1
|
Licheri V, Brigman JL. Altering Cell-Cell Interaction in Prenatal Alcohol Exposure Models: Insight on Cell-Adhesion Molecules During Brain Development. Front Mol Neurosci 2022; 14:753537. [PMID: 34975396 PMCID: PMC8715949 DOI: 10.3389/fnmol.2021.753537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
Alcohol exposure during pregnancy disrupts the development of the brain and produces long lasting behavioral and cognitive impairments collectively known as Fetal Alcohol Spectrum Disorders (FASDs). FASDs are characterized by alterations in learning, working memory, social behavior and executive function. A large body of literature using preclinical prenatal alcohol exposure models reports alcohol-induced changes in architecture and activity in specific brain regions affecting cognition. While multiple putative mechanisms of alcohol’s long-lasting effects on morphology and behavior have been investigated, an area that has received less attention is the effect of alcohol on cell adhesion molecules (CAMs). The embryo/fetal development represents a crucial period for Central Nervous System (CNS) development during which the cell-cell interaction plays an important role. CAMs play a critical role in neuronal migration and differentiation, synaptic organization and function which may be disrupted by alcohol. In this review, we summarize the physiological structure and role of CAMs involved in brain development, review the current literature on prenatal alcohol exposure effects on CAM function in different experimental models and pinpoint areas needed for future study to better understand how CAMs may mediate the morphological, sensory and behavioral outcomes in FASDs.
Collapse
Affiliation(s)
- Valentina Licheri
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States.,New Mexico Alcohol Research Center, UNM Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
2
|
Delgado C, Bu L, Zhang J, Liu FY, Sall J, Liang FX, Furley AJ, Fishman GI. Neural cell adhesion molecule is required for ventricular conduction system development. Development 2021; 148:269045. [PMID: 34100064 PMCID: PMC8217711 DOI: 10.1242/dev.199431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022]
Abstract
The most distal portion of the ventricular conduction system (VCS) contains cardiac Purkinje cells (PCs), which are essential for synchronous activation of the ventricular myocardium. Contactin-2 (CNTN2), a member of the immunoglobulin superfamily of cell adhesion molecules (IgSF-CAMs), was previously identified as a marker of the VCS. Through differential transcriptional profiling, we discovered two additional highly enriched IgSF-CAMs in the VCS: NCAM-1 and ALCAM. Immunofluorescence staining showed dynamic expression patterns for each IgSF-CAM during embryonic and early postnatal stages, but ultimately all three proteins became highly enriched in mature PCs. Mice deficient in NCAM-1, but not CNTN2 or ALCAM, exhibited defects in PC gene expression and VCS patterning, as well as cardiac conduction disease. Moreover, using ST8sia2 and ST8sia4 knockout mice, we show that inhibition of post-translational modification of NCAM-1 by polysialic acid leads to disrupted trafficking of sarcolemmal intercalated disc proteins to junctional membranes and abnormal expansion of the extracellular space between apposing PCs. Taken together, our data provide insights into the complex developmental biology of the ventricular conduction system. Summary: The cell adhesion molecule NCAM-1 and its post-translational modification by polysialylation are required for normal formation and function of the specialized ventricular conduction system.
Collapse
Affiliation(s)
- Camila Delgado
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| | - Lei Bu
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| | - Jie Zhang
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| | - Fang-Yu Liu
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| | - Joseph Sall
- Microscopy Laboratory, Division of Advanced Research Technologies, NYU Langone Health, NY 10016, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, NYU Langone Health, NY 10016, USA
| | - Andrew J Furley
- Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, Department of Medicine, NYU Grossman School of Medicine, NY 10016, USA
| |
Collapse
|
3
|
GFRA1: A Novel Molecular Target for the Prevention of Osteosarcoma Chemoresistance. Int J Mol Sci 2018; 19:ijms19041078. [PMID: 29617307 PMCID: PMC5979596 DOI: 10.3390/ijms19041078] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/26/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
The glycosylphosphatidylinositol-linked GDNF (glial cell derived neurotrophic factor) receptor alpha (GFRA), a coreceptor that recognizes the GDNF family of ligands, has a crucial role in the development and maintenance of the nervous system. Of the four identified GFRA isoforms, GFRA1 specifically recognizes GDNF and is involved in the regulation of proliferation, differentiation, and migration of neuronal cells. GFRA1 has also been implicated in cancer cell progression and metastasis. Recent findings show that GFRA1 can contribute to the development of chemoresistance in osteosarcoma. GFRA1 expression was induced following treatment of osteosarcoma cells with the popular anticancer drug, cisplatin and induction of GFRA1 expression significantly suppressed apoptosis mediated by cisplatin in osteosarcoma cells. GFRA1 expression promotes autophagy by activating the SRC-AMPK signaling axis following cisplatin treatment, resulting in enhanced osteosarcoma cell survival. GFRA1-induced autophagy promoted tumor growth in mouse xenograft models, suggesting a novel function of GFRA1 in osteosarcoma chemoresistance.
Collapse
|
4
|
Quantitative Map of Proteome Dynamics during Neuronal Differentiation. Cell Rep 2017; 18:1527-1542. [PMID: 28178528 PMCID: PMC5316641 DOI: 10.1016/j.celrep.2017.01.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/08/2017] [Accepted: 01/11/2017] [Indexed: 01/05/2023] Open
Abstract
Neuronal differentiation is a multistep process that shapes and re-shapes neurons by progressing through several typical stages, including axon outgrowth, dendritogenesis, and synapse formation. To systematically profile proteome dynamics throughout neuronal differentiation, we took cultured rat hippocampal neurons at different developmental stages and monitored changes in protein abundance using a combination of stable isotope labeling and high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Almost one third of all 4,500 proteins quantified underwent a more than 2-fold expression change during neuronal differentiation, indicating extensive remodeling of the neuron proteome. To highlight the strength of our resource, we studied the neural-cell-adhesion molecule 1 (NCAM1) and found that it stimulates dendritic arbor development by promoting actin filament growth at the dendritic growth cone. We anticipate that our quantitative map of neuronal proteome dynamics is a rich resource for further analyses of the many identified proteins in various neurodevelopmental processes. Systematic profile of proteome dynamics throughout neuronal development in vitro Approximately 1,800 proteins show significant expression changes during differentiation Six expression profile clusters describe stage-specific patterns of protein dynamics This protein database may help to identify neurodevelopment mechanisms
Collapse
|
5
|
Cell Adhesion Molecules and Ubiquitination-Functions and Significance. BIOLOGY 2015; 5:biology5010001. [PMID: 26703751 PMCID: PMC4810158 DOI: 10.3390/biology5010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system.
Collapse
|
6
|
Pereda-Pérez I, Popović N, Otalora BB, Popović M, Madrid JA, Rol MA, Venero C. Long-term social isolation in the adulthood results in CA1 shrinkage and cognitive impairment. Neurobiol Learn Mem 2013; 106:31-9. [PMID: 23867635 DOI: 10.1016/j.nlm.2013.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/24/2013] [Accepted: 07/04/2013] [Indexed: 12/28/2022]
Abstract
Social isolation in adulthood is a psychosocial stressor that can result in endocrinological and behavioral alterations in different species. In rodents, controversial results have been obtained in fear conditioning after social isolation at adulthood, while neural substrates underlying these differences are largely unknown. Neural cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) are prominent modulators of synaptic plasticity underlying memory processes in many tasks, including fear conditioning. In this study, we used adult female Octodon degus to investigate the effects of long-term social isolation on contextual and cued fear conditioning, and the possible modulation of the synaptic levels of NCAM and PSA-NCAM in the hippocampus. After 6½ months of social isolation, adult female degus showed a normal auditory-cued fear memory, but a deficit in contextual fear memory, a hippocampal dependent task. Subsequently, we observed reduced hippocampal synaptic levels of PSA-NCAM in isolated compared to grouped-housed female degus. No significant differences were found between experimental groups in hippocampal levels of the three main isoforms of NCAM (NCAM180, NCAM140 and NCAM120). Interestingly, social isolation reduced the volume of the hippocampal CA1 subfield, without affecting the volume of the CA3 subregion or the total hippocampus. Moreover, attenuated body weight gain and reduced number of granulocytes were detected in isolated animals. Our findings indicate for the first time, that long-term social isolation of adult female animals induces a specific shrinkage of CA1 and a decrease in synaptic levels of PSA-NCAM in the hippocampus. These effects may be related to the deficit in contextual fear memory observed in isolated female degus.
Collapse
Affiliation(s)
- Inmaculada Pereda-Pérez
- Department of Psychobiology, Universidad Nacional de Educación a Distancia, Juan del Rosal 10, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Neural cell adhesion molecule-mediated Fyn activation promotes GABAergic synapse maturation in postnatal mouse cortex. J Neurosci 2013; 33:5957-68. [PMID: 23554477 DOI: 10.1523/jneurosci.1306-12.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
GABAergic basket interneurons form perisomatic synapses, which are essential for regulating neural networks, and their alterations are linked to various cognitive dysfunction. Maturation of basket synapses in postnatal cortex is activity dependent. In particular, activity-dependent downregulation of polysialiac acid carried by the neural cell adhesion molecule (NCAM) regulates the timing of their maturation. Whether and how NCAM per se affects GABAergic synapse development is unknown. Using single-cell genetics to knock out NCAM in individual basket interneurons in mouse cortical slice cultures, at specific developmental time periods, we found that NCAM loss during perisomatic synapse formation impairs the process of basket cell axonal branching and bouton formation. However, loss of NCAM once the synapses are already formed did not show any effect. We further show that NCAM120 and NCAM140, but not the NCAM180 isoform, rescue the phenotype. Finally, we demonstrate that a dominant-negative form of Fyn kinase mimics, whereas a constitutively active form of Fyn kinase rescues, the effects of NCAM knockdown. Altogether, our data suggest that NCAM120/NCAM140-mediated Fyn activation promotes GABAergic synapse maturation in postnatal cortex.
Collapse
|
8
|
Volpato FZ, Führmann T, Migliaresi C, Hutmacher DW, Dalton PD. Using extracellular matrix for regenerative medicine in the spinal cord. Biomaterials 2013; 34:4945-55. [PMID: 23597407 DOI: 10.1016/j.biomaterials.2013.03.057] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/20/2013] [Indexed: 12/12/2022]
Abstract
Regeneration within the mammalian central nervous system (CNS) is limited, and traumatic injury often leads to permanent functional motor and sensory loss. The lack of regeneration following spinal cord injury (SCI) is mainly caused by the presence of glial scarring, cystic cavitation and a hostile environment to axonal growth at the lesion site. The more prominent experimental treatment strategies focus mainly on drug and cell therapies, however recent interest in biomaterial-based strategies are increasing in number and breadth. Outside the spinal cord, approaches that utilize the extracellular matrix (ECM) to promote tissue repair show tremendous potential for various application including vascular, skin, bone, cartilage, liver, lung, heart and peripheral nerve tissue engineering (TE). Experimentally, it is unknown if these approaches can be successfully translated to the CNS, either alone or in combination with synthetic biomaterial scaffolds. In this review we outline the first attempts to apply the potential of ECM-based biomaterials and combining cell-derived ECM with synthetic scaffolds.
Collapse
Affiliation(s)
- Fabio Zomer Volpato
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove 4059, Australia
| | | | | | | | | |
Collapse
|
9
|
Bhat S, Silberberg DH. Adult human brain expresses four different molecular forms of neural cell adhesion molecules. Neurochem Int 2012; 13:487-91. [PMID: 20501308 DOI: 10.1016/0197-0186(88)90079-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/1988] [Accepted: 06/09/1988] [Indexed: 10/27/2022]
Abstract
Using antibodies to rat neural cell adhesion molecules (NCAM), we analyzed the NCAM of adult human brain. Various regions of the brain were analyzed quantitatively by Western blot. Grey matter showed four bands of NCAM with apparent molecular weights of 180,000, 170,000, 140,000 and 120,000. White matter showed one major band with an apparent M(r) of 120,000 and a minor band of 180,000. Cerebellar grey matter contained mainly 170,000, 140,000 and 120,000, white cerebellar white matter had only 180,000 and 120,000 M(1) NCAMS. Spinal cord showed mainly 120,000 M(r) NCAM. Deglycosylation using N-glycanase resulted in 170,000, 160,000, 130,000 and 110,000 M(r) proteins, suggesting that the four forms of human NCAM are derived from individual polypeptides. The presence of 170,000 M(1) NCAM is unique to human brain.
Collapse
Affiliation(s)
- S Bhat
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | | |
Collapse
|
10
|
Neural cell adhesion molecules in brain plasticity and disease. Mult Scler Relat Disord 2012; 2:13-20. [PMID: 25877450 DOI: 10.1016/j.msard.2012.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 12/14/2022]
Abstract
Neural cell adhesion molecule (NCAM) has been studied extensively. But it is only in recent times that interest in this molecule has shifted to conditions such as Alzheimer's disease, Multiple Sclerosis and Schizophrenia, focusing on its role in neurodegeneration and abnormal neurodevelopment. NCAM is important in neurite outgrowth, long-term potentiation in the hippocampus and synaptic plasticity. Reduced as well as increased levels in NCAM have been linked to pathology in the brain suggesting that a shift in the equilibrium may be the key. Hence, increasing our understanding of the role of NCAM in health and disease should clear some of the ambiguity surrounding the molecule and even lead to newer potential therapeutic targets. This review consolidates our current understanding of NCAM, focusing on the consequences of dysregulation, its role in neurodegenerative and neurodevelopmental disorders, and the future of NCAM plus potential options for therapy.
Collapse
|
11
|
Mouse brain PSA-NCAM levels are altered by graded-controlled cortical impact injury. Neural Plast 2012; 2012:378307. [PMID: 22848850 PMCID: PMC3403363 DOI: 10.1155/2012/378307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/28/2012] [Accepted: 06/03/2012] [Indexed: 01/28/2023] Open
Abstract
Traumatic brain injury (TBI) is a worldwide endemic that results in unacceptably high morbidity and mortality. Secondary injury processes following primary injury are composed of intricate interactions between assorted molecules that ultimately dictate the degree of longer-term neurological deficits. One comparatively unexplored molecule that may contribute to exacerbation of injury or enhancement of recovery is the posttranslationally modified polysialic acid form of neural cell adhesion molecule, PSA-NCAM. This molecule is a critical modulator of central nervous system plasticity and reorganization after injury. In this study, we used controlled cortical impact (CCI) to produce moderate or severe TBI in the mouse. Immunoblotting and immunohistochemical analysis were used to track the early (2, 24, and 48 hour) and late (1 and 3 week) time course and location of changes in the levels of PSA-NCAM after TBI. Variable and heterogeneous short- and long-term increases or decreases in expression were found. In general, alterations in PSA-NCAM levels were seen in the cerebral cortex immediately after injury, and these reductions persisted in brain regions distal to the primary injury site, especially after severe injury. This information provides a starting point to dissect the role of PSA-NCAM in TBI-related pathology and recovery.
Collapse
|
12
|
Kulahin N, Grunnet LG, Lundh M, Christensen DP, Jorgensen R, Heding A, Billestrup N, Berezin V, Bock E, Mandrup-Poulsen T. Direct demonstration of NCAMcis-dimerization and inhibitory effect of palmitoylation using the BRET2technique. FEBS Lett 2010; 585:58-64. [DOI: 10.1016/j.febslet.2010.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
13
|
Yucel D, Kose GT, Hasirci V. Tissue Engineered, Guided Nerve Tube Consisting of Aligned Neural Stem Cells and Astrocytes. Biomacromolecules 2010; 11:3584-91. [DOI: 10.1021/bm1010323] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deniz Yucel
- METU, Central Laboratory, Molecular Biology and Biotechnology R&D Center, METU, BIOMAT, Departments of Biotechnology and Biological Sciences, Biotechnology Research Unit, 06531 Ankara, Turkey, and Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Gamze Torun Kose
- METU, Central Laboratory, Molecular Biology and Biotechnology R&D Center, METU, BIOMAT, Departments of Biotechnology and Biological Sciences, Biotechnology Research Unit, 06531 Ankara, Turkey, and Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Vasif Hasirci
- METU, Central Laboratory, Molecular Biology and Biotechnology R&D Center, METU, BIOMAT, Departments of Biotechnology and Biological Sciences, Biotechnology Research Unit, 06531 Ankara, Turkey, and Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| |
Collapse
|
14
|
Povlsen GK, Ditlevsen DK. The neural cell adhesion molecule NCAM and lipid rafts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:183-98. [PMID: 20017023 DOI: 10.1007/978-1-4419-1170-4_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
NCAM in long-term potentiation and learning. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:257-70. [PMID: 20017028 DOI: 10.1007/978-1-4419-1170-4_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
|
17
|
Signaling pathways involved in NCAM-induced neurite outgrowth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:151-68. [PMID: 20017021 DOI: 10.1007/978-1-4419-1170-4_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Cox ET, Brennaman LH, Gable KL, Hamer RM, Glantz LA, Lamantia AS, Lieberman JA, Gilmore JH, Maness PF, Jarskog LF. Developmental regulation of neural cell adhesion molecule in human prefrontal cortex. Neuroscience 2009; 162:96-105. [PMID: 19393299 PMCID: PMC2739580 DOI: 10.1016/j.neuroscience.2009.04.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 03/30/2009] [Accepted: 04/16/2009] [Indexed: 12/25/2022]
Abstract
Neural cell adhesion molecule (NCAM) is a membrane-bound cell recognition molecule that exerts important functions in normal neurodevelopment including cell migration, neurite outgrowth, axon fasciculation, and synaptic plasticity. Alternative splicing of NCAM mRNA generates three main protein isoforms: NCAM-180, -140, and -120. Ectodomain shedding of NCAM isoforms can produce an extracellular 105-115 kilodalton soluble neural cell adhesion molecule fragment (NCAM-EC) and a smaller intracellular cytoplasmic fragment (NCAM-IC). NCAM also undergoes a unique post-translational modification in brain by the addition of polysialic acid (PSA)-NCAM. Interestingly, both PSA-NCAM and NCAM-EC have been implicated in the pathophysiology of schizophrenia. The developmental expression patterns of the main NCAM isoforms and PSA-NCAM have been described in rodent brain, but no studies have examined NCAM expression across human cortical development. Western blotting was used to quantify NCAM in human postmortem prefrontal cortex in 42 individuals ranging in age from mid-gestation to early adulthood. Each NCAM isoform (NCAM-180, -140, and -120), post-translational modification (PSA-NCAM) and cleavage fragment (NCAM-EC and NCAM-IC) demonstrated developmental regulation in frontal cortex. NCAM-180, -140, and -120, as well as PSA-NCAM, and NCAM-IC all showed strong developmental regulation during fetal and early postnatal ages, consistent with their identified roles in axon growth and plasticity. NCAM-EC demonstrated a more gradual increase from the early postnatal period to reach a plateau by early adolescence, potentially implicating involvement in later developmental processes. In summary, this study implicates the major NCAM isoforms, PSA-NCAM and proteolytically cleaved NCAM in pre- and postnatal development of the human prefrontal cortex. These data provide new insights on human cortical development and also provide a basis for how altered NCAM signaling during specific developmental intervals could affect synaptic connectivity and circuit formation, and thereby contribute to neurodevelopmental disorders.
Collapse
Affiliation(s)
- E T Cox
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Transcriptional regulation of PSA-NCAM expression by NMDA receptor activation in RA-differentiated C6 glioma cultures. Brain Res Bull 2009; 79:157-68. [PMID: 19429186 DOI: 10.1016/j.brainresbull.2009.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 02/13/2009] [Accepted: 02/13/2009] [Indexed: 12/19/2022]
Abstract
N-Methyl-d-aspartate (NMDA) receptors exhibit a dichotomy of signaling with both toxic and plastic responses. Recent reports have shown that exposure to subtoxic concentration of NMDA results in a neuroprotective state that was measured when these neurons were subsequently challenged with toxic doses of glutamate or kainate. Control of polysialylated neural cell adhesion molecule (PSA-NCAM) expression by NMDA receptor activation has been described in several systems, suggesting a functional link between these two proteins. The perception of glial role in CNS function has changed dramatically over the past few years from simple trophic functions to that of cells with important roles in development and maintenance of CNS in cooperation with neurons. We report here the transcriptional regulation of PSA-NCAM expression by subtoxic dose of NMDA in retinoic acid differentiated C6 glioma cell cultures. C6 glioma cell cultures differentiated with retinoic acid (10microM) were exposed to NMDA (100microM) or to antagonist MK-801 (200nM) prior to treatment with NMDA and cells were harvested after 24h of treatment to study the expression of total NCAM, PSA-NCAM, nuclear factor kappaB (NF-kappaB) and activator protein-1 (AP-1) by Western blotting and dual immunocytofluorescence and expression of PST mRNA by fluorescent in situ hybridization (FISH). Significant increase in the levels of PSA-NCAM, NF-kappaB, AP-1 and PST mRNA was observed in NMDA treated cultures. Treatment of cultures with MK-801, a non-competitive NMDA receptor antagonist, prior to NMDA exposure prevented the NMDA-mediated changes indicating the involvement of NMDA receptor activation. The results elucidate the possible cellular and molecular mechanisms of regulation of PSA-NCAM expression in astroglial cultures by extracellular signals.
Collapse
|
20
|
Affiliation(s)
- Kateryna Kolkova
- Enkam Pharmaceuticals A/S, Fruebjergvej 3, Box 58, 2100, Copenhagen, Denmark,
| |
Collapse
|
21
|
|
22
|
Povlsen GK, Ditlevsen DK. WITHDRAWN: The Neural Cell Adhesion Molecule NCAM and Lipid Rafts. Neurochem Res 2008. [PMID: 18548347 DOI: 10.1007/s11064-008-9759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2008] [Indexed: 11/28/2022]
|
23
|
Ditlevsen DK, Povlsen GK, Berezin V, Bock E. NCAM-induced intracellular signaling revisited. J Neurosci Res 2008; 86:727-43. [DOI: 10.1002/jnr.21551] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Kiselyov VV, Soroka V, Berezin V, Bock E. Structural biology of NCAM homophilic binding and activation of FGFR. J Neurochem 2005; 94:1169-79. [PMID: 16045455 DOI: 10.1111/j.1471-4159.2005.03284.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this review, we analyse the structural basis of the homophilic interactions of the neural cell adhesion molecule (NCAM) and the NCAM-mediated activation of the fibroblast growth factor receptor (FGFR). Recent structural evidence suggests that NCAM molecules form cis-dimers in the cell membrane through a high affinity interaction. These cis-dimers, in turn, mediate low affinity trans-interactions between cells via formation of either one- or two-dimensional 'zippers'. We provide evidence that FGFR is probably activated by NCAM very differently from the way by which it is activated by FGFs, reflecting the different conditions for NCAM-FGFR and FGF-FGFR interactions. The affinity of FGF for FGFR is approximately 10(6) times higher than that of NCAM for FGFR. Moreover, in the brain NCAM is constantly present on the cell surface in a concentration of about 50 microm, whereas FGFs only appear transiently in the extracellular environment and in concentrations in the nanomolar range. We discuss the structural basis for the regulation of NCAM-FGFR interactions by two molecular 'switches', polysialic acid (PSA) and adenosine triphosphate (ATP), which determine whether NCAM acts as a signalling or an adhesion molecule.
Collapse
Affiliation(s)
- Vladislav V Kiselyov
- Protein Laboratory, Institute of Molecular Pathology, Panum Institute, School of Medicine, University of Copenhagen, Blegdamsvej 3C, Building 6.2, Copenhagen, Denmark
| | | | | | | |
Collapse
|
25
|
Suzuki T, Izumoto S, Fujimoto Y, Maruno M, Ito Y, Yoshimine T. Clinicopathological study of cellular proliferation and invasion in gliomatosis cerebri: important role of neural cell adhesion molecule L1 in tumour invasion. J Clin Pathol 2005; 58:166-71. [PMID: 15677537 PMCID: PMC1770574 DOI: 10.1136/jcp.2004.020909] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS In patients with gliomatosis cerebri (GC), glial fibrillary acidic protein (GFAP) positive cells invade the entire brain, particularly the white matter. Because the nosological definition and histogenesis of GC remain controversial, the morphology and immunohistochemical staining patterns of neoplastic GC cells were compared with those of other gliomas. METHODS An immunohistochemical analysis of neoplastic cells from four patients with GC and 20 with astrocytic tumours using antibodies against Ki-67, GFAP, and L1, the last of which is a neural cell adhesion molecule putatively related to glioma invasion. RESULTS GC tumour cells can be divided into two types, those mainly composed of strongly GFAP and L1 positive gemistocytic cells, the other composed of small, GFAP and L1 negative spindle shaped cells. The two types did not differ with respect to Ki-67 positivity. Cells from patients with other gliomas were positive for GFAP but concurrent L1 expression was negative or weakly positive. CONCLUSION The strong expression of L1 in patients with GC and its poor expression in the 20 patients with other types of glioma, including those with GFAP positive gemistocytic astrocytomas, suggest that L1 expression may play a role in the histogenesis of GC.
Collapse
Affiliation(s)
- T Suzuki
- Department of Neurosurgery, Osaka University Medical School, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Ko IK, Kato K, Iwata H. Antibody microarray for correlating cell phenotype with surface marker. Biomaterials 2005; 26:687-96. [PMID: 15282147 DOI: 10.1016/j.biomaterials.2004.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 03/13/2004] [Indexed: 10/26/2022]
Abstract
To correlate cell surface markers with the cell phenotype, an antibody microarray prepared by covalently immobilizing antibodies onto a cellulose membrane and subsequent immunocytochemical staining were employed. The direct binding assay of a lymphoblastic leukemia cell line on the microarray showed that the immobilized antibody served to capture cells expressing the specific antigen. The density of bound cells increased linearly with an increasing content of antigen-expressing cells in suspension. The method was further applied to the analysis of surface antigens expressed on neural stem cells. A binding assay was performed with neural cells obtained from the neurosphere culture of the rat fetal striatum on a microarray spotted with eight kinds of antibodies and four different proteins, followed by immunocytochemical staining of cells bound to the microarray using antibodies to the intracellular markers of immature (nestin and vimentin) and mature (beta-tubulin III and glial fibrillary acidic protein) neural cells. As a result, the phenotype of bound cells could be correlated to surface antigen expression, which illustrated the potential of the solid-phase cytometry developed here for the identification of surface markers.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antibody Specificity
- Antigen-Antibody Reactions
- Antigens, CD/analysis
- Antigens, CD/immunology
- Antigens, Surface/analysis
- Antigens, Surface/immunology
- B-Lymphocytes/immunology
- Burkitt Lymphoma/pathology
- Cell Differentiation
- Cell Line, Tumor/immunology
- Cells, Cultured/immunology
- Cellulose
- Corpus Striatum/cytology
- Corpus Striatum/embryology
- Corpus Striatum/immunology
- Feasibility Studies
- Fluorescent Antibody Technique, Indirect
- Glial Fibrillary Acidic Protein/analysis
- Glial Fibrillary Acidic Protein/immunology
- Humans
- Immunophenotyping/methods
- Intermediate Filament Proteins/analysis
- Intermediate Filament Proteins/immunology
- Membranes, Artificial
- Microarray Analysis
- Microscopy, Fluorescence
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/immunology
- Nestin
- Neurons/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Rats
- Rats, Inbred F344
- Stem Cells/immunology
- T-Lymphocytes/immunology
- Tubulin/analysis
- Tubulin/immunology
- Vimentin/analysis
- Vimentin/immunology
Collapse
Affiliation(s)
- In Kap Ko
- Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
27
|
Bukalo O, Fentrop N, Lee AYW, Salmen B, Law JWS, Wotjak CT, Schweizer M, Dityatev A, Schachner M. Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J Neurosci 2004; 24:1565-77. [PMID: 14973228 PMCID: PMC6730450 DOI: 10.1523/jneurosci.3298-03.2004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NCAM, a neural cell adhesion molecule of the immunoglobulin superfamily, is involved in neuronal migration and differentiation, axon outgrowth and fasciculation, and synaptic plasticity. To dissociate the functional roles of NCAM in the adult brain from developmental abnormalities, we generated a mutant in which the NCAM gene is inactivated by cre-recombinase under the control of the calcium-calmodulin-dependent kinase II promoter, resulting in reduction of NCAM expression predominantly in the hippocampus. This mutant (NCAMff+) did not show the overt morphological and behavioral abnormalities previously observed in constitutive NCAM-deficient (NCAM-/-) mice. However, similar to the NCAM-/- mouse, a reduction in long-term potentiation (LTP) in the CA1 region of the hippocampus was revealed. Long-term depression was also abolished in NCAMff+ mice. The deficit in LTP could be rescued by elevation of extracellular Ca2+ concentrations from 1.5 or 2.0 to 2.5 mm, suggesting an involvement of NCAM in regulation of Ca2+-dependent signaling during LTP. Contrary to the NCAM-/- mouse, LTP in the CA3 region was normal, consistent with normal mossy fiber lamination in NCAMff+ as opposed to abnormal lamination in NCAM-/- mice. NCAMff+ mutants did not show general deficits in short- and long-term memory in global landmark navigation in the water maze but were delayed in the acquisition of precise spatial orientation, a deficit that could be overcome by training. Thus, mice conditionally deficient in hippocampal NCAM expression in the adult share certain abnormalities characteristic of NCAM-/- mice, highlighting the role of NCAM in the regulation of synaptic plasticity in the CA1 region.
Collapse
Affiliation(s)
- Olena Bukalo
- Zentrum fuer Molekulare Neurobiologie, Universitaet Hamburg, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
In the present study, the influence of astrocyte alignment on the direction and length of regenerating neurites was examined in vitro. Astrocytes were experimentally manipulated by different approaches to create longitudinally aligned monolayers. When cultured on the aligned monolayers, dorsal root ganglion neurites grew parallel to the long axis of the aligned astrocytes and were significantly longer than controls. Engineered monolayers expressed linear arrays of fibronectin, laminin, neural cell adhesion molecule, and chondroitin sulfate proteoglycan that were organized parallel to one another, suggesting that a particular spatial arrangement of these molecules on the astrocyte surface may be necessary to direct nerve regeneration in vivo. In contrast, no bias in directional outgrowth was observed for neurites growing on unorganized monolayers. The results suggest that altering the organization of astrocytes and their scar-associated matrix at the lesion site may be used to influence the direction and the length of adjacent regenerating axons in the damaged brain and spinal cord.
Collapse
Affiliation(s)
- Roy Biran
- The Keck Center for Tissue Engineering, Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
29
|
Giménez y Ribotta M, Menet V, Privat A. The role of astrocytes in axonal regeneration in the mammalian CNS. PROGRESS IN BRAIN RESEARCH 2001; 132:587-610. [PMID: 11545022 DOI: 10.1016/s0079-6123(01)32105-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- M Giménez y Ribotta
- INSERM U336, Université Montpellier II, Place E. Bataillon, B.P. 106, 34095 Montpellier, France
| | | | | |
Collapse
|
30
|
Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. J Neurosci 2001. [PMID: 11487638 DOI: 10.1523/jneurosci.21-16-06147.2001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intermediate filaments (IFs) are a major component of the cytoskeleton in astrocytes. Their role is far from being completely understood. Immature astrocytes play a major role in neuronal migration and neuritogenesis, and their IFs are mainly composed of vimentin. In mature differentiated astrocytes, vimentin is replaced by the IF protein glial fibrillary acidic protein (GFAP). In response to injury of the CNS in the adult, astrocytes become reactive, upregulate the expression of GFAP, and reexpress vimentin. These modifications contribute to the formation of a glial scar that is obstructive to axonal regeneration. Nevertheless, astrocytes in vitro are considered to be the ideal substratum for the growth of embryonic CNS axons. In the present study, we have examined the potential role of these two major IF proteins in both neuronal survival and neurite growth. For this purpose, we cocultured wild-type neurons on astrocytes from three types of knock-out (KO) mice for GFAP or/and vimentin in a neuron-astrocyte coculture model. We show that the double KO astrocytes present many features of immaturity and greatly improve survival and neurite growth of cocultured neurons by increasing cell-cell contact and secreting diffusible factors. Moreover, our data suggest that the absence of vimentin is not a key element in the permissivity of the mutant astrocytes. Finally, we show that only the absence of GFAP is associated with an increased expression of some extracellular matrix and adhesion molecules. To conclude, our results suggest that GFAP expression is able to modulate key biochemical properties of astrocytes that are implicated in their permissivity.
Collapse
|
31
|
Chang RC, Hudson P, Wilson B, Liu B, Abel H, Hemperly J, Hong JS. Immune modulatory effects of neural cell adhesion molecules on lipopolysaccharide-induced nitric oxide production by cultured glia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 81:197-201. [PMID: 11000493 DOI: 10.1016/s0169-328x(00)00175-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activation of glial cells often occurs at sites of neuronal injury or death and where there is disruption of communication between glia and neurons. We have previously reported that neurons exert an inhibitory influence on LPS-stimulated nitric oxide (NO) production in glial cells. We hypothesized that neural cell adhesion molecules (NCAM) might mediate this inhibitory effect, and this study was designed to elucidate the role of NCAM on lipopolysaccharide (LPS)-induced NO production. We found that soluble NCAMs reduced LPS-stimulated NO production by cultured glia. A monoclonal antibody that recognizes the third immunoglobulin (Ig) domain and can mimic the functions of NCAMs reduced LPS-stimulated NO production, whereas another antibody that binds to other regions of the NCAM did not modulate NO production. Using a 10-amino acid peptide from the third Ig domain of the NCAM, a peptide fragment within the region recognized by the NCAM antibody, mimics the effect of the molecule in reducing NO production. This study demonstrated that NCAMs could modulate LPS-stimulated NO production, most likely via interaction between NCAMs. These results suggest that neuron-glia interactions via NCAMs play an important role in regulating the activities of glial cells in the brain.
Collapse
Affiliation(s)
- R C Chang
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Nomura T, Yabe T, Rosenthal ES, Krzan M, Schwartz JP. PSA-NCAM distinguishes reactive astrocytes in 6-OHDA-lesioned substantia nigra from those in the striatal terminal fields. J Neurosci Res 2000; 61:588-96. [PMID: 10972955 DOI: 10.1002/1097-4547(20000915)61:6<588::aid-jnr2>3.0.co;2-m] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
6-hydroxydopamine (6-OHDA) lesion of the substantia nigra (SN) causes the appearance of reactive astrocytes not only in the SN but also in the striatal terminal fields, as measured by increased size of the cells and their processes, as well as enhanced expression of glial fibrillary acidic protein (GFAP) and an epitope recognized by monoclonal antibody 19D1. We now demonstrate that polysialylated neural cell adhesion molecule (PSA-NCAM) is induced on reactive astrocytes, as well as on large neurons, on the ipsilateral side of the 6-OHDA-lesioned SN. Colocalization of GFAP and PSA-NCAM was confirmed for reactive astrocytes using a confocal laser scanning microscope. Negligible amounts of PSA-NCAM reactivity were detected contralaterally, although colocalization was noted on astrocytes with sparse, significantly thinner processes. In contrast to the increase of GFAP in the lesioned striatum, few striatal astrocytes expressed PSA-NCAM. In agreement with these results, PSA-NCAM was detected on cultured reactive astrocytes from SN but not reactive striatal astrocytes. Double immunohistochemistry for proliferating cell nuclear antigen (PCNA), a marker of dividing cells, and GFAP demonstrated that reactive astrocytes in lesioned SN were PCNA-positive whereas those in striatum were not. Although NG2 chondroitin sulfate proteoglycan expression also increased in the lesioned SN, NG2 was not colocalized with PSA-NCAM, was not expressed on astrocytes, and labeled only oligodendrocyte precursor cells. Our results suggest that PSA-NCAM can act as a marker for reactive astrocytes only at the site of the lesion and not in the terminal fields, probably because it is reexpressed only when astrocytes divide.
Collapse
Affiliation(s)
- T Nomura
- Neurotrophic Factors Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4126, USA
| | | | | | | | | |
Collapse
|
33
|
Wright JW, Copenhaver PF. Different isoforms of fasciclin II play distinct roles in the guidance of neuronal migration during insect embryogenesis. Dev Biol 2000; 225:59-78. [PMID: 10964464 DOI: 10.1006/dbio.2000.9777] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the formation of the enteric nervous system (ENS) of the moth Manduca sexta, identified populations of neurons and glial cells participate in precisely timed waves of migration. The cell adhesion receptor fasciclin II is expressed in the developing ENS and is required for normal migration. Previously, we identified two isoforms of Manduca fasciclin II (MFas II), a glycosyl phosphatidylinositol-linked isoform (GPI-MFas II) and a transmembrane isoform (TM-MFas II). Using RNA and antibody probes, we found that these two isoforms were expressed in cell type-specific patterns: GPI-MFas II was expressed by glial cells and newly generated neurons, while TM-MFas II was confined to differentiating neurons. The expression of each isoform also corresponded to the motile state of the different cell types: GPI-MFas II was detected on tightly adherent or slowly spreading cells, while TM-MFas II was expressed by actively migrating neurons and was localized to their most motile regions. Manipulations of each isoform in embryo culture showed that they played distinct roles: whereas GPI-MFas II acted strictly as an adhesion molecule, TM-MFas II promoted the motility of the EP cells as well as maintaining fasciculation with their pathways. These results indicate that precisely regulated patterns of isoform expression govern the functions of fasciclin II within the developing nervous system.
Collapse
Affiliation(s)
- J W Wright
- Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201, USA
| | | |
Collapse
|
34
|
Sasaki T, Endo T. Evidence for the presence of N‐CAM 180 on astrocytes from rat cerebellum and differences in glycan structures between N‐CAM 120 and N‐CAM 140. Glia 1999. [DOI: 10.1002/(sici)1098-1136(199912)28:3<236::aid-glia7>3.0.co;2-#] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tasuku Sasaki
- Department of Glycobiology, Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashi‐ku, Tokyo, Japan
| | - Tamao Endo
- Department of Glycobiology, Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashi‐ku, Tokyo, Japan
| |
Collapse
|
35
|
Abstract
Following injury to the central nervous system (CNS), astrocytes become reactive and in many cases form a glial scar. Very little is known about the adhesive interactions between astrocytes at the glial scar, even though reactive gliosis and scar formation are a central issue in CNS wound healing. In the present study, we examine the role of cadherin in the process of scar formation using immunohistochemistry and immunoblot methods. When a stab wound was made in the cerebral cortex of the rat, cadherins were consistently upregulated by the reactive astrocytes at the glial scar. Our immunoblot analysis demonstrates that the increase in cadherin immunoreactivity was due to a threefold upregulation of a single protein with a molecular weight of 135 kDa. The size (135 kDa) and location of the immunoreactive protein at regions of cell-cell contact in cultured astrocytes indicates that the immunoreactive protein is N-cadherin. These data are the first to demonstrate that N-cadherin plays a prominent role in the response of astrocytes to injury, including the formation and maintenance of the glial scar.
Collapse
Affiliation(s)
- F Vázquez-Chona
- Department of Biology, Christian Brothers University, Memphis, TN 38104, USA
| | | |
Collapse
|
36
|
Murakami K, Asou H, Adachi T, Takagi T, Kunimoto M, Saito H, Uyemura K. Neutral glycolipid and ganglioside composition of type-1 and type-2 astrocytes from rat cerebral hemisphere. J Neurosci Res 1999; 55:382-93. [PMID: 10348669 DOI: 10.1002/(sici)1097-4547(19990201)55:3<382::aid-jnr13>3.0.co;2-m] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We reported previously that the major gangliosides in primary mixed-type astrocyte cultures are GM3 and GD3. To obtain more information regarding the exact distribution of glycosphingolipids in different types of astrocytes, we established a line of type-1 astrocytes that are characterized by a Ran-2 positive, broad flat morphology, and by the absence of binding to A2B5 antibodies. We also purified O-2A progenitor cells by immunopanning and cultured them in the presence of 10% newborn calf serum. They differentiated into type-2 astrocytes that were identified by immunostaining for each of GD3, A2B5, and GFAP. Using these cell cultures, we demonstrate that the major gangliosides were GM3 in type-1 astrocytes and GM3 and GD3 in type-2 astrocytes. In addition, a set of neutral glycolipids was identified based on the HP-TLC migration properties of CMH, CDH, CTH, and Glob, but the component distribution of these glycolipids is related to that of glycolipids of astrocytes. A marked increase in the expression of CTH and Glob was shown in type-2 astrocytes. The amount of neutral glycolipid-sugar was higher in the type-2 astrocytes than in the type-1 astrocytes. These results suggest that the increase in the total glycosphingolipid content and the change in the neutral glycolipid composition produced by type-2 astrocytes may be related to their biological functions and the cellular compositions.
Collapse
Affiliation(s)
- K Murakami
- Department of Physiology, Keio-University School of Medicine, Shinanomachi, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Mi�ana R, Sancho-Tello M, Climent E, Segu� JM, Renau-Piqueras J, Guerri C. Intracellular location, temporal expression, and polysialylation of neural cell adhesion molecule in astrocytes in primary culture. Glia 1998. [DOI: 10.1002/(sici)1098-1136(199812)24:4<415::aid-glia7>3.0.co;2-a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Abstract
We have studied the role of actin fiber assembly on calcium signaling in astrocytes. We found that (1) after astrocytes have been placed in culture, it takes several hours for organization of the definitive actin cytoskeleton. Actin organization and the number of cells engaged in calcium signaling increased in parallel. (2) Disruption of the actin cytoskeleton attenuated the calcium wave propagation; cytochalasin D treatment reduced the number of astrocytes engaged in calcium signaling. (3) Propagation of calcium waves depends on cytoskeletal function; inhibition of myosin light chain kinase suppressed wave activity. (4) Astrocytic calcium signaling is mediated by release of ATP and purinergic receptor stimulation, because agents that interfere with this cascade attenuated or reduced calcium signaling. Because purinergic receptors are fully functional shortly after plating and not affected by cytochalasin D, these observations indicate that cytoskeleton organization is a prerequisite for interastrocytic calcium signaling mediated by release of ATP.
Collapse
|
39
|
Rønn LC, Hartz BP, Bock E. The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp Gerontol 1998; 33:853-64. [PMID: 9951628 DOI: 10.1016/s0531-5565(98)00040-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neural cell adhesion molecule (NCAM) is a member of the immunoglobulin superfamily and is strongly expressed in the nervous system. NCAM is found in three major forms, of which two--NCAM-140 and NCAM-180--are transmembrane proteins, while the third--NCAM-120--is attached to the membrane via a glycosylphosphatidyl inositol anchor. In addition, soluble NCAM forms exist in brain, cerebrospinal fluid, and plasma. NCAM mediates cell adhesion through homophilic as well as through heterophilic interactions. Following NCAM binding, transmembrane signalling is believed to be activated, resulting in increased intracellular calcium. By mediating cell adhesion to other cells and to the extracellular matrix and by activating intracellular signaling pathways, NCAM influences cell migration, neurite extension, and fasciculation, and possibly formation of synapses in the brain. From studies on NCAM knock-out mice, NCAM have been shown to be crucial for the formation of the olfactory bulb and the mossy fiber system in the hippocampus. In addition, NCAM is important for neuronal plasticity in the adult brain associated with learning and regeneration.
Collapse
Affiliation(s)
- L C Rønn
- Protein Laboratory, Institute for Molecular Pathology, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
40
|
Abstract
Cell interactions in the nervous system are frequently mediated by surface proteins that are attached to the membrane by a glycosyl phosphatidylinositol (GPI) anchor. In this study, we have characterized the expression of such proteins on glial cells. We have detected a major GPI-anchored protein on astrocytes and Schwann cells, with a molecular weight of 140 kD. When Schwann cells were treated with forskolin to promote a myelinating phenotype, expression of this 140-kD protein dramatically decreased, whereas another GPI-anchored protein of 80 kD was strongly induced; expression of other integral membrane proteins were likewise dramatically altered. The size and pattern of expression of the 140-kD protein suggested that it might correspond to the Ran-2 antigen, a glial lineage marker. This notion was confirmed by immunoprecipitating this 140-kD protein with the Ran-2 monoclonal antibody. The Ran-2 antigen is expressed over the entire Schwann cell surface in a punctate fashion; it is removed by phosphatidylinositol phospholipase C treatment, thereby confirming that it is GPI-anchored. When Schwann cells are cocultured with neurons, the Ran-2 antigen initially concentrates at sites of Schwann cell contact with neurons, suggesting that it may play a role in early Schwann cell-neuron interactions; it is then downregulated. Protein sequencing of the Ran-2 antigen immunopurified from rat brain membranes showed complete identity over two extended segments with the copper binding protein ceruloplasmin. These findings indicate that astrocytes and Schwann cells express a novel GPI-anchored form of ceruloplasmin and suggest that this GPI form plays a role in axonal-glial interactions.
Collapse
Affiliation(s)
- J L Salzer
- Department of Cell Biology, Kaplan Cancer Center, New York University Medical School, New York 10016, USA
| | | | | | | |
Collapse
|
41
|
Fok-Seang J, DiProspero NA, Meiners S, Muir E, Fawcett JW. Cytokine-induced changes in the ability of astrocytes to support migration of oligodendrocyte precursors and axon growth. Eur J Neurosci 1998; 10:2400-15. [PMID: 9749768 DOI: 10.1046/j.1460-9568.1998.00251.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Repair of demyelination in the CNS requires that oligodendrocyte precursors (OPs) migrate, divide and then myelinate. Repair of axon damage requires axonal regeneration. Limited remyelination and axon regeneration occurs soon after injury, but usually ceases in a few days. In vivo and in vitro experiments have shown that astrocytic environments are not very permissive for migration of OPs or for axonal re-growth. Yet remyelination and axon sprouting early after injury occurs in association with astrocytes, while later astrocytes can exclude remyelination and prevent axon regeneration. A large and changing cast of cytokines are released following CNS injury, so we investigated whether some of these alone or in combination can affect the ability of astrocytes to support migration of OPs and neuritic outgrowth. Interleukin (IL) 1alpha, tumour necrosis factor alpha, transforming growth factor (TGF) beta, basic fibroblast growth factor (bFGF), platelet-derived growth factor and epidermal growth factor alone exerted little or no effect on migration of OPs on astrocytes, whereas interferon (IFN) gamma was inhibitory. The combination of IL-1alpha + bFGF was found to be pro-migratory, and this effect could be neutralized by TGFbeta. We also examined neuritic outgrowth from dorsal root ganglion explants in three-dimensional astrocyte cultures treated with cytokines and found that IL-1alpha + bFGF greatly increased axon outgrowth and that this effect could be blocked by TGFbeta and IFNgamma. All these effects were absent or much smaller when OP migration or axon growth was tested on laminin, so the main effect of the cytokines was via astrocytes. The cytokine effects did not correlate with expression on astrocytes of laminin, fibronectin, tenascin, chondroitin sulphate proteoglycan, N-cadherin, polysialyated NCAM (PSA-NCAM), tissue plasminogen activator (tPA) or urokinase (uPA).
Collapse
Affiliation(s)
- J Fok-Seang
- Physiological Laboratory, University of Cambridge, UK
| | | | | | | | | |
Collapse
|
42
|
Tsuzuki T, Izumoto S, Ohnishi T, Hiraga S, Arita N, Hayakawa T. Neural cell adhesion molecule L1 in gliomas: correlation with TGF-beta and p53. J Clin Pathol 1998; 51:13-7. [PMID: 9577364 PMCID: PMC500423 DOI: 10.1136/jcp.51.1.13] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS To assess immunohistochemically whether the neural cell adhesion molecule L1, which is a member of the immunoglobulin superfamily and has been shown recently to be a stimulating factor for glioma migration, is expressed in glioma tissues, and to investigate factors that can regulate this expression. METHODS Twenty seven glioma tissue specimens including 13 glioblastomas, seven anaplastic astrocytomas, and seven astrocytomas were examined. Immunohistochemical analyses of L1, p53, and transforming growth cell factor beta (TGF-beta) were performed on each tumour using both polyclonal and monoclonal antibodies. RESULTS Nine (33%) specimens (six glioblastomas and three anaplastic astrocytomas) had L1 positive immunostaining. p53 positive staining was detected in 10 (43%) of 23 glioma specimens (seven glioblastomas and three anaplastic astrocytomas). TGF-beta positive immunostaining was observed in 12 (52%) of the 23 glioma specimens (six glioblastomas, four anaplastic astrocytomas, and two astrocytomas). There was a statistical correlation between both p53 and L1 expression and TGF-beta and L1 expression. No such correlation was found between p53 and TGF-beta expression. CONCLUSIONS These results suggest that mutation of the p53 gene or expression of TGF-beta may upregulate the expression of the L1 gene, thus resulting in high grade migration of glioma cells.
Collapse
Affiliation(s)
- T Tsuzuki
- Department of Neurosurgery, Osaka University Medical School, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Rønn LC, Pedersen N, Jahnsen H, Berezin V, Bock E. Brain plasticity and the neural cell adhesion molecule (NCAM). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:305-22. [PMID: 9413583 DOI: 10.1007/978-1-4757-9551-6_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- L C Rønn
- Protein Laboratory, Institute for Molecular Pathology, Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
44
|
Mahler M, Ben-Ari Y, Represa A. Differential expression of fibronectin, tenascin-C and NCAMs in cultured hippocampal astrocytes activated by kainate, bacterial lipopolysaccharide or basic fibroblast growth factor. Brain Res 1997; 775:63-73. [PMID: 9439829 DOI: 10.1016/s0006-8993(97)00901-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Different reports demonstrated that reactive glial cells express increased amounts of adhesion and matrix molecules. Despite a wealth of information on the expression of these molecules during development and after lesion, very little is known of how this expression is regulated. In the present report we used Western blots and immunocytochemistry to investigate the expression of neural cell adhesion molecule (NCAM), fibronectin and tenascin-C in cultured astrocytes from rat hippocampus. The effects of three different extracellular signals were analyzed: the glutamatergic receptor agonist kainic acid, the basic fibroblast growth factor (bFGF) and the bacterial lipopolysaccharide. Each treatment had a specific pattern of glial activation and differentially modified the expression of these proteins. Treatment of astrocytes with kainic acid resulted in an increase of tenascin-C, a decrease of fibronectin and a shift of NCAMs isoforms: NCAM 140 and PSA-NCAM (polysialic acid-rich NCAMs) were increased while NCAM 120 was decreased, bFGF increased fibronectin, tenascin-C and NCAM 120, while decreasing PSA-NCAM. Finally, the treatment of astrocytes with lipopolysaccharide induced a significant increase of fibronectin, tenascin-C and NCAM 120 but did not modify the expression of NCAM 140 and PSA-NCAM. These data suggest different mechanisms for modulation of cell surface interactions. They suggest that glial activation by bFGF and lipopolysaccharide are associated with an increase of the adhesive properties, while kainate action is rather associated with a decrease of the adhesiveness of astrocytes.
Collapse
Affiliation(s)
- M Mahler
- Université René Descartes, Paris V, France
| | | | | |
Collapse
|
45
|
Mahler M, Ferhat L, Ben-Ari Y, Represa A. Effects of tenascin-C in cultured hippocampal astrocytes: NCAM and fibronectin immunoreactivity changes. Glia 1997; 20:231-42. [PMID: 9215732 DOI: 10.1002/(sici)1098-1136(199707)20:3<231::aid-glia7>3.0.co;2-a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tenascin-C is an extracellular matrix glycoprotein with trophic and repulsive properties on neuronal cells, involved in migratory processes of immature neurons. Previous reports demonstrated that this molecule is produced and secreted by astrocytes, in vitro after activation by bFGF or in vivo after CNS lesion. In injured brain the expression of tenascin-C has been correlated with the glial reaction since it was observed in regions suffering a dramatic glial proliferation and hypertrophy. In this report we show that the treatment of cultured hippocampal astrocytes with tenascin-C results in an increased fibronectin and NCAM immunoreactivities. In addition, treated astrocytes form longer extensions than control ones. The number of cells as well as the levels of GFAP mRNA and protein immunoreactivity are not modified after tenascin-C treatment. The present changes may, therefore, be related to the modification of the adhesive properties of astrocytes to the substrate. These observations are compatible with the hypothesis that tenascin-C may contribute to the glial scarring process.
Collapse
Affiliation(s)
- M Mahler
- Universite René Descartes (Paris V), France
| | | | | | | |
Collapse
|
46
|
Stahlhut M, Berezin V, Bock E, Ternaux JP. NCAM-fibronectin-type-III-domain substrata with and without a six-amino-acid-long proline-rich insert increase the dendritic and axonal arborization of spinal motoneurons. J Neurosci Res 1997. [DOI: 10.1002/(sici)1097-4547(19970415)48:2<112::aid-jnr3>3.0.co;2-f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Beggs HE, Baragona SC, Hemperly JJ, Maness PF. NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC-related tyrosine kinase p59(fyn). J Biol Chem 1997; 272:8310-9. [PMID: 9079653 DOI: 10.1074/jbc.272.13.8310] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Axonal growth cones respond to adhesion molecules and extracellular matrix components by rapid morphological changes and growth rate modification. Neurite outgrowth mediated by the neural cell adhesion molecule (NCAM) requires the src family tyrosine kinase p59(fyn) in nerve growth cones, but the molecular basis for this interaction has not been defined. The NCAM140 isoform, which is found in migrating growth cones, selectively co-immunoprecipitated with p59(fyn) from nonionic detergent (Brij 96) extracts of early postnatal mouse cerebellum and transfected rat B35 neuroblastoma and COS-7 cells. p59(fyn) did not associate significantly with the NCAM180 isoform, which is found at sites of stable neural cell contacts, or with the glycophosphatidylinositol-linked NCAM120 isoform. pp60(c-)src, a tyrosine kinase that promotes neurite growth on the neuronal cell adhesion molecule L1, did not interact with any NCAM isoform. Whereas p59(fyn) was constitutively associated with NCAM140, the focal adhesion kinase p125(fak), a nonreceptor tyrosine kinase known to mediate integrin-dependent signaling, became recruited to the NCAM140-p59(fyn) complex when cells were reacted with antibodies against the extracellular region of NCAM. Treatment of cells with a soluble NCAM fusion protein or with NCAM antibodies caused a rapid and transient increase in tyrosine phosphorylation of p125(fak) and p59(fyn). These results suggest that NCAM140 binding interactions at the cell surface induce the assembly of a molecular complex of NCAM140, p125(fak), and p59(fyn) and activate the catalytic function of these tyrosine kinases, initiating a signaling cascade that may modulate growth cone migration.
Collapse
Affiliation(s)
- H E Beggs
- Department of Biochemistry, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
48
|
Crossin KL, Tai MH, Krushel LA, Mauro VP, Edelman GM. Glucocorticoid receptor pathways are involved in the inhibition of astrocyte proliferation. Proc Natl Acad Sci U S A 1997; 94:2687-92. [PMID: 9122257 PMCID: PMC20150 DOI: 10.1073/pnas.94.6.2687] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In earlier studies, the neural cell adhesion molecule, N-CAM, was found to inhibit the proliferation of rat astrocytes both in vitro and in vivo. To identify the gene targets involved, we used subtractive hybridization to examine changes in gene expression that occur after astrocytes are exposed to N-CAM in vitro. While the mRNA levels for N-CAM decreased after such treatment, the levels of mRNAs for glutamine synthetase and calreticulin increased. Since glutamine synthetase and calreticulin are known to be involved in glucocorticoid receptor pathways, we tested a number of steroids for their effects on astrocyte proliferation. Dexamethasone, corticosterone, and aldosterone were all found to inhibit rat cortical astrocyte proliferation in culture in a dose-dependent manner. RU-486, a potent glucocorticoid antagonist, reversed the inhibitory effects of dexamethasone. These observations prompted the hypothesis that the inhibition of proliferation by N-CAM might be mediated through the glucocorticoid receptor pathway. Consistent with this hypothesis, the inhibition of astrocyte proliferation by N-CAM was reversed in part by a number of glucocorticoid antagonists, including RU-486, dehydroepiandrosterone, and progesterone. In transfection experiments with cultured astrocytes, N-CAM treatment increased the expression of a luciferase reporter gene under the control of a minimal promoter linked to a glucocorticoid response element. The enhanced activity of this construct stimulated by N-CAM was abolished in the presence of RU-486. The combined data suggest that astrocyte proliferation is in part regulated by alterations in glucocorticoid receptor pathways.
Collapse
Affiliation(s)
- K L Crossin
- Department of Neurobiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Reactive astrocytes form a scar after injury to the CNS that many investigators believe contributes to the lack of functional regeneration. In the present study, we identify an astrocytic membrane protein that appears to play an important role in reactive gliosis and scar formation. Cultures of rat astrocytes were used as a model system to produce and to screen monoclonal antibodies that would alter cell growth. One antibody, AMP1, was identified that depresses the mitotic activity of cultured glial cells and alters their morphology. Expression cloning reveals that the antigen on the external surface of the cultured glial cells has a high degree of homology with the human lymphocyte protein called Target of the Anti-Proliferative Antibody (TAPA-1; this rat protein will be referred to as rTAPA). rTAPA is a member of the tetramembrane-spanning superfamily of proteins and, as with other members of this family of proteins, rTAPA is associated with the regulation of cellular interactions and mitotic activity. After an injury to the cerebral cortex, there is a dramatic increase in AMP1 immunoreactivity that is spatially restricted to the reactive astrocytes at the glial scar. This change represents an upregulation of a membrane protein, rTAPA, that is approximately equal to the increase observed for glial fibrillary acidic protein. The high levels of rTAPA at the site of CNS injury and the AMP1 antibody perturbation studies indicate that rTAPA may play a prominent role in the response of astrocytes to injury and in glial scar formation.
Collapse
|
50
|
Gard AL, Maughon RH, Schachner M. In vitro oligodendrogliotrophic properties of cell adhesion molecules in the immunoglobulin superfamily: myelin-associated glycoprotein and N-CAM. J Neurosci Res 1996; 46:415-26. [PMID: 8950701 DOI: 10.1002/(sici)1097-4547(19961115)46:4<415::aid-jnr3>3.0.co;2-j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To determine if cell recognition molecules interact trophically with oligodendrocytes (OCs), their effect as growth substrates for differentiating oligodendroblasts was studied in primary culture. Oligodendroblasts purified from postnatal rat cerebrum by immunopanning were plated on substratum-bound cell adhesion molecules or extracellular matrix glycoproteins in chemically defined medium in which OCs terminally differentiate but survive poorly. Growth on myelin-associated glycoprotein (MAG) and neural cell adhesion molecule (N-CAM) selectively increased the number of viable cells per culture 2 weeks after plating as much as tenfold and sixfold, respectively, over background survival on an albumin substrate, whereas L1, tenascin-R, tenascin-C, fibronectin, and laminin were ineffective. Neither MAG nor N-CAM stimulated bromodeoxyuridine incorporation into cultures, indicating that enhanced proliferation did not contribute to better survival. Compared to growth on polyornithine alone, oligodendroblast differentiation in the added presence of MAG or N-CAM was qualitatively unchanged; > 90% of surviving cells developed into OCs that matured further by immunocytochemical and morphological criteria. A striking difference, however, was the quantitative effect of MAG and N-CAM substrates on oligodendrite outgrowth, increasing myelin-like membrane formation two- to threefold (> 8 x 10(3) microns2/cell). These findings support the concept that autotypic or heterotypic cell contact-mediated signaling by recognition molecules at the OC surface contributes trophic support of myelinogenesis.
Collapse
Affiliation(s)
- A L Gard
- Department of Structural and Cellular Biology, College of Medicine, University of South Alabama, Mobile 36688, USA
| | | | | |
Collapse
|