1
|
Amundson KK, Borton MA, Wilkins MJ. Anthropogenic impacts on the terrestrial subsurface biosphere. Nat Rev Microbiol 2025; 23:147-161. [PMID: 39406896 DOI: 10.1038/s41579-024-01110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 02/19/2025]
Abstract
The terrestrial subsurface is estimated to be the largest reservoir of microbial life on Earth. However, the subsurface also harbours economic, industrial and environmental resources, on which humans heavily rely, including diverse energy sources and formations for the storage of industrial waste and carbon dioxide for climate change mitigation. As a result of this anthropogenic activity, the subsurface landscape is transformed, including the subsurface biosphere. Through the creation of new environments and the introduction of substrates that fuel microbial life, the structure and function of subsurface microbiomes shift markedly. These microbial changes often have unintended effects on overall ecosystem function and are frequently challenging to manage from the surface of the Earth. In this Review, we highlight emerging research that investigates the impacts of anthropogenic activity on the terrestrial subsurface biosphere. We explore how humans alter the constraints on microbial life in the subsurface through drilling, mining, contamination and resource extraction, along with the resulting impacts of microorganisms on resource recovery and subsurface infrastructure.
Collapse
Affiliation(s)
- Kaela K Amundson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Murphy SF, Blake JM, Ebel BA, Martin DA. Intersection of Wildfire and Legacy Mining Poses Risks to Water Quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:35-44. [PMID: 39700319 PMCID: PMC11741108 DOI: 10.1021/acs.est.4c09489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Mining and wildfires are both landscape disturbances that pose elevated and substantial hazards to water supplies and ecosystems due to increased erosion and transport of sediment, metals, and debris to downstream waters. The risk to water supplies may be amplified when these disturbances occur in the same watershed. This work describes mechanisms by which the intersection of mining and wildfire may lead to elevated metal concentrations in downstream waters: (1) conveyance of metal-rich ash and soil to surface waters, (2) increased dissolution and transport of dissolved metals due to direct contact of precipitation with mine waste, (3) increased erosion and transport of metal-rich sediment from mining waste, (4) remobilization of previously deposited metal-contaminated floodplain sediment by higher postfire flood flows, and (5) increased metal transport from underground mine workings. Predicted increases in wildfire size, frequency, and burn severity, together with the ongoing need for metal resources, indicate that improved mapping, monitoring, modeling, and mitigation techniques are needed to manage the geochemical hazard of the intersection of wildfire and mining and implications for water availability.
Collapse
Affiliation(s)
- Sheila F. Murphy
- U.S.
Geological Survey, Water Resources Mission Area, 3215 Marine Street, Boulder, Colorado 80303, United States
| | - Johanna M. Blake
- U.S.
Geological Survey, New Mexico Water Science Center, 6700 Edith Blvd. NE, Albuquerque, New Mexico 87113, United States
| | - Brian A. Ebel
- U.S.
Geological Survey, Water Resources Mission Area, Burlington, Vermont 05482, United States
| | - Deborah A. Martin
- U.S.
Geological Survey, Water Resources Mission Area, 3215 Marine Street, Boulder, Colorado 80303, United States
| |
Collapse
|
3
|
Verma A, Chinnasamy HV, Biswas B, Singh A, Matheshwaran S. Biochemical and steady-state kinetic analyses of arsenate reductases from an arsenic-tolerant strain of Citrobacter youngae IITK SM2. Biochem Biophys Res Commun 2024; 739:150936. [PMID: 39541923 DOI: 10.1016/j.bbrc.2024.150936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Arsenic (As) poisoning in aquifers is a serious problem worldwide, especially in the middle-Gangetic Plain (MGP) of India. Microbially-mediated As speciation in such aquifers is governed by the arsenate-reductase enzyme, ArsC, encoded by the arsC gene of As-metabolizing bacteria. In this study, ArsC1 (119 aa) and ArsC2 (141 aa) of a highly resistant strain to arsenic, Citrobacter youngae IITK SM2 (CyIITKSM2), isolated from a mixed-oxic MGP groundwater were biochemically characterized. Coupled-arsenate-reductase assay and IC-ICP-MS analysis confirmed that ArsC2 showed higher As(V) reduction than ArsC1 in the dissolved phase, which was consistent with the prominent structural changes in ArsC2 as identified through circular dichroism spectroscopy. Furthermore, the two ArsCs were able to mobilize arsenic from solid-bound arsenate [As(V)-loaded goethite, AsG] predominantly as As(III). However, the total arsenic released in the presence of ArsC2 was ∼38 % and ∼88 % higher, respectively, as compared to the ArsC1-containing and ArsC-free conditions. A process-based model that considered ArsC-mediated As(V) reduction to As(III) in the dissolved phase, and surface complexation of As(V) and As(III) on goethite, suggested that the extent of arsenate binding with ArsC was not affected by whether As(V) was dissolved or was sorbed. However, the catalytic reduction rate was at least an order of magnitude lower in sorbed As(V) than in dissolved As(V). Mutants of ArsC2 exhibited variable but reduced efficiencies compared to the wild-type ArsC2. This reduction may be attributed to the C-terminal loop observed in the AlphaFold predicted structure of ArsC2, which was absent in ArsC1. This comprehensive biochemical and biophysical analysis of the arsenate reductases in Citrobacter youngae could enhance our understanding of the role these microbes play in arsenic mobilization within MGP aquifers.
Collapse
Affiliation(s)
- Akshat Verma
- Department of Civil Engineering, Indian Institute of Technology Kanpur, India; Environmental Geochemistry Laboratory, Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, India; Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Hariharan Vedi Chinnasamy
- Microbial Adapdation and Chromatin Remodelling Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| | - Bhumika Biswas
- Microbial Adapdation and Chromatin Remodelling Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India
| | - Abhas Singh
- Department of Civil Engineering, Indian Institute of Technology Kanpur, India; Environmental Geochemistry Laboratory, Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, India; Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA.
| | - Saravanan Matheshwaran
- Microbial Adapdation and Chromatin Remodelling Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, India; Environmental Microbiology Laboratory, Center for Environmental Science and Engineering, Indian Institute of Technology Kanpur, India; Kotak School of Sustainability, Indian Institute of Technology Kanpur, India.
| |
Collapse
|
4
|
Kopp JF, Paton L, Gajdosechova Z, Sinawivat S, Raab A, Brownlow A, Feldmann J. Toxic arsenolipids bioaccumulate in the developing brain of pilot whales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173816. [PMID: 38852872 DOI: 10.1016/j.scitotenv.2024.173816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Arsenic-containing hydrocarbons (AsHC), a subclass of arsenolipids (AsL), have been proven to exert neuro- and cytotoxic effects in in-vitro and in-vivo studies and were shown to pass through biological barriers like the blood-brain barrier. However, there has been no connection as to the environmental relevance of these findings, meaning there is no study based on samples from free living animals that are exposed to these compounds. Here, we report the identification of two AsHC as well as 3 arsenosugar phospholipids (AsPL) in the brains of a pod of stranded long-finned pilot whales (Globicephala melas) as well as the absence of arsenobetaine (AsB) which is often found to be a dominant As species in fish. We show data which suggests that there is an age-dependent accumulation of AsL in the brains of the animals. The results show that, in contrast to other organs, total arsenic as well as arsenolipids accumulate in an asymptotic pattern in the brains of the animals. Total As concentrations were found to range from 87 to 260 μg As/kg wet weight and between 0.6 and 27.6 μg As/kg was present in the form of AsPL958 in the brains of stranded pilot whales which was the most dominant lipophilic species present. The asymptotic relationship between total As, as well as AsPL, concentration in the brain and whale age may suggest that the accumulation of these species takes place prior to the full development of the blood-brain barrier in young whales. Finally, comparison between the organs of local squid, a common source of food for pilot whales, highlighted a comparable AsL profile which indicates a likely bioaccumulation pathway through the food chain.
Collapse
Affiliation(s)
- Johannes F Kopp
- TESLA-Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Lhiam Paton
- TESLA-Analytical Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | | | - Savarin Sinawivat
- TESLA-Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK
| | - Andrea Raab
- TESLA-Analytical Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Andrew Brownlow
- Scottish Stranding Scheme, University of Glasgow, Scotland, UK
| | - Joerg Feldmann
- TESLA-Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK; TESLA-Analytical Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
5
|
Wang J, Shaheen SM, Swertz AC, Liu C, Anderson CWN, Fendorf S, Wang SL, Feng X, Rinklebe J. First Insight into the Mobilization and Sequestration of Arsenic in a Karstic Soil during Redox Changes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17850-17861. [PMID: 39319747 DOI: 10.1021/acs.est.4c02989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Karst terrains provide drinking water for about 25% of the people on our planet, particularly in the southwest of China. Pollutants such as arsenic (As) in the soil can infiltrate groundwater through sinkholes and bedrock fractures in karst terrains. Despite this, the underlying mechanisms responsible for As release from karst soils under redox changes remain largely unexplored. Here, we used multiple synchrotron-based spectroscopic analyses to explore As mobilization and sequestration in As-polluted karstic soil under biogeochemical conditions that mimic field-validated redox conditions. We observed that As in the soil exists primarily as As(V), which is mainly associated with Fe(oxyhydr)oxides. The concentration of the dissolved As was high (294 μM) and As(III) was dominant (∼95%) at low Eh (≤-100 mV), indicating the high risk of As leaching under reducing conditions. This As mobilization was attributed to the fact that the dissolution of ferrihydrite and calcite promoted the release and reduction of associated As(V). The concentration of the dissolved As was low (17.0 μM) and As(V) was dominant (∼68%) at high Eh (≥+100 mV), which might be due to the oxidation and/or sequestration of As(III) by the recrystallized ferric phase. Our results showed that the combined effects of the reductive release of As(V) from both ferric and nonferric phases, along with the recrystallization of the ferric phase, govern the redox-induced mobilization and potential leaching of As in soils within karst environments.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, P.R. China
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Ann-Christin Swertz
- Faculty of Mechanical Engineering and Safety Engineering, Department of Safety Technology and Environmental Protection, University of Wuppertal, Rainer-Gruenter-Straße, 42119 Wuppertal, Germany
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, P.R. China
| | - Christopher W N Anderson
- Environmental Sciences, School of Agriculture and Environment, Massey University, 4442 Palmerston North, New Zealand
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan ROC
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
6
|
Abbasnejad B, Abbasnejad A, Fakhradini SS, Dehbandi R. Arsenic and fluoride occurrence in groundwater of an alluvial fan-delta junction zone in an arid climate: Implication for potential health risk and irrigation water quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56697-56717. [PMID: 39279023 DOI: 10.1007/s11356-024-34845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/25/2024] [Indexed: 09/18/2024]
Abstract
Alluvial fans and deltas are two environments with different hydrochemical conditions. Their junction zones, as mixing environments, are variably influenced by different processes, leading to variable environmental conditions. The purpose of this study is to investigate groundwater quality in the junction zone of these environments in the northern part of the Jazmourian depression (known as the Rudbar plain) in southeastern Iran to determine the dominant processes, assess arsenic and fluoride health risks, and evaluate irrigation water quality. A total of 33 samples from deep drilled wells were taken, and the concentrations of major ions and elements were determined. Additionally, statistical and hydrochemical analyses were undertaken. The dominant processes in the delta are evaporation and ion exchange, while the dominant process in the fan environment is silicate hydrolysis. Among the samples, 26.7% were mainly affected by the delta, and 73.3% were mainly affected by fan conditions. Although the majority of groundwater samples were suitable for irrigation based on quality standards, a significant portion exceeded the acceptable level for Na%. Non-carcinogenic health risk assessments indicated that arsenic hazard risks exceeded thresholds in 63.3% of cases for children and 36% for adults. Carcinogenic health risks associated with arsenic and fluoride exceeded acceptable levels in 4 and 2 stations, respectively. Elevated As concentrations contribute to a greater average health risk in parts of fans environment.
Collapse
Affiliation(s)
- Behnam Abbasnejad
- Department of Geology, College of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ahmad Abbasnejad
- Department of Geology, College of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | | | - Reza Dehbandi
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| |
Collapse
|
7
|
Yuan C, Hu L, Ren Z, Xu X, Gui X, Gong XA, Wu R, Sima J, Cao X. Marine microplastics enhance release of arsenic in coastal aquifer during seawater intrusion process. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134804. [PMID: 38880042 DOI: 10.1016/j.jhazmat.2024.134804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Microplastics (MPs), omnipresent contaminants in the ocean, could be carried by seawater intrusion into coastal aquifers, which might affect the fate of heavy metals existing in aquifers. Herein, we investigated the release behavior of arsenic (As) in coastal aquifers during MPs-containing seawater intrusion by applying laboratory experiment and numerical simulation. We found that seawater with marine MPs enhanced the release of As in aquifers, especially for dissolved As(V) and colloidal As. Negatively charged MPs competed with As(V) for the adsorption sites on iron (hydr)oxides in aquifers, resulting in the desorption of As(V). In addition, MPs could promote the release of Fe-rich colloids by imparting negative charge to its surface and providing it with sufficient repulsive force to detach from the matrix, thereby leading to the release of As associated with Fe-rich colloid. We also developed a modeling approach that well described the transport of As in coastal aquifer under the impact of MPs, which coupled variable density flow and kinetically controlled colloids transport with multicomponent reactive transport model. Our findings elucidated the enhancement of MPs on the release of As in aquifers during seawater intrusion, which provides new insights into the risk assessment of MPs in coastal zones.
Collapse
Affiliation(s)
- Chengpeng Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liyang Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhefan Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan-Ang Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jingke Sima
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Xuhui, Shanghai 200233, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Field Observation and Research Station of Erhai Lake Ecosystem, Yunnan 671000, China; Shanghai Engineering Research Center for Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Sadiq M, Eqani SAMAS, Podgorski J, Ilyas S, Abbas SS, Shafqat MN, Nawaz I, Berg M. Geochemical insights of arsenic mobilization into the aquifers of Punjab, Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173452. [PMID: 38782276 DOI: 10.1016/j.scitotenv.2024.173452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
It is well known that groundwater arsenic (As) contamination affects million(s) of people throughout the Indus flood plain, Pakistan. In this study, groundwater (n = 96) and drilled borehole samples (n = 87 sediments of 12 boreholes) were collected to investigate geochemical proxy-indicators for As release into groundwater across floodplains of the Indus Basin. The mean dissolved (μg/L) and sedimentary As concentrations (mg/kg) showed significant association in all studied areas viz.; lower reaches of Indus flood plain area (71 and 12.7), upper flood plain areas (33.7 and 7.2), and Thal desert areas (5.3 and 4.7) and are indicative of Basin-scale geogenic As contamination. As contamination in aquifer sediments is dependent on various geochemical factors including particle size (3-4-fold higher As levels in fine clay particles than in fine-coarse sand), sediment types (3-fold higher As in Holocene sediments of floodplain areas vs Pleistocene/Quaternary sediments in the Thal desert) with varying proportion of Al-Fe-Mn oxides/hydroxides. The total organic carbon (TOC) of cored aquifer sediments yielded low TOC content (mean = 0.13 %), which indicates that organic carbon is not a major driver (with a few exceptions) of As mobilization in the Indus Basin. Alkaline pH, high dissolved sulfate and other water quality parameters indicate pH-induced As leaching and the dominance of oxidizing conditions in the aquifers of upper flood plain areas of Punjab, Pakistan while at the lower reaches of the Indus flood plain and alluvial pockets along the rivers with elevated flood-driven dissolved organic carbon (exhibiting high dissolved Mn and Fe and a wide range of redox conditions). Furthermore, we also identified that paired dissolved AsMn values (instead of AsFe) may serve as a geochemical marker of a range of redox conditions throughout Indus flood plains.
Collapse
Affiliation(s)
- Muhammad Sadiq
- Department of Biosciences, COMSATS University, Park Road, 44000 Islamabad, Pakistan; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Joel Podgorski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Shazia Ilyas
- Department of Environmental Sciences, Forman Christian College (A Chartered University), 54600 Lahore, Pakistan
| | - Syed Sayyam Abbas
- Department of Biosciences, COMSATS University, Park Road, 44000 Islamabad, Pakistan
| | | | - Ismat Nawaz
- Department of Biosciences, COMSATS University, Park Road, 44000 Islamabad, Pakistan
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
9
|
Liu Y, Zhang X, Zheng J, He J, Lü C. Reductive dissolution of As-bearing iron oxides: Mediating mechanism of fulvic acid and dissimilated iron reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173443. [PMID: 38782281 DOI: 10.1016/j.scitotenv.2024.173443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Fulvic acid (FA) and iron oxides often play regulating roles in the geochemical behavior and ecological risk of arsenic (As) in terrestrial ecosystems. FA can act as electron shuttles to facilitate the reductive dissolution of As-bearing iron (hydr)oxides. However, the influence of FA from different sources on the sequential conversion of Fe/As in As-bearing iron oxides under biotic and abiotic conditions remains unclear. In this work, we exposed prepared As-bearing iron oxides to FAs derived from lignite (FAL) and plant peat (FAP) under anaerobic conditions, tracked the fate of Fe and As in the aqueous phase, and investigated the reduction transformation of Fe(III)/As(V) with or without the presence of Shewanella oneidensis MR-1. The results showed that the reduction efficiency of Fe(III)/As(V) was increased by MR-1, through its metabolic activity and using FAs as electron shuttles. The reduction of Fe(III)/As(V) was closely associated with goethite being more conducive to Fe/As reduction compared to hematite. It is determined that functional groups such as hydroxy, carboxy, aromatic, aldehyde, ketone and aliphatic groups are the primary electron donors. Their reductive capacities rank in the following sequence: hydroxy> carboxy, aromatic, aldehyde, ketone> aliphatic group. Notably, our findings suggest that in the biotic reduction, Fe significantly reduction precedes As reduction, thereby influencing the latter's reduction process across all incubation systems. This work provides empirical support for understanding iron's role in modulating the geochemical cycling of As and is of significant importance for assessing the release risk of arsenic in natural environments.
Collapse
Affiliation(s)
- Yangzheng Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China
| | - Xin Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Forest Ecosystem National Observation and Research Station of Greater Khingan Mountains in Inner Mongolia, Genhe 022350, China.
| | - Jinli Zheng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China
| | - Jiang He
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Institute of Environmental Geology, Inner Mongolia University, 010021 Hohhot, China
| | - Changwei Lü
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, 010021 Hohhot, China; Institute of Environmental Geology, Inner Mongolia University, 010021 Hohhot, China.
| |
Collapse
|
10
|
Suchi PD, Shaikh MAA, Saha B, Moniruzzaman M, Hossain MK, Parvin A, Parvin A. Comprehensive index analysis approach for ecological and human health risk assessment of a tributary river in Bangladesh. Heliyon 2024; 10:e32542. [PMID: 39040280 PMCID: PMC11260973 DOI: 10.1016/j.heliyon.2024.e32542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
This study examined the water quality of the Turag River, an important tributary river in Dhaka, Bangladesh in terms of physicochemical characteristics and heavy metal contamination to assess the potential risks to both ecological systems and human health. The majority of the water samples complied with the acceptable limits established by the World Health Organization (WHO) for various parameters including pH, electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), chemical oxygen demand (COD), sodium adsorption ratio (SAR), and magnesium adsorption ratio (MAR), except total hardness (TH). The sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), chloride (Cl-), fluoride (F-), nitrate (NO3 -), and sulfate (SO4 2-) levels in the water samples were found to be within acceptable ranges for most cases. Moreover, heavy metals including lead (Pb), cadmium (Cd), chromium (Cr), nickel (Ni), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), arsenic (As), selenium (Se), and mercury (Hg) were analyzed and their mean concentrations (μg/L) were found in the order of Fe (244.72 ± 214.35) > Mn (28.93 ± 29.64) > Zn (22.97 ± 10.93) > Cu (8.28 ± 5.99) > Hg (8.23 ± 6.58) > As (1.34 ± 0.39) > Ni (1.20 ± 0.38) > Cr (0.67 ± 0.85) > Pb (0.61 ± 0.72) > Se (0.42 ± 0.48) > Cd (0.13 ± 0.09) which were within the acceptable limit, except Hg. The cumulative effect of all heavy metals was assessed through the heavy metal pollution index (HPI), contamination degree (Cd), and nemerow pollution index (PN). The mean value of HPI (682.38 ± 525.68) crossed the critical index value of 100, indicating an elevated level of pollution. The mean value of Cd (8.763 ± 6.48) indicates a low-moderate-significant level of contamination due to an elevated level of Hg, and for the PN it was found 174.27 ± 146.66, indicating a high level of pollution due to high level of Fe. Ecological risk index (ERI) indicated low levels of risk for Pb, Cd, Cr, Ni, Fe, Mn, As, Se, Cu, and Zn but a significantly high risk for Hg. The water was classified as good to excellent based on its physicochemical properties (pH, EC, TDS, COD, DO, F-, Cl-, NO3 -, and SO4 2-) while it was deemed poor to unsuitable for heavy metals according to the water quality index (WQI). Among the carcinogenic constituents, As poses the greatest carcinogenic risk, particularly for children. The mean value of Cr, Mn, and As in the HQingestion for adult and child, and Cd, Hg for child exceeded the threshold value established by the United States Environmental Protection Agency (USEPA), while the HQdermal values remained below the maximum limit for all heavy metals. The value of HI at all locations exceeds the threshold of 1, as specified by USEPA. Principal component analysis (PCA) and cluster analysis revealed that the presence of heavy metals in the Turag River was mainly attributed to anthropogenic sources, including industrial effluent discharge from neighboring industries, domestic wastewater, and agricultural runoff containing agrochemicals from the surrounding lands.
Collapse
Affiliation(s)
- Priyanka Dey Suchi
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
- Department of Chemistry, University of Dhaka, Dhaka-1000, Bangladesh
| | - Badhan Saha
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Mohammad Moniruzzaman
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Md Kamal Hossain
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Afroza Parvin
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Afsana Parvin
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| |
Collapse
|
11
|
Graham EB, Garayburu-Caruso VA, Wu R, Zheng J, McClure R, Jones GD. Genomic fingerprints of the world's soil ecosystems. mSystems 2024; 9:e0111223. [PMID: 38722174 PMCID: PMC11237643 DOI: 10.1128/msystems.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/25/2024] [Indexed: 06/19/2024] Open
Abstract
Despite the explosion of soil metagenomic data, we lack a synthesized understanding of patterns in the distribution and functions of soil microorganisms. These patterns are critical to predictions of soil microbiome responses to climate change and resulting feedbacks that regulate greenhouse gas release from soils. To address this gap, we assay 1,512 manually curated soil metagenomes using complementary annotation databases, read-based taxonomy, and machine learning to extract multidimensional genomic fingerprints of global soil microbiomes. Our objective is to uncover novel biogeographical patterns of soil microbiomes across environmental factors and ecological biomes with high molecular resolution. We reveal shifts in the potential for (i) microbial nutrient acquisition across pH gradients; (ii) stress-, transport-, and redox-based processes across changes in soil bulk density; and (iii) greenhouse gas emissions across biomes. We also use an unsupervised approach to reveal a collection of soils with distinct genomic signatures, characterized by coordinated changes in soil organic carbon, nitrogen, and cation exchange capacity and in bulk density and clay content that may ultimately reflect soil environments with high microbial activity. Genomic fingerprints for these soils highlight the importance of resource scavenging, plant-microbe interactions, fungi, and heterotrophic metabolisms. Across all analyses, we observed phylogenetic coherence in soil microbiomes-more closely related microorganisms tended to move congruently in response to soil factors. Collectively, the genomic fingerprints uncovered here present a basis for global patterns in the microbial mechanisms underlying soil biogeochemistry and help beget tractable microbial reaction networks for incorporation into process-based models of soil carbon and nutrient cycling.IMPORTANCEWe address a critical gap in our understanding of soil microorganisms and their functions, which have a profound impact on our environment. We analyzed 1,512 global soils with advanced analytics to create detailed genetic profiles (fingerprints) of soil microbiomes. Our work reveals novel patterns in how microorganisms are distributed across different soil environments. For instance, we discovered shifts in microbial potential to acquire nutrients in relation to soil acidity, as well as changes in stress responses and potential greenhouse gas emissions linked to soil structure. We also identified soils with putative high activity that had unique genomic characteristics surrounding resource acquisition, plant-microbe interactions, and fungal activity. Finally, we observed that closely related microorganisms tend to respond in similar ways to changes in their surroundings. Our work is a significant step toward comprehending the intricate world of soil microorganisms and its role in the global climate.
Collapse
Affiliation(s)
- Emily B. Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | | | - Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jianqiu Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Gerrad D. Jones
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
12
|
Xu Y, Liu D, Yuan X, Yang Y, Li T, Deng Y, Wang Y. Deciphering the spatial heterogeneity of groundwater arsenic in Quaternary aquifers of the Central Yangtze River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172405. [PMID: 38626822 DOI: 10.1016/j.scitotenv.2024.172405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Significant spatial variability of groundwater arsenic (As) concentrations in South/Southeast Asia is closely associated with sedimentogenesis and biogeochemical cycling processes. However, the role of fine-scale differences in biogeochemical processes under similar sedimentological environments in controlling the spatial heterogeneity of groundwater As concentrations is poorly understood. Within the central Yangtze Basin, dissolved organic matter (DOM) and microbial functional communities in the groundwater and solid-phase As-Fe speciation in Jianghan Plain (JHP) and Jiangbei Plain (JBP) were compared to reveal mechanisms related to the spatial heterogeneity of groundwater As concentration. The optical signatures of DOM showed that low molecular terrestrial fulvic-like with highly humified was predominant in the groundwater of JHP, while terrestrial humic-like and microbial humic-like with high molecular weight were predominant in the groundwater of JBP. The inorganic carbon isotope, microbial functional communities, and solid-phase As-Fe speciation suggest that the primary process controlling As accumulation in JHP groundwater system is the degradation of highly humified OM by methanogens, which drive the reductive dissolution of amorphous iron oxides. While in JBP groundwater systems, anaerobic methane-oxidizing microorganisms (AOM) coupled with fermentative bacteria, iron reduction bacteria (IRB), and sulfate reduction bacteria (SRB) utilize low molecular weight DOM degradation to drive biotic/abiotic reduction of Fe oxides, further facilitating the formation of carbonate associated Fe and crystalline Fe oxides, resulting in As release into groundwater. Different biogeochemical cycling processes determine the evolution of As-enriched aquifer systems, and the coupling of multiple processes involving organic matter transformation‑iron cycling‑sulfur cycling-methane cycling leads to heterogeneity in the spatial distribution of As concentrations in groundwater. These findings provide new perspectives to decipher the spatial variability of As concentrations in groundwater.
Collapse
Affiliation(s)
- Yuxiao Xu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Di Liu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xiaofang Yuan
- Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Yijun Yang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Tian Li
- Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.
| | - Yanxin Wang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
13
|
Kumar S, Islam R, Saha MK, Khan MHR, Alam MR, Mia S. Metal(loid) contamination in Bangladesh: a comprehensive synthesis in different landscapes with ecological and health implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40958-40975. [PMID: 38839739 DOI: 10.1007/s11356-024-33836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Elevated metal(loid) concentrations in soil and foodstuffs is a significant global issue for many densely populated countries like Bangladesh, necessitating reliable estimation for sustainable management. Therefore, a comprehensive data synthesis from the published literature might help to provide a wholistic view of metal(loid) contamination in different areas in Bangladesh. This study provided a clearer view of metal(loid) contamination status and their associated ecological and health risks in different land use and ecosystems in Bangladesh. Comprehensive analyses were performed on data gathered from 143 published articles using multiple statistical techniques including meta-analysis. Considering the potential loading of metal(loid), the data were summarized under various groups, including coastal, rural, urban and industrial regions. Also, the concentrations of seven metal(loid)s, e.g., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), and arsenic (As) in soil, sediment, cereal, vegetable, fruit, surface water and groundwater were included. Results showed that the relative concentrations of metal(loid)s in comparison to the maximum permissible limit (MPL) were mostly less than one, although they varied significantly for locations and individual metal(loid). However, the normalized cumulative relative concentrations over the MPL for all seven metal(loid)s across different environmental samples were 4.75, 2.97, 1.51 and 2.79 for coastal, industrial, rural and urban areas, respectively, which was due to the higher concentration of Cd, Cr and Cu. Similar to the metal(loid) concentrations, the average of cumulative median non-cancer risks for all metal(loid)s was in the order of industrial (6.46) > urban (4.05) > rural (3.83) > coastal (2.41). This research outcome will provide a foundation for future research on metal(loid)s and will help in pertinent policy-making by the relevant authorities in Bangladesh.
Collapse
Affiliation(s)
- Sazal Kumar
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Milton Kumar Saha
- Department of Disaster Risk Management, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Hafijur Rahaman Khan
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 1000049, China
| | - Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Aquaculture, Faculty of Fisheries, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Shamim Mia
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
- School of Life and Environmental Sciences, The University of Sydney, Sydney, 2015, Australia.
| |
Collapse
|
14
|
Li R, Xi B, Wang X, Li Y, Yuan Y, Tan W. Anaerobic oxidation of methane in landfill and adjacent groundwater environments: Occurrence, mechanisms, and potential applications. WATER RESEARCH 2024; 255:121498. [PMID: 38522398 DOI: 10.1016/j.watres.2024.121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Landfills remain the predominant means of solid waste management worldwide. Widespread distribution and significant stockpiles of waste in landfills make them a significant source of methane emissions, exacerbating climate change. Anaerobic oxidation of methane (AOM) has been shown to play a critical role in mitigating methane emissions on a global scale. The rich methane and electron acceptor environment in landfills provide the necessary reaction conditions for AOM, making it a potentially low-cost and effective strategy for reducing methane emissions in landfills. However, compared to other anaerobic habitats, research on AOM in landfill environments is scarce, and there is a lack of analysis on the potential application of AOM in different zones of landfills. Therefore, this review summarizes the existing knowledge on AOM and its occurrence in landfills, analyzes the possibility of AOM occurrence in different zones of landfills, discusses its potential applications, and explores the challenges and future research directions for AOM in landfill management. The identification of research gaps and future directions outlined in this review encourages further investigation and advancement in the field of AOM, paving the way for more effective waste stabilization, greenhouse gas reduction, and pollutant mitigation strategies in landfills.
Collapse
Affiliation(s)
- Renfei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xiaowei Wang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
15
|
Amorosi A, Sammartino I. Predicting natural arsenic enrichment in peat-bearing, alluvial and coastal depositional systems: A generalized model based on sequence stratigraphy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171571. [PMID: 38492587 DOI: 10.1016/j.scitotenv.2024.171571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Hazardously high concentrations of arsenic exceeding the threshold limits for soils and drinking waters have been widely reported from Quaternary sedimentary successions and shallow aquifers of alluvial and coastal lowlands worldwide, raising public health concerns due to potential human exposure to arsenic. A combined sedimentological and geochemical analysis of subsurface deposits, 2.5-50 m deep, from the SE Po Plain (Italy) documents a systematic tendency for naturally-occurring arsenic to accumulate in peat-rich layers, with concentrations invariably greater than maximum permissible levels. A total of 366 bulk sediment samples from 40 cores that penetrated peat-bearing deposits were analysed by X-ray fluorescence. Arsenic concentrations associated with 7 peat-free lithofacies associations (fluvial-channel, levee/crevasse, floodplain, swamp, lagoon/bay, beach-barrier, and offshore/prodelta) exhibit background values invariably below threshold levels (<20 mg/kg). In contrast, total arsenic contents from peaty clay and peat showed 2-6 times larger As accumulation. A total of 204 near-surface (0-2.5 m) samples from modern alluvial and coastal depositional environments exhibit the same trends as their deeper counterparts, total arsenic peaking at peat horizons above the threshold values for contaminated soils. The arsenic-bearing, peat-rich Quaternary successions of the Po Plain accumulated under persisting reducing conditions in wetlands of backstepping estuarine and prograding deltaic depositional environments during the Early-Middle Holocene sea-level rise and subsequent stillstand. Contamination of the Holocene and underlying Pleistocene aquifer systems likely occurred through the release of As by microbially-mediated reductive dissolution. Using high-resolution sequence-stratigraphic concepts, we document that the Late Pleistocene-Holocene lithofacies architecture dictates the subsurface distribution of As. The "wetland trajectory", i.e. the path taken by the landward/seaward shift of peat-rich depositional environments during the Holocene, may help predict spatial patterns of natural As distribution, delineating the highest As-hazard zones and providing a realistic view of aquifer contamination even in unknown areas.
Collapse
Affiliation(s)
- Alessandro Amorosi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via Zamboni 67, 40126 Bologna, Italy.
| | - Irene Sammartino
- National Research Council (CNR), Institute of Marine Science (ISMAR), Via Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
16
|
Abdul-Wahab D, Asare EA, Wahi R, Ngaini Z, Klutse NAB, Asamoah A. Deciphering groundwater pollution in the Lower Anayari Catchment: insights from using δ 2H, δ 18O, PMF, and APCS-MLR receptor model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27099-27116. [PMID: 38503949 DOI: 10.1007/s11356-024-32942-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
This research provides a comprehensive analysis of groundwater pollution in the Lower Anayari Catchment (LAC) through δ2H and δ18O isotopic analysis, along with positive matrix factorization (PMF) and PCS-MLR receptor models. Forty groundwater samples were collected from hand-dug wells and equipped boreholes across the LAC. Flame photometry for Na+ and K+, complexometric titration for Ca2+, ion chromatography for Cl-, F-, NO3-, SO42-, and PO43-, and atomic absorption spectrometry for Mg2+, Fe, Pb, Cd, As, and Ni were analytical techniques/instruments employed. In regard to cations, Na+ has the highest average concentration of 63.0 mg/L, while Mg2+ has the lowest at 2.58 mg/L. Concerning the anions and nutrients, Cl- has the highest mean concentration of 18.7 mg/L, and Fl- has the lowest at 0.50 mg/L. Metalloids were detected in trace amount with Fe displaying the highest mean concentration of 0.077 mg/L whereas Cd and As recorded lowest (0.001 mg/L). The average values for groundwater δ18O and δ2H were - 3.64‰ and - 20.7‰, respectively; the average values for rainwater isotopic composition were - 3.41‰ for δ18O and - 17.4‰ for δ2H. It is believed that natural geological features, particularly biotite granitoid and volcanic flow/subvolcanic rocks from the Birimian Supergroup, significantly influence groundwater mineralisation. Additionally, the impact of anthropogenic activities on water quality, with urban development and agricultural practices, may be attributed to increasing levels of certain contaminants such as Fe, Ni, NO3-, and PO43-. This research contributes to the broader field of hydrological study and provides practical implications for managing and conserving water resources in similar contexts. The innovative combination of isotopic and statistical analyses sets a new standard for future studies in groundwater quality assessment, emphasising the need for comprehensive approaches that consider both geological characteristics and human impacts for sustainable water resource management.
Collapse
Affiliation(s)
- Dickson Abdul-Wahab
- Department of Nuclear Science and Applications, School of Nuclear and Allied Sciences, University of Ghana, Atomic-Kwabenya, Accra, Ghana
| | - Ebenezer Aquisman Asare
- Nuclear Chemistry and Environmental Research Centre, Ghana Atomic Energy Commission (GAEC), National Nuclear Research Institute (NNRI), Box LG 80, Legon-Accra, Ghana.
| | - Rafeah Wahi
- Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Zainab Ngaini
- Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | | | - Anita Asamoah
- Nuclear Chemistry and Environmental Research Centre, Ghana Atomic Energy Commission (GAEC), National Nuclear Research Institute (NNRI), Box LG 80, Legon-Accra, Ghana
| |
Collapse
|
17
|
Hassan Z, Westerhoff HV. Arsenic Contamination of Groundwater Is Determined by Complex Interactions between Various Chemical and Biological Processes. TOXICS 2024; 12:89. [PMID: 38276724 PMCID: PMC11154318 DOI: 10.3390/toxics12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
At a great many locations worldwide, the safety of drinking water is not assured due to pollution with arsenic. Arsenic toxicity is a matter of both systems chemistry and systems biology: it is determined by complex and intertwined networks of chemical reactions in the inanimate environment, in microbes in that environment, and in the human body. We here review what is known about these networks and their interconnections. We then discuss how consideration of the systems aspects of arsenic levels in groundwater may open up new avenues towards the realization of safer drinking water. Along such avenues, both geochemical and microbiological conditions can optimize groundwater microbial ecology vis-à-vis reduced arsenic toxicity.
Collapse
Affiliation(s)
- Zahid Hassan
- Department of Molecular Cell Biology, A-Life, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh
| | - Hans V. Westerhoff
- Department of Molecular Cell Biology, A-Life, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Stellenbosch Institute of Advanced Studies (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
18
|
Ghosh A, Yash, Kumar C, Bhadury P. Cascading effects of trace metals enrichment on phytoplankton communities of the River Ganga in South Asia. CHEMOSPHERE 2024; 347:140607. [PMID: 37925029 DOI: 10.1016/j.chemosphere.2023.140607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Globally freshwater ecosystems and associated biota including phytoplankton communities are at extreme risk from trace metal pollution originating from geogenic as well as from anthropogenic sources such as release of untreated industrial effluents. In the present study influence of iron- and arsenic-enrichments on structure and metabolism of phytoplankton communities of River Ganga, one of the largest rivers of South Asia, was assessed under laboratory-based microcosm experiments. Surface water samples were collected and subsequently enriched with higher than recommended concentrations of iron (10 mg/L) and arsenic (10 μg/L). The set-up comprised of nine containers of 25 L volume with three containers each for iron- and arsenic-enrichment and was maintained for 30 days. Trace metal enrichment rapidly changed the phytoplankton community structure and chemistry of nutrients uptake. Iron-enrichment prompted diatom blooms comprising of Thalassiosira, succeeded by green algae Coelastrum. Arsenic-enrichment maintained cyanobacteria for longer time-spans compared to the control and iron-enriched containers but significantly lesser abundance of diatoms. Variations in community composition was also reflected in nutrient uptake rates with silicate release in the arsenic-enriched containers at the end of the experiment. Changes in macronutrient dynamics also altered genus growth rates wherein both iron- and arsenic appeared to lower the death rate of Thalassosira but stimulated growth of other genera including Skeletonema and Pandorina. Iron appeared to influence lesser number of genera compared to arsenic which altered growth rates of both diatoms and green algae. This consequently influenced the gross primary productivity values which lowered both in the iron- and arsenic-enriched containers compared to the control owing to decrease in phytoplankton diversity. Iron appeared to drive phytoplankton communities toward a less general and more specialized composition with high abundance of selective species comprising of small diatoms such as Thalassiosira, whereas arsenic appears to select for green algal enrichment in freshwater ecosystems.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Yash
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Chakresh Kumar
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India
| | - Punyasloke Bhadury
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India; Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India; Centre for Excellence in Blue Economy, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, Nadia, West Bengal, India.
| |
Collapse
|
19
|
Zeng H, Zhao W, Sun S, Sun X, Zeng Y, Hao R, Zhang J, Li D. Facile preparation of maghemite based on iron sludge for arsenic removal from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167575. [PMID: 37806569 DOI: 10.1016/j.scitotenv.2023.167575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/14/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
In this study, we demonstrated the effective acquisition of magnetic iron oxide (MIO) for As(V) adsorption by high-temperature pyrolysis of waste iron sludge from the water treatment plant under a confined environment without adding extra chemical reagents. The operating temperature and time in the pyrolysis process were optimized to improve the yield of MIO and its As(V) adsorption capacity. MIO500-2(500 °C, 2 h) had both relatively high yield and arsenic adsorption efficiency, which was characterized by XRD and XPS as mainly γ-Fe2O3 with small particle size (100-900 nm), significant mesopore (12.43 nm), high specific surface area (65.25 m2/g), and effective saturation magnetization intensity (14.45 emu/g). The maximum adsorption capacity was 14.2 ± 0.4 mg/g, and the removal rate could still reach about 80 % after five times of adsorbent regeneration. Considering this facile preparation route and its high yield, large-scale production of MIO from waste iron sludge is feasible, which is expected to provide a low-cost and efficient adsorbent for the treatment of arsenic-containing water in less economically developed areas.
Collapse
Affiliation(s)
- Huiping Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Weihua Zhao
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Siqi Sun
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiao Sun
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuwei Zeng
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ruixia Hao
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dong Li
- Key Laboratory of Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
20
|
Dwivedi S, Mishra S, Kumar V, Agnihotri R, Sharma P, Tiwari RK, Gupta A, Singh AP, Kumar S, Sinam G. A comprehensive review on spatial and temporal variation of arsenic contamination in Ghaghara basin and its relation to probable incremental life time cancer risk in the local population. J Trace Elem Med Biol 2023; 80:127308. [PMID: 37801785 DOI: 10.1016/j.jtemb.2023.127308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Spatial and temporal variations have been found in the levels of arsenic (As) throughout the groundwater of the Ghaghara basin. Fifteen out of twenty-five districts in this basin are reported to be affected by As, where the levels of As in groundwater and soil exceed the permissible limits set by the WHO (10 μgl-1) and FAO (20 mgkg-1) respectively. These districts include a total of four municipalities in Nepal and eighty-six blocks in India, all of which have varying degrees of As contamination. Approximately 17 million people are at risk of As poisoning, with more than two orders of magnitude higher potential lifetime incremental cancer risk, constituting over 153 thousand potential additional cases of cancer due to As-contaminated drinking water. Out of the 90 As-contaminated blocks in the Ghaghara basin, 4 blocks have about 7-fold higher potential risk of developing cancer, 49 blocks have 8-37-fold higher risk, and 37 blocks have up to 375-fold higher risk compared to the upper limit of the USEPA acceptable range, which is 1 × 10-6-1 × 10-4. High accumulation of As has been reported in the nails, hair, and urine of local inhabitants, with higher levels observed in females than males. The toxicity of As is manifested in terms of a higher occurrence of various diseases. Reproductive endpoints, such as increased incidences of preterm birth, spontaneous abortion, stillbirth, low-birth weight, and neonatal death, have also been reported in the basin. The level of As in tube wells has been found to be negatively correlated with the depth (r = -0.906), and tube wells with high levels of As (>150 μgl-1) are generally located within close proximity (<10 km) to abandoned or present meander channels in the floodplain areas of the Ghaghara river. In addition to As contamination, the water quality index (WQI) in the Ghaghara basin is poor according to the BIS standards for drinking water. Groundwater in six out of fifteen districts is unsuitable for drinking purposes, with a WQI exceeding 100. The levels of As in agricultural soil in many villages of Ballia, Bahraich, and Lakhimpur Kheri districts have exceeded the FAO limit. Water from deep tube wells has been found to be relatively safe in terms of As content, and thus can be recommended for drinking purposes. However, the use of surface water needs to be encouraged for irrigation purposes in order to preserve soil health and reduce As contamination in the food chain, thereby minimizing the risk of cancer.
Collapse
Affiliation(s)
- Sanjay Dwivedi
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Seema Mishra
- Department of Chemistry, University of Lucknow, Lucknow 226007, India.
| | - Vishnu Kumar
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Ruchi Agnihotri
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Pragya Sharma
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravi Kumar Tiwari
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Apoorv Gupta
- Department of Chemistry, University of Lucknow, Lucknow 226007, India
| | - Ajay Pratap Singh
- Centre of Advanced Study in Geology, University of Lucknow, Lucknow 226007, UP, India
| | - Sarvesh Kumar
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Geetgovind Sinam
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| |
Collapse
|
21
|
Yin H, Liu L, Ma J, Zhang C, Qiu G. Efficient removal of As(III) from groundwaters through self-alkalization in an asymmetric flow-electrode electrochemical separation system. WATER RESEARCH 2023; 246:120734. [PMID: 37862875 DOI: 10.1016/j.watres.2023.120734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
It remains a great challenge to efficiently remove As(III) from groundwater using traditional technologies due to its stable electroneutral form. This study constructed an asymmetric flow-electrode electrochemical separation (AFES) system, which overcomes the drawback of H+ release from anodic carbon oxidation and achieves continuous self-alkalization function and highly efficient removal of As(III) from groundwater. At the applied voltage of 1.2 V and initial pH 7.5, the system could rapidly decrease the total As (T-As) concentration from 150.0 to 8.9 μg L-1 within 90 min, with an energy consumption of 0.04 kWh m-3. The self-alkalization was triggered by the generation of H2O2 from dissolved oxygen reduction and the adsorption of H+ on the cathode in the feed chamber, which significantly promoted the dissociation and oxidation of As(III), resulting in the removal of T-As predominantly in the form of As(V). The removal performance of T-As was slightly affected by the initial pH and coexisting ions in the feed chamber. The AFES system also exhibited considerable stability after 20 cycles of continuous experiments and superior performance in treating As-containing real groundwater. Moreover, the pH of the alkalized solution can be restored to the initial level by standing or aeration operation. This work offers a novel and efficient pathway for the detoxication of As(III)-contaminated groundwaters.
Collapse
Affiliation(s)
- Haoyu Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen 518000, China.
| |
Collapse
|
22
|
Kanel SR, Das TK, Varma RS, Kurwadkar S, Chakraborty S, Joshi TP, Bezbaruah AN, Nadagouda MN. Arsenic Contamination in Groundwater: Geochemical Basis of Treatment Technologies. ACS ENVIRONMENTAL AU 2023; 3:135-152. [PMID: 37215436 PMCID: PMC10197174 DOI: 10.1021/acsenvironau.2c00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 05/24/2023]
Abstract
Arsenic (As) is abundant in the environment and can be found in both organic (e.g., methylated) and inorganic (e.g., arsenate and arsenite) forms. The source of As in the environment is attributed to both natural reactions and anthropogenic activities. As can also be released naturally to groundwater through As-bearing minerals including arsenopyrites, realgar, and orpiment. Similarly, agricultural and industrial activities have elevated As levels in groundwater. High levels of As in groundwater pose serious health risks and have been regulated in many developed and developing countries. In particular, the presence of inorganic forms of As in drinking water sources gained widespread attention due to their cellular and enzyme disruption activities. The research community has primarily focused on reviewing the natural occurrence and mobilization of As. Yet, As originating from anthropogenic activities, its mobility, and potential treatment techniques have not been covered. This review summarizes the origin, geochemistry, occurrence, mobilization, microbial interaction of natural and anthropogenic-As, and common remediation technologies for As removal from groundwater. In addition, As remediation methods are critically evaluated in terms of practical applicability at drinking water treatment plants, knowledge gaps, and future research needs. Finally, perspectives on As removal technologies and associated implementation limitations in developing countries and small communities are discussed.
Collapse
Affiliation(s)
- Sushil R. Kanel
- Department
of Chemistry, Wright State University, Dayton, Ohio 45435, United States
| | - Tonoy K. Das
- Nanoenvirology
Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Rajender S. Varma
- Office
of Research & Development, Center for Environmental Solutions
and Emergency Response (CESER), United States
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Sudarshan Kurwadkar
- Department
of Civil and Environmental Engineering, California State University, Fullerton, California 92831, United States
| | - Sudip Chakraborty
- Laboratory
of Transport Phenomena & Biotechnology, Department of DIMES, Universita della Calabria, Via Pietro Bucci, Cubo 42/a, Rende 87036, (CS), Italy
| | - Tista Prasai Joshi
- Environment
and Climate Study Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur 44700, Khumaltar, Nepal
| | - Achintya N. Bezbaruah
- Nanoenvirology
Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mallikarjuna N. Nadagouda
- Office
of Research & Development, Center for Environmental Solutions
and Emergency Response (CESER), United States
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
23
|
Egwunye J, Cardoso BR, Braat S, Ha T, Hanieh S, Hare D, Duan AX, Doronila A, Tran T, Tuan T, Fisher J, Biggs BA. The role of fingernail selenium in the association between arsenic, lead and mercury and child development in rural Vietnam: a cross-sectional analysis. Br J Nutr 2023; 129:1589-1597. [PMID: 35535482 DOI: 10.1017/s0007114522001374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As, Pb and Hg are common environmental contaminants in low- and middle-income countries. We investigated the association between child toxicant exposure and growth and development and determined if this association was mitigated by Se concentration. Toxicant concentrations in fingernail samples, anthropometry and Bayley's Scales of Infant Development, 3rd edition domains were assessed in 36-month-old children whose mothers had been part of a randomised controlled trial in rural Vietnam. Multivariable regression analyses were performed to estimate the effect of toxicant exposure on clinical outcomes with adjustments for potential confounders and interaction with fingernail Se concentration. We analysed 658 children who had data for at least one physical or developmental outcome, and at least one toxicant measurement, and each of the covariates. Fingernail As concentration was negatively associated with language (estimate per 10 % increase in As: -0·19, 95 % CI: (-0·32, -0·05)). Pb was negatively associated with cognition (estimate per 10 % increase in Pb: -0·08 (-0·15, -0·02)), language (estimate per 10 % increase in Pb: -0·18 (-0·28, -0·10)) and motor skills (estimate per 10 % increase in Pb: -0·12 (-0·24, 0·00)). Hg was negatively associated with cognition (estimate per 10 % increase in Hg: -0·48, (-0·72, -0·23)) and language (estimate per 10 % increase in Hg -0·51, (-0·88, -0·13)) when Se concentration was set at zero in the model. As Se concentration increased, the negative associations between Hg and both cognition and language scores were attenuated. There was no association between toxicant concentration and growth. As, Pb and Hg concentrations in fingernails of 3-year-old children were associated with lower child development scores. The negative association between Hg and neurological development was reduced in magnitude with increasing Se concentration. Se status should be considered when assessing heavy metal toxicants in children and their impact on neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Jacob Egwunye
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
| | - Barbara R Cardoso
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC3004, Australia
| | - Sabine Braat
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC3052, Australia
| | - Tran Ha
- Research and Training Centre for Community Development, Hanoi, Vietnam
| | - Sarah Hanieh
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
| | - Dominic Hare
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC3050, Australia
| | - Alex Xiaofei Duan
- Melbourne TrACEES Platform and School of Chemistry, University of Melbourne, Parkville, VIC3010, Australia
| | - Augustine Doronila
- Melbourne TrACEES Platform and School of Chemistry, University of Melbourne, Parkville, VIC3010, Australia
| | - Thach Tran
- Research and Training Centre for Community Development, Hanoi, Vietnam
- Global and Women's Health, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC3004, Australia
| | - Tran Tuan
- Research and Training Centre for Community Development, Hanoi, Vietnam
| | - Jane Fisher
- Global and Women's Health, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC3004, Australia
| | - Beverley-Ann Biggs
- Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia
- The Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, VIC3050, Australia
| |
Collapse
|
24
|
Ivy N, Mukherjee T, Bhattacharya S, Ghosh A, Sharma P. Arsenic contamination in groundwater and food chain with mitigation options in Bengal delta with special reference to Bangladesh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1261-1287. [PMID: 35841495 DOI: 10.1007/s10653-022-01330-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Bangladesh, situated in Bengal delta, is one of the worst affected countries by arsenic contamination in groundwater. Most of the people in the country are dependent on groundwater for domestic and irrigation purposes. Currently, 61 districts out of 64 districts of Bangladesh are affected by arsenic contamination. Drinking arsenic contaminated groundwater is the main pathway of arsenic exposure in the population. Additionally, the use of arsenic-contaminated groundwater for irrigation purpose in crop fields in Bangladesh has elevated arsenic concentration in surface soil and in the plants. In many arsenic-affected countries, including Bangladesh, rice is reported to be one of the significant sources of arsenic contamination. This review discussed scenario of groundwater arsenic contamination and transmission of arsenic through food chain in Bangladesh. The study further highlighted the human health perspectives of arsenic exposure in Bangladesh with possible mitigation and remediation options employed in the country.
Collapse
Affiliation(s)
- Nishita Ivy
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India
| | | | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India.
| |
Collapse
|
25
|
Khan MU, Rai N. Distribution, geochemical behavior, and risk assessment of arsenic in different floodplain aquifers of middle Gangetic basin, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2099-2115. [PMID: 35809199 DOI: 10.1007/s10653-022-01321-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The present study interprets the distribution and geochemical behavior of As in groundwaters of different regions along the floodplains of Ganga river (Varanasi, Ghazipur, Ballia), Ghaghara river (Lakhimpur Kheri, Gonda, Basti), and Rapti river (Balrampur, Shrawasti) in the middle Gangetic basin, India for risk assessment (non-carcinogenic and carcinogenic). The concentration of As in groundwaters of these floodplains ranged from 0.12 to 348 μg/L (mean 24 μg/L), with around ~ 37% of groundwater samples exceeding the WHO limit of 10 μg/L in drinking water. Highest As concentration (348 μg/L) was recorded in groundwater samples from Ballia (Ganga Floodplains), where 50% of the samples had As > 10 μg/L in groundwater. In the study area, a relatively higher mean concentration was recorded in deep wells (28.5 μg/L) compared to shallow wells (20 μg/L). Most of the high As-groundwaters were associated with the high Fe, bicarbonate and low nitrate and sulfate concentrations indicating the release of As via reductive dissolution of Fe oxyhydroxides. The saturation index values of the Fe minerals such as goethite, hematite, ferrihydrite, and siderite showed the oversaturation to near equilibrium in groundwater, suggesting that these mineral phases may act as source/sink of As in the aquifers of the study area. The health risk assessment results revealed that a large number of people in the study area were prone to carcinogenic and non-carcinogenic health risks due to daily consumption of As-polluted groundwater. The highest risks were estimated for the aquifers of Ganga floodplains, as indicated by their mean HQ (41.47) and CR (0.0142) values.
Collapse
Affiliation(s)
- M U Khan
- Department of Earth Sciences, Indian Institute of Technology, Roorkee, Uttarakhand, 247 667, India
| | - N Rai
- Department of Earth Sciences, Indian Institute of Technology, Roorkee, Uttarakhand, 247 667, India.
| |
Collapse
|
26
|
Gupta V, Kumar D, Dwivedi A, Vishwakarma U, Malik DS, Paroha S, Mohan N, Gupta N. Heavy metal contamination in river water, sediment, groundwater and human blood, from Kanpur, Uttar Pradesh, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1807-1818. [PMID: 35674977 DOI: 10.1007/s10653-022-01290-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Exponential industrialization and anthropogenic activities have resulted in water contamination by various heavy metals in Kanpur city, India. Heavy metal pollution, an issue of great concern, is not only affecting river water, but contamination of groundwater is creating health issues and worries. In the present investigation, blood samples were collected from selected volunteers, water and sediment samples from four sites of river Ganga and drinking groundwater samples from 23 locations of Kanpur city. Heavy metals analysis in river water, sediment, and human blood, was done by inductively coupled plasma optical emission spectroscopy (ICP-OES) and atomic absorption spectroscopy (AAS) was used for groundwater samples. Human blood showed a high concentration of arsenic (As) (66.6 ± 0.00 and 76.9 ± 0.01 μg L-1 in males and female subjects, respectively) and thallium (Tl) (13.4 ± 0.004 and 16.6 ± 0.005 μg L-1 in males and female subjects, respectively) with higher concentrations in females than males. Other heavy metals (Nickle, Beryllium, Cadmium, Cobalt, Chromium, Lithium, Molybdenum, Lead) were not observed in any of the tested human blood samples. However, in groundwater sampling, iron (Fe), copper (Cu), and arsenic (As) were detected, one sample had the presence of chromium (Cr), and two samples showed lead (Pb) contamination. River water [Cu (32-125 μg L-1), Cr (19-725 μg L-1), Cd (1-59 μg L-1), Pb (37-163 μg L-1), As (32-153 μg L-1), Th (26.75 μg L-1)] showed a high level of the heavy metals, as compared to reference values of BIS, CPCB (2016a), WHO, EPA and USEPA. River sediment [Cu (4168-34,470 μg Kg-1), Cr (4040-145,650 μg Kg-1), Cd (326-5340 μg Kg-1), Pb (1840-19,350 μg Kg-1), As (103-188 μg Kg-1)] also showed high concentration when compared to reference values of USEPA and PASS. River site 4, with high Cr (725 μg L-1), also showed Cr levels (19.8 μg L-1) in the groundwater samples, indicating Cr contamination in groundwater while Pb was observed at groundwater samples close to two industrial sites. Drinking water might be the primary exposure pathway for As and Tl to enter the human body. The study recommends periodic monitoring of river water, sediment, groundwater, and human blood samples for contamination of heavy metals.
Collapse
Affiliation(s)
- Varsha Gupta
- Department of Life Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, UP, 208024, India.
| | - Dinesh Kumar
- Department of Life Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, UP, 208024, India
- Veer Bahadur Singh Poorvanchal University, Jaunpur, India
| | - Anamika Dwivedi
- Department of Life Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, UP, 208024, India
| | - Umesh Vishwakarma
- Department of Life Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, UP, 208024, India
| | - D S Malik
- Department of Zoology and Environmental Science, Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand, India
| | | | | | - Neelima Gupta
- Doctor Harisingh Gour Sagar University, Sagar, MP, India
| |
Collapse
|
27
|
Filella M, Wey S, Matoušek T, Coster M, Rodríguez-Murillo JC, Loizeau JL. Arsenic in Lake Geneva (Switzerland, France): long term monitoring, and redox and methylation speciation in an As unpolluted, oligo-mesotrophic lake. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:850-869. [PMID: 36924114 DOI: 10.1039/d2em00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Arsenic speciation was followed monthly along the spring productivity period (January-June 2021) in the Petit Lac (76 m deep) and in April and June 2021 in the Grand Lac (309.7 m deep) of Lake Geneva (Switzerland/France). Lake Geneva is presently an oligo-mesotrophic lake, and As-unpolluted. The water column never becomes anoxic but the oxygen saturation at the bottom of the Grand Lac is now below 30% owing to lack of water column mixing since 2012. Thus, this lake offers excellent conditions to study As behaviour in an unpolluted, oxic freshwater body. The following 'dissolved' As species: iAs(III), iAs(III + V), MA(III), MA(III + V), DMA(III + V), and TMAO were analysed by HG-CT-ICP-MS/MS. Water column measurements were complemented with occasional sampling in the main rivers feeding the lake and in the interstitial waters of a sediment core. The presence of MA(III) and TMAO and the predominance of iAs(V) in lake and river samples has been confirmed as well as the key role of algae in the formation of organic species. While the total 'dissolved' As concentrations showed nearly vertical profiles in the Petit Lac, As concentrations steadily increase at deeper depths in the Grand Lac due to the lack of mixing and build up in bottom waters. The evaluation of 25 years of monthly data of 'dissolved' As concentrations showed no significant temporal trends between 1997 and 2021. The observed seasonal character of the 'dissolved' As along this period coincides with a lack of seasonality in As mass inventories, pointing to a seasonal internal cycling of As species in the water column with exchanges between the 'dissolved' and 'particulate' (i.e., algae) fractions.
Collapse
Affiliation(s)
- Montserrat Filella
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| | - Sebastian Wey
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| | - Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic.
| | | | | | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| |
Collapse
|
28
|
de Meyer CMC, Wahnfried I, Rodriguez Rodriguez JM, Kipfer R, García Avelino PA, Carpio Deza EA, Berg M. Hotspots of geogenic arsenic and manganese contamination in groundwater of the floodplains in lowland Amazonia (South America). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160407. [PMID: 36427729 DOI: 10.1016/j.scitotenv.2022.160407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Arsenic enrichment in groundwater resources in deltas and floodplains of large sediment-rich rivers is a worldwide natural hazard to human health. High spatial variability of arsenic concentrations in affected river basins limits cost-effective mitigation strategies. Linking the chemical composition of groundwater with the topography and fluvial geomorphology is a promising approach for predicting arsenic pollution on a regional scale. Here we correlate the distribution of arsenic contaminated wells with the fluvial dynamics in the Amazon basin. Groundwater was sampled from tube wells along the Amazon River and its main tributaries in three distinct regions in Peru and Brazil. For each sample, the major and trace element concentrations were analyzed, and the position of the well within the sedimentary structure was determined. The results show that aquifers in poorly weathered sediments deposited by sediment-rich rivers are prone to mobilization and accumulation of aqueous arsenic and manganese, both in sub-Andean foreland basins, and in floodplains downstream. Two zones at risk are distinguished: aquifers in the channel-dominated part of the floodplain (CDF) and aquifers in the overbank deposits on the less-dynamic part of the floodplain (LDF). Some 70 % of the wells located on the CDF and 20 % on the LDF tap groundwater at concentrations exceeding the WHO guideline of 10 μg/L arsenic (max. 430 μg/L), and 70 % (CDF) and 50 % (LDF) exceeded 0.4 mg/L manganese (max. 6.6 mg/L). None of the water samples located outside the actual floodplain of sediment-rich rivers, or on riverbanks of sediment-poor rivers exceed 5 μg/L As, and only 4 % exceeded 0.4 mg/L Mn. The areas of highest risk can be delineated using satellite imagery. We observe similar patterns as in affected river basins in South and Southeast Asia indicating a key role of sedimentation processes and fluvial geomorphology in priming arsenic and manganese contamination in aquifers.
Collapse
Affiliation(s)
- Caroline M C de Meyer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| | | | | | - Rolf Kipfer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics and Institute of Geochemistry and Petrology, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
29
|
Thavarajah W, Owuor PM, Awuor DR, Kiprotich K, Aggarwal R, Lucks JB, Young SL. The accuracy and usability of point-of-use fluoride biosensors in rural Kenya. NPJ CLEAN WATER 2023; 6:5. [PMID: 36777475 PMCID: PMC9905762 DOI: 10.1038/s41545-023-00221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Geogenic fluoride contaminates the water of tens of millions of people. However, many are unaware of the fluoride content due in part to shortcomings of detection methods. Biosensor tests are a relatively new approach to water quality testing that address many of these shortcomings but have never been tested by non-experts in a "real-world" setting. We therefore sought to assess the accuracy and usability of a point-of-use fluoride biosensor using surveys and field tests in Nakuru County, Kenya. Biosensor tests accurately classified elevated fluoride (≥1.5 ppm) in 89.5% of the 57 samples tested. Usability was also high; all participants were able to use the test and correctly interpreted all but one sample. These data suggest that biosensor tests can provide accurate, meaningful water quality data that help non-experts make decisions about the water they consume. Further scaling of these technologies could provide new approaches to track global progress towards Sustainable Development Goal 6.
Collapse
Affiliation(s)
- Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Water Research, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Patrick Mbullo Owuor
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL 60208 USA
- Institute for Policy Research, Northwestern University, 2040 Sheridan Road, Evanston, IL 60208 USA
- Program of African Studies, Northwestern University, 620 Library Pl, Evanston, IL 60208 USA
| | - Diana Ross Awuor
- Department of Management Science and Project Planning, Nairobi University, P.O. Box 30197, GPO, Nairobi, Kenya
| | - Karlmax Kiprotich
- Department of Epidemiology and Medical Statistics, School of Public Health, Moi University, P.O. Box 4606-30100, Eldoret, Kenya
| | - Rahul Aggarwal
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL 60208 USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Water Research, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Sera L. Young
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Water Research, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
- Department of Anthropology, Northwestern University, 1810 Hinman Avenue, Evanston, IL 60208 USA
- Program of African Studies, Northwestern University, 620 Library Pl, Evanston, IL 60208 USA
| |
Collapse
|
30
|
Ghosh D, Donselaar ME. Predictive geospatial model for arsenic accumulation in Holocene aquifers based on interactions of oxbow-lake biogeochemistry and alluvial geomorphology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158952. [PMID: 36150597 DOI: 10.1016/j.scitotenv.2022.158952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The identification of arsenic-contamination hotspots in alluvial aquifers is a global-scale challenge. The collection and inventory of arsenic concentration datasets in the shallow-aquifer domain of affected alluvial basins is a tedious and slow process, given the magnitude of the problem. Recent research demonstrates that oxbow-lake biogeochemistry in alluvial plains, mobilization of geogenic arsenic, and accumulation in geomorphologically well-defined areas are interacting processes that determine arsenic-contamination locations. This awareness provides a tool to identify potential arsenic-hotspots based on geomorphological similarity, and thus contribute to a more robust and targeted arsenic mitigation approach. In the present study, a conceptual predictive geospatial model is proposed for the accumulation of dissolved arsenic as a function of interaction of oxbow-lake biogeochemistry and alluvial geomorphology. A comprehensive sampling campaign in and around two oxbow lakes in the Jamuna River Basin, West Bengal (India) provided water samples of the oxbow-lake water column for analysis of dissolved organic matter (DOM) and microbial communities, and groundwater samples from tube wells in point bars and fluvial levees bordering the oxbow lakes for analysis of the geospatial distribution of arsenic in the aquifer. Results show that abundant natural and anthropogenic (faecal-derived) recalcitrant organic matter like coprostanols and sterols in clay-plug sediment favours microbial (heterotrophs, enteric pathogens) metabolism and arsenic mobilization. Arsenic concentrations in the study area are highest (averaging 505 μg/L) in point-bar aquifers geomorphologically enclosed by partially sediment-filled oxbow lakes, and much lower (averaging 121 μg/L) in wells of levee sands beyond the oxbow-lake confinement. The differences reflect variations in groundwater recharge efficiency as result of the porosity and permeability anisotropy in the alluvial geomorphological elements, where arsenic-rich groundwater is trapped in point-bars enclosed by oxbow-lake clays and, by contrast, levee ridges are not confined on all sides, resulting in a more efficient aquifer flushing and decrease of arsenic concentrations.
Collapse
Affiliation(s)
- Devanita Ghosh
- Sanitary Engineering Section, Water Management Department, Delft University of Technology, the Netherlands; Laboratory of Biogeochem-mystery, Centre for Earth Sciences, Indian Institute of Science, Bangalore, India.
| | - Marinus Eric Donselaar
- Department of Geoscience and Engineering, Delft Univ. of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands; Department of Earth and Environmental Sciences, Division of Geology, KU Leuven, Celestijnenlaan 200E, B-3001 Leuven, Belgium
| |
Collapse
|
31
|
Arsenic in groundwater from Southwest Bangladesh: Sources, water quality, and potential health concern. HYDRORESEARCH 2022. [DOI: 10.1016/j.hydres.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Varner TS, Kulkarni HV, Nguyen W, Kwak K, Cardenas MB, Knappett PSK, Ojeda AS, Malina N, Bhuiyan MU, Ahmed KM, Datta S. Contribution of sedimentary organic matter to arsenic mobilization along a potential natural reactive barrier (NRB) near a river: The Meghna river, Bangladesh. CHEMOSPHERE 2022; 308:136289. [PMID: 36058378 DOI: 10.1016/j.chemosphere.2022.136289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Elevated dissolved arsenic (As) concentrations in the shallow aquifers of Bangladesh are primarily caused by microbially-mediated reduction of As-bearing iron (Fe) (oxy)hydroxides in organic matter (OM) rich, reducing environments. Along the Meghna River in Bangladesh, interactions between the river and groundwater within the hyporheic zone cause fluctuating redox conditions responsible for the formation of a Fe-rich natural reactive barrier (NRB) capable of sequestering As. To understand the NRB's impact on As mobility, the geochemistry of riverbank sediment (<3 m depth) and the underlying aquifer sediment (up to 37 m depth) was analyzed. A 24-hr sediment-water extraction experiment was performed to simulate interactions of these sediments with oxic river water. The sediment and the sediment-water extracts were analyzed for inorganic and organic chemical parameters. Results revealed no differences between the elemental composition of riverbank and aquifer sediments, which contained 40 ± 12 g/kg of Fe and 7 ± 2 mg/kg of As, respectively. Yet the amounts of inorganic and organic constituents extracted were substantially different between riverbank and aquifer sediments. The water extracted 6.4 ± 16.1 mg/kg of Fe and 0.03 ± 0.02 mg/kg of As from riverbank sediments, compared to 154.0 ± 98.1 mg/kg of Fe and 0.55 ± 0.40 mg/kg of As from aquifer sediments. The riverbank and aquifer sands contained similar amounts of sedimentary organic matter (SOM) (17,705.2 ± 5157.6 mg/kg). However, the water-extractable fraction of SOM varied substantially, i.e., 67.4 ± 72.3 mg/kg in riverbank sands, and 1330.3 ± 226.6 mg/kg in aquifer sands. Detailed characterization showed that the riverbank SOM was protein-like, fresh, low molecular weight, and labile, whereas SOM in aquifer sands was humic-like, older, high molecular weight, and recalcitrant. During the dry season, oxic conditions in the riverbank may promote aerobic metabolisms, limiting As mobility within the NRB.
Collapse
Affiliation(s)
- Thomas S Varner
- Department of Earth and Planetary Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - Harshad V Kulkarni
- Department of Earth and Planetary Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - William Nguyen
- Department of Geological Sciences, The University of Texas at Austin, TX, 78712, USA
| | - Kyungwon Kwak
- Department of Geology and Geophysics, Texas A&M University, College Station, TX, 77843, USA
| | - M Bayani Cardenas
- Department of Geological Sciences, The University of Texas at Austin, TX, 78712, USA
| | - Peter S K Knappett
- Department of Geology and Geophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Ann S Ojeda
- Department of Geosciences, Auburn University, Auburn, AL, 36849, USA
| | - Natalia Malina
- Department of Geosciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Kazi M Ahmed
- Department Geology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saugata Datta
- Department of Earth and Planetary Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
33
|
Peel HR, Balogun FO, Bowers CA, Miller CT, Obeidy CS, Polizzotto ML, Tashnia SU, Vinson DS, Duckworth OW. Towards Understanding Factors Affecting Arsenic, Chromium, and Vanadium Mobility in the Subsurface. WATER 2022; 14:3687. [PMID: 36420182 PMCID: PMC9681123 DOI: 10.3390/w14223687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Arsenic (As), chromium (Cr), and vanadium (V) are naturally occurring, redox-active elements that can become human health hazards when they are released from aquifer substrates into groundwater that may be used as domestic or irrigation source. As such, there is a need to develop incisive conceptual and quantitative models of the geochemistry and transport of potentially hazardous elements to assess risk and facilitate interventions. However, understanding the complexity and heterogeneous subsurface environment requires knowledge of solid-phase minerals, hydrologic movement, aerobic and anaerobic environments, microbial interactions, and complicated chemical kinetics. Here, we examine the relevant geochemical and hydrological information about the release and transport of potentially hazardous geogenic contaminants, specifically As, Cr, and V, as well as the potential challenges in developing a robust understanding of their behavior in the subsurface. We explore the development of geochemical models, illustrate how they can be utilized, and describe the gaps in knowledge that exist in translating subsurface conditions into numerical models, as well as provide an outlook on future research needs and developments.
Collapse
Affiliation(s)
- Hannah R. Peel
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Fatai O. Balogun
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
| | - Christopher A. Bowers
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cass T. Miller
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chelsea S. Obeidy
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
| | | | - Sadeya U. Tashnia
- Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - David S. Vinson
- Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Owen W. Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
34
|
Spanu A, Langasco I, Barracu F, Deroma MA, López-Sánchez JF, Mara A, Meloni P, Pilo MI, Estrugo ÀS, Spano N, Sanna G. Influence of irrigation methods on arsenic speciation in rice grain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115984. [PMID: 36001913 DOI: 10.1016/j.jenvman.2022.115984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Although the bioaccumulation of arsenic (As) in rice grains is a global health issue, its speciation is not less worrying. Despite the ascertained effectiveness of the intermittent irrigation methods in minimizing the amount of total As in rice, knowledge of its influence on the As speciation has been insufficient so far. Hence, this contribution was aimed to measure the concentrations of As(III), As(V), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) in grains from twenty-six different rice genotypes irrigated either with continuous flooding (CF), periodic saturation (SA) or sprinkler irrigation (SP). In CF-irrigated rice, As(III) and DMA prevailed in roughly equal amounts, only As(III) was found in SA-irrigated rice, whereas As(V) was largely predominant on As(III) in SP-irrigated rice. Organoarsenic species were below the limits of detection (LoD) in rice irrigated by intermittent methods. Principal component analysis (PCA) explained the influence of the irrigation method on the total amount of As, its chemical species, and their correlation. Furthermore, PCA showed also significant differences in As speciation as a function of the rice genotype, whereas no differences were found among Indica and Japonica subspecies.
Collapse
Affiliation(s)
- Antonino Spanu
- Dipartimento di Agraria, Università Degli Studi di Sassari, Viale Italia, 39A, I-07100 Sassari, Italy
| | - Ilaria Langasco
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università Degli Studi di Sassari, Via Vienna, 2, I-07100 Sassari, Italy
| | - Francesco Barracu
- Dipartimento di Agraria, Università Degli Studi di Sassari, Viale Italia, 39A, I-07100 Sassari, Italy
| | - Mario Antonello Deroma
- Dipartimento di Agraria, Università Degli Studi di Sassari, Viale Italia, 39A, I-07100 Sassari, Italy
| | - José Fermín López-Sánchez
- Secció de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí I Franquès, 1, E-08028 Barcelona, Spain
| | - Andrea Mara
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università Degli Studi di Sassari, Via Vienna, 2, I-07100 Sassari, Italy
| | - Paola Meloni
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università Degli Studi di Sassari, Via Vienna, 2, I-07100 Sassari, Italy
| | - Maria Itria Pilo
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università Degli Studi di Sassari, Via Vienna, 2, I-07100 Sassari, Italy
| | - Àngels Sahuquillo Estrugo
- Secció de Química Analítica, Facultat de Química, Universitat de Barcelona, Martí I Franquès, 1, E-08028 Barcelona, Spain
| | - Nadia Spano
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università Degli Studi di Sassari, Via Vienna, 2, I-07100 Sassari, Italy
| | - Gavino Sanna
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università Degli Studi di Sassari, Via Vienna, 2, I-07100 Sassari, Italy.
| |
Collapse
|
35
|
Cao W, Ren Y, Dong Q, Li Z, Xiao S. Enrichment of High Arsenic Groundwater Controlled by Hydrogeochemical and Physical Processes in the Hetao Basin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13489. [PMID: 36294070 PMCID: PMC9658607 DOI: 10.3390/ijerph192013489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Based on 447 samples collected from a shallow aquifer (depths from 0 to 150 m) in the Hetao Basin, Northern China, an integrated hydrogeochemical approach was used in this study to conceptualize the enrichment of high arsenic groundwater in the Hetao Basin. An unconventional method of distinguishing hydrogeochemical and physical processes from a dataset was tested by investigating the cumulative frequency distribution of ionic ratios expressed on a probability scale. By applying cumulative frequency distribution curves to characterize the distribution of ionic ratios throughout the Hetao Basin, hydrogeochemical indicators were obtained that distinguish the series of hydrogeochemical processes that govern groundwater composition. All hydrogeochemical processes can basically be classified as recharge intensity of groundwater, evaporation concentration intensity, and reductive degree controlling the spatial distribution of arsenic. By considering the three processes, we found that the concentration of arsenic was more than 10 μg/L when the (HCO3-+CO32-)/SO42- ratio was over 4.1 (strong reductive area). As the evaporation concentration intensity increased, the median value of arsenic increased from 10.74 to 382.7 μg/L in the median reductive area and rapidly increased from 89.11 to 461.45 μg/L in the strong reductive area. As the river recharge intensity increased (with the intensity index increasing from 0 to 5), the median value of arsenic dropped from 40.2 to 6.8 μg/L in the median reductive area and decreased more markedly from 219.85 to 23.73 μg/L in the strong reductive area. The results provide a new insight into the mechanism of As enrichment in groundwater.
Collapse
Affiliation(s)
- Wengeng Cao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
- Hebei Cangzhou Groundwater and Land Subsidence National Observation and Research Station, Shijiazhuang 050061, China
| | - Yu Ren
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
- Hebei Cangzhou Groundwater and Land Subsidence National Observation and Research Station, Shijiazhuang 050061, China
| | - Qiuyao Dong
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Zeyan Li
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
- Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
- Hebei Cangzhou Groundwater and Land Subsidence National Observation and Research Station, Shijiazhuang 050061, China
| | - Shunyu Xiao
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| |
Collapse
|
36
|
Xu Y, Deng Y, Zheng T, Du Y, Jiang H, Pi K, Xie X, Gan Y, Ma T, Wang Y. New evidence for linking the formation of high arsenic aquifers in the central Yangtze River Basin to climate change since Last Glacial Maximum. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129684. [PMID: 36104910 DOI: 10.1016/j.jhazmat.2022.129684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of arsenic (As)-affected groundwater in the Late Pleistocene and Holocene aquifers leads to serious arsenicosis worldwide. However, the geogenic foundational processes underlying the high As aquifers remain elusive. Here we present joint lines of evidences from chronological, sediment geochemical and geomicrobial analysis that climate change since the Last Glacial Maximum (LGM) initiates the genesis of high As aquifers in the central Yangtze River Basin, which represents Quaternary alluvial-lacustrine floodplains affected by arsenicosis occurrence. Optically stimulated luminescence-based sediments dating and grain size characterization indicate that the LGM depositional boundary also separates the Late-Pleistocene/Holocene high arsenic aquifers from the underlying arsenic-depleted aquifers. Further examination of solid-phase As/Fe/S speciation and associated microbial communities function suggests that the pre-LGM depositional environments characteristic of S metabolism engender the fixation of As in pyrite, whereas during the post-LGM period climate change to warm and humid leads to As repartitioning to Fe/Mn oxides in response to strong chemical weathering. This may have contributed to a dynamic fate of As in the post-LGM depositional environments and thus a highly variable aqueous As concentrations over depth. Our results highlight the important roles of climate change has played in the genesis of high As aquifers, with implications for other LGM-affected regions worldwide as well as for the evolution of high arsenic aquifers under future climate change.
Collapse
Affiliation(s)
- Yuxiao Xu
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yamin Deng
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Tianliang Zheng
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yao Du
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Kunfu Pi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yiqun Gan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Teng Ma
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yanxin Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
37
|
Van Thinh N, Matsumoto M, Zaw M, Kuwahara Y, Xie Y, Ozaki A, Kurosawa K. Biogeochemical properties and potential risk of shallow arsenic-rich sediment layers to groundwater quality in Western Bangladesh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3249-3263. [PMID: 34505974 DOI: 10.1007/s10653-021-01087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The arsenic-contaminated groundwater has attracted attention in much south and southeast Asian deltas, however, mainly on the deep aquifers. Here, arsenic (As) concentration and its fractionation of the sediment cores in a shallow aquifer in Bangladesh were investigated using ICP-MS, FE-EPMA, XRD and 14C-AMS chronology techniques. The results of the present study indicated that the peak concentrations of As (54.7-79.1 µg/g) were in peat layers (at a depth of 7.5-8.0 m). Several types of iron (oxyhidr)oxides and framboidal pyrite, which contain As also, were found in the peat samples. The high concentrations of As were in an exchangeable form, As-bearing iron crystalline and As-bearing organic materials. We revealed that the As-rich peat layers were formed from 3170 to 3901 cal yrs before, due to the sea level decrease in this area. The 16S rRNA gene-based phylogenetic analysis revealed that the bacterial strains in the As-rich peats were mainly affiliated with genera Acinetobacter, Enterobacter, Escherichia, Bacillus, Clostridiaceae and Acinetobacter. The geo-accumulation index (Igeo) and ecological risk index assessment were calculated for the sediments, which shows that As-rich sediment layers were in range of moderately to heavily contaminated and considerable classes, respectively. Under the permanent saturated condition, the As-rich peat layers should be considered as an important potential driver of the groundwater As in this area.
Collapse
Affiliation(s)
- Nguyen Van Thinh
- Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, 819-0395, Japan.
- Institute of Tropical Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Masaru Matsumoto
- Institute of Tropical Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Myo Zaw
- Graduate School of Integrated Sciences for Global Society, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshihiro Kuwahara
- Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yiping Xie
- Institute of Tropical Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Akinori Ozaki
- Institute of Tropical Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kiyoshi Kurosawa
- Institute of Tropical Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
38
|
Zhang F, Wang Y, Liao X. Recognition method for the health risks of potentially toxic elements in a headwater catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156287. [PMID: 35636553 DOI: 10.1016/j.scitotenv.2022.156287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The spatial association of potentially toxic elements (PTEs) in soil-crop-groundwater systems is poorly recognised. In this study, the contents of arsenic (As), cadmium (Cd), copper (Cu) and lead (Pb) in paddy soils, rice and groundwater in the Xiancha River catchment were determined. The intrinsic effects of PTEs in soils on their spatial distribution in groundwater and rice were explored. Also, the potential sources and health risks of PTEs in multi-media were investigated. Results showed that the mean contents of As and Cd in soils were 23.86 and 0.26 mg kg-1, respectively. In groundwater, the maximum (average) content of As reached 6.55 (1.84) μg L-1. Moreover, As contents in soils and groundwater showed a sound spatial correlation (q = 0.81), and this is supported by the result of the soil column experiment, indicating homology and the strong vertical migration capacity of As. The non-homologous patterns of Pb, Cu and Cd contaminations in soil-groundwater system suggested that geogenic processes influenced the distribution of these PTEs. Cd presented a poor spatial correlation in soil-rice system, as multiple factors controlled its transfer process. Multivariate statistical analysis results demonstrated that As, Cu and Pb in soils mainly came from agricultural sources, whereas high Cd levels were from mining activities. Additionally, direct consumption of As-contaminated groundwater and Cd-contaminated rice posed significant health risks to local residents. This study, which proposes a risk recognition method used to investigate target PTEs in multi-media, may serve as a valuable reference for further research involving catchments.
Collapse
Affiliation(s)
- Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an 343000, China.
| | - Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
39
|
Gao M, Su Y, Gao J, Zhong X, Li H, Wang H, Lü C, He J. Arsenic speciation transformation in soils with high geological background: New insights from the governing role of Fe. CHEMOSPHERE 2022; 302:134860. [PMID: 35551944 DOI: 10.1016/j.chemosphere.2022.134860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
In soils, the speciation transformation of As were inherently related to the behaviors of iron (oxyhydr) oxides. It is poorly understood that the effects of the transformation of iron (oxyhydr) oxides coupled with As speciation transformation during dissimilatory Fe(III) reduction (DIR) involving with humic substances (HS) as electron donor or shuttle in soils with high arsenic geological background. In this study, the relationships between the transformation of iron (oxyhydr)oxides and As speciation transformation were investigated according to the response between continuously As speciation monitoring and iron (oxyhydr) oxides identification during DIR in the soils. The results showed that F4 (arsenic incorporated with amorphous iron (oxyhydr)oxides including ferrihydrite and schwertmannite) and F5 (arsenic incorporated with crystalline iron (oxyhydr)oxides including hematite and magnetite) were the main source and sink for As(III)Dissolved during DIR. During the incubation period, Fe(II) was the dominant driving force for the reduction of As(V) in the water-soil system. The XRD analysis indicated the changes of iron oxides such as ferrihydrite, schwertmannite, hematite and magnetite were closely related to the release and reduction of As, and those iron oxides could play governing roles for As speciation transformation during DIR in soils. Different from the known mechanism in low As concentrations, a limiting effect of As concentration on iron oxides transformation was found in our incubation experiments using soils with high As geological background (∼1000 mg/kg). This work provides new insights for Fe as governing role in As speciation transformation in soils with high arsenic geological background by firstly identifying the corresponding iron (oxyhydr)oxides in operationally defined arsenic speciation incorporated with iron oxides.
Collapse
Affiliation(s)
- Manshu Gao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yue Su
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot, 010021, China.
| | - Jiabao Gao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Xinwei Zhong
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Hao Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Haoji Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot, 010021, China
| | - Jiang He
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
40
|
Khan T, Bilal S, Asaf S, Alamri SS, Imran M, Khan AL, Al-Rawahi A, Lee IJ, Al-Harrasi A. Silicon-Induced Tolerance against Arsenic Toxicity by Activating Physiological, Anatomical and Biochemical Regulation in Phoenix dactylifera (Date Palm). PLANTS 2022; 11:plants11172263. [PMID: 36079645 PMCID: PMC9459973 DOI: 10.3390/plants11172263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022]
Abstract
Arsenic is a toxic metal abundantly present in agricultural, industrial, and pesticide effluents. To overcome arsenic toxicity and ensure safety for plant growth, silicon (Si) can play a significant role in its mitigation. Here, we aim to investigate the influence of silicon on date palm under arsenic toxicity by screening antioxidants accumulation, hormonal modulation, and the expression profile of abiotic stress-related genes. The results showed that arsenic exposure (As: 1.0 mM) significantly retarded growth attributes (shoot length, root length, fresh weight), reduced photosynthetic pigments, and raised reactive species levels. Contrarily, exogenous application of Si (Na2SiO3) to date palm roots strongly influenced stress mitigation by limiting the translocation of arsenic into roots and shoots as compared with the arsenic sole application. Furthermore, an enhanced accumulation of polyphenols (48%) and increased antioxidant activities (POD: 50%, PPO: 75%, GSH: 26.1%, CAT: 51%) resulted in a significant decrease in superoxide anion (O2•−: 58%) and lipid peroxidation (MDA: 1.7-fold), in silicon-treated plants, compared with control and arsenic-treated plants. The Si application also reduced the endogenous abscisic acid (ABA: 38%) under normal conditions, and salicylic acid (SA: 52%) and jasmonic acid levels (JA: 62%) under stress conditions as compared with control and arsenic. Interestingly, the genes; zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED-1) involved in ABA biosynthesis were upregulated by silicon under arsenic stress. Likewise, Si application also upregulated gene expression of plant plasma membrane ATPase (PMMA-4), aluminum-activated malate transporter (ALMT) responsible for maintaining cellular physiology, stomatal conductance, and short-chain dehydrogenases/reductases (SDR) involved in nutrients translocation. Hence, the study demonstrates the remarkable role of silicon in supporting growth and inducing arsenic tolerance by increasing antioxidant activities and endogenous hormones in date palm. The outcomes of our study can be employed in further studies to better understand arsenic tolerance and decode mechanism.
Collapse
Affiliation(s)
- Taimoor Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Correspondence: (S.B.); (A.L.K.); (A.A.-H.)
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Safiya Salim Alamri
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Imran
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
- Correspondence: (S.B.); (A.L.K.); (A.A.-H.)
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Correspondence: (S.B.); (A.L.K.); (A.A.-H.)
| |
Collapse
|
41
|
Rakib MA, Quraishi SB, Newaz MA, Sultana J, Bodrud-Doza M, Rahman MA, Patwary MA, Bhuiyan MAH. Groundwater quality and human health risk assessment in selected coastal and floodplain areas of Bangladesh. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 249:104041. [PMID: 35759889 DOI: 10.1016/j.jconhyd.2022.104041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Groundwater aquifers are a common source of drinking water in Bangladesh. However, groundwater contamination is a major public health concern across the country. This research aims to examine the groundwater quality and health concerns using a random sampling process. Multivariate statistical and health risk analyses of elements were performed to determine the source of contaminants and their effects on human health. A total of 24 parameters were analyzed, where Na+, NH4+, K+, Mg2+, F-, NO3-, Mn, Fe, Se, U, and As concentrations were found to be high in different sampling points compared to the Department of Environment of Bangladesh (DoE), and the World Health Organization (WHO) groundwater quality standards. Principal Component Analysis (PCA) and Cluster Analysis (CA) identified the dominant and potential sources of contaminants in the groundwater aquifer, including geogenic, salinity intrusion, industrial, and agricultural. The results of the degree of contamination level (Cd) and the heavy metal pollution index (HPI) showed that 28% and 12% of the sampling points had high levels of heavy metal contamination, indicating a high risk for human health issues. Cr concentrations were found to have a higher carcinogenic (cancer) risk than As and Cd concentrations. Hazard quotient (HQ) and hazard index (HI) scores expressed the hazardous status and possible chronic effects in the context of individual sampling points. For both child and adults, 44% and 36% of the sampling points had a high HI score, indicating the possibility of long-term health risks for local populations.
Collapse
Affiliation(s)
- M A Rakib
- Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh; Graduate Program in Sustainability Science-Global Leadership Initiatives, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan.
| | - Shamshad B Quraishi
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center, Dhaka 1000, Bangladesh
| | - Md Asif Newaz
- Environmental Science Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Jolly Sultana
- Department of Physics, Khulna University of Engineering and Technology, Khulna, Bangladesh
| | - Md Bodrud-Doza
- Climate Change Programme (CCP), BRAC, Dhaka 1212, Bangladesh
| | - Md Atiur Rahman
- Department of Geography and Environmental Science, Begum Rokeya University, Rangpur, Bangladesh
| | - Masum A Patwary
- Environmental Science and Disaster Management, Daffodil International University, Dhaka, Bangladesh
| | - Mohammad A H Bhuiyan
- Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|
42
|
Richards LA, Kumari R, Parashar N, Kumar A, Lu C, Wilson G, Lapworth D, Niasar VJ, Ghosh A, Chakravorty B, Krause S, Polya DA, Gooddy DC. Environmental tracers and groundwater residence time indicators reveal controls of arsenic accumulation rates beneath a rapidly developing urban area in Patna, India. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 249:104043. [PMID: 35767908 DOI: 10.1016/j.jconhyd.2022.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Groundwater security is a pressing environmental and societal issue, particularly due to significantly increasing stressors on water resources, including rapid urbanization and climate change. Groundwater arsenic is a major water security and public health challenge impacting millions of people in the Gangetic Basin of India and elsewhere globally. In the rapidly developing city of Patna (Bihar) in northern India, we have studied the evolution of groundwater chemistry under the city following a three-dimensional sampling framework of multi-depth wells spanning the central urban zone in close proximity to the River Ganges (Ganga) and transition into peri-urban and rural areas outside city boundaries and further away from the river. Using inorganic geochemical tracers (including arsenic, iron, manganese, nitrate, nitrite, ammonium, sulfate, sulfide and others) and residence time indicators (CFCs and SF6), we have evaluated the dominant hydrogeochemical processes occurring and spatial patterns in redox conditions across the study area. The distribution of arsenic and other redox-sensitive parameters is spatially heterogenous, and elevated arsenic in some locations is consistent with arsenic mobilization via reductive dissolution of iron hydroxides. Residence time indicators evidence modern (<~60-70 years) groundwater and suggest important vertical and lateral flow controls across the study area, including an apparent seasonal reversal in flow regimes near the urban center. An overall arsenic accumulation rate is estimated to be ~0.003 ± 0.003 μM.yr-1 (equivalent to ~0.3 ± 0.2 μg.yr-1), based on an average of CFC-11, CFC-12 and SF6-derived models, with the highest rates of arsenic accumulation observed in shallow, near-river groundwaters also exhibiting elevated concentrations of nutrients including ammonium. Our findings have implications on groundwater management in Patna and other rapidly developing cities, including potential future increased groundwater vulnerability associated with surface-derived ingress from large-scale urban abstraction or in higher permeability zones of river-groundwater connectivity.
Collapse
Affiliation(s)
- Laura A Richards
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Manchester M13 9PL, UK.
| | - Rupa Kumari
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna 801505, Bihar, India
| | - Neha Parashar
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna 801505, Bihar, India; now at Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna 801505, Bihar, India
| | - Chuanhe Lu
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Manchester M13 9PL, UK
| | - George Wilson
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Manchester M13 9PL, UK
| | - Dan Lapworth
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| | - Vahid J Niasar
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Ashok Ghosh
- Mahavir Cancer Sansthan and Research Center, Phulwarisharif, Patna 801505, Bihar, India
| | | | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - David A Polya
- Department of Earth and Environmental Sciences, Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Manchester M13 9PL, UK
| | - Daren C Gooddy
- British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| |
Collapse
|
43
|
Sandhi A, Yu C, Rahman MM, Amin MN. Arsenic in the water and agricultural crop production system: Bangladesh perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51354-51366. [PMID: 35618999 PMCID: PMC9288370 DOI: 10.1007/s11356-022-20880-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/12/2022] [Indexed: 04/12/2023]
Abstract
The presence of high levels of carcinogenic metalloid arsenic (As) in the groundwater system of Bangladesh has been considered as one of the major environmental disasters in this region. Many parts of Bangladesh have extensively reported the presence of high levels of arsenic in the groundwater due to both geological and anthropogenic activities. In this paper, we reviewed the available literature and scientific information regarding arsenic pollution in Bangladesh, including arsenic chemistry and occurrences. Along with using As-rich groundwater as a drinking-water source, the agricultural activities and especially irrigation have greatly depended on the groundwater resources in this region due to high water demands for ensuring food security. A number of investigations in Bangladesh have shown that high arsenic content in both soil and groundwater may result in high levels of arsenic accumulation in different plants, including cereals and vegetables. This review provides information regarding arsenic accumulation in major rice varieties, soil-groundwater-rice arsenic interaction, and past arsenic policies and plans, as well as previously implemented arsenic mitigation options for both drinking and irrigation water systems in Bangladesh. In conclusion, this review highlights the importance and necessity for more in-depth studies as well as more effective arsenic mitigation action plans to reduce arsenic incorporation in the food chain of Bangladesh.
Collapse
Affiliation(s)
- Arifin Sandhi
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| | - Changxun Yu
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Md Marufur Rahman
- Bangladesh Institute of Research and Training On Applied Nutrition, Rangpur Regional Station, Pirgonj-5470, Rangpur, Bangladesh
| | - Md Nurul Amin
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Breeder Seed Production Centre, Bangladesh Agricultural Research Institute, Debiganj, Panchagarh-5020, Bangladesh
| |
Collapse
|
44
|
Castillejos Sepúlveda A, Gatti LM, Kerl CF, Chennu A, Klatt JM. Arsenic speciation analysis in porewater by a novel colorimetric assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154155. [PMID: 35231514 DOI: 10.1016/j.scitotenv.2022.154155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Arsenic is common toxic contaminant, but tracking its mobility through submerged soils is difficult because microscale processes dictate its speciation and affinity to minerals. Analyses on environmental dissolved arsenic (As) species such as arsenate and arsenite currently require highly specialized equipment and large sample volumes. In an effort to unravel arsenic dynamics in sedimentary porewater, a novel, highly sensitive, and field-usable colorimetric assay requiring 100 μL of sample was developed. Two complementary protocols are presented, suitable for sub-micromolar and micromolar ranges. Phosphate is a main interfering substance, but can be separated by measuring phosphate and arsenate under two different acidities. Arsenite is assessed by oxidation of arsenite to arsenate in the low-acidity reagent. Optimization of the protocol and spectral analyses resulted in elimination of various interferences (silicate, iron, sulfide, sulfate), and the assay is applicable across a wide range of salinities and porewater compositions. The new assay was used to study As mobilization processes through the soil of a contaminated brook. Water column sources of arsenic were limited to a modest input by a groundwater source along the flow path. In one of the sites, the arsenite and arsenate porewater profiles showed active iron-driven As redox cycling in the soil, which may play a role in arsenic mobilization and releases arsenite and arsenate into the brook water column. Low arsenic concentrations downstream from the source sites indicated arsenic retention by soil and dilution with additional sources of water. Arsenic is thus retained by the Bossegraben before it merges with larger rivers.
Collapse
Affiliation(s)
| | - Lais M Gatti
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Carolin F Kerl
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Arjun Chennu
- Data Science and Technology, Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Judith M Klatt
- Microsensor Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
45
|
A Resilient and Nature-Based Drinking Water Supply Source for Saline and Arsenic Prone Coastal Aquifers of the Bengal Delta. SUSTAINABILITY 2022. [DOI: 10.3390/su14116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Salinity causes a hostile environmental impact throughout the year in the coastal region of Bangladesh, and its severity increases day by day. Because of upstream freshwater flow reduction and massive groundwater extraction, salinity has increased substantially over the last three decades. Moreover, arsenic contamination in shallow groundwater makes the groundwater unsuitable for potable use. Consequently, the coastal area suffers from acute storage of safe water supply. Salinity also negatively impacts human activities, livelihood, agricultural production, and the aquatic ecosystem. Though the shallow aquifer contains high salinity and a small amount of Arsenic (As), the very shallow aquifer (within 3m to 8m) contains fresh water in many areas in the rainy season due to the direct recharge of rainwater. However, rainfall recharge varies significantly depending on the geological and hydrogeological settings. Specifically, up to 50% of annual rainfall is stored in shallow aquifers of Quaternary sands through direct infiltration. The research’s principal objective is to identify the safe and sustainable drinking water source in the arsenic and saline-prone coastal region. Groundwater samples were collected from the different locations of the study area during both dry and wet seasons and examined seasonal variations in groundwater table and salinity levels. The chemical analyses and Physico-chemical parameters indicate that the groundwater samples are suitable for drinking. Except for some groundwater samples from the wet season, the salinity of all samples was under the allowable limit for Bangladesh (<2000 µS/cm), and the targeted aquifer was almost arsenic (50 µg/l) free. Therefore, a comprehensive analysis has been made to accomplish the study goals. Particularly, the groundwater’s electrical conductivity (EC) values of most samples were measured within the limit of fresh or brackish water (<2000 μS/cm). Overall, the results indicate the prospect of a very shallow aquifer as a source of freshwater for drinking purposes throughout the year, considering both arsenic and salinity, which effectively solve the freshwater shortage, especially in the saline-arsenic prone area.
Collapse
|
46
|
Mukherjee P, Sastry S. Problem Definition and Community Participation in Environmental Health Interventions: An Exploratory Study of Groundwater Arsenic Remediation. HEALTH COMMUNICATION 2022; 37:717-725. [PMID: 33349051 DOI: 10.1080/10410236.2020.1864891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arsenic, a known carcinogen, naturally occurs in the groundwater in large parts of West Bengal, a state in eastern India. Communities that depend on groundwater face twice the lifetime mortality risk for cancers, cardiovascular diseases, and developmental disorders. This study, focused on arsenic-affected communities in the state of West Bengal, offers an initial exploration of how local stakeholders construct groundwater arsenic as a health problem. Arsenic remediation interventions involve a host of international, regional, and local stakeholders (public health departments, government engineers, community health workers, consultants, hydrologists, etc.). How an environmental health problem is constructed has implications for who is considered responsible, what causes it, and pertinently, how/whether affected communities participate in addressing the problem. Drawing from a culture-centered approach, this fieldwork-based study offers three distinct yet related problem construction discourses, viz. social/political, technical and personal, in how the problem of arsenic is construed locally, and how such discourses are related to a particular conceptualization of community participation in environmental health.
Collapse
|
47
|
Yang L, Sun L, Song J, Zhao X, Pan X, Wu Z, Cai Q. Nano-Coral Gold (NCG) Electrode for Electrochemical Determination of Arsenic (III) in Industrial Wastewater by Square Wave Anodic Stripping Voltammetry (SWASV). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2066686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Lan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Leilei Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Jie Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xueliang Zhao
- Center for Hydrogeology and Environment Geology, China Geological Survey, Baoding, China
| | - Xicai Pan
- State Key Lab. of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zeming Wu
- Inner Mongolia Environmental Monitoring Center, Neimenggu, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
48
|
Identification and Genome Analysis of an Arsenic-Metabolizing Strain of Citrobacter youngae IITK SM2 in Middle Indo-Gangetic Plain Groundwater. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6384742. [PMID: 35309170 PMCID: PMC8930248 DOI: 10.1155/2022/6384742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022]
Abstract
Whole-genome sequencing (WGS) data of a bacterial strain IITK SM2 isolated from an aquifer located in the middle Indo-Gangetic plain is reported here, along with its physiological, morphological, biochemical, and redox-transformation characteristics in the presence of dissolved arsenic (As). The aquifer exhibits oxidizing conditions relative to As speciation. Analyses based on 16S rRNA and recN sequences indicate that IITK SM2 was clustered with C. youngae NCTC 13708T and C. pasteuri NCTC UMH17T. However, WGS analyses using the digital DNA-DNA hybridization and Rapid Annotations using Subsystems Technology suggest that IITK SM2 belongs to a strain of C. youngae. This strain can effectively reduce As(V) to As(III) but cannot oxidize As(III) to As(V). It exhibited high resistance to As(V) [32,000 mg L-1] and As(III) [1,100 mg L-1], along with certain other heavy metals typically found in contaminated groundwater. WGS analysis also indicates the presence of As-metabolizing genes such as arsC, arsB, arsA, arsD, arsR, and arsH in this strain. Although these genes have been identified in several As(V)-reducers, the clustering of these genes in the forms of arsACBADR, arsCBRH, and an independent arsC gene has not been observed in any other Citrobacter species or other selected As(V)-reducing strains of Enterobacteriaceae family. Moreover, there were differences in the number of genes corresponding to membrane transporters, virulence and defense, motility, protein metabolism, phages, prophages, and transposable elements in IITK SM2 when compared to other strains. This genomic dataset will facilitate subsequent molecular and biochemical analyses of strain IITK SM2 to identify the reasons for high arsenic resistance in Citrobacter youngae and understand its role in As mobilization in middle Indo-Gangetic plain aquifers.
Collapse
|
49
|
Lapworth DJ, Boving TB, Kreamer DK, Kebede S, Smedley PL. Groundwater quality: Global threats, opportunities and realising the potential of groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152471. [PMID: 34915019 DOI: 10.1016/j.scitotenv.2021.152471] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Groundwater is a critical resource enabling adaptation due to land use change, population growth, environmental degradation, and climate change. It can be a driver of change and adaptation, as well as effectively mitigate impacts brought about by a range of human activities. Groundwater quality is key to assessing groundwater resources and we need to improve our understanding and coverage of groundwater quality threats if we are to use groundwater sustainably to not further burden future generations by limiting resources and/or increasing treatment or abstraction costs. Good groundwater quality is key to progress on a range of Sustainable Development Goals, but achievement of those goals most affected by groundwater contamination is often hindered by of a lack of resources to enable adaptation. A range of threats to groundwater quality exist, both natural and anthropogenic, which may constrain groundwater use. However, groundwater often provides good quality water for a range of purposes and is the most important water resource in many settings. This special issue explores some of the key groundwater quality challenges we face today as well as the opportunities good groundwater quality and treatment solutions bring to enhance safe groundwater use. Legacy anthropogenic contaminants and geogenic contaminants may be well documented in certain places, such as N America, Europe and parts of Asia. However, there is a real issue of data accessibility in some regions, even for more common contaminants. This paucity of information can restrict our understanding and ability to manage and protect groundwater sources. Compared to surface water quality, large scale assessments for groundwater quality are still scarce and often rely on inadequate data sets. Better access to existing data sets and more research is needed on many groundwater quality threats. Identification and quantification of these threats will support the wise use and protection of this subsurface resource, allow society to adequately address future challenges, and help communities realise the full potential of groundwater.
Collapse
Affiliation(s)
- D J Lapworth
- British Geological Survey, Wallingford OX10 8BB, UK.
| | - T B Boving
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA
| | - D K Kreamer
- Department of Geoscience, University of Nevada, Las Vegas, NV 89154, USA
| | - S Kebede
- Centre for Water Resources Research, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu Natal, Pietermaritzburg, South Africa
| | - P L Smedley
- British Geological Survey, Keyworth, Nottinghamshire NG12 5GG, UK
| |
Collapse
|
50
|
De Dalui S, Das B. Binding of As 3+ and As 5+ to Fe(III) Oxyhydroxide Clusters and the Influence of Aluminum Substitution: A Molecular Perspective. J Phys Chem A 2022; 126:670-684. [PMID: 35084850 DOI: 10.1021/acs.jpca.1c08754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fe(III) oxides and oxyhydroxides play a very important role in contaminant cycling and mobility in the environment through numerous sorption mechanisms owing to their nanoparticulate nature. Generally coprecipitated from mixtures of metal ions in natural environments, Fe(III) oxyhydroxides are often doped by various impurity metal ions to a certain degree. These dopant/impurity ions then play a crucial role in the geochemical cycling of toxic contaminants like arsenic via modified adsorption energetics on Fe(III) oxyhydroxide nanoparticles. Aluminum (Al) commonly coexists with ferric salts and minerals in nature and affects the arsenic (As) binding abilities of Fe(III) oxyhydroxides. We use electronic structure studies to model the As binding potential of Al-doped Fe(III) oxyhydroxide clusters, using a "bottom-up" molecular approach to understand their role in As fixation. We start from small Al-doped Fe(III) oxyhydroxide clusters, like dimers and trimers, and gradually study larger clusters including the δ-Fe13 Keggin cluster, evaluating their As binding potential with respect to pure undoped Fe(III) oxyhydroxide clusters at each step. The calculated reaction free energies clearly show that Al doping into Fe(III) oxyhydroxide clusters reduces their As3+ binding potential, whereas the As5+ binding is not affected much due to Al doping.
Collapse
Affiliation(s)
- Sharmistha De Dalui
- Technical Research Center (TRC), School of Applied and Interdisciplinary Sciences (SAIS), Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S C Mullick Road, Jadavpur, Kolkata 700032 West Bengal, India
| | - Bidisa Das
- Technical Research Center (TRC), School of Applied and Interdisciplinary Sciences (SAIS), Indian Association for the Cultivation of Science (IACS), 2A & 2B Raja S C Mullick Road, Jadavpur, Kolkata 700032 West Bengal, India
| |
Collapse
|