1
|
Uyama T, Sasaki S, Sikder MM, Okada-Iwabu M, Ueda N. The PLAAT family as phospholipid-related enzymes. Prog Lipid Res 2025; 98:101331. [PMID: 40074088 DOI: 10.1016/j.plipres.2025.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The phospholipase A and acyltransferase (PLAAT) family is a group of structurally related proteins that are conserved among vertebrates. In humans, the family comprises five members (PLAAT1-5), which share common domain structures, and functions as phospholipase A1/A2 and acyltransferase enzymes. Regarding acyltransferase activities, PLAATs produce N-acyl-phosphatidylethanolamines, which serve as the precursor of bioactive N-acylethanolamines (NAEs). Recent evidence strongly suggests that PLAAT proteins play a crucial role in maintaining homeostasis in various organelles, such as the endoplasmic reticulum, lysosomes, mitochondria, and peroxisomes. In this process, PLAAT proteins bind to organelles and degrade them in an enzyme activity-dependent manner. Their physiological significance was revealed by the inability of PLAAT-deficient animals to degrade organelles during the maturation of the eye lens, resulting in the development of cataracts. Furthermore, the deficiency of PLAAT1, 3, and 5 in mice caused resistance to high-fat diet-induced fatty liver, the lean phenotype represented by a marked decrease in adipose tissue mass, and the exacerbation of testicular inflammation due to decreased levels of anti-inflammatory NAEs, respectively. In addition, human PLAAT3 was identified as a causative gene for lipodystrophy. We herein provide an overview of the molecular and biological properties of PLAAT proteins.
Collapse
Affiliation(s)
- Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | - Sumire Sasaki
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Mohammad Mamun Sikder
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Miki Okada-Iwabu
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
2
|
Varadpande M, Erridge S, Aggarwal A, Cowley I, Evans L, Clarke E, McLachlan K, Coomber R, Rucker JJ, Platt MW, Khan S, Sodergren M. UK Medical Cannabis Registry: An Analysis of Clinical Outcomes of Medicinal Cannabis Therapy for Cancer Pain. J Pain Palliat Care Pharmacother 2025:1-21. [PMID: 39921589 DOI: 10.1080/15360288.2025.2457101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/21/2024] [Accepted: 01/14/2025] [Indexed: 02/10/2025]
Abstract
Cancer pain (CP) is a prevalent condition with limited pharmacotherapeutic options. Cannabis-based medicinal products (CBMPs) have shown analgesic effects, but their efficacy in CP remains contentious. This study aims to evaluate the change in patient-reported outcome measures (PROMs) and adverse events (AEs) in CP patients treated with CBMPs. A case series was conducted using prospectively collected clinical data from the UK Medical Cannabis Registry. Primary outcomes were the changes in the Brief Pain Inventory (BPI), pain visual analogue scale (Pain-VAS), EQ-5D-5L, Generalized Anxiety Disorder-7 (GAD-7), Patient Global Impression of Change (PGIC) and Single-Item Sleep Quality Scale (SQS) questionnaires from baseline to 1, 3, and 6 months. AEs were recorded and graded. p < 0.050 was considered statistically significant. One hundred and sixty-eight participants were included. CBMPs were associated with improvements in all pain-specific PROMs at all follow-up periods (p < 0.050). Improvements in GAD-7, SQS, and EQ-5D-5L index scores were also observed (p < 0.050). Twenty-nine AEs (17.26%) were reported by five patients (2.98%), mostly mild-to-moderate (72.41%). Although the observational design means causality cannot be established, the findings support the development of future randomized controlled trials into CP management with CBMPs.
Collapse
Affiliation(s)
- Madhur Varadpande
- Medical Cannabis Research Group, Imperial College London, London, UK
| | - Simon Erridge
- Medical Cannabis Research Group, Imperial College London, London, UK
- Curaleaf Clinic, London, UK
| | - Arushika Aggarwal
- Medical Cannabis Research Group, Imperial College London, London, UK
| | - Isaac Cowley
- Medical Cannabis Research Group, Imperial College London, London, UK
| | - Lilia Evans
- Medical Cannabis Research Group, Imperial College London, London, UK
| | | | | | - Ross Coomber
- Curaleaf Clinic, London, UK
- St George's NHS Trust, London, UK
| | - James J Rucker
- Curaleaf Clinic, London, UK
- Department of Psychological Medicine, Kings College London, London, UK
- South London & Maudsley NHS Foundation Trust, London, UK
| | | | - Shaheen Khan
- Curaleaf Clinic, London, UK
- Guy's & St. Thomas' NHS FoundationTrust, London, UK
| | - Mikael Sodergren
- Medical Cannabis Research Group, Imperial College London, London, UK
- Curaleaf Clinic, London, UK
| |
Collapse
|
3
|
Rock EM, Parker LA. The Role of Cannabinoids and the Endocannabinoid System in the Treatment and Regulation of Nausea and Vomiting. Curr Top Behav Neurosci 2024. [PMID: 39739175 DOI: 10.1007/7854_2024_554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Despite using the recommended anti-emetic treatments, control of nausea and vomiting is still an unmet need for cancer patients undergoing chemotherapy treatment. Few properly controlled clinical trials have evaluated the potential of exogenously administered cannabinoids or manipulations of the endogenous cannabinoid (eCB) system to treat nausea and vomiting. In this chapter, we explore the pre-clinical and human clinical trial evidence for the potential of exogenous cannabinoids and manipulations of the eCB system to reduce nausea and vomiting. Although there are limited high-quality human clinical trials, pre-clinical evidence suggests that cannabinoids and manipulations of the eCB system have anti-nausea/anti-emetic potential. The pre-clinical anti-nausea/anti-emetic evidence highlights the need for further evaluation of cannabinoids and manipulations of eCBs and other fatty acid amides in clinical trials.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Kumamoto E. Anesthetic- and Analgesic-Related Drugs Modulating Both Voltage-Gated Na + and TRP Channels. Biomolecules 2024; 14:1619. [PMID: 39766326 PMCID: PMC11727300 DOI: 10.3390/biom14121619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na+ channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission. There is much evidence demonstrating that chemical compounds involved in Na+ channel (or nerve AP conduction) inhibition modify TRP channel functions. Among these compounds are local anesthetics, anti-epileptics, α2-adrenoceptor agonists, antidepressants (all of which are used as analgesic adjuvants), general anesthetics, opioids, non-steroidal anti-inflammatory drugs and plant-derived compounds, many of which are involved in antinociception. This review mentions the modulation of Na+ channels and TRP channels including TRPV1, TRPA1 and TRPM8, both of which modulations are produced by pain-related compounds.
Collapse
Affiliation(s)
- Eiichi Kumamoto
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
6
|
Balaji S, Woodward TJ, Richter E, Chang A, Otiz R, Kulkarni PP, Balaji K, Bradshaw HB, Ferris CF. Palmitoylethanolamide causes dose-dependent changes in brain function and the lipidome. Front Neurosci 2024; 18:1506352. [PMID: 39664446 PMCID: PMC11631868 DOI: 10.3389/fnins.2024.1506352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
The present studies were undertaken to understand the effects of the commonly used nutraceutical PEA on brain function and lipid chemistry. These studies using MRI and broad-scale lipidomics are without precedent in animal or human research. During the MRI scanning session awake rats were given one of three doses of PEA (3, 10, or 30 mg/kg) or vehicle and imaged for changes in BOLD signal and functional connectivity. There was an inverse dose-response for negative BOLD suggesting a decrease in brain activity affecting the prefrontal ctx, sensorimotor cortices, basal ganglia and thalamus. However, there was a dose-dependent increase in functional connectivity in these same brain areas. Plasma and CNS levels of PEA and over 80 endogenous lipids (endolipids) were determined post treatment. While levels of PEA in the CNS were significantly higher after 30 mg/kg treatment, levels of the endocannabinoid, Anandamide, and at least 20 additional endolipids, were significantly lower across the CNS. Of the 78 endolipids that were detected in all CNS regions evaluated, 51 of them were modulated in at least one of the regions. Taken together, the functional connectivity and lipidomics changes provide evidence that PEA treatment drives substantial changes in CNS activity.
Collapse
Affiliation(s)
- Shreyas Balaji
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Taylor J. Woodward
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Emily Richter
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Arnold Chang
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Richard Otiz
- Department of Psychology, Northern Illinois University, DeKalb, IL, United States
| | - Praveen P. Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Kaashyap Balaji
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Craig F. Ferris
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
- Departments of Psychology and Pharmaceutical Sciences, Northeastern University Boston, Boston, MA, United States
| |
Collapse
|
7
|
Tang W, Wang HJ, Luo SY, Zhang SY, Xie H, Chen HQ, Wang CH, Zhang Z. Lipid Alterations in Chronic Nonspecific Low Back Pain in the Chinese Population: A Metabolomic and Lipidomic Study. Bioengineering (Basel) 2024; 11:1114. [PMID: 39593774 PMCID: PMC11591451 DOI: 10.3390/bioengineering11111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic nonspecific low back pain (cNLBP) accounts for approximately 90% of low back pain cases, affecting 65-80% of the population and significantly impacting life quality and productivity. This condition also leads to substantial financial burden. Although there have been advancements, a comprehensive understanding of the underlying etiology of cNLBP remains elusive, resulting in less than optimal treatment outcomes. This study aimed to examine the correlation between lipid variations and the development of cNLBP. The cohort consisted of 26 healthy volunteers (HV group) and 30 cNLBP patients, with an assessment of metabolites and lipid composition in both groups. Metabolomic results revealed significant alterations in lipid-associated metabolites between the HV and cNLBP groups. Subsequent lipid analysis revealed that monoacylglycerols (MAGs) increased approximately 1.2-fold (p = 0.016), diacylglycerols (DAGs) increased approximately 1.4-fold (p = 0.0003), and phosphatidylserine (PS) increased approximately 1.4-fold (p = 0.011). In contrast, triacylglycerol (TAG) decreased to about 0.7-fold (p = 0.035) in the cNLBP group compared to the HV group. The contrasting trends in MAG/DAG and TAG levels indicated that the imbalance between MAG/DAG and TAG may have an impact on the development of cNLBP. This study has provided new insights into the relationship between the progression of cNLBP and specific lipids, suggesting that these lipids could serve as therapeutic targets for cNLBP.
Collapse
Affiliation(s)
- Wen Tang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| | - Hong-Jiang Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Su-Ying Luo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| | - Si-Yun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| | - Hao Xie
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| | - Hua-Qing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| | - Chu-Huai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| | - Zhou Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China; (W.T.); (H.-J.W.); (S.-Y.L.); (S.-Y.Z.); (H.X.); (H.-Q.C.)
| |
Collapse
|
8
|
Kelley LK, Lightfoot SHM, Hill MN, Middleton JW, Gilpin NW. THC Vapor Inhalation Attenuates Hyperalgesia in Rats Using a Chronic Inflammatory Pain Model. THE JOURNAL OF PAIN 2024; 25:104649. [PMID: 39121915 PMCID: PMC11486574 DOI: 10.1016/j.jpain.2024.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Humans use cannabinoid drugs to alleviate pain. As cannabis and cannabinoids are legalized in the United States for medicinal and recreational use, it has become critical to determine the potential utilities and harms of cannabinoid drugs in individuals living with chronic pain. Here, we tested the effects of repeated ∆9-tetrahydrocannabinol (THC) vapor inhalation on thermal nociception and mechanical sensitivity, in adult male and female Wistar rats using a chronic inflammatory pain model (ie, treated with complete Freund's adjuvant [CFA]). We report that repeated THC vapor inhalation rescues thermal hyperalgesia in males and females treated with CFA and also reduces mechanical hypersensitivity in CFA males but not females. Many of the antihyperalgesic effects of chronic THC vapor were still observable 24 hours after cessation of the last THC exposure. We also report plasma levels of THC and its major metabolites, some of which are cannabinoid type-1 receptor agonists, after the first and tenth days of THC vapor inhalation. Finally, we report that systemic administration of the cannabinoid type-1 receptor inverse agonist AM251 (1 mg/kg, I.P.) blocks the antihyperalgesic effects of THC vapor in males and females. These data provide a foundation for future work that will explore the cells and circuits underlying the antihyperalgesic effects of THC vapor inhalation in individuals with chronic inflammatory pain. PERSPECTIVE: Cannabinoids are thought to have potential utility in the treatment of chronic pain, but few animal studies have tested the effects of chronic THC or cannabis in animal models of chronic pain. We tested the effects of repeated THC vapor inhalation on chronic pain-related outcomes in male and female animals.
Collapse
Affiliation(s)
- Leslie K Kelley
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Alcohol and Drug of Abuse Center of Excellence, LSUHSC, New Orleans, Louisiana
| | - Savannah H M Lightfoot
- Departments of Cell Biology and Anatomy and Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthew N Hill
- Departments of Cell Biology and Anatomy and Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jason W Middleton
- Alcohol and Drug of Abuse Center of Excellence, LSUHSC, New Orleans, Louisiana; Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana; Southeast Louisiana VA Healthcare System, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana; Alcohol and Drug of Abuse Center of Excellence, LSUHSC, New Orleans, Louisiana; Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana; Southeast Louisiana VA Healthcare System, New Orleans, Louisiana.
| |
Collapse
|
9
|
Faiz MB, Naeem F, Irfan M, Aslam MA, Estevinho LM, Ateşşahin DA, Alshahrani AM, Calina D, Khan K, Sharifi-Rad J. Exploring the therapeutic potential of cannabinoids in cancer by modulating signaling pathways and addressing clinical challenges. Discov Oncol 2024; 15:490. [PMID: 39331301 PMCID: PMC11436528 DOI: 10.1007/s12672-024-01356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
For centuries, cannabinoids have been utilized for their medicinal properties, particularly in Asian and South-Asian countries. Cannabis plants, known for their psychoactive and non-psychoactive potential, were historically used for spiritual and remedial healing. However, as cannabis became predominantly a recreational drug, it faced prohibition. Recently, the therapeutic potential of cannabinoids has sparked renewed research interest, extending their use to various medical conditions, including cancer. This review aims to highlight current data on the involvement of cannabinoids in cancer signaling pathways, emphasizing their potential in cancer therapy and the need for further investigation into the underlying mechanisms. A comprehensive literature review was conducted using databases such as PubMed/MedLine, Google Scholar, Web of Science, Scopus, and Embase. The search focused on peer-reviewed articles, review articles, and clinical trials discussing the anticancer properties of cannabinoids. Inclusion criteria included studies in English on the mechanisms of action and clinical efficacy of cannabinoids in cancer. Cannabinoids, including Δ9-THC, CBD, and CBG, exhibit significant anticancer activities such as apoptosis induction, autophagy stimulation, cell cycle arrest, anti-proliferation, anti-angiogenesis, and metastasis inhibition. Clinical trials have demonstrated cannabinoids' efficacy in tumor regression and health improvement in palliative care. However, challenges such as variability in cannabinoid composition, psychoactive effects, regulatory barriers, and lack of standardized dosing remain. Cannabinoids show promising potential as anticancer agents through various mechanisms. Further large-scale, randomized controlled trials are essential to validate these findings and establish standardized therapeutic protocols. Future research should focus on elucidating detailed mechanisms, optimizing dosing, and exploring cannabinoids as primary chemotherapeutic agents.
Collapse
Affiliation(s)
- Manal Bint Faiz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Faiza Naeem
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Irfan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Adeel Aslam
- Department of Forensic Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Leticia M Estevinho
- Mountain Research Center, CIMO, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5300-253, Bragança, Portugal
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, 23100, Elazıg, Turkey
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, Shaqra University, Dawadimi, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Khushbukhat Khan
- Cancer Clinical Research Unit, Trials360, Lahore, 54000, Pakistan.
| | - Javad Sharifi-Rad
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
10
|
Chen Y, Qiu H, Xuan L, Jin Y, Chen R, Teng S, Jin X. Acupuncture in Treating Osteopenia: A Multicenter, Randomized, Controlled Clinical Trial. Complement Med Res 2024; 31:516-528. [PMID: 39326394 DOI: 10.1159/000541440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION The aim of this study was to analyze the effectiveness of acupuncture as an early intervention in the treatment of osteoporosis and prevention of osteoporosis. METHODS This multicenter, randomized, controlled clinical trial was conducted in 226 patients with osteoporosis for 6 months. Participants were randomized to the control group (n = 110) and the acupuncture group (n = 116), both groups received basic treatment with daily calcium carbonate and vitamin D3 tablet (containing calcium 600 mg/tablet) supplementation (n = 116), and the acupuncture group received additional acupuncture treatment. Bone mineral density (BMD), Berg Balance Scale (BBS), bone metabolism indexes, and lower limb muscle strength and balance indexes were tested to evaluate the therapy outcomes of the two groups. RESULTS After 6 months of treatment, BBS11 (p = 0.046), BBS12 (p = 0.042), and total BBS scores (p = 0) in the acupuncture group were significantly higher than those before treatment; comparing between groups, BBS8 in the acupuncture group was higher than that in the control group after 3 and 6 months, with statistically significant differences (p = 0.036 and 0.0270). After 6 months of treatment, the total BBS score of the acupuncture group was significantly higher than that of the control group, and the difference was statistically significant (p = 0.039). After 6 months of treatment, the BMD of total bone of femoral neck (p = 0.031) and hip joint (p = 0.013) in the acupuncture group was significantly higher than that before treatment, but there was no statistical difference with the control group. The time of five sit-to-stand test (FTSST) was shortened in the acupuncture group, and the difference was statistically significant (p = 0.023), but there was no significant change in the control group (p > 0.05). In addition, the specific sequences of blood phosphorus (p = 0.007), β-collagen (p = 0.009), and N-osteocalcin (p = 0.007) were significantly lower than before treatment after 3 months of acupuncture treatment, and the blood phosphorus level continued to decrease after 6 months of treatment (p = 0.007). In addition, the levels of N-osteocalcin in the acupuncture group were significantly lower than those in the control group after 3 months of treatment (p = 0.008). CONCLUSION Acupuncture can increase hip bone density, improve bone metabolism, reduce bone turnover rate, and improve body balance and lower limb muscle strength in patients with osteoporosis.
Collapse
Affiliation(s)
- Yidan Chen
- Department of Acupuncture, Zhejiang Hospital, Hangzhou, China
| | - Huaping Qiu
- Department of Acupuncture, Hangzhou Ziyang Street Community Health Service Center, Hangzhou, China
| | - Lihua Xuan
- Department of Acupuncture, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yabei Jin
- Department of Acupuncture, Zhejiang Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Ruixiang Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shitian Teng
- Department of Acupuncture, Yiwu Second People's Hospital, Yiwu, China
| | - Xiaoqing Jin
- Department of Acupuncture, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
11
|
Spicarova D, Palecek J. Anandamide-Mediated Modulation of Nociceptive Transmission at the Spinal Cord Level. Physiol Res 2024; 73:S435-S448. [PMID: 38957948 PMCID: PMC11412359 DOI: 10.33549/physiolres.935371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Three decades ago, the first endocannabinoid, anandamide (AEA), was identified, and its analgesic effect was recognized in humans and preclinical models. However, clinical trial failures pointed out the complexity of the AEA-induced analgesia. The first synapses in the superficial laminae of the spinal cord dorsal horn represent an important modulatory site in nociceptive transmission and subsequent pain perception. The glutamatergic synaptic transmission at these synapses is strongly modulated by two primary AEA-activated receptors, cannabinoid receptor 1 (CB1) and transient receptor potential vanilloid 1 (TRPV1), both highly expressed on the presynaptic side formed by the endings of primary nociceptive neurons. Activation of these receptors can have predominantly inhibitory (CB1) and excitatory (TRPV1) effects that are further modulated under pathological conditions. In addition, dual AEA-mediated signaling and action may occur in primary sensory neurons and dorsal horn synapses. AEA application causes balanced inhibition and excitation of primary afferent synaptic input on superficial dorsal horn neurons in normal conditions, whereas peripheral inflammation promotes AEA-mediated inhibition. This review focuses mainly on the modulation of synaptic transmission at the spinal cord level and signaling in primary nociceptive neurons by AEA via CB1 and TRPV1 receptors. Furthermore, the spinal analgesic effect in preclinical studies and clinical aspects of AEA-mediated analgesia are considered.
Collapse
Affiliation(s)
- D Spicarova
- Laboratory of Pain Research, Institute of Physiology CAS, Praha 4, Czech Republic.
| | | |
Collapse
|
12
|
Filipiuc LE, Creangă-Murariu I, Tamba BI, Ababei DC, Rusu RN, Stanciu GD, Ștefanescu R, Ciorpac M, Szilagyi A, Gogu R, Filipiuc SI, Tudorancea IM, Solcan C, Alexa-Stratulat T, Cumpăt MC, Cojocaru DC, Bild V. JWH-182: a safe and effective synthetic cannabinoid for chemotherapy-induced neuropathic pain in preclinical models. Sci Rep 2024; 14:16242. [PMID: 39004628 PMCID: PMC11247095 DOI: 10.1038/s41598-024-67154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP), a condition with unmet treatment needs, affects over half of cancer patients treated with chemotherapeutics. Researchers have recently focused on the endocannabinoid system because of its critical role in regulating our bodies' most important functions, including pain. We used in vitro and in vivo methods to determine the toxicity profile of a synthetic cannabinoid, JWH-182, and whether it could be potentially effective for CINP alleviation. In vitro, we evaluated JWH-182 general toxicity, measuring fibroblast viability treated with various concentrations of compound, and its neuroprotection on dorsal root ganglion neurons treated with paclitaxel. In vivo, we performed an evaluation of acute and 28-day repeated dose toxicity in mice, with monitoring of health status and a complete histopathological examination. Finally, we evaluated the efficacy of JWH-182 on a CINP model in mice using specific pain assessment tests. JWH-182 has an acceptable toxicity profile, in both, in vitro and in vivo studies and it was able to significantly reduce pain perception in a CINP model in mice. However, the translation of these results to the clinic needs further investigation.
Collapse
Affiliation(s)
- Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Ioana Creangă-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania.
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania.
| | - Daniela-Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Pharmacodynamics and Clinical Pharmacy Department, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Gabriela-Dumitrița Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Raluca Ștefanescu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Silviu-Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Ivona-Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, "Ion Ionescu de La Brad" University of Life Sciences, 700490, Iasi, Romania
| | - Teodora Alexa-Stratulat
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
- Department of Medical Oncology-Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
| | - Marinela-Carmen Cumpăt
- Department of Medical Specialties I and III, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661, Iasi, Romania
| | - Doina-Clementina Cojocaru
- Department of Medical Specialties I and III, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661, Iasi, Romania
| | - Veronica Bild
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, "Grigore T. Popa" University of Medicine and Pharmacy, University Street No. 16, 700115, Iasi, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Iasi, Romania
| |
Collapse
|
13
|
Rudt E, Schneider S, Hayen H. Hyphenation of Liquid Chromatography and Trapped Ion Mobility - Mass Spectrometry for Characterization of Isomeric Phosphatidylethanolamines with Focus on N-Acylated Species. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1584-1593. [PMID: 38842006 DOI: 10.1021/jasms.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
In prior research, hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) has demonstrated applicability for characterizing regioisomers in lipidomics studies, including phosphatidylglycerols (PG) and bis(monoacyl)glycerophosphates (BMP). However, there are other lipid regioisomers, such as phosphatidylethanolamines (PE) and lyso-N-acyl-PE (LNAPE), that have not been studied as extensively. Therefore, hyphenated mass spectrometric methods are needed to investigate PE and LNAPE regioisomers individually. The asymmetric structure of LNAPE favors isomeric species, which can result in coelution and chimeric MS/MS spectra. One way to address the challenge of chimeric MS/MS spectra is through mobility-resolved fragmentation using trapped ion mobility spectrometry (TIMS). Therefore, we developed a multidimensional HILIC-TIMS-MS/MS approach for the structural characterization of isomeric phosphatidylethanolamines in both negative and positive ionization modes. The study revealed the complementary fragmentation pattern and ion mobility behavior of LNAPE in both ionization modes, which was confirmed by a self-synthesized LNAPE standard. With this knowledge, a distinction of regioisomeric PE and LNAPE was achieved in human plasma samples. Furthermore, regioisomeric LNAPE species containing at least one unsaturated fatty acid were noted to exhibit a change in collision cross-section in positive ionization mode, leading to a lipid characterization with respect to fatty acyl positional level. Similar mobility behavior was also observed for the biological LNAPE precursor N-acyl-PE (NAPE). Application of this approach to plasma and cereal samples demonstrated its effectiveness in regioisomeric LNAPE and NAPE species' elucidation.
Collapse
Affiliation(s)
- Edward Rudt
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| | - Svenja Schneider
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, Münster 48149, Germany
| |
Collapse
|
14
|
Carrascosa AJ, Navarrete F, Saldaña R, García-Gutiérrez MS, Montalbán B, Navarro D, Gómez-Guijarro FM, Gasparyan A, Murcia-Sánchez E, Torregrosa AB, Pérez-Doblado P, Gutiérrez L, Manzanares J. Cannabinoid Analgesia in Postoperative Pain Management: From Molecular Mechanisms to Clinical Reality. Int J Mol Sci 2024; 25:6268. [PMID: 38892456 PMCID: PMC11172912 DOI: 10.3390/ijms25116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Postoperative pain (POP) is a challenging clinical phenomenon that affects the majority of surgical patients and demands effective management to mitigate adverse outcomes such as persistent pain. The primary goal of POP management is to alleviate suffering and facilitate a seamless return to normal function for the patient. Despite compelling evidence of its drawbacks, opioid analgesia remains the basis of POP treatment. Novel therapeutic approaches rely on multimodal analgesia, integrating different pharmacological strategies to optimize efficacy while minimizing adverse effects. The recognition of the imperative role of the endocannabinoid system in pain regulation has prompted the investigation of cannabinoid compounds as a new therapeutic avenue. Cannabinoids may serve as adjuvants, enhancing the analgesic effects of other drugs and potentially replacing or at least reducing the dependence on other long-term analgesics in pain management. This narrative review succinctly summarizes pertinent information on the molecular mechanisms, clinical therapeutic benefits, and considerations associated with the plausible use of various cannabinoid compounds in treating POP. According to the available evidence, cannabinoid compounds modulate specific molecular mechanisms intimately involved in POP. However, only two of the eleven clinical trials that evaluated the efficacy of different cannabinoid interventions showed positive results.
Collapse
Affiliation(s)
- Antonio J. Carrascosa
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Raquel Saldaña
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Belinda Montalbán
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Fernando M. Gómez-Guijarro
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Elena Murcia-Sánchez
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Paloma Pérez-Doblado
- Servicio de Anestesiologia y Reanimación, Hospital Universitario 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain; (A.J.C.); (R.S.); (B.M.); (F.M.G.-G.); (E.M.-S.); (P.P.-D.)
| | - Luisa Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (D.N.); (A.G.); (A.B.T.); (L.G.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
15
|
Nobili S, Micheli L, Lucarini E, Toti A, Ghelardini C, Di Cesare Mannelli L. Ultramicronized N-palmitoylethanolamine associated with analgesics: Effects against persistent pain. Pharmacol Ther 2024; 258:108649. [PMID: 38615798 DOI: 10.1016/j.pharmthera.2024.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Current epidemiological data estimate that one in five people suffers from chronic pain with considerable impairment of health-related quality of life. The pharmacological treatment is based on first- and second-line analgesic drugs, including COX-2 selective and nonselective nonsteroidal anti-inflammatory drugs, paracetamol, antidepressants, anti-seizure drugs and opioids, that are characterized by important side effects. N-palmitoylethanolamine (PEA) is a body's own fatty-acid ethanolamide belonging to the family of autacoid local injury antagonist amides. The anti-inflammatory and pain-relieving properties of PEA have been recognized for decades and prompted to depict its role in the endogenous mechanisms of pain control. Together with its relative abundance in food sources, this opened the way to the use of PEA as a pain-relieving nutritional intervention. Naïve PEA is a large particle size lipid molecule with low solubility and bioavailability. Reducing particle size is a useful method to increase surface area, thereby improving dissolution rate and bioavailability accordingly. Micron-size formulations of PEA (e.g., ultramicronized and co-(ultra)micronized) have shown higher oral efficacy compared to naïve PEA. In particular, ultramicronized PEA has been shown to efficiently cross the intestinal wall and, more importantly, the blood-brain and blood-spinal cord barrier. Several preclinical and clinical studies have shown the efficacy, safety and tolerability of ultramicronized PEA. This narrative review summarizes the available pharmacokinetic/pharmacodynamic data on ultramicronized PEA and focuses to its contribution to pain control, in particular as 'add-on' nutritional intervention. Data showing the ability of ultramicronized PEA to limit opioid side effects, including the development of tolerance, have also been reviewed.
Collapse
Affiliation(s)
- Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| |
Collapse
|
16
|
Dagher M, Alayoubi M, Sigal GH, Cahill CM. Unveiling the link between chronic pain and misuse of opioids and cannabis. J Neural Transm (Vienna) 2024; 131:563-580. [PMID: 38570361 DOI: 10.1007/s00702-024-02765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Over 50 million Americans endure chronic pain where many do not receive adequate treatment and self-medicate to manage their pain by taking substances like opioids and cannabis. Research has shown high comorbidity between chronic pain and substance use disorders (SUD) and these disorders share many common neurobiological underpinnings, including hypodopaminergic transmission. Drugs commonly used for self-medication such as opioids and cannabis relieve emotional, bothersome components of pain as well as negative emotional affect that perpetuates misuse and increases the risk of progressing towards drug abuse. However, the causal effect between chronic pain and the development of SUDs has not been clearly established. In this review, we discuss evidence that affirms the proposition that chronic pain is a risk factor for the development of opioid and cannabis use disorders by outlining the clinical evidence and detailing neurobiological mechanisms that link pain and drug misuse. Central to the link between chronic pain and opioid and cannabis misuse is hypodopaminergic transmission and the modulation of dopamine signaling in the mesolimbic pathway by opioids and cannabis. Moreover, we discuss the role of kappa opioid receptor activation and neuroinflammation in the context of dopamine transmission, their contribution to opioid and cannabis withdrawal, along with potential new treatments.
Collapse
Affiliation(s)
- Merel Dagher
- MacDonald Research Laboratory Building, Department of Psychiatry and Biobehavioral Sciences, Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E Young Drive South, Office 2774, Los Angeles, CA, 90095, USA
| | - Myra Alayoubi
- MacDonald Research Laboratory Building, Department of Psychiatry and Biobehavioral Sciences, Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E Young Drive South, Office 2774, Los Angeles, CA, 90095, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gabriella H Sigal
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Catherine M Cahill
- MacDonald Research Laboratory Building, Department of Psychiatry and Biobehavioral Sciences, Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E Young Drive South, Office 2774, Los Angeles, CA, 90095, USA.
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Di Micco S, Ciaglia T, Salviati E, Michela P, Kostrzewa M, Musella S, Schiano Moriello A, Di Sarno V, Smaldone G, Di Matteo F, Capolupo I, Infantino R, Bifulco G, Pepe G, Sommella EM, Kumar P, Basilicata MG, Allarà M, Sánchez-Fernández N, Aso E, Gomez-Monterrey IM, Campiglia P, Ostacolo C, Maione S, Ligresti A, Bertamino A. Novel pyrrole based CB2 agonists: New insights on CB2 receptor role in regulating neurotransmitters' tone. Eur J Med Chem 2024; 269:116298. [PMID: 38493727 DOI: 10.1016/j.ejmech.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model. Therefore, we extended our study by investigating the interconnection between CB2 activation and neurotransmission in this experimental paradigm. To this purpose, we performed a MALDI imaging analysis on mice brains, observing that the administration of our lead compound was able to revert the effect of scopolamine on different neurotransmitter tones, such as acetylcholine, serotonin, and GABA, shedding light on important networks not fully explored, so far.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute (EBRIS), Via S. De Renzi 50, 84125, Salerno, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Perrone Michela
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Aniello Schiano Moriello
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Ilaria Capolupo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Rosmara Infantino
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Eduardo M Sommella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Poulami Kumar
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | | | - Marco Allarà
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Nuria Sánchez-Fernández
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131, Naples, Italy; Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
| | - Ester Aso
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131, Naples, Italy; Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
| | - Isabel M Gomez-Monterrey
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain.
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy.
| |
Collapse
|
18
|
Ibrahim A. An overview of headache treatments during the tenth century. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2024; 33:204-219. [PMID: 38175038 DOI: 10.1080/0964704x.2023.2288208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Although the history of treating headaches spans thousands of years, scientists during the tenth century made unique and significant contributions to understanding, treating, and preventing the development of headaches. In fact, the tenth century saw the ability to differentiate between types of headache and treatments for the first time. This article looks at the contributions of Persian, Anglo-Saxon, and Chinese medicine to the diagnosis and treatment of different types of headaches in the tenth century. It does so with reference to a range of herbal, surgical, and pharmacological methods of treating this ailment. The article also uncovers how tenth-century herbal remedies were effective at explaining the properties of their ingredients in modern terms and concepts including analgesia, anti-inflammation, and antinociception, and explores the way tenth-century treatments relieved painful headaches and prevented their recurrence.
Collapse
Affiliation(s)
- Arwa Ibrahim
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Karimi SA, Zahra FT, Martin LJ. IUPHAR review: Navigating the role of preclinical models in pain research. Pharmacol Res 2024; 200:107073. [PMID: 38232910 DOI: 10.1016/j.phrs.2024.107073] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Chronic pain is a complex and challenging medical condition that affects millions of people worldwide. Understanding the underlying mechanisms of chronic pain is a key goal of preclinical pain research so that more effective treatment strategies can be developed. In this review, we explore nociception, pain, and the multifaceted factors that lead to chronic pain by focusing on preclinical models. We provide a detailed look into inflammatory and neuropathic pain models and discuss the most used animal models for studying the mechanisms behind these conditions. Additionally, we emphasize the vital role of these preclinical models in developing new pain-relief drugs, focusing on biologics and the therapeutic potential of NMDA and cannabinoid receptor antagonists. We also discuss the challenges of TRPV1 modulation for pain treatment, the clinical failures of neurokinin (NK)- 1 receptor antagonists, and the partial success story of Ziconotide to provide valuable lessons for preclinical pain models. Finally, we highlight the overall success and limitations of current treatments for chronic pain while providing critical insights into the development of more effective therapies to alleviate the burden of chronic pain.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Fatama Tuz Zahra
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
20
|
Ahmed F, Torrens A, Mahler SV, Ferlenghi F, Huestis MA, Piomelli D. A Sensitive Ultrahigh-Performance Liquid Chromatography/Tandem Mass Spectrometry Method for the Simultaneous Analysis of Phytocannabinoids and Endocannabinoids in Plasma and Brain. Cannabis Cannabinoid Res 2024; 9:371-385. [PMID: 36367975 PMCID: PMC10874825 DOI: 10.1089/can.2022.0216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are major chemical constituents of cannabis, which may interact either directly or indirectly with the endocannabinoid and endocannabinoid-like ("paracannabinoid") systems, two lipid-based signaling complexes that play important roles in physiology. Legislative changes emphasize the need to understand how THC and CBD might impact endocannabinoid and paracannabinoid signaling, and to develop analytical approaches to study such impact. In this study, we describe a sensitive and accurate method for the simultaneous quantification of THC, its main oxidative metabolites [11-hydroxy-Δ9-THC (11-OH-THC) and 11-nor-9-carboxy-Δ9-THC (11-COOH-THC)], CBD, and a representative set of endocannabinoid [anandamide and 2-arachidonoyl-sn-glycerol (2-AG)] and paracannabinoid [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)] compounds. Analyte separation relies on the temperature-dependent shape selectivity properties of polymerically bonded C18 stationary phases. Materials and Methods: Analytes are extracted from tissues using acetonitrile precipitation followed by phospholipid removal. The ultrahigh-performance liquid chromatography/tandem mass spectrometry protocol utilizes a commercially available C18 polymeric-bonded phase column and a simple gradient elution system. Results: Ten-point calibration curves show excellent linearity (R2>0.99) over a wide range of analyte concentrations (0.02-500 ng/mL). Lowest limits of quantification are 0.05 ng/mL for anandamide, 0.1 ng/mL for 11-OH-THC and OEA, 0.2 ng/mL for THC and CBD, 0.5 ng/mL for 11-COOH-THC, 1.0 ng/mL for 2-AG, and 2.0 ng/mL for PEA. The lowest limits of detection are 0.02 ng/mL for anandamide, 0.05 ng/mL for 11-OH-THC and OEA, 0.1 ng/mL for THC and CBD, 0.2 ng/mL for 11-COOH-THC, 0.5 ng/mL for 2-AG, and 1.0 ng/mL for PEA. Conclusions: An application of the method is presented, which showed that phytocannabinoid administration elevates endocannabinoid levels in plasma and brain of adolescent male and female mice.
Collapse
Affiliation(s)
- Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Alexa Torrens
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
| | - Stephen V. Mahler
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - Francesca Ferlenghi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parma, Italy
| | - Marilyn A. Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California, USA
- Department of Biological Chemistry, University of California, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, California, USA
| |
Collapse
|
21
|
Ge H, Ji B, Fang J, Wang J, Li J, Wang J. Discovery of Potent and Selective CB2 Agonists Utilizing a Function-Based Computational Screening Protocol. ACS Chem Neurosci 2023; 14:3941-3958. [PMID: 37823773 PMCID: PMC10623575 DOI: 10.1021/acschemneuro.3c00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
Nowadays, the identification of agonists and antagonists represents a great challenge in computer-aided drug design. In this work, we developed a computational protocol enabling us to design/screen novel chemicals that are likely to serve as selective CB2 agonists. The principle of this protocol is that by calculating the ligand-residue interaction profile (LRIP) of a ligand binding to a specific target, the agonist-antagonist function of a compound is then able to be determined after statistical analysis and free energy calculations. This computational protocol was successfully applied in CB2 agonist development starting from a lead compound, and a success rate of 70% was achieved. The functions of the synthesized derivatives were determined by in vitro functional assays. Moreover, the identified potent CB2 agonists and antagonists strongly interact with the key residues identified using the already known potent CB2 agonists/antagonists. The analysis of the interaction profile of compound 6, a potent agonist, showed strong interactions with F2.61, I186, and F2.64, while compound 39, a potent antagonist, showed strong interactions with L17, W6.48, V6.51, and C7.42. Still, some residues including V3.32, T3.33, S7.39, F183, W5.43, and I3.29 are hotspots for both CB2 agonists and antagonists. More significantly, we identified three hotspot residues in the loop, including I186 for agonists, L17 for antagonists, and F183 for both. These hotspot residues are typically not considered in CB1/CB2 rational ligand design. In conclusion, LRIP is a useful concept in rationally designing a compound to possess a certain function.
Collapse
Affiliation(s)
- Haixia Ge
- School
of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Beihong Ji
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, School of Pharmacy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jiahui Fang
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, National
Center for Drug Screening, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiayang Wang
- School
of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Jing Li
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, National
Center for Drug Screening, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Junmei Wang
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, School of Pharmacy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
22
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
23
|
Cañumil VA, de la Cruz Borthiry FL, Scheffer F, Herrero Y, Scotti L, Bogetti ME, Parborell F, Meresman GF, Franchi AM, Beltrame JS, Ribeiro ML. A physiological concentration of anandamide promotes the migration of human endometrial fibroblast and the interaction with endothelial cells invitro. Placenta 2023; 139:99-111. [PMID: 37354692 DOI: 10.1016/j.placenta.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
INTRODUCTION The mechanisms that govern fibroblast behavior during the vascular adaptations of the uterus at early pregnancy remain unknown. Anandamide, an endocannabinoid, binds to cannabinoid receptors (CBs), and regulates gestation and angiogenesis. Its tone is regulated by fatty acid amide hydrolase (FAAH) within the uterus. We investigated the role of anandamide in endometrial fibroblasts migration and whether anandamide modulates fibroblasts-endothelial crosstalk. METHODS T-hESC and EA.hy926 cell lines were used as models of endometrial stromal and endothelial cells, respectively. T-hESC were incubated with anandamide plus different agents. Migration was tested (wound healing assay and phalloidin staining). Protein expression and localization were studied by Western blot and immunofluorescence. To test fibroblast-endothelial crosstalk, EA.hy926 cells were incubated with fibroblast conditioned media obtained after T-hESC migration. RESULTS Anandamide 1 nM increased T-hESC migration via CB1 and CB2. Cyclooxygenase-2 participated in anandamide-stimulated fibroblast migration. Prostaglandin F2alpha, and not prostaglandin E2, increased fibroblast wound closure. CB1, CB2, cyclooxygenase-2 and FAAH were expressed in T-hESC. Anandamide did not alter cyclooxygenase-2 localization but induced its cytoplasmic and nuclear expression through CB1 and CB2. URB-597, a FAAH selective inhibitor, also increased T-hESC migration via both CBs, and augmented cyclooxygenase-2 expression. Conditioned media from anandamide-induced T-hESC wound healing closure stimulated endothelial migration and did not alter their proliferation. Soluble factors from cyclooxygenase-2 were secreted by T-hESC and participated in T-hESC-induced EA.hy926 migration. Although anandamide-conditioned media augmented in EA.hy926 the expression of γH2AX, a marker of DNA damage, cyclooxygenase-2 was not involved in this effect. DISCUSSION Our results provide novel evidence about an active role of anandamide on endometrial fibroblast behavior as a mechanism regulating uterine vascular adaptations in early gestation.
Collapse
Affiliation(s)
- Vanesa A Cañumil
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Paraguay 2155, CP(1121ABG), CABA, Argentina
| | - Fernanda L de la Cruz Borthiry
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Paraguay 2155, CP(1121ABG), CABA, Argentina
| | - Frida Scheffer
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Paraguay 2155, CP(1121ABG), CABA, Argentina
| | - Yamila Herrero
- Laboratorio de Estudios de la Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IByME), CONICET, Vuelta de Obligado 2490, CP (C1428ADN), CABA, Argentina
| | - Leopoldina Scotti
- Laboratorio de Estudios de la Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IByME), CONICET, Vuelta de Obligado 2490, CP (C1428ADN), CABA, Argentina
| | - María Eugenia Bogetti
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Paraguay 2155, CP(1121ABG), CABA, Argentina
| | - Fernanda Parborell
- Laboratorio de Estudios de la Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IByME), CONICET, Vuelta de Obligado 2490, CP (C1428ADN), CABA, Argentina
| | - Gabriela F Meresman
- Laboratorio de Fisiopatología Endometrial, Instituto de Biología y Medicina Experimental (IByME), CONICET, Vuelta de Obligado 2490, CP (C1428ADN), CABA, Argentina
| | - Ana M Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, CABA, Argentina
| | - Jimena S Beltrame
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Paraguay 2155, CP(1121ABG), CABA, Argentina
| | - María L Ribeiro
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Paraguay 2155, CP(1121ABG), CABA, Argentina.
| |
Collapse
|
24
|
Jaiswal S, Akhilesh, Tiwari V, Ayyannan SR. Anti-nociceptive potential of an isatin-derived dual fatty acid amide hydrolase-monoacylglycerol lipase inhibitor. Pharmacol Rep 2023; 75:737-745. [PMID: 36913176 DOI: 10.1007/s43440-023-00468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Recently, we have reported an isatin-derived carbohydrazone, 5-chloro-N'-(6-chloro-2-oxoindolin-3-ylidene)-2-hydroxybenzohydrazide (SIH 3) as dual nanomolar FAAH (fatty acid amide hydrolase)-MAGL (monoacylglycerol lipase) inhibitor with good CNS penetration and neuroprotective activity profile. In this study, we further investigated the pharmacological profile of compound SIH 3 in the neuropathic pain model along with acute toxicity and ex vivo studies. METHODS Chronic constrictive injury (CCI) was used to induce neuropathic pain in male Sprague-Dawley rats and the anti-nociceptive activity of the compound SIH 3 was investigated at 25, 50, and 100 mg/kg ip. Subsequently, locomotor activity was measured by rotarod and actophotometer experiments. The acute oral toxicity of the compound was assessed as per the OECD guidelines 423. RESULTS Compound SIH 3 showed significant anti-nociceptive activity in the CCI-induced neuropathic pain model without altering the locomotor activity. Furthermore, compound SIH 3 showed an excellent safety profile (up to 2000 mg/kg, po) in the acute oral toxicity study and was also non-hepatotoxic. Further, ex vivo studies revealed that the compound SIH 3 produces a significant antioxidant effect in oxidative stress induced by CCI. CONCLUSION Our findings suggest that the investigated compound SIH 3 has the potential to be developed as an anti-nociceptive agent.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, 281406, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| |
Collapse
|
25
|
Zeng X, Mai J, Xie H, Yang L, Liu X. Activation of CB1R alleviates central sensitization by regulating HCN2-pNR2B signaling in a chronic migraine rat model. J Headache Pain 2023; 24:44. [PMID: 37085778 PMCID: PMC10120244 DOI: 10.1186/s10194-023-01580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Central sensitization has been widely accepted as an underlying pathophysiological mechanism of chronic migraine (CM), activation of cannabinoid type-1 receptor (CB1R) exerts antinociceptive effects by relieving central sensitization in many pain models. However, the role of CB1R in the central sensitization of CM is still unclear. METHODS A CM model was established by infusing inflammatory soup (IS) into the dura of male Wistar rats for 7 days, and hyperalgesia was assessed by the mechanical and thermal thresholds. In the periaqueductal gray (PAG), the mRNA and protein levels of CB1R and hyperpolarization-activated cyclic nucleotide-gated cation channel 2 (HCN2) were measured by qRT-PCR and western blotting. After intraventricular injection of Noladin ether (NE) (a CB1R agonist), ZD 7288 (an HCN2 blocker), and AM 251 (a CB1R antagonist), the expression of tyrosine phosphorylation of N-methyl-D-aspartate receptor subtype 2B (pNR2B), calcium-calmodulin-dependent kinase II (CaMKII), and phosphorylated cAMP-responsive element binding protein (pCREB) was detected, and central sensitization was evaluated by the expression of calcitonin gene-related peptide (CGRP), c-Fos, and substance P (SP). Synaptic-associated protein (postsynaptic density protein 95 (PSD95) and synaptophysin (Syp)) and synaptic ultrastructure were detected to explore synaptic plasticity in central sensitization. RESULTS We observed that the mRNA and protein levels of CB1R and HCN2 were both significantly increased in the PAG of CM rats. The application of NE or ZD 7288 ameliorated IS-induced hyperalgesia; repressed the pNR2B/CaMKII/pCREB pathway; reduced CGRP, c-Fos, SP, PSD95, and Syp expression; and inhibited synaptic transmission. Strikingly, the application of ZD 7288 relieved AM 251-evoked elevation of pNR2B, CGRP, and c-Fos expression. CONCLUSIONS These data reveal that activation of CB1R alleviates central sensitization by regulating HCN2-pNR2B signaling in CM rats. The activation of CB1R might have a positive influence on the prevention of CM by mitigating central sensitization.
Collapse
Affiliation(s)
- Xiaoxu Zeng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Hongjian Xie
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ling Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
26
|
Wolfson G, Sionov RV, Smoum R, Korem M, Polacheck I, Steinberg D. Anti-Bacterial and Anti-Biofilm Activities of Anandamide against the Cariogenic Streptococcus mutans. Int J Mol Sci 2023; 24:ijms24076177. [PMID: 37047147 PMCID: PMC10094667 DOI: 10.3390/ijms24076177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Streptococcus mutans is a cariogenic bacterium in the oral cavity involved in plaque formation and dental caries. The endocannabinoid anandamide (AEA), a naturally occurring bioactive lipid, has been shown to have anti-bacterial and anti-biofilm activities against Staphylococcus aureus. We aimed here to study its effects on S. mutans viability, biofilm formation and extracellular polysaccharide substance (EPS) production. S. mutans were cultivated in the absence or presence of various concentrations of AEA, and the planktonic growth was followed by changes in optical density (OD) and colony-forming units (CFU). The resulting biofilms were examined by MTT metabolic assay, Crystal Violet (CV) staining, spinning disk confocal microscopy (SDCM) and high-resolution scanning electron microscopy (HR-SEM). The EPS production was determined by Congo Red and fluorescent dextran staining. Membrane potential and membrane permeability were determined by diethyloxacarbocyanine iodide (DiOC2(3)) and SYTO 9/propidium iodide (PI) staining, respectively, using flow cytometry. We observed that AEA was bactericidal to S. mutans at 12.5 µg/mL and prevented biofilm formation at the same concentration. AEA reduced the biofilm thickness and biomass with concomitant reduction in total EPS production, although there was a net increase in EPS per bacterium. Preformed biofilms were significantly affected at 50 µg/mL AEA. We further show that AEA increased the membrane permeability and induced membrane hyperpolarization of these bacteria. AEA caused S. mutans to become elongated at the minimum inhibitory concentration (MIC). Gene expression studies showed a significant increase in the cell division gene ftsZ. The concentrations of AEA needed for the anti-bacterial effects were below the cytotoxic concentration for normal Vero epithelial cells. Altogether, our data show that AEA has anti-bacterial and anti-biofilm activities against S. mutans and may have a potential role in preventing biofilms as a therapeutic measure.
Collapse
|
27
|
The phospholipase A 2 superfamily as a central hub of bioactive lipids and beyond. Pharmacol Ther 2023; 244:108382. [PMID: 36918102 DOI: 10.1016/j.pharmthera.2023.108382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
In essence, "phospholipase A2" (PLA2) means a group of enzymes that release fatty acids and lysophospholipids by hydrolyzing the sn-2 position of glycerophospholipids. To date, more than 50 enzymes possessing PLA2 or related lipid-metabolizing activities have been identified in mammals, and these are subdivided into several families in terms of their structures, catalytic mechanisms, tissue/cellular localizations, and evolutionary relationships. From a general viewpoint, the PLA2 superfamily has mainly been implicated in signal transduction, driving the production of a wide variety of bioactive lipid mediators. However, a growing body of evidence indicates that PLA2s also contribute to phospholipid remodeling or recycling for membrane homeostasis, fatty acid β-oxidation for energy production, and barrier lipid formation on the body surface. Accordingly, PLA2 enzymes are considered one of the key regulators of a broad range of lipid metabolism, and perturbation of specific PLA2-driven lipid pathways often disrupts tissue and cellular homeostasis and may be associated with a variety of diseases. This review covers current understanding of the physiological functions of the PLA2 superfamily, focusing particularly on the two major intracellular PLA2 families (Ca2+-dependent cytosolic PLA2s and Ca2+-independent patatin-like PLA2s) as well as other PLA2 families, based on studies using gene-manipulated mice and human diseases in combination with comprehensive lipidomics.
Collapse
|
28
|
Nan J, Liu J, Lin G, Zhang S, Xia A, Zhou P, Zhou Y, Zhang J, Zhao J, Zhang S, Huang C, Wang Y, Hu Q, Chen J, Xiang M, Yang X, Yang S. Discovery of 4-(1,2,4-Oxadiazol-5-yl)azepan-2-one Derivatives as a New Class of Cannabinoid Type 2 Receptor Agonists for the Treatment of Inflammatory Pain. J Med Chem 2023; 66:3460-3483. [PMID: 36821347 DOI: 10.1021/acs.jmedchem.2c01943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Selectively targeting the cannabinoid receptor CB2 is an attractive therapeutic strategy for the treatment of inflammatory pain without psychiatric side effects mediated by the cannabinoid receptor CB1. Herein, we report the discovery of 4-(1,2,4-oxadiazol-5-yl)azepan-2-one derivatives as a new class of CB2 agonists. Systematic structure-activity relationship investigations resulted in the identification of the most potent compound 25r. This compound displayed high selectivity for CB2 against CB1 (CB2 EC50 = 21.0 nM, Emax = 87%, CB1 EC50 > 30 μM, ratio CB1/CB2 > 1428) with favorable pharmacokinetic properties. Especially, 25r demonstrated significant efficacy in the analgesic model of rodent inflammatory pain. All the results suggest that compound 25r could serve as a lead compound for treating inflammatory pain and deserves further in-depth studies.
Collapse
Affiliation(s)
- Jinshan Nan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingming Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanshan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Anjie Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pei Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yangli Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiahao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinlong Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chong Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yifei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junxian Chen
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu Sichuan 610041, China
| | - Mingli Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
29
|
Bhattacharya P, Chatterjee S, Roy D. Impact of exercise on brain neurochemicals: a comprehensive review. SPORT SCIENCES FOR HEALTH 2023. [DOI: 10.1007/s11332-022-01030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
30
|
Blanton H, Reddy PH, Benamar K. Chronic pain in Alzheimer's disease: Endocannabinoid system. Exp Neurol 2023; 360:114287. [PMID: 36455638 PMCID: PMC9789196 DOI: 10.1016/j.expneurol.2022.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain, one of the most common reasons adults seek medical care, has been linked to restrictions in mobility and daily activities, dependence on opioids, anxiety, depression, sleep deprivation, and reduced quality of life. Alzheimer's disease (AD), a devastating neurodegenerative disorder (characterized by a progressive impairment of cognitive functions) in the elderly, is often co-morbid with chronic pain. AD is one of the most common neurodegenerative disorders in the aged population. The reported prevalence of chronic pain is 45.8% of the 50 million people with AD. As the population ages, the number of older people who experience AD and chronic pain will also increase. The current treatment options for chronic pain are limited, often ineffective, and have associated side effects. This review summarizes the role of the endocannabinoid system in pain, its potential role in chronic pain in AD, and addresses gaps and future directions.
Collapse
Affiliation(s)
- Henry Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA; Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Khalid Benamar
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA.
| |
Collapse
|
31
|
Microglial Cannabinoid CB 2 Receptors in Pain Modulation. Int J Mol Sci 2023; 24:ijms24032348. [PMID: 36768668 PMCID: PMC9917135 DOI: 10.3390/ijms24032348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Pain, especially chronic pain, can strongly affect patients' quality of life. Cannabinoids ponhave been reported to produce potent analgesic effects in different preclinical pain models, where they primarily function as agonists of Gi/o protein-coupled cannabinoid CB1 and CB2 receptors. The CB1 receptors are abundantly expressed in both the peripheral and central nervous systems. The central activation of CB1 receptors is strongly associated with psychotropic adverse effects, thus largely limiting its therapeutic potential. However, the CB2 receptors are promising targets for pain treatment without psychotropic adverse effects, as they are primarily expressed in immune cells. Additionally, as the resident immune cells in the central nervous system, microglia are increasingly recognized as critical players in chronic pain. Accumulating evidence has demonstrated that the expression of CB2 receptors is significantly increased in activated microglia in the spinal cord, which exerts protective consequences within the surrounding neural circuitry by regulating the activity and function of microglia. In this review, we focused on recent advances in understanding the role of microglial CB2 receptors in spinal nociceptive circuitry, highlighting the mechanism of CB2 receptors in modulating microglia function and its implications for CB2 receptor- selective agonist-mediated analgesia.
Collapse
|
32
|
Endocannabinoid System: Chemical Characteristics and Biological Activity. Pharmaceuticals (Basel) 2023; 16:ph16020148. [PMID: 37017445 PMCID: PMC9966761 DOI: 10.3390/ph16020148] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The endocannabinoid system (eCB) has been studied to identify the molecular structures present in Cannabis sativa. eCB consists of cannabinoid receptors, endogenous ligands, and the associated enzymatic apparatus responsible for maintaining energy homeostasis and cognitive processes. Several physiological effects of cannabinoids are exerted through interactions with various receptors, such as CB1 and CB2 receptors, vanilloid receptors, and the recently discovered G-protein-coupled receptors (GPR55, GPR3, GPR6, GPR12, and GPR19). Anandamide (AEA) and 2-arachidoylglycerol (2-AG), two small lipids derived from arachidonic acid, showed high-affinity binding to both CB1 and CB2 receptors. eCB plays a critical role in chronic pain and mood disorders and has been extensively studied because of its wide therapeutic potential and because it is a promising target for the development of new drugs. Phytocannabinoids and synthetic cannabinoids have shown varied affinities for eCB and are relevant to the treatment of several neurological diseases. This review provides a description of eCB components and discusses how phytocannabinoids and other exogenous compounds may regulate the eCB balance. Furthermore, we show the hypo- or hyperfunctionality of eCB in the body and how eCB is related to chronic pain and mood disorders, even with integrative and complementary health practices (ICHP) harmonizing the eCB.
Collapse
|
33
|
Svobodova A, Vrkoslav V, Smeringaiova I, Jirsova K. Distribution of an analgesic palmitoylethanolamide and other N-acylethanolamines in human placental membranes. PLoS One 2023; 18:e0279863. [PMID: 36638082 PMCID: PMC9838831 DOI: 10.1371/journal.pone.0279863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 12/09/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Human amniotic and amniochorionic membranes (AM, ACM) represent the most often used grafts accelerating wound healing. Palmitoylethanolamide, oleoylethanolamide and anandamide are endogenous bioactive lipid molecules, generally referred as N-acylethanolamines. They express analgesic, nociceptive, neuroprotective and anti-inflammatory properties. We assessed the distribution of these lipid mediators in placental tissues, as they could participate on analgesic and wound healing effect of AM/ACM grafts. METHODS Seven placentas were collected after caesarean delivery and fresh samples of AM, ACM, placental disc, umbilical cord, umbilical serum and vernix caseosa, and decontaminated samples (antibiotic solution BASE 128) of AM and ACM have been prepared. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used for N-acylethanolamines analysis. RESULTS N-acylethanolamines were present in all studied tissues, palmitoylethanolamide being the most abundant and the anandamide the least. For palmitoylethanolamide the maximum average concentration was detected in AM (350.33 ± 239.26 ng/g), while oleoylethanolamide and anandamide were most abundant in placenta (219.08 ± 79.42 ng/g and 30.06 ± 7.77 ng/g, respectively). Low levels of N-acylethanolamines were found in serum and vernix. A significant increase in the levels of N-acylethanolamines (3.1-3.6-fold, P < 0.001) was observed in AM when the tissues were decontaminated using antibiotic solution. The increase in decontaminated ACM was not statistically significant. CONCLUSIONS The presence of N-acylethanolamines, particularly palmitoylethanolamide in AM and ACM allows us to propose these lipid mediators as the likely factors responsible for the anti-hyperalgesic, but also anti-inflammatory and neuroprotective, effects of AM/ACM grafts in wound healing treatment. The increase of N-acylethanolamines levels in AM and ACM after tissue decontamination indicates that tissue processing is an important factor in maintaining the analgesic effect.
Collapse
Affiliation(s)
- Alzbeta Svobodova
- First Faculty of Medicine, 2 Department of Surgery–Department of Cardiovascular Surgery, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Vladimir Vrkoslav
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ingrida Smeringaiova
- First Faculty of Medicine, Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katerina Jirsova
- First Faculty of Medicine, Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
34
|
Signorello MG, Ravera S, Leoncini G. Endocannabinoids effect on oxidative status of human platelets. J Cell Biochem 2023; 124:46-58. [PMID: 36260649 DOI: 10.1002/jcb.30341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/12/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023]
Abstract
Reactive oxygen species (ROS) are known to regulate platelet activation. Since endocannabinoids behave as platelet agonists, we investigated the effect of two endocannabinoids, 2-arachidonoylglycerol (2AG) and anandamide (AEA) on the oxidative status of human platelets. We have demonstrated that 2AG and AEA stimulate ROS production, superoxide anion formation and lipid peroxidation. The effect is dose and time dependent and mainly occurs through the involvement of cannabinoid receptor 1 (CB1) since all tested parameters are greatly reduced by SR141716, the CB1 specific inhibitor. The specific inhibitor of cannabinoid receptor 2 (CB2) SR144528 produces a very small inhibition. The involvement of syk/PI3K/AKT/mTor pathway in oxidative stress induced by endocannabinoids is shown. Nicotinamide adenine dinucleotide phosphate oxidase seems to be poorly involved in the endocannabinoids effect. Concerning the aerobic metabolism, it has been demonstrated that endocannabinoids reduce the oxygen consumption and adenosine triphosphate synthesis, both in the presence of pyruvate + malate or succinate. In addition, endocannabinoids inhibit the activity of respiratory complexes II, III and IV and increase the activity of respiratory complex I. The endocannabinoids effect on aerobic metabolism seems to be also a CB1 mediated mechanism. Thus, in human platelets oxidative stress induced by endocannabinoids, mainly generated in the respiratory chain through the activation of complex I and the inhibition of complex II, III and IV, may lead to thrombotic events, contributing to cardiovascular diseases.
Collapse
Affiliation(s)
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Giuliana Leoncini
- Biochemistry Lab, Department of Pharmacy, University of Genoa, Genova, Italy
| |
Collapse
|
35
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
36
|
Ramer R, Hinz B. Cannabinoid Compounds as a Pharmacotherapeutic Option for the Treatment of Non-Cancer Skin Diseases. Cells 2022; 11:4102. [PMID: 36552866 PMCID: PMC9777118 DOI: 10.3390/cells11244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The endocannabinoid system has been shown to be involved in various skin functions, such as melanogenesis and the maintenance of redox balance in skin cells exposed to UV radiation, as well as barrier functions, sebaceous gland activity, wound healing and the skin's immune response. In addition to the potential use of cannabinoids in the treatment and prevention of skin cancer, cannabinoid compounds and derivatives are of interest as potential systemic and topical applications for the treatment of various inflammatory, fibrotic and pruritic skin conditions. In this context, cannabinoid compounds have been successfully tested as a therapeutic option for the treatment of androgenetic alopecia, atopic and seborrhoeic dermatitis, dermatomyositis, asteatotic and atopic eczema, uraemic pruritis, scalp psoriasis, systemic sclerosis and venous leg ulcers. This review provides an insight into the current literature on cannabinoid compounds as potential medicines for the treatment of skin diseases.
Collapse
Affiliation(s)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, D-18057 Rostock, Germany
| |
Collapse
|
37
|
Gianquinto E, Sodano F, Rolando B, Kostrzewa M, Allarà M, Mahmoud AM, Kumar P, Spyrakis F, Ligresti A, Chegaev K. N-[1,3-Dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulphonamides as Novel Selective Human Cannabinoid Type 2 Receptor (hCB2R) Ligands; Insights into the Mechanism of Receptor Activation/Deactivation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238152. [PMID: 36500256 PMCID: PMC9738591 DOI: 10.3390/molecules27238152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed in the brain, where it regulates processes related to cognition, memory, and motor control. The development of hCB2R ligands represents a therapeutic opportunity for treating diseases such as pain, inflammation and cancer. Identifying new selective scaffolds for cannabinoids and determining the structural determinants responsible for agonism and antagonism are priorities in drug design. In this work, a series of N-[1,3-dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulfonamides is designed and synthesized and their affinity for human hCB1R and hCB2R is determined. Starting with a scaffold selected from the NIH Psychoactive Drug Screening Program Repository, through a combination of molecular modeling and structure-activity relationship studies, we were able to identify the chemical features leading to finely tuned hCB2R selectivity. In addition, an in silico model capable of predicting the functional activity of hCB2R ligands was proposed and validated. The proposed receptor activation/deactivation model enabled the identification of four pure hCB2R-selective agonists that can be used as a starting point for the development of more potent ligands.
Collapse
Affiliation(s)
- Eleonora Gianquinto
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Federica Sodano
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Magdalena Kostrzewa
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Marco Allarà
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Ali Mokhtar Mahmoud
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
- Correspondence: (A.L.); (K.C.); Tel.: +39-0818675093 (A.L.); +39-0116707140 (K.C.)
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
- Correspondence: (A.L.); (K.C.); Tel.: +39-0818675093 (A.L.); +39-0116707140 (K.C.)
| |
Collapse
|
38
|
Lingegowda H, Williams BJ, Spiess KG, Sisnett DJ, Lomax AE, Koti M, Tayade C. Role of the endocannabinoid system in the pathophysiology of endometriosis and therapeutic implications. J Cannabis Res 2022; 4:54. [PMID: 36207747 PMCID: PMC9540712 DOI: 10.1186/s42238-022-00163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Endometriosis patients experience debilitating chronic pain, and the first-line treatment is ineffective at managing symptoms. Although surgical removal of the lesions provides temporary relief, more than 50% of the patients experience disease recurrence. Despite being a leading cause of hysterectomy, endometriosis lacks satisfactory treatments and a cure. Another challenge is the poor understanding of disease pathophysiology which adds to the delays in diagnosis and overall compromised quality of life. Endometriosis patients are in dire need of an effective therapeutic strategy that is both economical and effective in managing symptoms, while fertility is unaffected. Endocannabinoids and phytocannabinoids possess anti-inflammatory, anti-nociceptive, and anti-proliferative properties that may prove beneficial for endometriosis management, given that inflammation, vascularization, and pain are hallmark features of endometriosis. Endocannabinoids are a complex network of molecules that play a central role in physiological processes including homeostasis and tissue repair, but endocannabinoids have also been associated in the pathophysiology of several chronic inflammatory diseases including endometriosis and cancers. The lack of satisfactory treatment options combined with the recent legalization of recreational cannabinoids in some parts of the world has led to a rise in self-management strategies including the use of cannabinoids for endometriosis-related pain and other symptoms. In this review, we provide a comprehensive overview of endocannabinoids with a focus on their potential roles in the pathophysiology of endometriosis. We further provide evidence-driven perspectives on the current state of knowledge on endometriosis-associated pain, inflammation, and therapeutic avenues exploiting the endocannabinoid system for its management.
Collapse
Affiliation(s)
- Harshavardhan Lingegowda
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Bailey J Williams
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Katherine G Spiess
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Danielle J Sisnett
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Alan E Lomax
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
- Gastrointestinal Disease Research Unit (GIDRU), Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
- Department of Obstetrics and Gynecology, Kingston General Hospital, Kingston, ON, Canada
- Division of Cancer Biology and Genetics, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
39
|
Liu W, Zhang WD, Li T, Zhou Z, Luo M, Chen X, Cai Y, Zhu ZJ. Four-Dimensional Untargeted Profiling of N-Acylethanolamine Lipids in the Mouse Brain Using Ion Mobility–Mass Spectrometry. Anal Chem 2022; 94:12472-12480. [DOI: 10.1021/acs.analchem.2c02650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenbin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei-dong Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Tongzhou Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Mingdu Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xi Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Shanghai Key Laboratory of Aging Studies, 100 Hai Ke Road, Pudong, Shanghai 201210, China
| |
Collapse
|
40
|
Scuteri D, Guida F, Boccella S, Palazzo E, Maione S, Rodríguez-Landa JF, Martínez-Mota L, Tonin P, Bagetta G, Corasaniti MT. Effects of Palmitoylethanolamide (PEA) on Nociceptive, Musculoskeletal and Neuropathic Pain: Systematic Review and Meta-Analysis of Clinical Evidence. Pharmaceutics 2022; 14:1672. [PMID: 36015298 PMCID: PMC9414729 DOI: 10.3390/pharmaceutics14081672] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Some 30−50% of the global population and almost 20% of the European population actually suffer from chronic pain, which presents a tremendous burden to society when this pain turns into a disability and hospitalization. Palmitoylethanolamide (PEA) has been demonstrated to improve pain in preclinical contexts, but an appraisal of clinical evidence is still lacking. The present study aimed at addressing the working hypothesis for the efficacy of PEA for nociceptive musculoskeletal and neuropathic pain in the clinical setting. The systematic search, selection and analysis were performed in agreement with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 recommendations. The primary outcome was pain reduction, as measured by a pain assessment scale. The secondary outcome was improvement in quality of life and/or of parameters of function. The results obtained for a total of 933 patients demonstrate the efficacy of PEA over the control (p < 0.00001), in particular in six studies apart from the two randomized, double-blind clinical trials included. However, the results are downgraded due to the high heterogeneity of the studies (I2 = 99%), and the funnel plot suggests publication bias. Efficacy in achieving a reduction in the need for rescue medications and improvement in functioning, neuropathic symptoms and quality of life are reported. Therefore, adequately powered randomized, double-blind clinical trials are needed to deepen the domains of efficacy of add-on therapy with PEA for chronic pain. PROSPERO registration: CRD42022314395.
Collapse
Affiliation(s)
- Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, 80078 Pozzuoli, Italy
- IRCSS, Neuromed, 86077 Pozzilli, Italy
| | - Juan Francisco Rodríguez-Landa
- Laboratorio de Neurofarmacología, Instituto de Neuroetología, Universidad Veracruzana, Xalapa 91190, Mexico
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Xalapa 91001, Mexico
| | - Lucia Martínez-Mota
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 03440, Mexico
| | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, 88900 Crotone, Italy
| | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | | |
Collapse
|
41
|
Mabou Tagne A, Fotio Y, Uppal PS, Piomelli D. Synergistic antinociceptive effects of concomitant NAAA and peripheral FAAH inhibition. Exp Neurol 2022; 357:114194. [PMID: 35932800 DOI: 10.1016/j.expneurol.2022.114194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 11/19/2022]
Abstract
The intracellular lipid amidases, fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase (NAAA), terminate the actions of anandamide and palmitoylethanolamide (PEA), two antinociceptive and anti-inflammatory lipid-derived mediators. Here we show, confirming prior research, that small-molecule inhibitors of peripheral FAAH (compound URB937) and systemic NAAA (compound ARN19702) individually attenuate, in male CD-1 mice, pain-related behaviors and paw inflammation in the formalin and carrageenan tests. More importantly, isobolographic analyses revealed that the combination of URB937 and ARN19702 produced substantial synergistic (greater than additive) antinociceptive effects in both models as well as additive anti-inflammatory effects in the carrageenan test. Together, the findings uncover a functional interplay between FAAH and NAAA substrates in the control of nociception, which might be exploited clinically to develop safe and effective pain management strategies.
Collapse
Affiliation(s)
- Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA.
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Parwinder Singh Uppal
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-4625, USA; Department of Biological Chemistry, University of California, Irvine, CA 92697-4625, USA; Department of Pharmaceutical Sciences, University of California Irvine, CA 92697-4625, USA.
| |
Collapse
|
42
|
Inhibition of Monoacylglycerol Lipase by NSD1819 as an Effective Strategy for the Endocannabinoid System Modulation against Neuroinflammation-Related Disorders. Int J Mol Sci 2022; 23:ijms23158428. [PMID: 35955562 PMCID: PMC9369272 DOI: 10.3390/ijms23158428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation is a key pathological event shared by different diseases affecting the nervous system. Since the underlying mechanism of neuroinflammation is a complex and multifaceted process, current pharmacological treatments are unsatisfactory—a reason why new therapeutic approaches are mandatory. In this context, the endocannabinoid system has proven to possess neuroprotective and immunomodulatory actions under neuroinflammatory status, and its modulation could represent a valuable approach to address different inflammatory processes. To this aim, we evaluated the efficacy of a repeated treatment with NSD1819, a potent β-lactam-based monoacylglycerol lipase inhibitor in a mouse model of neuroinflammation induced by lipopolysaccharide (LPS) injection. Mice were intraperitoneally injected with LPS 1 mg/kg for five consecutive days to induce systemic inflammation. Concurrently, NSD1819 (3 mg/kg) was daily per os administered from day 1 until the end of the experiment (day 11). Starting from day 8, behavioral measurements were performed to evaluate the effect of the treatment on cognitive impairments, allodynia, motor alterations, anhedonia, and depressive-like behaviors evoked by LPS. Histologically, glial analysis of the spinal cord was also performed. The administration of NSD1819 was able to completely counteract thermal and mechanical allodynia as highlighted by the Cold plate and von Frey tests, respectively, and to reduce motor impairments as demonstrated by the Rota rod test. Moreover, the compound was capable of neutralizing the memory loss in the Passive avoidance test, and reducing depressive-like behavior in the Porsolt test. Finally, LPS stimulation caused a significant glial cells activation in the dorsal horn of the lumbar spinal cord that was significantly recovered by NSD1819 repeated treatment. In conclusion, NSD1819 was able to thwart the plethora of symptoms evoked by LPS, thus representing a promising candidate for future applications in the context of neuroinflammation and related diseases.
Collapse
|
43
|
Murakami M, Takamiya R, Miki Y, Sugimoto N, Nagasaki Y, Suzuki-Yamamoto T, Taketomi Y. Segregated functions of two cytosolic phospholipase A 2 isoforms (cPLA 2α and cPLA 2ε) in lipid mediator generation. Biochem Pharmacol 2022; 203:115176. [PMID: 35841927 DOI: 10.1016/j.bcp.2022.115176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/16/2022]
Abstract
Among the phospholipase A2 (PLA2) superfamily, group IVA cytosolic PLA2 (cPLA2α) is currently attracting much attention as a central regulator of arachidonic acid (AA) metabolism linked to eicosanoid biosynthesis. Following cell activation, cPLA2α selectively releases AA, a precursor of a variety of eicosanoids, from phospholipids in perinuclear membrane compartments. cPLA2α-null mice display various phenotypes that could be largely explained by reduced eicosanoid signaling. In contrast, group IVE cPLA2ε, another member of the cPLA2 family, acts as a Ca2+-dependent N-acyltransferase rather than a PLA2, thereby regulating the biosynthesis of N-acylethanolamines (NAEs), a unique class of lipid mediators with an anti-inflammatory effect. In response to Ca2+ signaling, cPLA2ε translocates to phosphatidylserine-rich organelle membranes in the endocytic/recycling pathway. In vivo, cPLA2ε is induced in keratinocytes of psoriatic skin, and its genetic deletion exacerbates psoriatic inflammation due to a marked reduction of NAE-related lipids. cPLA2ε also contributes to NAE generation in several if not all mouse tissues. Thus, the two members of the cPLA2 family, cPLA2α and cPLA2ε, catalyze distinct enzymatic reactions to mobilize distinct sets of lipid mediators, thereby differently regulating pathophysiological events in health and disease. Such segregation of the cPLA2α-eicosanoid and cPLA2ε-NAE pathways represents a new paradigm of research on PLA2s and lipid mediators.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Rina Takamiya
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nao Sugimoto
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Nagasaki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Khayat W, Lehmann C. The Endocannabinoid System: A Potential Therapeutic Target for Coagulopathies. Metabolites 2022; 12:metabo12060541. [PMID: 35736474 PMCID: PMC9228226 DOI: 10.3390/metabo12060541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Abnormal blood coagulation or coagulopathy is a common manifestation of many pathological conditions. It occurs when there is an imbalance between the activities of the coagulation system and the fibrinolytic system, leading to excessive or impaired intravascular blood clot formation, which can disturb blood flow causing ischemia or hemorrhage in the affected tissues. A growing body of evidence has demonstrated blood coagulation abnormalities in association with cannabinoid use, suggesting the involvement of the endogenous cannabinoid system (ECS) in modulating blood coagulation. However, the evidence in the literature has been controversial on whether cannabinoids promote or inhibit blood coagulation. The ECS has been extensively studied in recent years for its potential as a therapeutic target for many diseases. This review provides a brief introduction to the ECS and discusses the reported anticoagulatory and procoagulatory effects of various cannabinoids, highlighting some possible mechanisms that might underlie the observed effects. Understanding the coagulatory effects of cannabinoids and the interaction between the coagulation system and the ECS is vital for developing novel therapeutics for coagulopathies.
Collapse
Affiliation(s)
- Wujood Khayat
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- Correspondence: (W.K.); (C.L.)
| | - Christian Lehmann
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence: (W.K.); (C.L.)
| |
Collapse
|
45
|
Future Treatment of Neuropathic Pain in Spinal Cord Injury: The Challenges of Nanomedicine, Supplements or Opportunities? Biomedicines 2022; 10:biomedicines10061373. [PMID: 35740395 PMCID: PMC9219608 DOI: 10.3390/biomedicines10061373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain (NP) is a common chronic condition that severely affects patients with spinal cord injuries (SCI). It impairs the overall quality of life and is considered difficult to treat. Currently, clinical management of NP is often limited to drug therapy, primarily with opioid analgesics that have limited therapeutic efficacy. The persistence and intractability of NP following SCI and the potential health risks associated with opioids necessitate improved treatment approaches. Nanomedicine has gained increasing attention in recent years for its potential to improve therapeutic efficacy while minimizing toxicity by providing sensitive and targeted treatments that overcome the limitations of conventional pain medications. The current perspective begins with a brief discussion of the pathophysiological mechanisms underlying NP and the current pain treatment for SCI. We discuss the most frequently used nanomaterials in pain diagnosis and treatment as well as recent and ongoing efforts to effectively treat pain by proactively mediating pain signals following SCI. Although nanomedicine is a rapidly growing field, its application to NP in SCI is still limited. Therefore, additional work is required to improve the current treatment of NP following SCI.
Collapse
|
46
|
Bononi G, Di Stefano M, Poli G, Ortore G, Meier P, Masetto F, Caligiuri I, Rizzolio F, Macchia M, Chicca A, Avan A, Giovannetti E, Vagaggini C, Brai A, Dreassi E, Valoti M, Minutolo F, Granchi C, Gertsch J, Tuccinardi T. Reversible Monoacylglycerol Lipase Inhibitors: Discovery of a New Class of Benzylpiperidine Derivatives. J Med Chem 2022; 65:7118-7140. [PMID: 35522977 PMCID: PMC9150076 DOI: 10.1021/acs.jmedchem.1c01806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Monoacylglycerol
lipase (MAGL) is the enzyme responsible for the
metabolism of 2-arachidonoylglycerol in the brain and the hydrolysis
of peripheral monoacylglycerols. Many studies demonstrated beneficial
effects deriving from MAGL inhibition for neurodegenerative diseases,
inflammatory pathologies, and cancer. MAGL expression is increased
in invasive tumors, furnishing free fatty acids as pro-tumorigenic
signals and for tumor cell growth. Here, a new class of benzylpiperidine-based
MAGL inhibitors was synthesized, leading to the identification of 13, which showed potent reversible and selective MAGL inhibition.
Associated with MAGL overexpression and the prognostic role in pancreatic
cancer, derivative 13 showed antiproliferative activity
and apoptosis induction, as well as the ability to reduce cell migration
in primary pancreatic cancer cultures, and displayed a synergistic
interaction with the chemotherapeutic drug gemcitabine. These results
suggest that the class of benzylpiperidine-based MAGL inhibitors have
potential as a new class of therapeutic agents and MAGL could play
a role in pancreatic cancer.
Collapse
Affiliation(s)
- Giulia Bononi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Miriana Di Stefano
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.,Department of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Giulio Poli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Gabriella Ortore
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Philip Meier
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Francesca Masetto
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, DeBoelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.,Department of Molecular Sciences and Nanosystems, Ca' Foscari University, 30123 Venezia, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad 91886-17871, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, DeBoelelaan 1117, 1081HV Amsterdam, The Netherlands.,Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, via Giovannini 13, 56017 San Giuliano Terme, Pisa, Italy
| | - Chiara Vagaggini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2, 53100 Siena, Italy
| | - Filippo Minutolo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Carlotta Granchi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, CH-3012 Bern, Switzerland
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.,Center for Instrument Sharing of the University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| |
Collapse
|
47
|
Liang L, Takamiya R, Miki Y, Heike K, Taketomi Y, Sugimoto N, Yamaguchi M, Shitara H, Nishito Y, Kobayashi T, Hirabayashi T, Murakami M. Group IVE cytosolic phospholipase A 2 limits psoriatic inflammation by mobilizing the anti-inflammatory lipid N-acylethanolamine. FASEB J 2022; 36:e22301. [PMID: 35478358 DOI: 10.1096/fj.202101958r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
Psoriasis is an inflammatory disorder characterized by keratinocyte hyper-proliferation and Th17-type immune responses. However, the roles of bioactive lipids and the regulation of their biosynthesis in this chronic skin disease are not fully understood. Herein, we show that group IVE cytosolic phospholipase A2 (cPLA2 ε/PLA2G4E) plays a counterregulatory role against psoriatic inflammation by producing the anti-inflammatory lipid N-acylethanolamine (NAE). Lipidomics analysis of mouse skin revealed that NAE species and their precursors (N-acyl-phosphatidylethanolamine and glycerophospho-N-acylethanolamine) were robustly increased in parallel with the ongoing process of imiquimod (IMQ)-induced psoriasis, accompanied by a marked upregulation of cPLA2 ε in epidermal keratinocytes. Genetic deletion of cPLA2 ε exacerbated IMQ-induced ear swelling and psoriatic marker expression, with a dramatic reduction of NAE-related lipids in IMQ-treated, and even normal, skin. Stimulation of cultured human keratinocytes with psoriatic cytokines concomitantly increased PLA2G4E expression and NAE production, and supplementation with NAEs significantly attenuated the cytokine-induced upregulation of the psoriatic marker S100A9. Increased expression of cPLA2 ε was also evident in the epidermis of psoriatic patients. These findings reveal for the first time the in vivo role of cPLA2 ε, which is highly induced in the keratinocytes of the psoriatic skin, promotes the biosynthesis of NAE-related lipids, and contributes to limiting psoriatic inflammation.
Collapse
Affiliation(s)
- Luyiyun Liang
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rina Takamiya
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanako Heike
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nao Sugimoto
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Midori Yamaguchi
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Shitara
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasumasa Nishito
- Laboratory for Transgenic Technology, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tetsuyuki Kobayashi
- Department of Biology, Faculty of Science, Ochanomizu University, Tokyo, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
48
|
Jaiswal S, Akhilesh, Uniyal A, Tiwari V, Raja Ayyannan S. Synthesis and evaluation of dual fatty acid amide hydrolase-monoacylglycerol lipase inhibition and antinociceptive activities of 4-methylsulfonylaniline-derived semicarbazones. Bioorg Med Chem 2022; 60:116698. [PMID: 35296453 DOI: 10.1016/j.bmc.2022.116698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 03/02/2022] [Indexed: 12/31/2022]
Abstract
Fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) are promising targets for neuropathic pain and other CNS disorders. Based on our previous lead compound SIH 3, we designed and synthesized a series of 4-methylsulfonylphenyl semicarbazones and evaluated for FAAH and MAGL inhibition properties. Most of the compounds showed potency towards both enzymes with leading FAAH selectivity. Compound (Z)-2-(2,6-dichlorobenzylidene)-N-(4-(methylsulfonyl)phenyl)hydrazine-1-carboxamide emerged as the lead inhibitor against both FAAH (IC50 = 11 nM) and MAGL (IC50 = 36 nM). The lead inhibitor inhibited FAAH by non-competitive mode, but showed a mixed-type inhibition against MAGL. Molecular docking study unveiled that the docked ligands bind favorably to the active sites of FAAH and MAGL. The lead inhibitor interacted with FAAH and MAGL via π-π stacking via phenyl ring and hydrogen bonding through sulfonyl oxygen atoms or amide NH. Moreover, the stability of docked complexes was rationalized by molecular simulation studies. PAMPA assay revealed that the lead compound is suitable for blood-brain penetration. The lead compound showed better cell viability in lipopolysaccharide-induced neurotoxicity assay in SH-SY5Y cell lines. Further, in-vivo experiments unveiled that dual inhibitor was safe up to 2000 mg/kg with no hepatotoxicity. The dual FAAH-MAGL inhibitor produced significant anti-nociceptive effect in the CCI model of neuropathic pain without altering locomotion activity. Lastly, the lead compound exhibited promising ex-vivo FAAH/MAGL inhibition activity at the dose of 10 mg/kg and 20 mg/kg. Thus, these findings suggest that the semicarbazone-based lead compound can be a potential template for the development of agents for neuropathic pain.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ankit Uniyal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi - 221005, Uttar Pradesh, India.
| |
Collapse
|
49
|
Rodriguez CEB, Ouyang L, Kandasamy R. Antinociceptive effects of minor cannabinoids, terpenes and flavonoids in Cannabis. Behav Pharmacol 2022; 33:130-157. [PMID: 33709984 DOI: 10.1097/fbp.0000000000000627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cannabis has been used for centuries for its medicinal properties. Given the dangerous and unpleasant side effects of existing analgesics, the chemical constituents of Cannabis have garnered significant interest for their antinociceptive, anti-inflammatory and neuroprotective effects. To date, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) remain the two most widely studied constituents of Cannabis in animals. These studies have led to formulations of THC and CBD for human use; however, chronic pain patients also use different strains of Cannabis (sativa, indica and ruderalis) to alleviate their pain. These strains contain major cannabinoids, such as THC and CBD, but they also contain a wide variety of cannabinoid and noncannabinoid constituents. Although the analgesic effects of Cannabis are attributed to major cannabinoids, evidence indicates other constituents such as minor cannabinoids, terpenes and flavonoids also produce antinociception against animal models of acute, inflammatory, neuropathic, muscle and orofacial pain. In some cases, these constituents produce antinociception that is equivalent or greater compared to that produced by traditional analgesics. Thus, a better understanding of the extent to which these constituents produce antinociception alone in animals is necessary. The purposes of this review are to (1) introduce the different minor cannabinoids, terpenes, and flavonoids found in Cannabis and (2) discuss evidence of their antinociceptive properties in animals.
Collapse
Affiliation(s)
- Carl Erwin B Rodriguez
- Department of Psychology, California State University, East Bay, Hayward, California, USA
| | | | | |
Collapse
|
50
|
Ramer R, Wendt F, Wittig F, Schäfer M, Boeckmann L, Emmert S, Hinz B. Impact of Cannabinoid Compounds on Skin Cancer. Cancers (Basel) 2022; 14:cancers14071769. [PMID: 35406541 PMCID: PMC8997154 DOI: 10.3390/cancers14071769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022] Open
Abstract
Drugs targeting the endocannabinoid system are of interest as potential systemic chemotherapeutic treatments and for palliative care in cancer. In this context, cannabinoid compounds have been successfully tested as a systemic therapeutic option in preclinical models over the past decades. Recent findings have suggested an essential function of the endocannabinoid system in the homeostasis of various skin functions and indicated that cannabinoids could also be considered for the treatment and prophylaxis of tumour diseases of the skin. Cannabinoids have been shown to exert their anticarcinogenic effects at different levels of skin cancer progression, such as inhibition of tumour growth, proliferation, invasion and angiogenesis, as well as inducing apoptosis and autophagy. This review provides an insight into the current literature on cannabinoid compounds as potential pharmaceuticals for the treatment of melanoma and squamous cell carcinoma.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (R.R.); (F.W.); (F.W.)
| | - Franziska Wendt
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (R.R.); (F.W.); (F.W.)
| | - Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (R.R.); (F.W.); (F.W.)
| | - Mirijam Schäfer
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Centre, 18057 Rostock, Germany; (M.S.); (L.B.); (S.E.)
| | - Lars Boeckmann
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Centre, 18057 Rostock, Germany; (M.S.); (L.B.); (S.E.)
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Centre, 18057 Rostock, Germany; (M.S.); (L.B.); (S.E.)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (R.R.); (F.W.); (F.W.)
- Correspondence: ; Tel.: +49-381-494-5770
| |
Collapse
|