1
|
Bell JT, Zhang X. The hepatitis B virus surface antigen: An evolved perfection and its unresolved mysteries. Virology 2025; 608:110527. [PMID: 40220401 DOI: 10.1016/j.virol.2025.110527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
The Hepatitis B Virus has long afflicted the human race, with a widespread impact on the global health system and profound medical implications for those who are chronically infected. Despite its relatively recent discovery, over the last 50 years great advancements have been made towards the characterisation of this complex etiological agent. The virus itself has a highly evolved genome which encodes for seven viral proteins, three of which (the surface antigens) were consequential in the initial discovery and isolation of the virus. These surface antigens are ubiquitously important throughout the viral lifecycle, from capsid envelopment through to receptor-mediated invasion into the hepatocytes. The hepatitis B surface antigens (in particular, the large protein) adopt complex topological folds and tertiary structures, and it is this topological intricacy which facilitates the diverse roles the three surface antigens play in HBV maturation and infection. Here, the biochemical and topological attributes of the three surface antigens are reviewed in detail, with particular focus on their relevance to the establishment of infection. Further research is still required to elucidate the coordinates of the antigen loop and the dynamic topological changes of key motifs during entry and viral morphogenesis; these in turn may provide new leads for therapeutics which may potentiate a functional cure for chronic hepatitis B.
Collapse
Affiliation(s)
- Jack Thomas Bell
- Faculty of Science and Technology, University of Canberra, ACT, Australia
| | - Xiaonan Zhang
- Faculty of Science and Technology, University of Canberra, ACT, Australia.
| |
Collapse
|
2
|
Kissi-Twum AA, Pionek K, Loeb DD. The HBV variant CpF97L supports the secretion of pgRNA-containing virions at a level much greater than WT HBV. J Virol 2025; 99:e0010025. [PMID: 40231820 PMCID: PMC12090816 DOI: 10.1128/jvi.00100-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025] Open
Abstract
Viruses in the Hepadnaviridae family, including hepatitis B virus (HBV), replicate their double-stranded DNA (dsDNA) genomes through reverse transcription of an RNA intermediate, the pregenomic RNA (pgRNA), in the viral capsid within an infected cell. In the cell, capsids containing pgRNA, single-stranded DNA (ssDNA), and dsDNA are present. However, capsids containing dsDNA (referred to as mature genomes) are preferentially secreted in virions while only small amounts of capsids with pgRNA and ssDNA (referred to as immature genomes) are enveloped and secreted. The naturally occurring HBV core protein variant, CpF97L, is an exception; HBV CpF97L secretes high levels of ssDNA-containing virions in addition to dsDNA virions. We asked whether HBV CpF97L is capable of secreting pgRNA-containing virions as well. We found that HBV CpF97L secretes high levels of pgRNA-containing virions compared to wild-type (WT) HBV when reverse transcription was inhibited by entecavir or by the Y63F change in P protein. We detected pgRNA virions in Huh7 and HepG2 cell lines, indicating that RNA virion secretion was independent of the cell line used in virion propagation. More importantly, pgRNA virions were detected when dsDNA virions were synthesized as well. Our findings suggest that the capsids of CpF97L are constitutively matured, allowing for virions with immature genomes (ssDNA and pgRNA) to be secreted in addition to dsDNA virions.IMPORTANCEFinding a cure for hepatitis B is critical, as over 250 million people live with a hepatitis B virus (HBV) infection. HBV replicates through a series of nascent RNA and DNA intermediates in capsids, resulting in the secretion of a DNA virion to propagate the infection. HBV infections have been managed with nucleos(t)ide analogs (NAs), which terminate DNA synthesis during replication. During NA treatment, DNA levels plummet, RNA-containing capsids accumulate in infected cells and are secreted, albeit inefficiently, as virions. RNA virions in serum have therefore been proposed to be used as an indicator for covalently closed circular DNA (cccDNA) (HBV's minichromosome in hepatocytes) to determine patients who can be withdrawn from NAs without virological rebound. However, it is unknown if RNA virions are efficiently secreted by the frequent HBV variants that secrete high levels of ssDNA-containing virions, as these will lead to an erroneous overestimate of the cccDNA reservoir; hence, the need for our study.
Collapse
Affiliation(s)
- Abena Adomah Kissi-Twum
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karolyn Pionek
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Khayenko V, Makbul C, Schulte C, Hemmelmann N, Kachler S, Böttcher B, Maric HM. Induction of hepatitis B core protein aggregation targeting an unconventional binding site. eLife 2025; 13:RP98827. [PMID: 40135596 PMCID: PMC11942178 DOI: 10.7554/elife.98827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
The hepatitis B virus (HBV) infection is a major global health problem, with chronic infection leading to liver complications and high death toll. Current treatments, such as nucleos(t)ide analogs and interferon-α, effectively suppress viral replication but rarely cure the infection. To address this, new antivirals targeting different components of the HBV molecular machinery are being developed. Here we investigated the hepatitis B core protein (HBc) that forms the viral capsids and plays a vital role in the HBV life cycle. We explored two distinct binding pockets on the HBV capsid: the central hydrophobic pocket of HBc-dimers and the pocket at the tips of capsid spikes. We synthesized a geranyl dimer that binds to the central pocket with micromolar affinity, and dimeric peptides that bind the spike-tip pocket with sub-micromolar affinity. Cryo-electron microscopy further confirmed the binding of peptide dimers to the capsid spike tips and their capsid-aggregating properties. Finally, we show that the peptide dimers induce HBc aggregation in vitro and in living cells. Our findings highlight two tractable sites within the HBV capsid and provide an alternative strategy to affect HBV capsids.
Collapse
Affiliation(s)
- Vladimir Khayenko
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| | - Cihan Makbul
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| | - Clemens Schulte
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| | - Naomi Hemmelmann
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| | - Sonja Kachler
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| | - Bettina Böttcher
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| | - Hans Michael Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging; University of WürzburgWürzburgGermany
- Biocenter, University of WürzburgWürzburgGermany
| |
Collapse
|
4
|
Bréchot C, Charnay P, de Thé H, Dejean A, Michel ML, Pineau P, Sonigo P, Wain-Hobson S, Wei Y, Weissenbach J. Biographical Feature: In memoriam Pierre Tiollais (1934-2024). J Virol 2025; 99:e0212524. [PMID: 40209070 PMCID: PMC11852772 DOI: 10.1128/jvi.02125-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Affiliation(s)
- Christian Bréchot
- Global Virus Network, University of South Florida, Tampa, Florida, USA
| | - Patrick Charnay
- Ecole Normale Supérieure, PSL Research University, CNRS, INSERM, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Paris, France
| | - Hugues de Thé
- Collège de France, Inserm, CNRS, PSL Research University, University Paris Cité, AP/HP: St-Louis Hospital, Paris, France
| | - Anne Dejean
- Inserm U933, Paris, France
- Institut Pasteur, Paris, France
| | | | - Pascal Pineau
- Inserm U933, Paris, France
- Institut Pasteur, Paris, France
| | | | | | - Yu Wei
- Institut Pasteur, Paris, France
| | - Jean Weissenbach
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Évry, Université Paris-Saclay, Evry, France
| |
Collapse
|
5
|
Zhang H, Long Q, Liu Y, Marchetti AL, Liu CD, Sun N, Guo H. Host 3' flap endonuclease Mus81 plays a critical role in trimming the terminal redundancy of hepatitis B virus relaxed circular DNA during covalently closed circular DNA formation. PLoS Pathog 2025; 21:e1012918. [PMID: 39913382 PMCID: PMC11801639 DOI: 10.1371/journal.ppat.1012918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/17/2025] [Indexed: 02/11/2025] Open
Abstract
Hepatitis B virus (HBV) relaxed circular DNA (rcDNA) possesses an 8-9 nucleotide-long terminal redundancy (TR, or r) on the negative (-) strand DNA derived from the reverse transcription of viral pregenomic RNA (pgRNA). It remains unclear whether the TR forms a 5' or 3' flap structure on HBV rcDNA and which TR copy is removed during covalently closed circular DNA (cccDNA) formation. To address these questions, a mutant HBV cell line HepDES-C1822G was established with a C1822G mutation in the pgRNA coding sequence, altering the sequence of 3' TR of (-) strand DNA while the 5' TR remained wild type (wt). The production of HBV rcDNA and cccDNA in HepDES-C1822G cells was comparable to wt levels. Next-generation sequencing (NGS) analysis revealed that the positive (+) strand DNA of rcDNA and both strands of cccDNA predominantly carried the wt nt1822 residue, indicating that the 5' TR of (-) strand DNA serves as the template during rcDNA replication, forming a duplex with the (+) strand DNA, while the 3' TR forms a flap-like structure, which is subsequently removed during cccDNA formation. In a survey of known cellular flap endonucleases using a loss-of-function study, we found that the 3' flap endonuclease Mus81 plays a critical role in cccDNA formation in wild-type HBV replicating cells, alongside the 5' flap endonuclease FEN1. Additionally, we have mapped the potential Mus81 and FEN1 cleavage sites within the TR of nuclear DP-rcDNA by RACE-NGS analyses. The overlapping function between Mus81 and FEN1 in cccDNA formation indicates that the putative 5' and 3' flap formed by TR are dynamically interchangeable on rcDNA precursor. These findings shed light on HBV rcDNA structure and cccDNA formation mechanisms, contributing to our understanding of HBV replication cycle.
Collapse
Affiliation(s)
- Hu Zhang
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Quanxin Long
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yuanjie Liu
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Alexander L. Marchetti
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Cheng-Der Liu
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ning Sun
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics; Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
6
|
Li CL, Hsu CL, Lin YY, Ho MC, Hu RH, Tzeng ST, Wang YC, Tanaka Y, Chen PJ, Yeh SH. HBV DNA integration and somatic mutations in HCC patients with HBV-HCV dual infection reveals profiles intermediate between HBV- and HCV-related HCC. J Biomed Sci 2025; 32:2. [PMID: 39743539 PMCID: PMC11694426 DOI: 10.1186/s12929-024-01094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/09/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND In regions with a high prevalence of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, coinfected patients face a heightened risk of developing hepatocellular carcinoma (HCC), termed HBV/HCV-related HCC (HBCV-HCC). We aimed to investigate the contribution of preexisting chronic hepatitis B (CHB) and subsequent chronic hepatitis C (CHC) to the development of HBCV-HCC. METHODS We examined HBV's involvement in 93 HBCV-HCC cases by analyzing HBV DNA integration as an indicator of HCC originating from HBV-infected hepatocytes, compared with 164 HBV-HCCs and 56 HCV-HCCs as controls. RESULTS Next generation sequencing revealed that 55% of HBCV-HCCs exhibited clonal HBV integration, which falls between the rates observed in HBV-HCCs (88%) and HCV-HCCs (7%), with similar integration patterns to HBV-HCCs. Common HCC somatic mutation analysis indicated HCV superinfection in HBCV-HCCs correlated with increased mutation rates in the telomerase reverse transcriptase (TERT) promoter and beta-catenin genes. Transcriptome analysis showed a prevalence of replicating HCV over HBV in HBCV-HCCs, with preexisting HBV exerting a proliferative role. The comparison of clinical characteristics revealed similarities between HBCV-HCC and HCV-HCC patients, including later onset for HBCV-HCC, possibly due to HCV superinfection slowing carcinogenesis. Notably, HBCV-HCCs with the same driver mutation, HBV integration at the TERT promoter, tended to develop later and showed a better prognosis post-tumor resection than HBV-HCCs. CONCLUSIONS Our findings shed light on the interplay between preexisting CHB and subsequent CHC in elevating the risk of HBCV-HCC. These insights are crucial for understanding viral etiology-specific carcinogenesis and guiding surveillance policies for HBCV-HCC post-antiviral therapy.
Collapse
Affiliation(s)
- Chiao-Ling Li
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Rey-Heng Hu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | | | | | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Center of Precision Medicine, National Taiwan University, Taipei, Taiwan.
| | - Shiou-Hwei Yeh
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Center of Precision Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
7
|
Morita C, Wada M, Ohsaki E, Kimura-Ohba S, Ueda K. Generation of Replication-Competent Hepatitis B Virus Harboring Tagged Polymerase for Visualization and Quantification of the Infection. Microbiol Immunol 2025; 69:43-58. [PMID: 39620377 DOI: 10.1111/1348-0421.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025]
Abstract
Hepatitis B virus (HBV) infection is a serious global health problem causing acute and chronic hepatitis and related diseases. Approximately, 296 million patients have been chronically infected with the virus, leading to cirrhosis and hepatocellular carcinoma. Although HBV polymerase (HBVpol, pol) plays a pivotal role in HBV replication and must be a definite therapeutic target. The problems are that the detailed functions and intracellular dynamics of HBVpol remain unclear. Here, we constructed two kinds of tagged HBVpol, PA-tagged and HiBiT-tagged pol, and the HBV-producing vectors. Each PA tag and HiBiT tag were inserted into N-terminus of spacer region on HBVpol open reading frame. Transfection of the plasmids into HepG2 cells led to production of HBV. These tagged HBVpol were detectable in HBV replicating cells and pol-HiBiT enabled quantitative analysis. Furthermore, these recombinant HBV were infectious to primary human hepatocytes. Thus, we successfully designed infectious and replication-competent recombinant HBV harboring detectable tagged HBVpol. Such infectious recombinant HBV will provide a novel tool to study HBVpol dynamics and develop new therapeutics against HBV.
Collapse
Grants
- This research was supported by Grants from the Japan Agency for Medical Research and Development (AMED) Grants (16fk0310504h0005, 17fk0310105h0001, 18fk0310105h0002, 19fk0310105h0003, 20fk0310105h0004, 21fk0310105h005, 22fk0310505h0001, 23fk0310505h0002, and 24fk0310505h003) to K.U. and from JST SPRING, Grant Number JPMJSP2138, to C.M. and from the Osaka University Transdisciplinary Program for Biomedical Entrepreneurship and Innovation (WISE program) to C.M.
Collapse
Affiliation(s)
- Chiharu Morita
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masami Wada
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eriko Ohsaki
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka, Japan
| | - Shihoko Kimura-Ohba
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Matrenec R, Oropeza CE, Dekoven E, Matrenec C, Maienschein-Cline M, Chau CS, Green SJ, Kaestner KH, McLachlan A. Foxa deficiency restricts hepatitis B virus biosynthesis through epigenic silencing. J Virol 2024; 98:e0137124. [PMID: 39377604 PMCID: PMC11575325 DOI: 10.1128/jvi.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
In the hepatis B virus (HBV) transgenic mouse model of chronic infection, the forkhead box protein A/hepatocyte nuclear factor 3 (Foxa/HNF3) family of pioneer transcription factors are required to support postnatal viral demethylation and subsequent HBV transcription and replication. Liver-specific Foxa-deficient mice with hepatic expression of only Foxa3 do not support HBV replication but display biliary epithelial hyperplasia with bridging fibrosis. However, liver-specific Foxa-deficient mice with hepatic expression of only Foxa1 or Foxa2 also successfully restrict viral transcription and replication but display only minimal alterations in liver physiology. These observations suggest that the level of Foxa activity, rather than the combination of specific Foxa genes, is a key determinant of HBV biosynthesis. Together, these findings suggest that targeting Foxa activity could lead to HBV DNA methylation and transcriptional inactivation, resulting in the resolution of chronic HBV infections that are responsible for approximately one million deaths annually worldwide. IMPORTANCE The current absence of curative therapies capable of resolving chronic hepatis B virus (HBV) infection is a major clinical problem associated with considerable morbidity and mortality. The small viral genome limits molecular targets for drug development, suggesting that the identification of cellular factors essential for HBV biosynthesis may represent alternative targets for therapeutic intervention. Genetic Foxa deficiency in the neonatal liver of HBV transgenic mice leads to the transcriptional silencing of viral DNA by CpG methylation without affecting viability or displaying an obvious phenotype. Therefore, limiting liver Foxa activity therapeutically may lead to the methylation of viral covalently closed circular DNA (cccDNA), resulting in its transcriptional silencing and ultimately the resolution of chronic HBV infection.
Collapse
Affiliation(s)
- Rachel Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Claudia E. Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Eddie Dekoven
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Carly Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark Maienschein-Cline
- Research Resources Center, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cecilia S. Chau
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Xie C, Lu D. Evolution and diversity of the hepatitis B virus genome: Clinical implications. Virology 2024; 598:110197. [PMID: 39098184 DOI: 10.1016/j.virol.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Hepatitis B virus (HBV) infection remains a significant global health burden. The genetic variation of HBV is complex. HBV can be divided into nine genotypes, which show significant differences in geographical distribution, clinical manifestations, transmission routes and treatment response. In recent years, substantial progress has been made through various research methods in understanding the development, pathogenesis, and antiviral treatment response of clinical disease associated with HBV genetic variants. This progress provides important theoretical support for a deeper understanding of the natural history of HBV infection, virus detection, drug treatment, vaccine development, mother-to-child transmission, and surveillance management. This review summarizes the mechanisms of HBV diversity, discusses methods used to detect viral diversity in current studies, and the impact of viral genome variation during infection on the development of clinical disease.
Collapse
Affiliation(s)
- Chengzuo Xie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Daiqiang Lu
- Institute of Molecular and Medical Virology, Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, Guangdong Province, 510632, China.
| |
Collapse
|
10
|
Zhang J, Wang Q, Yuan W, Li J, Yuan Q, Zhang J, Xia N, Wang Y, Li J, Tong S. Both middle and large envelope proteins can mediate neutralization of hepatitis B virus infectivity by anti-preS2 antibodies: escape by naturally occurring preS2 deletions. J Virol 2024; 98:e0192923. [PMID: 39078152 PMCID: PMC11334434 DOI: 10.1128/jvi.01929-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Hepatitis B virus (HBV) expresses co-terminal large (L), middle (M), and small (S) envelope proteins containing preS1/preS2/S, preS2/S, and S domain alone, respectively. S and preS1 domains mediate sequential virion attachment to heparan sulfate proteoglycans and sodium taurocholate cotransporting polypeptide (NTCP), respectively, which can be blocked by anti-S and anti-preS1 antibodies. How anti-preS2 antibodies neutralize HBV infectivity remains enigmatic. The late stage of chronic HBV infection often selects for mutated preS2 translation initiation codon to prevent M protein expression, or in-frame preS2 deletions to shorten both L and M proteins. When introduced to infectious clone of genotype C or D, both M-minus mutations and most 5' preS2 deletions sustained virion production. Such mutant progeny viral particles were infectious in NTCP-reconstituted HepG2 cells. Neutralization experiments were performed on the genotype D clone. Although remaining susceptible to anti-preS1 and anti-S neutralizing antibodies, M-minus mutants were only partially neutralized by two anti-preS2 antibodies tested while preS2 deletion mutants were resistant. By infection experiments using viral particles with lost versus increased M protein expression, or a neutralization escaping preS2 deletion only present on L or M protein, we found that both full-length L and M proteins contributed to virus neutralization by the two anti-preS2 antibodies. Thus, immune escape could be a driving force for the selection of M-minus mutations, and especially preS2 deletions. The fact that both L and M proteins could mediate neutralization by anti-preS2 antibodies may shed light on the underlying molecular mechanism.IMPORTANCEThe large (L), middle (M), and small (S) envelope proteins of hepatitis B virus (HBV) contain preS1/preS2/S, preS2/S, and S domain alone, respectively. The discovery of heparan sulfate proteoglycans and sodium taurocholate cotransporting polypeptide (NTCP) as the low- and high-affinity HBV receptors could explain neutralizing potential of anti-S and anti-preS1 antibodies, respectively, but how anti-preS2 neutralizing antibodies work remains enigmatic. In this study, we found two M-minus mutants in the context of genotype D partially escaped two anti-preS2 neutralizing antibodies in NTCP-reconstituted HepG2 cells, while several naturally occurring preS2 deletion mutants escaped both antibodies. By point mutations to eliminate or enhance M protein expression, and by introducing preS2 deletion selectively to L or M protein, we found binding of anti-preS2 antibodies to both L and M proteins contributed to neutralization of wild-type HBV infectivity. Our finding may shed light on the possible mechanism(s) whereby anti-preS2 antibodies neutralize HBV infectivity.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qianru Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenqing Yuan
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Jing Li
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yongxiang Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Shuping Tong
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
11
|
Negro F. EASL Recognition Award Recipient 2024: Prof. Christian Bréchot. J Hepatol 2024; 81:6-8. [PMID: 38906623 DOI: 10.1016/j.jhep.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/23/2024]
Affiliation(s)
- Francesco Negro
- Service of Gastroenterology and Hepatology, University Hospitals, 1211 Geneva 14, Switzerland.
| |
Collapse
|
12
|
Yano Y, Sato I, Imanishi T, Yoshida R, Matsuura T, Ueda Y, Kodama Y. Clinical Significance and Remaining Issues of Anti-HBc Antibody and HBV Core-Related Antigen. Diagnostics (Basel) 2024; 14:728. [PMID: 38611641 PMCID: PMC11011781 DOI: 10.3390/diagnostics14070728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Currently, hepatitis B virus (HBV) core antibody (anti-HBc antibody) and HBV core-related antigen (HBcrAg) are widely used as serum markers for diagnosis based on the HBV core region. This review focused on anti-HBc antibodies and HBcrAg and aimed to summarize the clinical significance of currently used assay systems and the issues involved. While anti-HBc is very significant for clinical diagnosis, the clinical significance of quantitative assay of anti-HBc antibody has been reevaluated with improvements in diagnostic performance, including its association with clinical stage and prediction of carcinogenesis and reactivation. In addition, concerning the new HBcrAg, a high-sensitivity assay method has recently been established, and its diagnostic significance, including the prediction of reactivation, is being reevaluated. On the other hand, the quantitative level of anti-HBc antibody expressed in different units among assay systems complicates the interpretation of the results. However, it is difficult to standardize assay systems as they vary in advantages, and caution is needed in interpreting the assay results. In conclusion, with the development of highly sensitive HBcrAg and anti-HBc antibody, a rapid and sensitive detection assay system has been developed and used in clinical practice. In the future, it is hoped that a global standard will be created based on the many clinical findings.
Collapse
Affiliation(s)
- Yoshihiko Yano
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.Y.); (T.M.); (Y.U.); (Y.K.)
- Department of Clinical Laboratory, Kobe University Hospital, Kobe 650-0017, Japan; (I.S.); (T.I.)
| | - Itsuko Sato
- Department of Clinical Laboratory, Kobe University Hospital, Kobe 650-0017, Japan; (I.S.); (T.I.)
| | - Takamitsu Imanishi
- Department of Clinical Laboratory, Kobe University Hospital, Kobe 650-0017, Japan; (I.S.); (T.I.)
| | - Ryutaro Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.Y.); (T.M.); (Y.U.); (Y.K.)
| | - Takanori Matsuura
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.Y.); (T.M.); (Y.U.); (Y.K.)
| | - Yoshihide Ueda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.Y.); (T.M.); (Y.U.); (Y.K.)
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.Y.); (T.M.); (Y.U.); (Y.K.)
| |
Collapse
|
13
|
Lv M, Ren J, Wang E. Topological effect of an intramolecular split G-quadruplex on thioflavin T binding and fluorescence light-up. Chem Sci 2024; 15:4519-4528. [PMID: 38516084 PMCID: PMC10952102 DOI: 10.1039/d3sc06862e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/04/2024] [Indexed: 03/23/2024] Open
Abstract
In this work, the topological effect on binding interaction between a G-quadruplex and thioflavin T (ThT) ligand was systematically investigated on a platform of an intramolecular split G-quadruplex (Intra-SG). Distinct fluorescence changes from ThT were presented in the presence of distinct split modes of Intra-SG structures and an intriguing phenomenon of target-induced fluorescence light-up occurred for split modes 2 : 10, 5 : 7 and 8 : 4. It was validated that hybridization between the Intra-SG spacer and target did not unfold the G-quadruplex, but facilitated the ThT binding. Moreover, the 3' guanine-rich fragment of Intra-SG was very susceptible to topology variation produced by the bound target strand. Additionally, a bioanalytical method was developed for ultrasensitive gene detection, confirming the utility of the ThT/Intra-SG complex as a universal signal transducer. It is believed that the results and disclosed rules will inspire researchers to develop many new DNA-based signal transducers in the future.
Collapse
Affiliation(s)
- Mengmeng Lv
- College of Chemistry, Jilin University Changchun Jilin 130012 China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Erkang Wang
- College of Chemistry, Jilin University Changchun Jilin 130012 China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| |
Collapse
|
14
|
Matrenec R, Oropeza CE, Dekoven E, Tarnow G, Maienschein-Cline M, Chau CS, Green SJ, McLachlan A. Ten-eleven translocation (Tet) methylcytosine dioxygenase-dependent viral DNA demethylation mediates in vivo hepatitis B virus (HBV) biosynthesis. J Virol 2024; 98:e0172123. [PMID: 38179947 PMCID: PMC10878274 DOI: 10.1128/jvi.01721-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Liver-specific ten-eleven translocation (Tet) methylcytosine dioxygenases 2 and 3 (Tet2 plus Tet3)-deficient hepatitis B virus (HBV) transgenic mice fail to support viral biosynthesis. The levels of viral transcription and replication intermediates are dramatically reduced. Hepatitis B core antigen is only observed in a very limited number of pericentral hepatocytes in a pattern that is similar to glutamate-ammonia ligase (Glul), a β-catenin target gene. HBV transcript abundance in adult Tet-deficient mice resembles that observed in wild-type neonatal mice. Furthermore, the RNA levels of several β-catenin target genes including Glul, Lhpp, Notun, Oat, Slc1a2, and Tbx3 in Tet-deficient mice were also similar to that observed in wild-type neonatal mice. As HBV transcription is regulated by β-catenin, these findings support the suggestion that neonatal Tet deficiency might limit β-catenin target gene expression, limiting viral biosynthesis. Additionally, HBV transgene DNA displays increased 5-methylcytosine (5mC) frequency at CpG sequences consistent with neonatal Tet deficiency being responsible for decreased developmental viral DNA demethylation mediated by 5mC oxidation to 5-hydroxymethylcytosine, a process that might be responsible for the reduction in cellular β-catenin target gene expression and viral transcription and replication.IMPORTANCEChronic hepatitis B virus (HBV) infection causes significant worldwide morbidity and mortality. There are no curative therapies available to resolve chronic HBV infections, and the small viral genome limits molecular targets for drug development. An alternative approach to drug development is to target cellular genes essential for HBV biosynthesis. In the liver, ten-eleven translocation (Tet) genes encode cellular enzymes that are not essential for postnatal mouse development but represent essential activities for viral DNA demethylation and transcription. Consequently, Tet inhibitors may potentially be developed into therapeutic agents capable of inducing and/or maintaining HBV covalently closed circular DNA methylation, resulting in transcriptional silencing and the resolution of chronic viral infection.
Collapse
Affiliation(s)
- Rachel Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Claudia E. Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Eddie Dekoven
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Grant Tarnow
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois, Chicago, Illinois, USA
| | - Cecilia S. Chau
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois, USA
| |
Collapse
|
15
|
Panduro A, Roman S, Laguna-Meraz S, Jose-Abrego A. Hepatitis B Virus Genotype H: Epidemiological, Molecular, and Clinical Characteristics in Mexico. Viruses 2023; 15:2186. [PMID: 38005864 PMCID: PMC10675821 DOI: 10.3390/v15112186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
The hepatitis B virus (HBV), comprising of ten genotypes (A-J), has been a silent threat against humanity, constituting a public health problem worldwide. In 2016, the World Health Organization set forth an impressive initiative for the global elimination of viral hepatitis by 2030. As the target date approaches, many nations, particularly in the Latin American region, face challenges in designing and implementing their respective elimination plan. This review aimed to portray the state of knowledge about the epidemiological, molecular, and clinical characteristics of HBV genotype H (HBV/H), endemic to Mexico. PubMed, Scopus, Web of Science, and Google Scholar were searched to compile scientific literature over 50 years (1970-2022). A total of 91 articles were organized into thematic categories, addressing essential aspects such as epidemiological data, risk factors, HBV genotype distribution, HBV mixed infections, clinical characteristics, and vaccination. The prevalence and its associated 95% confidence interval (95% CI) were estimated using the Metafor package in R programming language (version 4.1.2). We provide insights into the strengths and weaknesses in diagnostics and prevention measures that explain the current epidemiological profile of HBV/H. Training, research, and awareness actions are required to control HBV infections in Mexico. These actions should contribute to creating more specific clinical practice guides according to the region's characteristics. Mexico's elimination plan for HBV will require teamwork among the government health administration, researchers, physicians, specialists, and civil society advocates to overcome this task jointly.
Collapse
Affiliation(s)
- Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico; (S.L.-M.); (A.J.-A.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico; (S.L.-M.); (A.J.-A.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Saul Laguna-Meraz
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico; (S.L.-M.); (A.J.-A.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Alexis Jose-Abrego
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico; (S.L.-M.); (A.J.-A.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
16
|
Olenginski LT, Attionu SK, Henninger EN, LeBlanc RM, Longhini AP, Dayie TK. Hepatitis B Virus Epsilon (ε) RNA Element: Dynamic Regulator of Viral Replication and Attractive Therapeutic Target. Viruses 2023; 15:1913. [PMID: 37766319 PMCID: PMC10534774 DOI: 10.3390/v15091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis B virus (HBV) chronically infects millions of people worldwide, which underscores the importance of discovering and designing novel anti-HBV therapeutics to complement current treatment strategies. An underexploited but attractive therapeutic target is ε, a cis-acting regulatory stem-loop RNA situated within the HBV pregenomic RNA (pgRNA). The binding of ε to the viral polymerase protein (P) is pivotal, as it triggers the packaging of pgRNA and P, as well as the reverse transcription of the viral genome. Consequently, small molecules capable of disrupting this interaction hold the potential to inhibit the early stages of HBV replication. The rational design of such ligands necessitates high-resolution structural information for the ε-P complex or its individual components. While these data are currently unavailable for P, our recent structural elucidation of ε through solution nuclear magnetic resonance spectroscopy marks a significant advancement in this area. In this review, we provide a brief overview of HBV replication and some of the therapeutic strategies to combat chronic HBV infection. These descriptions are intended to contextualize our recent experimental efforts to characterize ε and identify ε-targeting ligands, with the ultimate goal of developing novel anti-HBV therapeutics.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Solomon K. Attionu
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Erica N. Henninger
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Andrew P. Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| |
Collapse
|
17
|
Yuwen L, Zhang S, Chao J. Recent Advances in DNA Nanotechnology-Enabled Biosensors for Virus Detection. BIOSENSORS 2023; 13:822. [PMID: 37622908 PMCID: PMC10452139 DOI: 10.3390/bios13080822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Virus-related infectious diseases are serious threats to humans, which makes virus detection of great importance. Traditional virus-detection methods usually suffer from low sensitivity and specificity, are time-consuming, have a high cost, etc. Recently, DNA biosensors based on DNA nanotechnology have shown great potential in virus detection. DNA nanotechnology, specifically DNA tiles and DNA aptamers, has achieved atomic precision in nanostructure construction. Exploiting the programmable nature of DNA nanostructures, researchers have developed DNA nanobiosensors that outperform traditional virus-detection methods. This paper reviews the history of DNA tiles and DNA aptamers, and it briefly describes the Baltimore classification of virology. Moreover, the advance of virus detection by using DNA nanobiosensors is discussed in detail and compared with traditional virus-detection methods. Finally, challenges faced by DNA nanobiosensors in virus detection are summarized, and a perspective on the future development of DNA nanobiosensors in virus detection is also provided.
Collapse
Affiliation(s)
- Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.Y.); (S.Z.)
| | - Shifeng Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (L.Y.); (S.Z.)
| | - Jie Chao
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
18
|
Li J, Li J, Chen S, Xu W, Zhang J, Tong S. Clinical isolates of hepatitis B virus genotype C have higher in vitro transmission efficiency than genotype B isolates. J Med Virol 2023; 95:e28879. [PMID: 37314050 PMCID: PMC10404337 DOI: 10.1002/jmv.28879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Serum samples were collected from 54 hepatitis B e antigen (HBeAg)-positive Chinese patients infected with hepatitis B virus (HBV) subgenotype B2 or C2. They were compared for transmission efficiency using same volume of samples or infectivity using same genome copy number. Adding polyethylene glycol (PEG) during inoculation did not increase infectivity of fresh samples but markedly increased infectivity following prolonged sample storage. Differentiated HepaRG cells infected without PEG produced more hepatitis B surface antigen (HBsAg) and higher HBsAg/HBeAg ratio than sodium taurocholate cotransporting polypeptide (NTCP)-reconstituted HepG2 cells infected with PEG. They better supported replication of core promoter mutant in contrast to wild-type (WT) virus by HepG2/NTCP cells. Overall, subgenotype C2 samples had higher viral load than B2 samples, and in general produced more HBeAg, HBsAg, and replicative DNA following same-volume inoculation. Precore mutant was more prevalent in subgenotype B2 and had reduced transmission efficiency. When same genome copy number of viral particles was inoculated, viral signals were not necessarily higher for three WT C2 isolates than four WT B2 isolates. Using viral particles generated from cloned HBV genome, three WT C2 isolates showed slightly reduced infectivity than three B2 isolates. In conclusion, subgenotype C2 serum samples had higher transmission efficiency than B2 isolates in association with higher viral load and lower prevalence of precore mutant, but not necessarily higher infectivity. PEG-independent infection by HBV viremic serum samples is probably attributed to a labile host factor.
Collapse
Affiliation(s)
- Jing Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Shiqi Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Weicheng Xu
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuping Tong
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
19
|
Olenginski LT, Kasprzak WK, Attionu SK, Shapiro BA, Dayie TK. Virtual Screening of Hepatitis B Virus Pre-Genomic RNA as a Novel Therapeutic Target. Molecules 2023; 28:1803. [PMID: 36838792 PMCID: PMC9963113 DOI: 10.3390/molecules28041803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The global burden imposed by hepatitis B virus (HBV) infection necessitates the discovery and design of novel antiviral drugs to complement existing treatments. One attractive and underexploited therapeutic target is ε, an ~85-nucleotide (nt) cis-acting regulatory stem-loop RNA located at the 3'- and 5'-ends of the pre-genomic RNA (pgRNA). Binding of the 5'-end ε to the viral polymerase protein (P) triggers two early events in HBV replication: pgRNA and P packaging and reverse transcription. Our recent solution nuclear magnetic resonance spectroscopy structure of ε permits structure-informed drug discovery efforts that are currently lacking for P. Here, we employ a virtual screen against ε using a Food and Drug Administration (FDA)-approved compound library, followed by in vitro binding assays. This approach revealed that the anti-hepatitis C virus drug Daclatasvir is a selective ε-targeting ligand. Additional molecular dynamics simulations demonstrated that Daclatasvir targets ε at its flexible 6-nt priming loop (PL) bulge and modulates its dynamics. Given the functional importance of the PL, our work supports the notion that targeting ε dynamics may be an effective anti-HBV therapeutic strategy.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Wojciech K. Kasprzak
- Bioinformatics and Computational Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Solomon K. Attionu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Bruce A. Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
20
|
Schwartz M. The Pasteurian contribution to the history of vaccines. C R Biol 2022; 345:93-107. [PMID: 36852599 DOI: 10.5802/crbiol.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Vaccination, the transmission of "vaccine", a benign disease of cows, to immunize human beings against smallpox, was invented by Jenner at the end of the eighteenth century. Pasteur, convinced that the vaccine microbe was an attenuated form of the smallpox microbe, showed that, similarly, attenuated forms of other microbes immunized against animal diseases. When applying this principle to rabies, he realized that, in this case, the vaccine was in fact composed of dead microbes. One of his students immediately exploited this result to devise a vaccine against typhoid. The vaccines against diphtheria and tetanus, in 1921, opened a new route, that of immunization with molecules from the pathogenic microbes. Molecular biology then allowed the production of the immunogenic molecules by microorganisms such as yeast, or immunization by genetically modified viruses or messenger RNA inducing our own cells to produce these molecules.
Collapse
|
21
|
Tarnow G, Matrenec R, Oropeza CE, Maienschein-Cline M, McLachlan A. Distinct phenotypic spectra of hepatocellular carcinoma in liver-specific tumor suppressor-deficient hepatitis B virus transgenic mice. Virology 2022; 574:84-95. [PMID: 35961146 PMCID: PMC11997878 DOI: 10.1016/j.virol.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022]
Abstract
The hepatitis B virus (HBV) transgenic mouse model was used to interrogate the origins of HCC heterogeneity. HBV biosynthesis was used as a marker of liver tumor heterogeneity. Principal component and correlation analysis of HBV and cellular transcript levels demonstrated major differences within and between the gene expression profiles of Apc-deficient, Apc-deficient Pten-deficient, and Pten-deficient HCC. Hence, both oncogenic stimuli and zonal hepatocyte properties determine heterogeneous HCC phenotypes. Additionally, Apc-deficient HCC display decreased expression of Apob, Otc and Tet2 relative to Pten-deficient HCC and control liver tissue suggesting their gene products may represent markers of Apc-deficient HCC. A subset of human HCC with mutations in the β-catenin gene (CTNNB1) displayed a gene expression profile similar to that observed in the mouse Apc-deficient HCC indicating this model of liver cancer may be useful for interrogating the molecular properties of these tumors and their potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Grant Tarnow
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL, 60612, USA
| | - Rachel Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL, 60612, USA
| | - Claudia E Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL, 60612, USA
| | - Mark Maienschein-Cline
- Research Resources Center, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL, 60612, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL, 60612, USA.
| |
Collapse
|
22
|
Wu CR, Kim HJ, Sun CP, Chung CY, Lin YY, Tao MH, Kim JH, Chen DS, Chen PJ. Mapping the conformational epitope of a therapeutic monoclonal antibody against HBsAg by in vivo selection of HBV escape variants. Hepatology 2022; 76:207-219. [PMID: 34957587 DOI: 10.1002/hep.32307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B immunoglobulin (HBIG) has been routinely applied in the liver transplantation setting to block HBV reinfection of grafts. However, new monoclonal anti-HBV surface antibodies have been developed to replace HBIG. The epitopes of such monoclonal antibodies may affect the emergence of escape variants and deserve study. APPROACH AND RESULTS The conformational epitope of sLenvervimab, a surrogate form of Lenvervimab, which is a monoclonal anti-HBsAg antibody currently under phase 3 trial, was investigated by selecting escape mutants from a human liver chimeric mouse. HBV-infected chimeric mice treated with sLenvervimab monotherapy showed an initial decline in circulating HBsAg levels, followed by a quick rebound in 1 month. Sequencing of circulating or liver HBV DNA revealed emerging variants, with replacement of amino acid E164 or T140, two residues widely separated in HBsAg. E164 HBV variants strongly resisted sLenvervimab neutralization in cell culture infection, and the T140 variant moderately resisted sLenvervimab neutralization. Natural HBV variants with amino-acid replacements adjacent to E164 were constructed and examined for sLenvervimab neutralization effects. Variants with K160 replacement also resisted neutralization. These data revealed the conformational epitope of sLenvervimab. CONCLUSIONS Selection of antibody-escape HBV variants in human chimeric mice works efficiently. Analysis of such emerging variants helps to identify anchor amino-acid residues of the conformational epitope that are difficult to discover by conventional approaches.
Collapse
Affiliation(s)
- Chang-Ru Wu
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.)
| | - Hyun-Jin Kim
- Mogam Institute for Biomedical Research, Yongin-Si, Gyunggi-Do, Korea
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (R.O.C.)
| | - Chen-Yen Chung
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.)
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.)
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (R.O.C.)
| | - Jung-Hwan Kim
- Mogam Institute for Biomedical Research, Yongin-Si, Gyunggi-Do, Korea
| | - Ding-Shinn Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.).,Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (R.O.C.)
| | - Pei-Jer Chen
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.).,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.).,Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (R.O.C.).,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan (R.O.C.)
| |
Collapse
|
23
|
Zhang H, Itoh Y, Suzuki T, Ihara KI, Tanaka T, Haga S, Enatsu H, Yumiya M, Kimura M, Takada A, Itoh D, Shibazaki Y, Nakao S, Yoshio S, Miyakawa K, Miyamoto Y, Sasaki H, Kajita T, Sugiyama M, Mizokami M, Tachibana T, Ryo A, Moriishi K, Miyoshi E, Kanto T, Okamoto T, Matsuura Y. Establishment of monoclonal antibodies broadly neutralize infection of hepatitis B virus. Microbiol Immunol 2022; 66:179-192. [PMID: 35084739 DOI: 10.1111/1348-0421.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
Antibodies against hepatitis B virus S protein can protect against hepatitis B virus (HBV) infection. Therefore, hepatitis B immunoglobulin (HBIG), which contains HBsAb, is used clinically as a therapy for HBV infection. In this study, a series of monoclonal antibodies that recognize multiple HBV genotypes was obtained. All the antibodies recognized conformational epitopes of S protein, but not linear epitopes. Several antibodies neutralized HBV infection and exhibited strong affinities and neutralizing activities. Antigenic epitope analysis demonstrated that they recognized residue Ile152 of S protein, which is localized outside the "a" determinant. Ile152 is highly conserved, and a mutation in this residue resulted in reduced expression of large hepatitis B surface proteins (L protein), suggesting that the amino acid at this position is involved in the expression of L protein. In addition, the antibodies neutralized the infection of hepatitis D virus possessing a Gly145 mutation to Arg in S protein, which is a well-known escape mutation against HBIG treatment. Using mouse monoclonal antibodies, a humanized antibody possessing affinities and neutralizing activities similar to those of the original mouse antibody was successfully established. The antibodies generated in this study may have the potential for use in alternative antibody therapies for HBV infection.
Collapse
Affiliation(s)
- He Zhang
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kan-Ichiro Ihara
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Saori Haga
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hajime Enatsu
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Maho Yumiya
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Mari Kimura
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akira Takada
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daiki Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuri Shibazaki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shuto Nakao
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Kei Miyakawa
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | - Masaya Sugiyama
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Mizokami
- Genome Medical Science Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Taro Tachibana
- Department of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Viral Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
24
|
5' preS1 mutations to prevent large envelope protein expression from hepatitis B virus genotype A or genotype D markedly increase polymerase-envelope fusion protein. J Virol 2022; 96:e0172321. [PMID: 35019714 PMCID: PMC8906437 DOI: 10.1128/jvi.01723-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus (HBV) large (L) envelope protein is translated from 2.4-kb RNA. It contains preS1, preS2, and S domains and is detected in Western blot as p39 and gp42. The 3.5-kb pregenomic RNA produces core and polymerase (P) proteins. We generated L-minus mutants of a genotype A clone and a genotype D clone from 1.1mer or 1.3mer construct, with the former overproducing pregenomic RNA. Surprisingly, mutating preS1 ATG codon(s) or introducing a nonsense mutation soon afterwards switched secreted p39/gp42 into p41/p44 doublet, with its amount further increased by a nonsense mutation in the core gene. A more downstream preS1 nonsense mutation prevented p41/p44 production. Tunicamycin treatment confirmed p44 as glycosylated form of p41. In this regard splicing of 3.5-kb RNA to generate nt2447-nt2902 junction for genotype D enables translation of p43, with N-terminal 47 residues of P protein fused to C-terminal 371 residues of L protein. Indeed p41/p44 were detectable by an antibody against N-terminus of P protein, and eliminated by a nonsense mutation at 5' P gene or a point mutation to prevent that splicing. Therefore, lost L (and core) protein expression from 1.1mer or 1.3mer construct markedly increased p41/p44 (p43), the P-L fusion protein. Co-transfection with an expression construct for L/M proteins reversed high extracellular p41/p44 associated with L-minus mutants, suggesting that L protein retains p43 in wild-type HBV to promote its intracellular degradation. Considering that p43 lacks N-terminal preS1 sequence critical for receptor binding, its physiological significance during natural infection and therapeutic potential warrant further investigation. IMPORTANCE The large (L) envelope protein of hepatitis B virus (HBV) is translated from 2.4-kb RNA and detected in Western blot as p39 and gp42. Polymerase (P) protein is expressed at a low level from 3.5-kb RNA. The major spliced form of 3.5-kb RNA will produce a fusion protein between the first 47 residues of P protein and a short irrelevant sequence, although also at a low level. Another spliced form has the same P protein sequence fused to L protein missing its first 18 residues. We found that some point mutations to eliminate L and core protein expression from overlength HBV DNA constructs converted p39/gp42 into p41/gp44, which turned out to be that P-L fusion protein. Thus, the P-L fusion protein can be expressed at extremely high level when L protein expression is prevented. The underlying mechanism and functional significance of this variant form of L protein warrant further investigation.
Collapse
|
25
|
Oropeza CE, Ondracek CR, Tarnow G, Maienschein-Cline M, Green SJ, McLachlan A. Heterogeneous phenotypes of Pten-null hepatocellular carcinoma in hepatitis B virus transgenic mice parallels liver lobule zonal gene expression patterns. Virology 2022; 566:16-25. [PMID: 34844082 PMCID: PMC8712409 DOI: 10.1016/j.virol.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/31/2021] [Accepted: 11/19/2021] [Indexed: 01/03/2023]
Abstract
Chronic HBV infection is a major cause of hepatocellular carcinoma (HCC) worldwide. The phenotypes of HCC are diverse, in part, due to mutations in distinct oncogenes and/or tumor suppressor genes. These genetic drivers of HCC development have generally been considered as major mediators of tumor heterogeneity. Using the liver-specific Pten-null HBV transgenic mouse model of chronic viral infection, a critical role for liver lobule zone-specific gene expression patterns in determining HCC phenotype and β-catenin-dependent HBV biosynthesis is demonstrated. These observations suggest that the position of the hepatocyte within the liver lobule, and hence its intrinsic gene expression pattern at the time of cellular transformation, make critical contributions to the properties of the resulting liver tumor. These results may explain why therapies targeting pathways modulated by specific identified tumor driver genes display variable treatment efficacy.
Collapse
Affiliation(s)
- Claudia E. Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612
| | - Caitlin R. Ondracek
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612
| | - Grant Tarnow
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612
| | - Mark Maienschein-Cline
- Research Resources Center, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612
| | - Stefan J. Green
- Research Resources Center, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612,Current address: Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL 60612
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL 60612,Corresponding author Telephone number (312) 355-0211: Fax number (312) 996-6415,
| |
Collapse
|
26
|
Zhang M, Zhang Z, Imamura M, Osawa M, Teraoka Y, Piotrowski J, Ishida Y, Sozzi V, Revill PA, Saito T, Chayama K, Liang TJ. Infection courses, virological features and IFN-α responses of HBV genotypes in cell culture and animal models. J Hepatol 2021; 75:1335-1345. [PMID: 34363922 PMCID: PMC8604785 DOI: 10.1016/j.jhep.2021.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS HBV consists of 9 major genotypes (A to I), 1 minor strain (designated J) and multiple subtypes, which may be associated with different clinical characteristics. As only cell lines expressing genotype D3 have been established, herein, we aimed to establish stable cell lines producing high-titer cell culture-generated HBV (HBVcc) of different genotypes and to explore their infectivity, virological features and responses to treatment. METHODS Stable cell lines producing high titers of HBV genotype A2, B2, C1, E, F1b and H were generated by transfecting plasmids containing a replication-competent 1.3x length HBV genome and an antibiotic marker into HepG2 cells that can support HBV replication. Clones with the highest levels of HBV DNA and/or HBeAg were selected and expanded for large-scale purification of HBVcc. HBVcc of different genotypes were tested in cells and a humanized chimeric mouse model. RESULTS HBVcc genotypes were infectious in mouse-passaged primary human hepatocytes (PXB cells) and responded differently to human interferon (IFN)-α with variable kinetics of reduction in HBV DNA, HBeAg and HBsAg. HBVcc of all genotypes were infectious in humanized chimeric mice but with variable kinetics of viremia and viral antigen production. Treatment of infected mice with human IFN-α resulted in modest and variable reductions of viremia and viral antigenemia. HBVcc passaged in humanized chimeric mice (HBVmp) infected PXB cells much more efficiently than that of the original HBVcc viral stock. CONCLUSIONS Herein, we generated stable cell lines producing HBV of various genotypes that are infectious in vitro and in vivo. We observe genotype-associated variations in viral antigen production, infection kinetics and responses to human IFN-α treatment in these models. LAY SUMMARY Stable cell lines producing high-titer cell culture-generated hepatitis B virus (HBV) of various genotypes were established. HBV genotypes showed stable infectivity in both in vitro and in vivo models, which are valuable tools for antiviral development.
Collapse
Affiliation(s)
- Min Zhang
- Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | | | - Michio Imamura
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Mitsutaka Osawa
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | - Yuji Teraoka
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan
| | | | - Yuji Ishida
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA; PhoenixBio Co., Ltd., Higashi-Hiroshima, Hiroshima, Japan
| | - Vitina Sozzi
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Kazuaki Chayama
- Collaborative Research Laboratory of Medical Innovation, Hiroshima University, Hiroshima, Japan
| | - T Jake Liang
- Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA.
| |
Collapse
|
27
|
Miller RH, Zimmer A, Moutot G, Mesnard JM, Chazal N. Retroviral Antisense Transcripts and Genes: 33 Years after First Predicted, a Silent Retroviral Revolution? Viruses 2021; 13:2221. [PMID: 34835027 PMCID: PMC8622228 DOI: 10.3390/v13112221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/29/2022] Open
Abstract
Paradigm shifts throughout the history of microbiology have typically been ignored, or met with skepticism and resistance, by the scientific community. This has been especially true in the field of virology, where the discovery of a "contagium vivum fluidum", or infectious fluid remaining after excluding bacteria by filtration, was initially ignored because it did not coincide with the established view of microorganisms. Subsequent studies on such infectious agents, eventually termed "viruses", were met with skepticism. However, after an abundance of proof accumulated, viruses were eventually acknowledged as defined microbiological entities. Next, the proposed role of viruses in oncogenesis in animals was disputed, as was the unique mechanism of genome replication by reverse transcription of RNA by the retroviruses. This same pattern of skepticism holds true for the prediction of the existence of retroviral "antisense" transcripts and genes. From the time of their discovery, it was thought that retroviruses encoded proteins on only one strand of proviral DNA. However, in 1988, it was predicted that human immunodeficiency virus type 1 (HIV-1), and other retroviruses, express an antisense protein encoded on the DNA strand opposite that encoding the known viral proteins. Confirmation came quickly with the characterization of the antisense protein, HBZ, of the human T-cell leukemia virus type 1 (HTLV-1), and the finding that both the protein and its antisense mRNA transcript play key roles in viral replication and pathogenesis. However, acceptance of the existence, and potential importance, of a corresponding antisense transcript and protein (ASP) in HIV-1 infection and pathogenesis has lagged, despite gradually accumulating theoretical and experimental evidence. The most striking theoretical evidence is the finding that asp is highly conserved in group M viruses and correlates exclusively with subtypes, or clades, responsible for the AIDS pandemic. This review outlines the history of the major shifts in thought pertaining to the nature and characteristics of viruses, and in particular retroviruses, and details the development of the hypothesis that retroviral antisense transcripts and genes exist. We conclude that there is a need to accelerate studies on ASP, and its transcript(s), with the view that both may be important, and overlooked, targets in anti-HIV therapeutic and vaccine strategies.
Collapse
Affiliation(s)
| | - Alexis Zimmer
- DHVS—Département d’Histoire des Sciences de la Vie et de la Santé, Faculté de Médecine, Université de Strasbourg, 4 Rue Kirschleger, CEDEX, F-67085 Strasbourg, France;
| | - Gilles Moutot
- Centre d’Etudes Politiques et Sociales (CEPEL), Département de Sciences Humaines et Sociales, Université de Montpellier, 34090 Montpellier, France;
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France;
| | - Nathalie Chazal
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 1919 Route de Mende, CEDEX 5, 34293 Montpellier, France;
| |
Collapse
|
28
|
B-Catenin Signaling Regulates the In Vivo Distribution of Hepatitis B Virus Biosynthesis across the Liver Lobule. J Virol 2021; 95:e0078021. [PMID: 34319157 DOI: 10.1128/jvi.00780-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-catenin (Ctnnb1) supports high levels of liver gene expression in hepatocytes in proximity to the central vein functionally defining zone 3 of the liver lobule. This region of the liver lobule supports the highest levels of viral biosynthesis in wildtype HBV transgenic mice. Liver-specific β-catenin-null HBV transgenic mice exhibit a stark loss of high levels of pericentral viral biosynthesis. Additionally, viral replication that does not depend directly on β-catenin activity appears to expand to include hepatocytes of zone 1 of the liver lobule in proximity to the portal vein, a region of the liver that typically lacks significant HBV biosynthesis in wildtype HBV transgenic mice. While the average amount of viral RNA transcripts does not change, viral DNA replication is reduced approximately three-fold. Together, these observations demonstrate that β-catenin signaling represents a major determinant of HBV biosynthesis governing the magnitude and distribution of viral replication across the liver lobule in vivo. Additionally, these findings reveal a novel mechanism for the regulation of HBV biosynthesis that is potentially relevant to the expression of additional liver-specific genes. IMPORTANCE Viral biosynthesis is highest around the central vein in the HBV transgenic mouse model of chronic infection. The associated HBV biosynthetic gradient across the liver lobule is primarily dependent upon β-catenin. In the absence of β-catenin, the gradient of viral gene expression spanning the liver lobule is absent and HBV replication is reduced. Therefore, therapeutically manipulating β-catenin activity in the liver of chronic HBV carriers may reduce circulating infectious virions without greatly modulating viral protein production. Together, these change in viral biosynthesis might limit infection of additional hepatocytes while permitting immunological clearance of previously infected cells, potentially limiting disease persistence.
Collapse
|
29
|
The Baltimore Classification of Viruses 50 Years Later: How Does It Stand in the Light of Virus Evolution? Microbiol Mol Biol Rev 2021; 85:e0005321. [PMID: 34259570 DOI: 10.1128/mmbr.00053-21] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fifty years ago, David Baltimore published a brief conceptual paper delineating the classification of viruses by the routes of genome expression. The six "Baltimore classes" of viruses, with a subsequently added 7th class, became the conceptual framework for the development of virology during the next five decades. During this time, it became clear that the Baltimore classes, with relatively minor additions, indeed cover the diversity of virus genome expression schemes that also define the replication cycles. Here, we examine the status of the Baltimore classes 50 years after their advent and explore their links with the global ecology and biology of the respective viruses. We discuss an extension of the Baltimore scheme and why many logically admissible expression-replication schemes do not appear to be realized in nature. Recent phylogenomic analyses allow tracing the complex connections between the Baltimore classes and the monophyletic realms of viruses. The five classes of RNA viruses and reverse-transcribing viruses share an origin, whereas both the single-stranded DNA viruses and double-stranded DNA (dsDNA) viruses evolved on multiple independent occasions. Most of the Baltimore classes of viruses probably emerged during the earliest era of life evolution, at the stage of the primordial pool of diverse replicators, and before the advent of modern-like cells with large dsDNA genomes. The Baltimore classes remain an integral part of the conceptual foundation of biology, providing the essential structure for the logical space of information transfer processes, which is nontrivially connected with the routes of evolution of viruses and other replicators.
Collapse
|
30
|
LeBlanc RM, Kasprzak WK, Longhini AP, Olenginski LT, Abulwerdi F, Ginocchio S, Shields B, Nyman J, Svirydava M, Del Vecchio C, Ivanic J, Schneekloth JS, Shapiro BA, Dayie TK, Le Grice SFJ. Structural insights of the conserved "priming loop" of hepatitis B virus pre-genomic RNA. J Biomol Struct Dyn 2021; 40:9761-9773. [PMID: 34155954 PMCID: PMC10167916 DOI: 10.1080/07391102.2021.1934544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral polymerase with a cis-acting regulatory signal, designated epsilon (ε), located at the 5'-end of its pre-genomic RNA (pgRNA). Binding of polymerase to ε is also necessary for pgRNA encapsidation. While the mechanistic basis of this interaction remains elusive, mutagenesis studies suggest its internal 6-nt "priming loop" provides an important structural contribution. ε might therefore be considered a promising target for small molecule interventions to complement current nucleoside-analog based anti-HBV therapies. An ideal prerequisite to any RNA-directed small molecule strategy would be a detailed structural description of this important element. Herein, we present a solution NMR structure for HBV ε which, in combination with molecular dynamics and docking simulations, reports on a flexible ligand "pocket", reminiscent of those observed in proteins. We also demonstrate the binding of the selective estrogen receptor modulators (SERMs) Raloxifene, Bazedoxifene, and a de novo derivative to the priming loop.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Regan M. LeBlanc
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew P. Longhini
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Fardokht Abulwerdi
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Stefano Ginocchio
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Brigit Shields
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Julie Nyman
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Maryia Svirydava
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | | - Joseph Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Bruce A. Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Theodore Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
31
|
Hatano Y, Ideta T, Hirata A, Hatano K, Tomita H, Okada H, Shimizu M, Tanaka T, Hara A. Virus-Driven Carcinogenesis. Cancers (Basel) 2021; 13:2625. [PMID: 34071792 PMCID: PMC8198641 DOI: 10.3390/cancers13112625] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer arises from the accumulation of genetic and epigenetic alterations. Even in the era of precision oncology, carcinogens contributing to neoplastic process are still an important focus of research. Comprehensive genomic analyses have revealed various combinations of base substitutions, referred to as the mutational signatures, in cancer. Each mutational signature is believed to arise from specific DNA damage and repair processes, including carcinogens. However, as a type of carcinogen, tumor viruses increase the cancer risk by alternative mechanisms, including insertional mutagenesis, viral oncogenes, and immunosuppression. In this review, we summarize virus-driven carcinogenesis to provide a framework for the control of malignant cell proliferation. We first provide a brief overview of oncogenic viruses and describe their implication in virus-related tumors. Next, we describe tumor viruses (HPV, Human papilloma virus; HBV, Hepatitis B virus; HCV, Hepatitis C virus; EBV, Epstein-Barr virus; Kaposi sarcoma herpesvirus; MCV, Merkel cell polyoma virus; HTLV-1, Human T-cell lymphotropic virus, type-1) and tumor virus-related cancers. Lastly, we introduce emerging tumor virus candidates, human cytomegalovirus (CMV), human herpesvirus-6 (HHV-6) and adeno-associated virus-2 (AAV-2). We expect this review to be a hub in a complex network of data for virus-associated carcinogenesis.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Takayasu Ideta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
- Department of Laboratory Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1194, Japan;
| | - Kayoko Hatano
- Department of Obstetrics and Gynecology, Gifu University Hospital, Gifu 501-1194, Japan;
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
| | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| |
Collapse
|
32
|
Conformational Plasticity of Hepatitis B Core Protein Spikes Promotes Peptide Binding Independent of the Secretion Phenotype. Microorganisms 2021; 9:microorganisms9050956. [PMID: 33946808 PMCID: PMC8145704 DOI: 10.3390/microorganisms9050956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus is a major human pathogen, which forms enveloped virus particles. During viral maturation, membrane-bound hepatitis B surface proteins package hepatitis B core protein capsids. This process is intercepted by certain peptides with an “LLGRMKG” motif that binds to the capsids at the tips of dimeric spikes. With microcalorimetry, electron cryo microscopy and peptide microarray-based screens, we have characterized the structural and thermodynamic properties of peptide binding to hepatitis B core protein capsids with different secretion phenotypes. The peptide “GSLLGRMKGA” binds weakly to hepatitis B core protein capsids and mutant capsids with a premature (F97L) or low-secretion phenotype (L60V and P5T). With electron cryo microscopy, we provide novel structures for L60V and P5T and demonstrate that binding occurs at the tips of the spikes at the dimer interface, splaying the helices apart independent of the secretion phenotype. Peptide array screening identifies “SLLGRM” as the core binding motif. This shortened motif binds only to one of the two spikes in the asymmetric unit of the capsid and induces a much smaller conformational change. Altogether, these comprehensive studies suggest that the tips of the spikes act as an autonomous binding platform that is unaffected by mutations that affect secretion phenotypes.
Collapse
|
33
|
Zhang J, Wang Y, Fu S, Yuan Q, Wang Q, Xia N, Wen Y, Li J, Tong S. Role of Small Envelope Protein in Sustaining the Intracellular and Extracellular Levels of Hepatitis B Virus Large and Middle Envelope Proteins. Viruses 2021; 13:613. [PMID: 33918367 PMCID: PMC8065445 DOI: 10.3390/v13040613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) expresses co-terminal large (L), middle (M), and small (S) envelope proteins. S protein drives virion and subviral particle secretion, whereas L protein inhibits subviral particle secretion but coordinates virion morphogenesis. We previously found that preventing S protein expression from a subgenomic construct eliminated M protein. The present study further examined impact of S protein on L and M proteins. Mutations were introduced to subgenomic construct of genotype A or 1.1 mer replication construct of genotype A or D, and viral proteins were analyzed from transfected Huh7 cells. Mutating S gene ATG to prevent expression of full-length S protein eliminated M protein, reduced intracellular level of L protein despite its blocked secretion, and generated a truncated S protein through translation initiation from a downstream ATG. Truncated S protein was secretion deficient and could inhibit secretion of L, M, S proteins from wild-type constructs. Providing full-length S protein in trans rescued L protein secretion and increased its intracellular level from mutants of lost S gene ATG. Lost core protein expression reduced all the three envelope proteins. In conclusion, full-length S protein could sustain intracellular and extracellular L and M proteins, while truncated S protein could block subviral particle secretion.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Yongxiang Wang
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Shuwen Fu
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Y.); (N.X.)
| | - Qianru Wang
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (Q.Y.); (N.X.)
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| | - Shuping Tong
- Key Laboratory of Medical Molecular Virology, Department of Pathobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.); (Y.W.); (S.F.); (Q.W.); (Y.W.)
- Liver Research Center, Rhode Island Hospital, The Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA;
| |
Collapse
|
34
|
Fujiwara K. Novel Genetic Rearrangements in Hepatitis B Virus: Complex Structural Variations and Structural Variation Polymorphisms. Viruses 2021; 13:473. [PMID: 33809245 PMCID: PMC8000817 DOI: 10.3390/v13030473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) causes serious clinical problems, such as liver cirrhosis and hepatocellular carcinoma. Current antiviral treatments suppress HBV; however, the clinical cure rate remains low. Basic research on HBV is indispensable to eradicate and cure HBV. Genetic alterations are defined by nucleotide substitutions and canonical forms of structural variations (SVs), such as insertion, deletion and duplication. Additionally, genetic changes inconsistent with the canonical forms have been reported, and these have been termed complex SVs. Detailed analyses of HBV using bioinformatical applications have detected complex SVs in HBV genomes. Sequence gaps and low sequence similarity have been observed in the region containing complex SVs. Additionally, insertional motif sequences have been observed in HBV strains with complex SVs. Following the analyses of complex SVs in the HBV genome, the role of SVs in the genetic diversity of orthohepadnavirus has been investigated. SV polymorphisms have been detected in comparisons of several species of orthohepadnaviruses. As mentioned, complex SVs are composed of multiple SVs. On the contrary, SV polymorphisms are observed as insertions of different SVs. Up to a certain point, nucleotide substitutions cause genetic differences. However, at some point, the nucleotide sequences are split into several particular patterns. These SVs have been observed as polymorphic changes. Different species of orthohepadnaviruses possess SVs which are unique and specific to a certain host of the virus. Studies have shown that SVs play an important role in the HBV genome. Further studies are required to elucidate their virologic and clinical roles.
Collapse
Affiliation(s)
- Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
35
|
Li J, Li J, Chen S, Yuan Q, Zhang J, Wu J, Jiang Q, Wang Q, Xia NS, Zhang J, Tong S. Naturally occurring 5' preS1 deletions markedly enhance replication and infectivity of HBV genotype B and genotype C. Gut 2021; 70:575-584. [PMID: 32571971 DOI: 10.1136/gutjnl-2019-320096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Deletion of 15-nucleotide or 18-nucleotide (nt) covering preS1 ATG frequently arises during chronic infection with HBV genotypes B and C. Since the second ATG is 33nt downstream, they truncate large (L) envelope protein by 11 residues like wild-type genotype D. This study characterised their functional consequences. METHODS HBV genomes with or without deletion were amplified from a patient with advanced liver fibrosis and assembled into replication competent 1.1mer construct. Deletion, insertion or point mutation was introduced to additional clones of different genotypes. Viral particles concentrated from transfected HepG2 cells were inoculated to sodium taurocholate cotransporting polypeptide (NTCP)-reconstituted HepG2 (HepG2/NTCP) cells or differentiated HepaRG cells, and HBV RNA, DNA, proteins were monitored. RESULTS From transfected HepG2 cells, the 15-nt and 18-nt deletions increased HBV RNA, replicative DNA and extracellular virions. When same number of viral particles was inoculated to HepG2/NTCP cells, the deletion mutants showed higher infectivity. Conversely, HBV infectivity was diminished by putting back the 18nt into naturally occurring genotype C deletion mutants and by adding 33nt to genotype D. Infectivity of full-length genotype C clones was also enhanced by mutating the first ATG codon of the preS1 region but diminished by mutating the second in-frame ATG. Removing N-terminal 11 residues from preS1 peptide 2-59 of genotype C potentiated inhibition of HBV infection and enhanced binding to HepG2/NTCP cells. CONCLUSIONS The 15-nt and 18-nt deletions somehow increase HBV RNA, replicative DNA and virion production. Shortened L protein is more efficient at mediating HBV infection.
Collapse
Affiliation(s)
- Jing Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Shiqi Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Publich Health, Xiamen University, Xiamen, China
| | - Jing Zhang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingwen Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qirong Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qianru Wang
- Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Publich Health, Xiamen University, Xiamen, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuping Tong
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA .,Department of Pathobiology, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Farooq A, Waheed U, Saba N, Kaleem M, Majeed N, Wazeer A, Cheema NA, Ahmed S, Arshad M. Molecular and genetic characterization of hepatitis B virus among multitransfused thalassaemia patients in Islamabad, Pakistan. J Family Med Prim Care 2021; 10:998-1002. [PMID: 34041111 PMCID: PMC8138360 DOI: 10.4103/jfmpc.jfmpc_1880_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/24/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Hepatitis B virus (HBV) is the aetiological agent of transfusion-transmitted hepatitis globally. Beta thalassaemia major individuals are at greater risk of contracting HBV infection due to multiple blood transfusions required for the medical management of these patients. Based on HBV genetic variability, it is divided into 10 genotypes. The determination of HBV genotypes has significant implications for clinical management and treatment regimens. Aim: This study was performed to assess the HBV epidemiology and circulating genotypes in multi-transfused β-thalassemia major patients with the aim to be considered while formulating the treatment pattern taking into account particular needs of thalassaemia patients. Materials and Methods: This study was performed from September 2018 to June 2019, at the Department of Pathology and Transfusion Medicine, Shaheed Zulfiqar Ali Bhutto (SZAB) Medical University, Islamabad. A total of 2,260 thalassaemia patients were enrolled in the study. The study was endorsed by the Ethics Committee of the SZAB Medical University, Islamabad. The samples were serologically screened for HBsAg on the LIAISON® XL Murex HBsAg Quant assay (DiaSorin S.p.A., Italy) a chemiluminescence based immunoassay (CLIA). HBV quantitative PCR kit was used to measure the HBV DNA in serum samples. The HBV genotypes were determined using universal primers targeting the P1 and S1 region amplification. Results: Of 2,260 thalassaemia patients, 64.6% were males while 35.4% were females. The HBsAg was identified in 98 individuals (4.33%). The PCR analysis was done for these 98 patients and in this cohort, genotype D was 59.18% (n = 58), genotype A was 21.42% (n = 21) while genotype C was 19.38% (n = 19). Conclusion: The determination of HBV genotypes in the multi-transfused patients is key to the effective management of chronic HBV patients as the severity and course of the disease is dependent on a specific type of genotypes. Quality assured screening of donated blood will prevent the incidence of HBV in thalassaemia patients.
Collapse
Affiliation(s)
- Ahmad Farooq
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan.,Department of Pathology and Transfusion Medicine, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Usman Waheed
- Department of Pathology and Transfusion Medicine, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan.,Islamabad Blood Transfusion Authority, Ministry of National Health Services, Government of Pakistan
| | - Noore Saba
- Peshawar Regional Blood Centre, Department of Health, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Kaleem
- Department of Pathology, Mohtarma Benazir Bhutto Shaheed Medical College, Mirpur, AJK, Pakistan
| | - Najma Majeed
- Department of Health, College of Medical Technology, Mirpur, AJK, Pakistan
| | - Akhlaaq Wazeer
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan.,Department of Pathology and Transfusion Medicine, Divisional Headquarters Teaching Hospital, Mirpur, AJK, Pakistan
| | - Naila Arif Cheema
- Department of Biology, National University of Technology, Islamabad, Pakistan
| | - Saeed Ahmed
- Department of Blood Bank, Prince Mohammed bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| | - Muhammad Arshad
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
37
|
Relative DNA Methylation and Demethylation Efficiencies during Postnatal Liver Development Regulate Hepatitis B Virus Biosynthesis. J Virol 2021; 95:JVI.02148-20. [PMID: 33361417 DOI: 10.1128/jvi.02148-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) transcription and replication increase progressively throughout postnatal liver development with maximal viral biosynthesis occurring at around 4 weeks of age in the HBV transgenic mouse model of chronic infection. Increasing viral biosynthesis is associated with a corresponding progressive loss of DNA methylation. The loss of DNA methylation is associated with increasing levels of 5-hydroxymethylcytosine (5hmC) residues which correlate with increased liver-enriched pioneer transcription factor Forkhead box protein A (FoxA) RNA levels, a rapid decline in postnatal liver DNA methyltransferase (Dnmt) transcripts, and a very modest reduction in ten-eleven translocation (Tet) methylcytosine dioxygenase expression. These observations are consistent with the suggestion that the balance between active HBV DNA methylation and demethylation is regulated by FoxA recruitment of Tet in the presence of declining Dnmt activity. These changes lead to demethylation of the viral genome during hepatocyte maturation with associated increases in viral biosynthesis. Consequently, manipulation of the relative activities of these two counterbalancing processes might permit the specific silencing of HBV gene expression with the loss of viral biosynthesis and the resolution of chronic HBV infections.IMPORTANCE HBV biosynthesis begins at birth and increases during early postnatal liver development in the HBV transgenic mouse model of chronic infection. The levels of viral RNA and DNA synthesis correlate with pioneer transcription factor FoxA transcript plus Tet methylcytosine dioxygenase-generated 5hmC abundance but inversely with Dnmt transcript levels and HBV DNA methylation. Together, these findings suggest that HBV DNA methylation during neonatal liver development is actively modulated by the relative contributions of FoxA-recruited Tet-mediated DNA demethylation and Dnmt-mediated DNA methylation activities. This mode of gene regulation, mediated by the loss of DNA methylation at hepatocyte-specific viral and cellular promoters, likely contributes to hepatocyte maturation during liver development in addition to the postnatal activation of HBV transcription and replication.
Collapse
|
38
|
Characterization of the Termini of Cytoplasmic Hepatitis B Virus Deproteinated Relaxed Circular DNA. J Virol 2020; 95:JVI.00922-20. [PMID: 33055252 DOI: 10.1128/jvi.00922-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The biosynthesis of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) requires the removal of the covalently linked viral polymerase from the 5' end of the minus strand [(-)strand] of viral relaxed circular DNA (rcDNA), which generates a deproteinated rcDNA (DP-rcDNA) intermediate. In the present study, we systematically characterized the four termini of cytoplasmic HBV DP-rcDNA by 5'/3' rapid amplification of cDNA ends (RACE), 5' radiolabeling, and exonuclease digestion, which revealed the following observations: (i) DP-rcDNA and rcDNA possess an identical 3' end of (-)strand DNA; (ii) compared to rcDNA, DP-rcDNA has an extended but variable 3' end of plus strand [(+)strand] DNA, most of which is in close proximity to direct repeat 2 (DR2); (iii) DP-rcDNA exhibits an RNA primer-free 5' terminus of (+)strand DNA with either a phosphate or hydroxyl group; and (iv) the 5' end of the DP-rcDNA (-)strand is unblocked at nucleotide G1828, bearing a phosphate moiety, indicating the complete removal of polymerase from rcDNA via unlinking the tyrosyl-DNA phosphodiester bond during rcDNA deproteination. However, knockout of cellular 5' tyrosyl-DNA phosphodiesterase 2 (TDP2) did not markedly affect rcDNA deproteination or cccDNA formation. Thus, our work sheds new light on the molecular mechanisms of rcDNA deproteination and cccDNA biogenesis.IMPORTANCE The covalently closed circular DNA (cccDNA) is the persistent form of the hepatitis B virus (HBV) genome in viral infection and an undisputed antiviral target for an HBV cure. HBV cccDNA is converted from viral genomic relaxed circular DNA (rcDNA) through a complex process that involves removing the covalently bound viral polymerase from rcDNA, which produces a deproteinated-rcDNA (DP-rcDNA) intermediate for cccDNA formation. In this study, we characterized the four termini of cytoplasmic DP-rcDNA and compared them to its rcDNA precursor. While rcDNA and DP-rcDNA have an identical 3' terminus of (-)strand DNA, the 3' terminus of (+)strand DNA on DP-rcDNA is further elongated. Furthermore, the peculiarities on rcDNA 5' termini, specifically the RNA primer on the (+)strand and the polymerase on the (-)strand, are absent from DP-rcDNA. Thus, our study provides new insights into a better understanding of HBV rcDNA deproteination and cccDNA biosynthesis.
Collapse
|
39
|
Huang H, Rückborn M, Le-Trilling VTK, Zhu D, Yang S, Zhou W, Yang X, Feng X, Lu Y, Lu M, Dittmer U, Yang D, Trilling M, Liu J. Prophylactic and therapeutic HBV vaccination by an HBs-expressing cytomegalovirus vector lacking an interferon antagonist in mice. Eur J Immunol 2020; 51:393-407. [PMID: 33029793 DOI: 10.1002/eji.202048780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 01/12/2023]
Abstract
Cytomegalovirus (CMV)-based vaccines show promising effects against chronic infections in nonhuman primates. Therefore, we examined the potential of hepatitis B virus (HBV) vaccines based on mouse CMV (MCMV) vectors expressing the small HBsAg. Immunological consequences of vaccine virus attenuation were addressed by either replacing the dispensable gene m157 ("MCMV-HBsȍ) or the gene M27 ("ΔM27-HBs"), the latter encodes a potent IFN antagonist targeting the transcription factor STAT2. M27 was chosen, since human CMV encodes an analogous gene product, which also induced proteasomal STAT2 degradation by exploiting Cullin RING ubiquitin ligases. Vaccinated mice were challenged with HBV through hydrodynamic injection. MCMV-HBs and ΔM27-HBs vaccination achieved accelerated HBV clearance in serum and liver as well as robust HBV-specific CD8+ T-cell responses. When we explored the therapeutic potential of MCMV-based vaccines, especially the combination of ΔM27-HBs prime and DNA boost vaccination resulted in increased intrahepatic HBs-specific CD8+ T-cell responses and HBV clearance in persistently infected mice. Our results demonstrated that vaccines based on a replication competent MCMV attenuated through the deletion of an IFN antagonist targeting STAT2 elicit robust anti-HBV immune responses and mediate HBV clearance in mice in prophylactic and therapeutic immunization regimes.
Collapse
Affiliation(s)
- Hongming Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meike Rückborn
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Dan Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangqing Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqing Zhou
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinping Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mirko Trilling
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Bak E, Miller JT, Noronha A, Tavis J, Gallicchio E, Murelli RP, Le Grice SFJ. 3,7-Dihydroxytropolones Inhibit Initiation of Hepatitis B Virus Minus-Strand DNA Synthesis. Molecules 2020; 25:molecules25194434. [PMID: 32992516 PMCID: PMC7583054 DOI: 10.3390/molecules25194434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023] Open
Abstract
Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral reverse transcriptase with epsilon (ε), a cis-acting regulatory signal located at the 5' terminus of pre-genomic RNA (pgRNA), and several host-encoded chaperone proteins. Binding of the viral polymerase (P protein) to ε is necessary for pgRNA encapsidation and synthesis of a short primer covalently attached to its terminal domain. Although we identified small molecules that recognize HBV ε RNA, these failed to inhibit protein-primed DNA synthesis. However, since initiation of HBV (-) strand DNA synthesis occurs within a complex of viral and host components (e.g., Hsp90, DDX3 and APOBEC3G), we considered an alternative therapeutic strategy of allosteric inhibition by disrupting the initiation complex or modifying its topology. To this end, we show here that 3,7-dihydroxytropolones (3,7-dHTs) can inhibit HBV protein-primed DNA synthesis. Since DNA polymerase activity of a ribonuclease (RNase H)-deficient HBV reverse transcriptase that otherwise retains DNA polymerase function is also abrogated, this eliminates direct involvement of RNase (ribonuclease) H activity of HBV reverse transcriptase and supports the notion that the HBV initiation complex might be therapeutically targeted. Modeling studies also provide a rationale for preferential activity of 3,7-dHTs over structurally related α-hydroxytropolones (α-HTs).
Collapse
Affiliation(s)
- Ellen Bak
- Basic Research Laboratory National Cancer Institute, Frederick, MD 21702, USA; (E.B.); (J.T.M.); (A.N.)
| | - Jennifer T. Miller
- Basic Research Laboratory National Cancer Institute, Frederick, MD 21702, USA; (E.B.); (J.T.M.); (A.N.)
| | - Andrea Noronha
- Basic Research Laboratory National Cancer Institute, Frederick, MD 21702, USA; (E.B.); (J.T.M.); (A.N.)
| | - John Tavis
- Department of Molecular Microbiology and Immunology, St. Louis University, St. Louis, MO 63104, USA;
| | - Emilio Gallicchio
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY 11210, USA; (E.G.); (R.P.M.)
- PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
| | - Ryan P. Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY 11210, USA; (E.G.); (R.P.M.)
- PhD Program in Chemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
| | - Stuart F. J. Le Grice
- Basic Research Laboratory National Cancer Institute, Frederick, MD 21702, USA; (E.B.); (J.T.M.); (A.N.)
- Correspondence:
| |
Collapse
|
41
|
Taha TY, Anirudhan V, Limothai U, Loeb DD, Petukhov PA, McLachlan A. Modulation of hepatitis B virus pregenomic RNA stability and splicing by histone deacetylase 5 enhances viral biosynthesis. PLoS Pathog 2020; 16:e1008802. [PMID: 32822428 PMCID: PMC7467325 DOI: 10.1371/journal.ppat.1008802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/02/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) is a worldwide health problem without curative treatments. Investigation of the regulation of HBV biosynthesis by class I and II histone deacetylases (HDACs) demonstrated that catalytically active HDAC5 upregulates HBV biosynthesis. HDAC5 expression increased both the stability and splicing of the HBV 3.5 kb RNA without altering the translational efficiency of the viral pregenomic or spliced 2.2 kb RNAs. Together, these observations point to a broader role of HDAC5 in regulating RNA splicing and transcript stability while specifically identifying a potentially novel approach toward antiviral HBV therapeutic development. This study demonstrates that HDAC5 deacetylation of host cellular factor(s) results in increased HBV biosynthesis by enhancing viral transcript stability and splicing via direct or indirect binding of host factors to viral intron sequences. This represents the first demonstration of this type of post-transcriptional regulation in the liver and is similar to observations seen for cellular transcripts in neural and cardiac cell types. These observations suggest a more general phenomenon which could represent an additional post-transcriptional code governing the regulation of RNA:protein interactions and hence RNA metabolism. Therefore, covalent modifications of RNA binding proteins may modulate post-transcriptional gene expression in an analogous manner to the known histone code that controls gene transcription. Although this analysis primarily relates to the mechanism(s) by which HDAC5 governs HBV RNA metabolism, it does have significant therapeutic implications. The inhibition of HDAC5 in combination with current nucleos(t)ide analog drugs targeting the viral reverse transcriptase/DNA polymerase might aid in the treatment and possible resolution of chronic infections by targeting both host and viral factors.
Collapse
Affiliation(s)
- Taha Y. Taha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Umaporn Limothai
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PAP); (AM)
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PAP); (AM)
| |
Collapse
|
42
|
Makbul C, Nassal M, Böttcher B. Slowly folding surface extension in the prototypic avian hepatitis B virus capsid governs stability. eLife 2020; 9:e57277. [PMID: 32795390 PMCID: PMC7455244 DOI: 10.7554/elife.57277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) is an important but difficult to study human pathogen. Most basics of the hepadnaviral life-cycle were unraveled using duck HBV (DHBV) as a model although DHBV has a capsid protein (CP) comprising ~260 rather than ~180 amino acids. Here we present high-resolution structures of several DHBV capsid-like particles (CLPs) determined by electron cryo-microscopy. As for HBV, DHBV CLPs consist of a dimeric α-helical frame-work with protruding spikes at the dimer interface. A fundamental new feature is a ~ 45 amino acid proline-rich extension in each monomer replacing the tip of the spikes in HBV CP. In vitro, folding of the extension takes months, implying a catalyzed process in vivo. DHBc variants lacking a folding-proficient extension produced regular CLPs in bacteria but failed to form stable nucleocapsids in hepatoma cells. We propose that the extension domain acts as a conformational switch with differential response options during viral infection.
Collapse
Affiliation(s)
- Cihan Makbul
- Julius Maximilian University of Würzburg, Department of Biochemistry and Rudolf Virchow CentreWürzburgGermany
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine 2/Molecular BiologyFreiburgGermany
| | - Bettina Böttcher
- Julius Maximilian University of Würzburg, Department of Biochemistry and Rudolf Virchow CentreWürzburgGermany
| |
Collapse
|
43
|
Chen Z, Engle RE, Shen CH, Zhao H, Schuck PW, Danoff EJ, Nguyen H, Nishimura N, Bock KW, Moore IN, Kwong PD, Purcell RH, Govindarajan S, Farci P. Distinct disease features in chimpanzees infected with a precore HBV mutant associated with acute liver failure in humans. PLoS Pathog 2020; 16:e1008793. [PMID: 32866189 PMCID: PMC7485984 DOI: 10.1371/journal.ppat.1008793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/11/2020] [Accepted: 07/08/2020] [Indexed: 01/04/2023] Open
Abstract
Transmission to chimpanzees of a precore hepatitis B virus (HBV) mutant implicated in acute liver failure (ALF) in humans did not cause ALF nor the classic form of acute hepatitis B (AHB) seen upon infection with the wild-type HBV strain, but rather a severe AHB with distinct disease features. Here, we investigated the viral and host immunity factors responsible for the unusual severity of AHB associated with the precore HBV mutant in chimpanzees. Archived serial serum and liver specimens from two chimpanzees inoculated with a precore HBV mutant implicated in ALF and two chimpanzees inoculated with wild-type HBV were studied. We used phage-display library and next-generation sequencing (NGS) technologies to characterize the liver antibody response. The results obtained in severe AHB were compared with those in classic AHB and HBV-associated ALF in humans. Severe AHB was characterized by: (i) the highest alanine aminotransferase (ALT) peaks ever seen in HBV transmission studies with a significantly shorter incubation period, compared to classic AHB; (ii) earlier HBsAg clearance and anti-HBs seroconversion with transient or undetectable hepatitis B e antigen (HBeAg); (iii) limited inflammatory reaction relative to hepatocellular damage at the ALT peak with B-cell infiltration, albeit less extensive than in ALF; (iv) detection of intrahepatic germline antibodies against hepatitis B core antigen (HBcAg) by phage-display libraries in the earliest disease phase, as seen in ALF; (v) lack of intrahepatic IgM anti-HBcAg Fab, as seen in classic AHB, but at variance with ALF; and (vi) higher proportion of antibodies in germline configuration detected by NGS in the intrahepatic antibody repertoire compared to classic AHB, but lower than in ALF. This study identifies distinct outcome-specific features associated with severe AHB caused by a precore HBV mutant in chimpanzees, which bear closer resemblance to HBV ALF than to classic AHB. Our data suggest that precore HBV mutants carry an inherently higher pathogenicity that, in addition to specific host factors, may play a critical role in determining the severity of acute HBV disease.
Collapse
Affiliation(s)
- Zhaochun Chen
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ronald E. Engle
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Huaying Zhao
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter W. Schuck
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emily J. Danoff
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hanh Nguyen
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Norihisa Nishimura
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin W. Bock
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert H. Purcell
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sugantha Govindarajan
- Department of Pathology, University of Southern California, Los Angeles, California, United States of America
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
44
|
Tu T, Zehnder B, Qu B, Ni Y, Main N, Allweiss L, Dandri M, Shackel N, George J, Urban S. A novel method to precisely quantify hepatitis B virus covalently closed circular (ccc)DNA formation and maintenance. Antiviral Res 2020; 181:104865. [PMID: 32726641 DOI: 10.1016/j.antiviral.2020.104865] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 01/05/2023]
Abstract
Hepatitis B virus (HBV) is the major cause of virus-associated liver disease. Persistent HBV infection is maintained by its episomal genome (covalently closed circular DNA, cccDNA), which acts as a template for viral transcripts. The formation of cccDNA is poorly characterised due to limited ability to quantify it accurately in the presence of replicative intermediates. Here, we describe a novel cccDNA quantification assay (cccDNA inversion quantitative PCR, cinqPCR), which uses restriction enzymes to invert a DNA sequence close to the gap region of Genotype D HBV strains, including the isolate widely used in experimental studies. Importantly, cinqPCR allows simultaneous normalisation to cellular DNA in a single reaction, provides absolute copy numbers without requiring a standard curve, and has high precision, sensitivity, and specificity for cccDNA compared to previous assays. We first established that cinqPCR gives values consistent with classical approaches in both in vitro and in vivo (humanised mice) HBV infections. We then used cinqPCR to find that cccDNA is formed within 12 h post-inoculation (hpi). cccDNA formation slowed by 28 hpi despite de novo synthesis of HBV DNA, indicating inefficient conversion of new viral genomes to cccDNA within infected cells. Finally, we show that cinqPCR can be used as a 96-well screening assay. Thus, we have developed an ideal method for testing current and future anti-cccDNA therapeutics with high precision and sensitivity.
Collapse
Affiliation(s)
- Thomas Tu
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia.
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bingqian Qu
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathan Main
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia; Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Lena Allweiss
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maura Dandri
- Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZIF, Hamburg-Lübeck-Borstel Partner Site, Germany
| | - Nicholas Shackel
- Gastroenterology and Liver Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia; Department of Gastroenterology and Hepatology, Liverpool Hospital, Sydney, New South Wales, Australia; South Western Sydney Clinical School, University of New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany
| |
Collapse
|
45
|
Khuroo MS, Sofi AA. The Discovery of Hepatitis Viruses: Agents and Disease. J Clin Exp Hepatol 2020; 10:391-401. [PMID: 32655240 PMCID: PMC7335725 DOI: 10.1016/j.jceh.2020.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Discovery of five hepatitis viruses A to E has followed distinctive definable phases. Human experiments at Willowbrook identified two forms of hepatitis namely infectious hepatitis and serum hepatitis. The discovery of Australia antigen in 1965 led to rapid scientific developments in viral hepatitis. SH antigen was detected in sera of patients with serum hepatitis and soon SH antigen and Australia antigen were found to be identical and selectively associated with serum hepatitis. In 1970, 42-nm Dane particles were detected in Australia antigen positive sera and linked to the virus of serum hepatitis. Subsequently, a new antigen-antibody system (e-antigen/antibody) was detected in such patients and associated with infectivity. Then, DNA polymerase was found in concentrated pellets containing Australia antigen. Hepatitis B virus (HBV) DNA cloning and sequencing of HBV followed these developments. In 1973, 27 nm hepatitis A virus (HAV)-like particles were visualized in stool samples obtained during acute phase of illness after inoculation of MS-1 strain in volunteers. Cloning and sequencing of HAV followed. In 1977, a new antigen-antibody system (δ antigen-antibody system) was identified by chance associated with HBV. Based on animal transmission studies, δ agent was found to be another virus called hepatitis D virus that is defective, requires the helper functions of HBV and interferes with HBV replication. The search for hepatitis C virus started when non-A, non-B hepatitis was recognised in multiply transfused patients with subsequent successful animal transmission. HCV was identified by a novel immunoscreening approach involving screening of cDNA libraries from infectious sera. The story of hepatitis E is historically linked to discovery of waterborne epidemic non-A, non-B hepatitis from Kashmir, India. Virus-like-particles of the agent were identified in stool samples of a human volunteer after a self-experimentation. HEV cDNA was detected in bile-enriched infectious samples and full-length HEV RNA genome was subsequently cloned and sequenced.
Collapse
Affiliation(s)
- Mohammad S. Khuroo
- Digestive Diseases Centre, Dr Khuroo Medical Clinic, Srinagar, Kashmir, J&K (UT), India
- Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, J&K (UT), India
| | - Ahmad A. Sofi
- Digestive Diseases Centre, Dr Khuroo Medical Clinic, Srinagar, Kashmir, J&K (UT), India
- Burn Hall School, Gupkar Road, Sonwar, Srinagar, Kashmir, J&K (UT), India
| |
Collapse
|
46
|
Seitz S, Habjanič J, Schütz AK, Bartenschlager R. The Hepatitis B Virus Envelope Proteins: Molecular Gymnastics Throughout the Viral Life Cycle. Annu Rev Virol 2020; 7:263-288. [PMID: 32600157 DOI: 10.1146/annurev-virology-092818-015508] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New hepatitis B virions released from infected hepatocytes are the result of an intricate maturation process that starts with the formation of the nucleocapsid providing a confined space where the viral DNA genome is synthesized via reverse transcription. Virion assembly is finalized by the enclosure of the icosahedral nucleocapsid within a heterogeneous envelope. The latter contains integral membrane proteins of three sizes, collectively known as hepatitis B surface antigen, and adopts multiple conformations in the course of the viral life cycle. The nucleocapsid conformation depends on the reverse transcription status of the genome, which in turn controls nucleocapsid interaction with the envelope proteins for virus exit. In addition, after secretion the virions undergo a distinct maturation step during which a topological switch of the large envelope protein confers infectivity. Here we review molecular determinants for envelopment and models that postulate molecular signals encoded in the capsid scaffold conducive or adverse to the recruitment of envelope proteins.
Collapse
Affiliation(s)
- Stefan Seitz
- Department of Infectious Diseases, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Jelena Habjanič
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anne K Schütz
- Bavarian NMR Center, Department of Chemistry, Technical University of Munich, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, University of Heidelberg, 69120 Heidelberg, Germany; .,Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
47
|
Molecular, Evolutionary, and Structural Analysis of the Terminal Protein Domain of Hepatitis B Virus Polymerase, a Potential Drug Target. Viruses 2020; 12:v12050570. [PMID: 32455999 PMCID: PMC7291194 DOI: 10.3390/v12050570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Approximately 250 million people are living with chronic hepatitis B virus (HBV) infections, which claim nearly a million lives annually. The target of all current HBV drug therapies (except interferon) is the viral polymerase; specifically, the reverse transcriptase domain. Although no high-resolution structure exists for the HBV polymerase, several recent advances have helped to map its functions to specific domains. The terminal protein (TP) domain, unique to hepadnaviruses such as HBV, has been implicated in the binding and packaging of the viral RNA, as well as the initial priming of and downstream synthesis of viral DNA—all of which make the TP domain an attractive novel drug target. This review encompasses three types of analysis: sequence conservation analysis, secondary structure prediction, and the results from mutational studies. It is concluded that the TP domain of HBV polymerase is comprised of seven subdomains (three unstructured loops and four helical regions) and that all three loop subdomains and Helix 5 are the major determinants of HBV function within the TP domain. Further studies, such as modeling inhibitors of these critical TP subdomains, will advance the TP domain of HBV polymerase as a therapeutic drug target in the progression towards a cure.
Collapse
|
48
|
Verbinnen T, Tan Y, Wang G, Dehertogh P, Vergauwen K, Neefs JM, Jacoby E, Lenz O, Berke JM. Anti-HBV activity of the HBV capsid assembly modulator JNJ-56136379 across full-length genotype A–H clinical isolates and core site-directed mutants in vitro. J Antimicrob Chemother 2020; 75:2526-2534. [DOI: 10.1093/jac/dkaa179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract
Objectives
To characterize antiviral activity of the capsid assembly modulator (CAM-N) JNJ-56136379 against HBV genotypes and variants carrying amino acid substitutions in the core protein.
Methods
Anti-HBV activity of JNJ-56136379 was investigated against a diverse panel of 53 HBV clinical isolates (genotypes A–H). The impact of core amino acid substitutions using site-directed mutants (SDMs) was assessed in a transient replication assay.
Results
JNJ-56136379 median 50% effective concentration (EC50) values across all genotypes were 10–33 nM versus 17 nM (genotype D reference). JNJ-56136379 remained active against isolates carrying nucleos(t)ide analogue resistance mutations (median EC50 2–25 nM) or basal core promoter (BCP) ± precore (PC) mutations (median EC50 13–20 nM) or PC mutations (median EC50 11 nM), representing activity against isolates from HBeAg-positive and -negative hepatitis B patients. Core amino acid substitutions in the CAM-binding pocket, when tested as SDMs at positions 23, 25, 30, 33, 37, 106, 110, 118, 124, 127 and 128, reduced JNJ-56136379 anti-HBV activity; EC50 fold increases ranged from 3.0 (S106T) to 85 (T33N). All substitutions were rare in a public database of >7600 HBV core sequences (frequencies 0.01%–0.3%). Nucleos(t)ide analogues retained full activity against these core SDMs.
Conclusions
JNJ-56136379, a potent HBV CAM-N, currently in Phase 2 clinical development, was generally fully active against an extensive panel of genotype A–H clinical isolates, regardless of the presence of nucleos(t)ide analogue resistance or BCP/PC mutations. JNJ-56136379 activity was reduced by some core amino acid substitutions in the CAM-binding pocket.
Collapse
Affiliation(s)
- Thierry Verbinnen
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ying Tan
- Janssen China Research & Development Center, 5F North Building #1 Jinchuang Mansion, 4560 Jinke Road, Shanghai 201210, China
| | - Gengyan Wang
- Janssen China Research & Development Center, 5F North Building #1 Jinchuang Mansion, 4560 Jinke Road, Shanghai 201210, China
| | - Pascale Dehertogh
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Karen Vergauwen
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jean-Marc Neefs
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Edgar Jacoby
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Oliver Lenz
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jan Martin Berke
- Janssen Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
49
|
McNaughton AL, Revill PA, Littlejohn M, Matthews PC, Ansari MA. Analysis of genomic-length HBV sequences to determine genotype and subgenotype reference sequences. J Gen Virol 2020; 101:271-283. [PMID: 32134374 PMCID: PMC7416611 DOI: 10.1099/jgv.0.001387] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a diverse, partially double-stranded DNA virus, with 9 genotypes (A-I), and a putative 10th genotype (J), characterized thus far. Given the broadening interest in HBV sequencing, there is an increasing requirement for a consistent, unified approach to HBV genotype and subgenotype classification. We set out to generate an updated resource of reference sequences using the diversity of all genomic-length HBV sequences available in public databases. We collated and aligned genomic-length HBV sequences from public databases and used maximum-likelihood phylogenetic analysis to identify genotype clusters. Within each genotype, we examined the phylogenetic support for currently defined subgenotypes, as well as identifying well-supported clades and deriving reference sequences for them. Based on the phylogenies generated, we present a comprehensive set of HBV reference sequences at the genotype and subgenotype level. All of the generated data, including the alignments, phylogenies and chosen reference sequences, are available online (https://doi.org/10.6084/m9.figshare.8851946) as a simple open-access resource.
Collapse
Affiliation(s)
- Anna L. McNaughton
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Peter A. Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Philippa C. Matthews
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - M. Azim Ansari
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
50
|
Peculiarities in the designations of hepatitis B virus genes, their products, and their antigenic specificities: a potential source of misunderstandings. Virus Genes 2020; 56:109-119. [PMID: 32026198 PMCID: PMC7093336 DOI: 10.1007/s11262-020-01733-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The nomenclature of the hepatitis B virus (HBV) genes and their products has developed stepwise, occasionally in an erratic way, creating many misunderstandings, especially among those who do not know the structure of HBV and its genome in detail. One of the most frequent misunderstandings, even presented in leading journals, is the designation of HBV “e”-antigen as envelope or early antigen. Another problem area are the so-called “pre” regions in the HBV genome present upstream of both the core and the surface genes of HBV, inadvertently suggesting that they may be a part of corresponding precursor proteins. Misnomers and misclassifications are frequent in defining the subgenotypes and serological subtypes of HBV. Even the well-established terminology for HBV surface (HBs) or HBV core (HBc) antigen deviates from the conventional virological nomenclature for viral envelopes or capsid proteins/antigens, respectively. Another matter of undesirable variability between publications is the numbering of the nucleotides and the graphical representation of genomic maps. This editorial briefly explains how the nomenclature evolved, what it really means, and suggests how it could be adapted to today’s knowledge.
Collapse
|