproliferative disease 1, deficiency of the adaptor protein SAP results in altered T cell receptor signalling, due in part to persistent DGKα activity. This activity constrains diacylglycerol levels, attenuating downstream pathways such as PKCθ and Ras/MAPK and decreasing T cell restimulation induced cell death. This is a form of apoptosis triggered by prolonged T cell activation that is indeed defective in CD8+ cells of X-linked lymphoproliferative disease type 1 patients. Accordingly, inhibition or downregulation of DGKα activity restores in vitro a correct diacylglycerol dependent signal transduction, cytokines production and restimulation induced apoptosis. In animal disease models, DGKα inhibitors limit CD8+ expansion and immune-mediated tissue damage, suggesting the possibility of using inhibitors of diacylglycerol kinase as a new therapeutic approach.
Collapse
|
43
|
Deng Y, Münz C. Roles of Lytic Viral Replication and Co-Infections in the Oncogenesis and Immune Control of the Epstein-Barr Virus. Cancers (Basel) 2021; 13:2275. [PMID: 34068598 PMCID: PMC8126045 DOI: 10.3390/cancers13092275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Epstein-Barr virus (EBV) is the prototypic human tumor virus whose continuous lifelong immune control is required to prevent lymphomagenesis in the more than 90% of the human adult population that are healthy carriers of the virus. Here, we review recent evidence that this immune control has not only to target latent oncogenes, but also lytic replication of EBV. Furthermore, genetic variations identify the molecular machinery of cytotoxic lymphocytes as essential for this immune control and recent studies in mice with reconstituted human immune system components (humanized mice) have begun to provide insights into the mechanistic role of these molecules during EBV infection. Finally, EBV often does not act in isolation to cause disease. Some of EBV infection-modulating co-infections, including human immunodeficiency virus (HIV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been modeled in humanized mice. These preclinical in vivo models for EBV infection, lymphomagenesis, and cell-mediated immune control do not only promise a better understanding of the biology of this human tumor virus, but also the possibility to explore vaccine candidates against it.
Collapse
Affiliation(s)
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland;
| |
Collapse
|
44
|
Mu J, Xue D, Li M, Wang T, Ma Q, Dong H. Fatal unexpected death due to X-linked lymphoproliferative disease. Leg Med (Tokyo) 2021; 52:101900. [PMID: 34023582 DOI: 10.1016/j.legalmed.2021.101900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
X-linked lymphoproliferative disease (XLP) is a rare immunodeficiency disease characterized by severe immune disorder and extreme vulnerability to Epstein-Barr virus (EBV) infections. Here we report a 14-month-old Chinese boy presenting with fulminant infectious mononucleosis (FIM) following EBV infection, and died of hepatic failure within one week of disease progression. Postmortem examination revealed icterus, ascites, extensive enlarged mesenteric lymphnodes and hepatosplenomegaly. Histopathological examination showed diffuse proliferation of cytotoxic T lymphoid cells and hemophagocytosis in multiple organs. The family history revealed his brother had died under similar circumstances at 5 five years of age. The cause of death of the boy was ascribed to XLP. To the best of our knowledge, there is few autopsy-confirmed XLP case in the forensic practice. The complicatedmanifestations and systemic pathological changes should be well recognized by clinicians and forensic pathologists.
Collapse
Affiliation(s)
- Jiao Mu
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, PR China; Department of Forensic Medicine, Hebei North University, No. 11 Zuanshinan Road, Zhangjiakou, Hebei 075000, PR China.
| | - Dazhong Xue
- Department of Forensic Medicine, Hebei North University, No. 11 Zuanshinan Road, Zhangjiakou, Hebei 075000, PR China.
| | - Meiyu Li
- Department of Forensic Medicine, Hebei North University, No. 11 Zuanshinan Road, Zhangjiakou, Hebei 075000, PR China.
| | - Tingting Wang
- Department of Forensic Medicine, Hebei North University, No. 11 Zuanshinan Road, Zhangjiakou, Hebei 075000, PR China.
| | - Qian Ma
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, Hubei 430030, PR China.
| | - Hongmei Dong
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
45
|
Gartshteyn Y, Askanase AD, Mor A. SLAM Associated Protein Signaling in T Cells: Tilting the Balance Toward Autoimmunity. Front Immunol 2021; 12:654839. [PMID: 33936082 PMCID: PMC8086963 DOI: 10.3389/fimmu.2021.654839] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
T cell activation is the result of the integration of signals across the T cell receptor and adjacent co-receptors. The signaling lymphocyte activation molecules (SLAM) family are transmembrane co-receptors that modulate antigen driven T cell responses. Signal transduction downstream of the SLAM receptor is mediated by the adaptor protein SLAM Associated Protein (SAP), a small intracellular protein with a single SH2 binding domain that can recruit tyrosine kinases as well as shield phosphorylated sites from dephosphorylation. Balanced SLAM-SAP signaling within T cells is required for healthy immunity, with deficiency or overexpression prompting autoimmune diseases. Better understanding of the molecular pathways involved in the intracellular signaling downstream of SLAM could provide treatment targets for these autoimmune diseases.
Collapse
Affiliation(s)
- Yevgeniya Gartshteyn
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Anca D Askanase
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States.,Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
46
|
Casanova JL, Abel L. Lethal Infectious Diseases as Inborn Errors of Immunity: Toward a Synthesis of the Germ and Genetic Theories. ANNUAL REVIEW OF PATHOLOGY 2021; 16:23-50. [PMID: 32289233 PMCID: PMC7923385 DOI: 10.1146/annurev-pathol-031920-101429] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It was first demonstrated in the late nineteenth century that human deaths from fever were typically due to infections. As the germ theory gained ground, it replaced the old, unproven theory that deaths from fever reflected a weak personal or even familial constitution. A new enigma emerged at the turn of the twentieth century, when it became apparent that only a small proportion of infected individuals die from primary infections with almost any given microbe. Classical genetics studies gradually revealed that severe infectious diseases could be driven by human genetic predisposition. This idea gained ground with the support of molecular genetics, in three successive, overlapping steps. First, many rare inborn errors of immunity were shown, from 1985 onward, to underlie multiple, recurrent infections with Mendelian inheritance. Second, a handful of rare and familial infections, also segregating as Mendelian traits but striking humans resistant to other infections, were deciphered molecularly beginning in 1996. Third, from 2007 onward, a growing number of rare or common sporadicinfections were shown to result from monogenic, but not Mendelian, inborn errors. A synthesis of the hitherto mutually exclusive germ and genetic theories is now in view.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA;
- Howard Hughes Medical Institute, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Paris University, Imagine Institute, 75015 Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Paris University, Imagine Institute, 75015 Paris, France
| |
Collapse
|
47
|
Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020; 21:ijms21228524. [PMID: 33198297 PMCID: PMC7696930 DOI: 10.3390/ijms21228524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialised subset of CD4+ T cells that play a significant role in the adaptive immune response, providing critical help to B cells within the germinal centres (GC) of secondary lymphoid organs. The B cell receptors of GC B cells undergo multiple rounds of somatic hypermutation and affinity maturation within the GC response, a process dependent on cognate interactions with Tfh cells. B cells that receive sufficient help from Tfh cells form antibody-producing long-lived plasma and memory B cells that provide the basis of decades of effective and efficient protection and are considered the gold standard in correlates of protection post-vaccination. However, the T cell response to vaccination has been understudied, and over the last 10 years, exponential improvements in the technological underpinnings of sampling techniques, experimental and analytical tools have allowed multidisciplinary characterisation of the role of T cells and the immune system as a whole. Of particular interest to the field of vaccinology are GCs and Tfh cells, representing a unique target for improving immunisation strategies. Here, we discuss recent insights into the unique journey of Tfh cells from thymus to lymph node during differentiation and their role in the production of high-quality antibody responses as well as their journey back to the periphery as a population of memory cells. Further, we explore their function in health and disease and the power of next-generation sequencing techniques to uncover their potential as modulators of vaccine-induced immunity.
Collapse
|
48
|
Rühl J, Leung CS, Münz C. Vaccination against the Epstein-Barr virus. Cell Mol Life Sci 2020; 77:4315-4324. [PMID: 32367191 PMCID: PMC7223886 DOI: 10.1007/s00018-020-03538-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) was the first human tumor virus being discovered and remains to date the only human pathogen that can transform cells in vitro. 55 years of EBV research have now brought us to the brink of an EBV vaccine. For this purpose, recombinant viral vectors and their heterologous prime-boost vaccinations, EBV-derived virus-like particles and viral envelope glycoprotein formulations are explored and are discussed in this review. Even so, cell-mediated immune control by cytotoxic lymphocytes protects healthy virus carriers from EBV-associated malignancies, antibodies might be able to prevent symptomatic primary infection, the most likely EBV-associated pathology against which EBV vaccines will be initially tested. Thus, the variety of EBV vaccines reflects the sophisticated life cycle of this human tumor virus and only vaccination in humans will finally be able to reveal the efficacy of these candidates. Nevertheless, the recently renewed efforts to develop an EBV vaccine and the long history of safe adoptive T cell transfer to treat EBV-associated malignancies suggest that this oncogenic γ-herpesvirus can be targeted by immunotherapies. Such vaccination should ideally implement the very same immune control that protects healthy EBV carriers.
Collapse
Affiliation(s)
- Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Carol S Leung
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
49
|
Pediatric hemophagocytic lymphohistiocytosis. Blood 2020; 135:1332-1343. [PMID: 32107531 DOI: 10.1182/blood.2019000936] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome describing patients with severe systemic hyperinflammation. Characteristic features include unremitting fever, cytopenias, hepatosplenomegaly, and elevation of typical HLH biomarkers. Patients can develop hepatitis, coagulopathy, liver failure, central nervous system involvement, multiorgan failure, and other manifestations. The syndrome has a high mortality rate. More and more, it is recognized that while HLH can be appropriately used as a broad summary diagnosis, many pediatric patients actually suffer from an expanding spectrum of genetic diseases that can be complicated by the syndrome of HLH. Classic genetic diseases in which HLH is a typical and common manifestation include pathogenic changes in familial HLH genes (PRF1, UNC13D, STXBP2, and STX11), several granule/pigment abnormality genes (RAB27A, LYST, and AP3B1), X-linked lymphoproliferative disease genes (SH2D1A and XIAP), and others such as NLRC4, CDC42, and the Epstein-Barr virus susceptibility diseases. There are many other genetic diseases in which HLH is an infrequent complication of the disorder as opposed to a prominent manifestation of the disease caused directly by the genetic defect, including other primary immune deficiencies and inborn errors of metabolism. HLH can also occur in patients with underlying rheumatologic or autoinflammatory disorders and is usually designated macrophage activation syndrome in those settings. Additionally, HLH can develop in patients during infections or malignancies without a known (or as-yet-identified) genetic predisposition. This article will attempt to summarize current concepts in the pediatric HLH field as well as offer a practical diagnostic and treatment overview.
Collapse
|
50
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|